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Abstract—Multiple antenna technologies have attracted much
research interest for several decades and have gradually made
their way into mainstream communication systems. Two main
benefits are adaptive beamforming gains and spatial multiplexing,
leading to high data rates per user and per cell, especially
when large antenna arrays are adopted. Since multiple antenna
technology has become a key component of the fifth-generation
(5G) networks, it is time for the research community to look
for new multiple antenna technologies to meet the immensely
higher data rate, reliability, and traffic demands in the beyond
5G era. Radically new approaches are required to achieve
orders-of-magnitude improvements in these metrics. There will
be large technical challenges, many of which are yet to be
identified. In this paper, we survey three new multiple antenna
technologies that can play key roles in beyond 5G networks: cell-
free massive MIMO, beamspace massive MIMO, and intelligent
reflecting surfaces. For each of these technologies, we present
the fundamental motivation, key characteristics, recent technical
progresses, and provide our perspectives for future research
directions. The paper is not meant to be a survey/tutorial of a
mature subject, but rather serve as a catalyst to encourage more
research and experiments in these multiple antenna technologies.

Index Terms—Beyond 5G, cell-free massive MIMO,
beamspace, intelligent reflecting surface.

I. INTRODUCTION

THE demand for higher data rates and traffic volumes

seems to be never-ending, thus the quest for delivering
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the required services must also continue. The cellular network

technology has evolved from using fixed sector antennas to

flexible multiple antenna solutions. Recently, the first release

of 5G New Radio (NR) was finished by the 3rd Generation

Partnership Project (3GPP) and the first commercial networks

are already operational. In particular, massive multiple-input

multiple-output (MIMO), which are defined in [1] as having

base stations with i) at least 64 antennas and ii) a number of

antennas at least an order of magnitude more than the number

of user equipments (UEs), is a key technology. However, this

is not the end of the MIMO development, but only the end

of the beginning. As access to wireless connectivity becomes

critical in our everyday lives, our expectations of ubiquitous

coverage and service quality continue to grow. Many future

requirements that can be conceived which cannot be addressed

by 5G; for example, exceptionally high bit rates, uniform user

performance over the coverage area, ultra-low latencies, great

energy efficiency, robustness against blocking and jamming,

and wireless charging.

There is no simple way to meet these requirements.

There has been significant focus on using millimeter wave

(mmWave) frequencies in 5G, since large unused bandwidths

are available in these frequency bands, which might translate

into higher bit rates. Unfortunately, there are some funda-

mental drawbacks with mmWave communications [2], [3].

First, the sensitivity to signal blockage has not been resolved,

despite significant research efforts that have been devoted to

the issue in the past decade. Second, the shorter wavelength

in mmWave bands leads to a reduced coherence time, thus

one has to multiplex fewer data signals than in sub-6 GHz

bands to achieve the same signaling overhead for channel

state information (CSI) acquisition. For example, even if 10
times more bandwidth can be utilized in mmWave, the bit

rate might not increase if 10 times fewer data signals can be

multiplexed. These problems presumably become worse in the

sub-terahertz (THz) bands, above 0.1 THz, that are currently

being studied for beyond 5G. The bottom line is that there

is a need to develop novel multiple antenna technologies that

can be applied in the valuable sub-6 GHz spectrum as well

as in higher bands, and to consider both time-division duplex

(TDD) and frequency-division duplex (FDD) modes.

It is time to analyze what lies beyond 5G, or rather what

the current multiple antenna technologies can potentially be

evolved into beyond what is currently envisaged. Potential

paradigm shifts in wireless network design for beyond 5G

are cell-free massive MIMO, beamspace massive MIMO, and

intelligent reflecting surfaces (IRSs). These topics are covered

in Section II, Section III, and Section IV, respectively. New

roles that these multiple antenna technologies can play for
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unmanned aerial vehicle (UAV)-supported communication and

in sub-THz bands are discussed in Section V, while the main

conclusions are provided in Section VI. There are several tuto-

rial papers on multiple antenna technologies, e.g. [4]–[8], and

also textbooks such as [9]–[13]. These provide an excellent in-

troduction to the topic and also describe the developments that

lead to 5G. When it comes to beyond-5G technologies, [14],

[15] are two recent papers that describe prospective future

technologies, but without providing any mathematical details.

In contrast, this paper provides a comprehensive description

of the state-of-the-art in three selected topics and includes all

the theoretical details that are essential to conduct research

on these topics. Besides, various open research problems are

discussed which sheds light on the development of multiple

antenna technologies for beyond-5G networks.

II. CELL-FREE MASSIVE MIMO

The 5G cellular technology can provide data rates and traffic

volumes far above previous cellular technologies, and will also

reduce the latency of the data connections [16]. Yet, these

improvements are primarily achieved by UEs that happen to

be located near the cell centers, while the inter-cell interference

and handover issues that inherent to the cellular architecture

will remain to limit the cell-edge performance. To address

these issues, beyond-5G networks need to enter the cell-free

paradigm, where the absence of cell boundaries alleviates the

inter-cell interference and handover issues but also gives rise

to new challenges.

A. Motivation

The first cellular networks were introduced in the 1970s to

achieve more efficient use of the limited radio resources [17].

Instead of requiring the data source to wirelessly communicate

directly with the UE, which might be located far away and thus

require very high transmit power, cellular networks consist of

set of geographically distributed fixed access points (APs).

The data source sends its data to a nearby AP using relatively

low power. The AP forwards the data to an AP that is near

the UE (typically over cables or other wireless bands) and

can send the data to the UEs with relatively low power.

This enabled better spatial reuse of the frequency spectrum

and the AP densification has been the main way for cellular

networks to handle higher traffic volumes [18]. However, the

AP densification also leads to more inter-cell interference and

more frequent handovers. Most of the traffic congestion in

cellular networks nowadays is at the cell edges, since cell-

center UEs can easily run their preferred applications thanks

to their lower interference levels and higher achievable data

rates. The so-called 95%-likely user data rates, which can

be guaranteed to 95% of the users and thus defines the

user-experienced performance [19], remain mediocre in 5G

networks.

The solution to these issues might be to connect each user

with a multitude of APs [20], [21]; if there were only one

huge cell in the network, there is by definition no inter-cell

interference and no need for handovers. This solution has been

explored in the past, using names such as network MIMO

[21], [22], distributed MIMO [23], and coordinated multi-point

(CoMP) [24]. However, the practical implementation requires

immense fronthaul signaling for CSI and data sharing, as well

as huge computational complexity. To reduce the fronthaul

signaling and computational complexity, a common approach

was to divide the network into disjoint clusters containing

a few neighboring APs [25]–[27], so that only those need

to exchange CSI and data. This network-centric approach

can provide some performance gains [28], but only partially

address the interference and handover issues, which remain

along the cluster edges.

The key to fully resolve these issues is to let each user

be served by those APs that can reach it with non-negligible

interference [29]–[31]. This creates a user-centric network

[32], where each AP collaborates with different sets of APs

when serving different UEs. It is the UEs that select which

set of APs that it is best served by, not the network. Early

experiments with cell-free networks are described in [33], but

it is first in recent years that the concept has gained significant

traction from academia [34], [35], where the name cell-free

massive MIMO has been coined [36]–[38]. In a nutshell, it

is a combination of the best aspects of network MIMO that

were conceived in the last decade and the analytical framework

from the massive MIMO literature, recently surveyed in the

textbooks [11], [12].

B. Basics of Cell-Free Massive MIMO

A cell-free massive MIMO network consists of a large

number of APs that jointly and coherently serves a much

smaller number of UEs on the same time-frequency resource.

The network operates in TDD mode and exploits uplink-

downlink channel reciprocity [37], [38], so that each AP can

acquire CSI between itself and all UEs from uplink pilots.

This CSI is sufficient to implement coherent transmission and

reception [39], so only data signals must be shared between

APs. To enable such information flows, the APs are assumed

to be connected via fronthaul to cloud-edge processors that

take care of data encoding and decoding. These are often

called central processing units (CPUs) in the literature and

the structure is reminiscent of the cloud radio access network

(C-RAN) architecture [40]. One can thus view C-RAN as an

enabler of cell-free massive MIMO. The CPUs are normally

assumed to only know the long-term channel qualities, while

only the APs have instantaneous CSI. Fig. 1 shows the basic

network architecture of a cell-free massive MIMO system.

The spectral efficiencies that UEs can achieve in cell-free

massive MIMO have been analyzed in a series of previ-

ous works. The original papers [37], [38] considered single-

antenna APs, single-antenna UEs, Rayleigh fading channels,

and infinite capacity error-free fronthaul connections. Later

works have studied more realistic setups, such as single-

antenna APs with Rician fading channels [41], [42], multi-

antenna APs with uncorrelated [43], [44] or correlated [45],

[46] fading, multi-antenna UEs [47], [48], and hardware im-

pairments [49], [50]. The impact of finite-resolution fronthaul

connections (i.e., when both CSI and the received signal must

be quantized) was considered in [44]. The general conclusion
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Figure 1: Illustration of the network architecture in cell-free massive MIMO.

is that cell-free massive MIMO works well in all these cases,

thus it is suitable for a variety of deployment scenarios.

One performance benchmark for cell-free massive MIMO is

a cellular network with the same set of APs, but where each

user is only served by one AP (i.e., a small-cell network).

The first paper on the topic showed that cell-free massive

MIMO can achieve nearly fivefold improvement in terms of

95%-likely per-user spectral efficiency [37]. If both the APs

and the UEs are equipped with multiple antennas, the 95%-

likely per-user performance can be further enhanced [48].

Another relevant benchmark is conventional cellular massive

MIMO, consisting of a relatively small number of APs, each

equipped with a large number of antennas. Such comparisons

have been carried out in [46], [51] and show that cell-free

massive MIMO can substantially improve the 95%-likely per-

user spectral efficiency, while cellular massive MIMO is the

preferred choice for cell-center UEs. This emphasizes the

point that the cell-free paradigm is not about achieving higher

peak performance, but a more uniform performance within the

coverage area. A massive macro-diversity gain is achieved by

having many geographically distributed antennas; the average

distance between a UE and the closest APs reduces and the

shadow fading is also combatted by the diversity. Moreover,

the energy efficiency of cell-free massive MIMO was con-

sidered in [51], [52], which showed that it can improve the

energy efficiency (measured in bit/Joule) by nearly ten times

compared to cellular massive MIMO. Hence, two main reasons

to adopt cell-free massive MIMO in beyond-5G networks is

the vastly higher 95%-likely spectral efficiency and energy

efficiency.

C. System Model and Key Characteristics

We will now explain the key characteristics of cell-free

massive MIMO in further detail by considering a basic system

model. We assume there are L APs in the network, each

equipped with N antennas, and K single-antenna UEs. User

k is served by a subset Mk ⊂ {1, . . . , L} of the APs, which

have been selected in a user-centric manner. Fig. 2 exemplifies

how the APs can be divided into partially overlapping subsets

when serving the UEs.

AP l

User 1

AP cluster for user 1

User 2

AP cluster for user 2

User 3

AP cluster for user 3

Figure 2: Example of how different subsets Mk of APs serve three UEs
(k = 1, 2, 3) in a cell-free massive MIMO system.

The channel between AP l and user k is denoted by

hkl ∈ C
N , and it is the same uplink and downlink due to

the TDD operation. The UEs send uplink pilots that enable

AP l to compute local estimates ĥkl of the channels to all

UEs (k = 1, . . . ,K) [53]. Different channel estimators can be

used depending on the channel model, but we will not cover

those details to keep the description general and short; we refer

the interested readers to [42], [48], [54]. Deep learning can

also be used to estimate the channel [55], [56]. Irrespective

of the choice of estimator, pilot contamination appears in

cell-free massive MIMO (just as in any large-scale network).

Fortunately, it appears to be less of a concern than in cellular

massive MIMO since each AP has few antennas and only

serves a few UEs.

1) Uplink Data Transmission: Let xk denote the unit-power

signal that user k wants to send over the uplink. The user

assigns a transmit power pk ≥ 0 to the signal and transmits it

simultaneously with all other UEs, thereby expecting that the

network can spatially separate the UEs’ signals. The received

uplink signal yul
l ∈ C

N at AP l becomes

yul
l =

K∑

i=1

hil
√
pixi + nk, (1)

where nk ∼ CN (0, σ2IN ) is the complex-valued independent

additive white Gaussian noise and IN denotes the N × N
identity matrix. Note that (1) is a summation of the UEs’

signals received over different channels. The APs with indices

in Mk will use their received signals {yul
l : l ∈ Mk} to jointly

detect the signal transmitted from user k. More precisely, each

AP selects a receive combining vector vkl ∈ C
N and computes

the inner product vH

kly
ul
l , where (·)H denotes the conjugate

transpose. This scalar is then sent to the CPU which combines

the contributions from all the APs that serve user k:

∑

l∈Mk

vH

kly
ul
l =

∑

l∈Mk

K∑

i=1

vH

klhil
√
pixi +

∑

l∈Mk

vH

klnk. (2)

By following the standard methodology from the massive

MIMO literature [12, Theorem 4.4] to compute a lower bound

on the uplink capacity, an achievable spectral efficiency for

user k is

SE
(ul)
k = log2

(

1 + SINR
(ul)
k

)

, (3)
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where SINR
(ul)
k can be interpreted as an effective signal-to-

interference-and-noise ratio (SINR) and is given by (??) at

the bottom of this page. The expectations E {·} in (??) are

taken with respect to random channel fading realizations. One

can compute the SINR using Monte-Carlo simulations for any

channel distribution and any way of selecting the combining

vectors.

The combining vectors are to be selected at the respective

APs based on locally available CSI, which means that AP l
should select vkl as a function of the estimates {ĥil : i =
1, . . . ,K} from itself to the different UEs. Before describing

some common combining methods, we divide the vector into

two parts:

vkl = akl
v̄kl

√

E{‖v̄kl‖2}
, (5)

where akl ∈ C is a deterministic weighting factor and

v̄kl/
√

E{‖v̄kl‖2} is a unit-power combining vector that de-

pends on the CSI. The purpose of the weighting factors is that

APs with good channel conditions should get higher weights

and thereby have a large influence on the combined signal

in (2). The use of such weights is also known as large-

scale fading decoding [57], particularly when the weights are

selected at the CPU based on channel statistics from the entire

network. A general expression for the optimal weights is found

in [46].

The receive combining vectors can be computed in different

ways. The original paper [37] on cell-free massive MIMO

considered maximal ratio (MR) combining, where v̄kl = ĥkl.

This method maximizes the received signal power without

taking the existence of other UEs into account. One key benefit

of using this method is that expectations in (9) can often be

computed in closed form; for example, under uncorrelated [37]

or correlated [46] Rayleigh fading and for Rician fading [42].

However, higher spectral efficiencies are achieved by local

minimum mean-square error (L-MMSE) combining, for which

the combining vector can be expressed as1

v̄kl =

( K∑

i=1

piĥilĥ
H

il + σ2IN

)−1

ĥkl. (6)

Interestingly, L-MMSE outperforms MR even in the case of

single-antenna APs [46], [58], but is not an optimal combining

method since that would require all the APs to jointly selected

their receive combining.

We will now illustrate the performance behaviors. Fig. 3

shows the cumulative distribution function (CDF) of the per-

user spectral efficiency in a setup with L = 100 single-antenna

APs and K = 40 UEs uniformly distributed in a 1 × 1 km

square. We refer to [37] for further details on the simulation

parameters. The CDF is computed by considering different

random realizations of the AP and user locations.

There are three curves where all UEs transmit at full power

and one curve where power control is used to maximize the

worst-user spectral efficiency in the network, using an algo-

rithm from [37]. The highest spectral efficiency is achieved

by cell-free massive MIMO when using L-MMSE combining

1In some cases, the inverse matrix in (6) also includes the covariance
matrices of the channel estimation errors; see [46].

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Figure 3: The uplink spectral efficiency with different combining methods and
power control schemes, using the simulation setup from [37].

and the optimal weights from [46]. All UEs benefit from using

that method compared to the case of small cells, where each

user connects to the AP providing the highest value. It is

particularly the weakest “cell-edge” UEs that benefit from the

cell-free approach, while UEs that happen to be very close

to an AP do not benefit much. If L-MMSE is replaced with

MR, the strongest UEs (which are interference-limited) lose in

performance while the weakest UEs (which are noise-limited)

are barely affected. If one further applies the power-control

scheme from [37], the 1% weakest UEs get an improvement

in spectral efficiency but the gain is barely visible since these

UEs are noise-limited from the beginning.

The conclusion is that cell-free massive MIMO can greatly

improve the performance for the weakest UEs in a network.

The gains are achieved by coherent processing of the signals

received at multiple APs. Power control policies can be used

to shape the CDF curves in different ways. The previous

works [37], [57], [59] have considered the design of power

control that maximizes the worst-user performance, which

might not be the desired optimization criterion since a minor

performance improvement comes at the price of reducing most

UEs’ performance by a lot (as shown in Fig. 3). Other power

control schemes need to be developed in the future. One recent

example is [60].

2) Downlink Data Transmission: Let x̌k denote the unit-

power downlink signal intended for user k. Each AP l ∈ Mk

that serves this user maps the scalar signal to its N antennas

using a precoding vector wkl ∈ C
N , thus making wklx̌k the

transmitted signal. When all APs follow that procedure, the

received downlink signal ydlk ∈ C at user k becomes

ydlk =

K∑

i=1

∑

l∈Mi

hT

klwilx̌i + nk, (7)

where nk ∼ CN (0, σ2) is independent additive noise. By fol-

lowing a similar methodology as in the uplink, an achievable

spectral efficiency for user k is [12, Theorem 4.6]

SE
(dl)
k = log2

(

1 + SINR
(dl)
k

)

bit/s/Hz, (8)
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where SINR
(dl)
k can be interpreted as an effective SINR and

is given by

SINR
(dl)
k

=

∣

∣

∣

∣

∣

E

{

∑

l∈Mk

h
T

klwkl

}
∣

∣

∣

∣

∣

2

K
∑

i=1

E

{
∣

∣

∣

∣

∣

∑

l∈Mi

hT

kl
wil

∣

∣

∣

∣

∣

2}

−

∣

∣

∣

∣

∣

E

{

∑

l∈Mk

hT

kl
wkl

}
∣

∣

∣

∣

∣

2

+ σ2

.

(9)

The expectations in (9) are taken with respect to random

channel fading realizations. One can compute the SINR using

Monte-Carlo simulations for any channel distribution and any

way of selecting the precoding vectors.

As described earlier, it is preferable if AP l selects its

precoding vector based only on its locally available CSI, which

consists of the estimates {ĥil : i = 1, . . . ,K} from itself to

the different UEs. Before describing some common precoding

methods, we divide the vector into two parts:

wkl =
√
ρkl

w̄kl
√

E{‖w̄kl‖2}
, (10)

where ρkl ≥ 0 represents the transmit power that AP l assigns

to user k and w̄kl/
√

E{‖w̄kl‖2} is a unit-power precoding

vector that determines the spatial directivity of the signal.

Similar to the uplink, the original papers [37], [38] con-

sidered MR precoding, where w̄kl = ĥ∗
kl, which is also

known as conjugate beamforming since (·)∗ denotes complex

conjugation. This method directs the transmission towards the

intended receiver without taking the existence of other UEs

into account. One key benefit of using this method is that

expectations in (9) can often be computed in closed form for

many common channel models [42], [46]. However, it has

recently been shown in [58] that signal-to-leakage-and-noise

ratio (SLNR) precoding with

w̄kl =

( K∑

i=1

ρilĥ
∗
ilĥ

T

il + σ2IN

)−1

ĥ∗
kl (11)

provides higher spectral efficiencies by balancing between

maximizing the signal power at the intended receiver and

minimizing the interference that leaks to non-intended re-

ceivers. Interestingly, SLNR outperforms MR even in the case

of single-antenna APs [58] and the computational complexity

is almost the same. Nevertheless, SLNR precoding is not the

optimal method. Other papers consider similar methods such

as full-pilot zero-forcing [61] and L-MMSE [54] precoding.

For brevity, we will not provide any simulation results

for the downlink, because the performance of the different

precoding methods are reminiscent of their uplink counter-

parts. However, we stress that the selection of the transmit

power ρkl is more complicated in the downlink than in the

uplink, because each AP needs to select how to distribute their

power between different UEs. Some different power allocation

schemes are found in [37], [38], [62], but further work is still

required to deal with other criteria than the maximization of

the worst UEs’ performance.

D. Scalable Large-Scale Deployment

The main challenge in designing cell-free massive MIMO is

to achieve a network architecture that is scalable in the sense

of being implementable in a large network, spanning an entire

city. One way to define scalability is to consider the limit K →
∞ and evaluate if the network could still operate in that case

[54]. More precisely, the computational complexity at each AP

and its fronthaul capacity requirement must be independent of

K. All the combining and precoding methods described above

can be modified to satisfy that condition if each AP is only

allowed to serve a fixed number of UEs, irrespective of how

large the network is. This is a natural restriction since the UEs

are typically distributed over the network and thereby close to

different APs. It was shown in [54] that this restriction has a

negligible impact on the spectral efficiency.

Other issues are harder to implement in a scalable way.

Downlink power allocation is one such issue, where each AP

needs to assign power to the UEs that it serves without having

complete knowledge about the channel conditions that other

APs are facing. Any global power allocation optimization

must have a complexity that grows with K, thus making the

implementation infeasible in large networks. As a compromise

approach, various heuristic power allocation schemes can be

found in [29], [38], [39], [62], but it lies in the nature of these

schemes that it is hard to evaluate how well they perform in

practice. Hence, further work is necessary to understand how

to perform effective and scalable power allocation. On the

other hand, an uplink counterpart to downlink power allocation

is the selection of the combining weights akl, which can be

selected optimally [46], [57] but the complexity will grow with

K. There is currently no good understanding how to select

these weights in a distributed but effective manner. Uplink

power control can potentially also have an important impact.

There is also a series of papers that consider partially

centralized precoding and combining for cell-free massive

MIMO [46], [54], [57], [63]. These methods allow for in-

terference suppression between APs, which can substantially

increase the spectral efficiency. First steps toward a scalable

implementation of these methods are taken in [54].

Another aspect is related to cloud-RAN and the fronthaul

infrastructure because a large network will require multiple

CPUs and the encoding/decoding tasks that need to be carried

out at the CPU level must be distributed between them. Some

first works in these directions are found in [33], [62], [64],

but there is no quantitative comparison of different network

infrastructures.

E. Open Research Problems

The above brief survey of cell-free massive MIMO provides

a quick overview from its inception to the state-of-the-art.

Although much research has been carried out leading to

much scientific progress in recent years, there remain several

important and interesting open research problems which we

believe are necessarily relevant in propelling the technology

to the next stage. We shall discuss three such problems, in no

particular order, in the following.



6

1) Power Control: As already mentioned, power control,

especially downlink power control, still requires much re-

search. The optimal power control coefficients, such as the

ones for max-min power control [37], [38], can be obtained

using second-order cone programming. Unfortunately, these

methods are not fast enough for real-time implementation.

Unlike cellular systems, where downlink and uplink power

controls are symmetric in the sense that each has the same

number of power control coefficients, there is a different

number of coefficients in cell-free networks. There are K
coefficients in the uplink, while if each of the M APs is

serving all K UEs, there are MK power control coefficients in

the downlink. Even when taking into account that only a subset

of APs Mk serves each user k, there will be
∑K

k=1 |Mk| ≥ K
coefficients to select in the downlink, where |Mk| denotes

the number of elements in Mk. Hence, the computational

complexity for downlink power control is particularly high.

In a cellular system where each user is served by a single

AP, practical power control works to maintain a target SINR

iteratively for each user, i.e., when the target SINR for a

particular user is exceeded, the allocated power for that user

is lowered and vice versa. It has been shown such algorithm

converges [65]–[69] under some very general assumptions.

Nevertheless, this approach cannot be directly applied in cell-

free massive MIMO where each user is simultaneously served

by many APs, which must coordinate their decisions (some

may increase their power while some may decrease) and must

also satisfy per-AP power constraints. Furthermore, the impact

of real-world power control with finite discrete power levels

must also be investigated. In addition, how to use power

control to effectively strike a balance between sum spectral

efficiency and user fairness is also not well understood, since

the max-min fairness approach may sacrifice too much sum

spectral efficiency to provide absolute fairness to all UEs.

While the proportional fairness metric is often used in cellular

networks [12], [70], the picture can be quite different in cell-

free networks, where the UEs’ SINRs are distributed in a

very different way. When it comes to the uplink, there is

evidence [46], [63] that full power transmission might work

well in many practical scenarios. This marks a significant

departure from cellular thinking where full power transmission

does not work for the uplink [71]. We should mention that

although there are only K power control coefficients, they

can interact with the
∑K

k=1 |Mk| weights in (5). If these can

be jointly optimized in a computationally efficient way, further

performance improvement may be achieved.

2) Fronthaul/Backhaul Provisioning: With a large number

of APs scattered across the intended coverage area, it is

obvious that the burden of fronthaul/backhaul for cell-free

networks will be much heavier than that in traditional cellular

systems. Wired provision via optical fiber is cost-prohibitive

except in premium venues or if serial connections can be

used [34]. Wireless provision is a viable option but comes

with its own set of challenges such as the availability of

spectrum and all the difficulties of reliably delivering ultra-

high data rates wirelessly. One idea is to use a “dual layer”

architecture where a cellular massive MIMO network hauls a

cell-free massive MIMO system [72]. For cell-free networks

to become a successful reality, more out-of-the-box ideas for

fronthaul/backhaul provisions are undoubtedly needed and the

best C-RAN methods must be utilized. Another angle of at-

tacking this same problem is to research the means of minimiz-

ing the fronthaul/backhaul requirements, by decentralizing the

processing as far as possible and heavily quantize the signals

sent over the fronthaul [44] or using distributed quantization

techniques [73]–[78]. A recent overview of the trade-offs

between fronthaul requirements and the uplink performance

for some well-known processing schemes is provided in [46].

A main conclusion is that there are opportunities to exploit

the specificities of the fronthaul architecture to optimize its

utilization and create semi-distributed methods.

3) Network Scalability: One definition of “network scala-

bility” from [54] was provided earlier, based on letting K →
∞, but other definitions are also possible. Generally speaking,

it refers to the ability to meaningfully increase the performance

of a small system by an “arbitrarily” larger system. For

massive MIMO, a larger system means a larger number of

service antennas. Taking the fronthaul/backhaul capacity and

network computing power limitations into account, a skeleton

for scalable cell-free massive MIMO operation was provided

in [54], [62]. But, how to optimally and seamlessly associate

each user to a group of APs and select the necessary signal

processing and power control remain very challenging prob-

lems—any attempt to globally optimize these operations would

be fundamentally unscalable. Another facet of scalability is

how the performance scales with respect to an increase of

the number of APs, L, while keeping the number of UEs

K fixed. For example, it is shown in [63] that the uplink

minimum data rate does not scale with L when using MR

processing. Scaling laws should also be investigated for real-

world channels, such as with mixed line-of-sight (LoS) and

non-LoS propagation, and other non-stationary channels [79],

[80]. For LoS channels, approaches used in [81], [82] for

cellular networks can be adapted for cell-free networks [83].

III. BEAMSPACE MASSIVE MIMO

The more antennas that are used in a MIMO transceiver,

and the higher the carrier frequency and bandwidth are, the

more complicated the implementation becomes. One way to

reduce the implementation complexity, without sacrificing too

much in performance or operational flexibility, is to utilize the

spatial structure of the channels and transceiver hardware. In

this section, we describe beamspace massive MIMO, which is

the general concept that underpins hybrid beamforming and

its future successors. We particularly focus on recent progress

and open problems related to using lens arrays for beamspace

massive MIMO.

A. Motivation

Early research in single-user MIMO focused on open-loop

techniques that achieve MIMO benefits without any transmit-

side knowledge of CSI. The most popular open-loop tech-

niques are diversity techniques (e.g. space-time block codes

and space-time trellis codes) and multiplexing techniques (e.g.

spatial multiplexing) [84], [85]. The performance of these
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techniques is severely limited, in terms of most measures of

performance, because the transmission is not adapted to the

current CSI in any way.

In the early 2000s, the single-user MIMO research shifted

to techniques that adapt the transmit signal to the channel

conditions using some level of transmit-side CSI [86]–[90].

The simplest kind of this adaptation is linear precoding,

where a multiple antenna open-loop signal is adapted to

the channel by multiplying it by a precoding matrix before

transmission [86]. The benefit is that spatial CSI adaptation is

now encapsulated in the precoding matrix. Linear precoding

has had a widespread impact with inclusion in multiple stan-

dards including 4G Long-Term Evolution (LTE), 5G NR, and

versions of IEEE 802.11.

Because commercially available MIMO transmitters have

typically had fewer than eight antennas, linear precoding has

historically been implemented using direct digital implementa-

tion. For example, LTE Release 8 systems limit the base station

to having at most four antenna ports. With these small array

sizes, direct digital processing of precoding was generally

practical because it is cost-effective for small arrays to use

a relatively high-resolution analog-to-digital converter (ADC)

at each transmit element. In this kind of implementation, it is

convenient to think of the linear precoder as a single matrix

and the transmit signal is multiplied by that matrix, avoiding

many sophisticated formulations of precoder design.

Commercial array sizes, however, are poised to scale dra-

matically over the coming years. mmWave and massive MIMO

transmitters equipped with on the order of a hundred antennas

are commonly discussed in the literature. As the number

of antenna elements increases, there are multiple benefits to

rethinking the signal processing and implementation of linear

precoding. The most popular approach is using a beamspace

MIMO formulation.

We firmly believe that beamspace terminology, notation,

and thinking will be critical for 5G and beyond systems. In

sub-6 GHz, the number of antennas will continue to increase.

The dimensionality of these arrays combined with the unique

hardware characteristics (hybrid digital-analog, sub-arraying,

tiled arrays, etc.) will make it impractical, if not impossible, to

sound each array element. For this reason, MIMO processing

will be best done using a subspace approach based on virtual

or effective channels. At mmWave frequencies and higher,

beamspace will be indispensable. These arrays will be large

and may have non-traditional array hardware implementations.

Optical-like thinking will begin to be more important, which

aligns perfectly with beamspace.

B. Signal Model

Considering a single-user MIMO system, the standard input-

output expression is

y = Hs+ n, (12)

where y ∈ C
Nr is the received signal, H ∈ C

Nr×Nt is

the channel matrix, s ∈ C
Nt is the transmitted signal, and

n ∈ C
Nr is additive noise (which could include multiuser

interference when the model is extended to a multiple user
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Figure 4: Illustration of the beamspace system model in (16).

system). In a precoding formulation with M parallel data

streams, the transmit signal s is decomposed into a linear

precoder W ∈ C
Nt×M and a data signal x ∈ C

M according

to

s = Wx. (13)

As mentioned earlier, in a fully digital implementation, the

multiplication in (13) is performed using a standard digital

processor.

A beamspace approach decomposes the precoder further as

a product of two different precoders as

W = W1W2, (14)

where W1 ∈ C
Nt×Nv,t and W2 ∈ C

Nv,t×M for some positive

integer Nv,t. Plugging this into (12) yields

y = HW1W2x+ n. (15)

The two precoders may be constrained and selected using

drastically different criteria.

The receiver might also use linear processing. In this setup,

the receiver applies a linear combining filter Z ∈ C
Nr×Nv,r

and processes the received signal yv = ZHy. Typically, the

precoder W1 and receiver Z are selected first. Then, the

second transmit precoder W2 is selected conditioned on the

selected W1 and Z. Thus, W2 is selected using a virtual or

effective (e.g. see the discussion in [90]–[93]) Nr×Nv MIMO

model

yv = HvW2x+ nv, (16)

where the virtual/effective channel is Hv = ZHHW1 and

the virtual/effective noise is nv = ZHn. Note that in the case

when linear receive processing is not explicitly used, the linear

receiver can be implicitly assumed to be Z = INr
. The input-

output model (16) is illustrated in Fig. 4.

For some channel models and linear processing architec-

tures that exploit the channel structure, the virtual channel Hv

can exhibit a variety of advantageous properties. A common

assumption is that the virtual channel Hv is sparse [94], mean-

ing that Hv contains a limited number of non-zero entries. One

example is when Z and W1 respectively contain the left and

right singular vectors of H. In a practical deployment, entries

will usually not be exactly zero, but the matrix can have a

limited number of entries that are much larger in magnitude

than the remaining entries. This sparsity can simplify the

operation and intuitive behavior of W2 in many situations. In

extreme cases where Hv is diagonal, W2 can be thought of
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as performing virtual subchannel selection and power loading.

C. History

Beamspace approaches have recently received much interest

for application in massive MIMO and mmWave communi-

cations. The idea of beamspace processing, however, has a

long history dating back to early radar systems [95], [96].

Radar systems have regularly employed arrays with hundreds

of elements dating back to at least the 1960s [97]. In cellular

systems, the beamspace is widely utilized in LTE-Advanced

(LTE-A) through the idea of dual-codebook precoding. Re-

lease 10 of LTE-A first included a dual codebook approach

for eight-antenna downlink precoding. The matrix W1, often

called the wideband matrix, was selected to adapt to spatial

characteristics of the channel [98]. The matrix W2 was then

chosen conditioned on W1.

The idea of virtualized channel processing became central

under the concept of transparency in LTE-A. CoMP systems

allow a UE to receive a signal sent from multiple geographi-

cally distributed transmission points, which could be utilizing

diverse forms of precoding and multiuser transmission. To

simplify the control, knowledge, and computational burden

on the UE, the standard allows the UE to be configured

with multiple reference signals and CSI feedback reports.

In beamspace formulation, the UE could be configured with

K reference signals and CSI feedback reports. The multiple

transmission points could send reference signals over each of

the possible first precoders W1[1], . . . ,W1[K]. The sounded

precoder W1[k] would have a corresponding virtual channel

Hv[k]. The user would then send feedback for selection of

the precoder (i.e., through the corresponding CSI feedback

reports) for each of the respective virtual channels.

This virtual approach allows operators and manufacturers

to deploy sophisticated precoding schemes and easily upgrade

to new precoding schemes because the user is not required

to have any knowledge of W1[1], . . . ,W1[K]. The user is

only required to know the number of reference signals, CSI

feedback reports, and corresponding configuration information

for each. This kind of future-proof thinking has carried on in

3GPP for a variety of purposes. More recently, the practical

use of beamspace has been reinvigorated because of the

interest in hybrid beamforming and precoding at mmWave

frequencies [99].

D. Implementation

The vast majority of beamspace techniques are based on

phase-shifter architectures. In this approach, the first precoder

is of the form

W1 = α1






ejφ0,0 · · · ejφ0,Nv,t−1

...
. . .

...

ejφNt−1,0 · · · ejφNt−1,Nv,t−1




 , (17)

where α1 is a gain factor and {φm,n} are phases. The approach

could similarly be applied to the combining matrix Z at the

receiver.

The most common phase choices are based on the discrete

Fourier transform (DFT) matrix. In this scenario, φm,n =

2πmn/Nt for n = 0, . . . , Nt − 1 and m = 0, . . . , Nv,t − 1.

These phase selections offer many benefits when the array is

a uniform linear array (ULA) and far-field communication is

considered. As shown in [91] for the case of ULAs at the

transmit and receiver, the channel H can be written as

H =

∫ 1/2

−1/2

∫ 1/2

−1/2

G(θr, θt)ar(θr)a
H

t (θt)dθrdθt, (18)

where θt is the normalized angle-of-departure (AoD), θr is the

normalized angle-of-arrival (AoD), G(θr, θt) is the scattering

function at AoD θt and AoA θr, and

at(θt) =
1√
Nt

[

1 e−j2πθt · · · e−j2π(Nt−1)θt
]
T

, (19)

ar(θr) =
1√
Nr

[

1 e−j2πθr · · · e−j2π(Nr−1)θr
]
T

. (20)

The choice of a DFT-based precoder and linear receiver then

correspond to uniformly sampling the AoD and AoA spaces,

respectively.

These phase shifters could be implemented digitally, but

there are a variety of practical benefits that come from an

analog or radio-frequency (RF) domain implementation [100],

[101]. In the RF domain approach, the phase shifters are

applied after the digital-to-analog converter (DAC) when used

at the transmitter and before the ADC at the receiver. The

lack of amplitude variation in the entries of W1 means that

the phase shifters can be efficiently implemented using RF

integrated circuit and microwave monolith integrated circuit

techniques.

In the case of DFT precoding, the precoder can be also

implemented using a Butler matrix [102], [103]. The Butler

matrix operates for the square matrix scenario (i.e., Nt = Nv,t

or Nr = Nv,r). It is implemented as a passive network using

phase couplers and phase shifters.

E. Beamspace Using Lens Arrays

Recent advances in RF technology have moved away from

using discrete antenna elements, making antenna arrays that

function more like an optical system. This can be achieved

using lens arrays. Among various definitions, [104] defines a

lens array as a device whose main function is to “provide vari-

able phase shifting for electromagnetic (EM) rays at different

points on the lens aperture so as to achieve angle-dependent

energy focusing property.” The lens arrays do not rely on lossy

and expensive phase shifters and can offer nearly orthogonal

beams as they act as DFT matrices. The advantages of the

lens arrays over conventional phase-shifter based systems are

presented in [105]. Moreover, compared to lens arrays with

phase shifters (see for e.g. [106] and references therein), lens

arrays offer substantial hardware and power savings.

With the development of mmWave communications over the

past decade, lens-based topologies have come to the forefront

of wireless communications research [107]. The reason is

simple: By harnessing the focusing capabilities of lens arrays,

one can focus the EM power arriving from different directions

on different lens ports, thereby transforming the spatial MIMO

channel into its sparse beamspace representation. Most impor-

tantly, by doing so the system can select only a small number
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of dominant beams (≪ Nv,tNv,r) that carry most of the EM

energy, which reduces the effective dimension of the MIMO

channel matrix for signal processing manipulations along with

the associated number of RF chains.

The first approach that combined the properties of lens

arrays with the beamspace methodology can be found in

[108]. This paper proposed the concept of the continuous

aperture phased MIMO (CAP-MIMO) architecture, which uses

a discrete lens array (DLA) to enable a quasi-continuous

aperture phased MIMO operation at mmWave frequencies. The

same research group published several papers on this topic

underpinned by physical demonstrations [109], [110]. In the

following, we will overview the most recent advances in the

area of lens-array based MIMO topologies and also identify

some open problems that require further research.

1) Channel estimation: Conventional hybrid mmWave sys-

tems with high-resolution phase shifters offer much greater

flexibility in the analog precoder design than lens arrays

(e.g. using compressed sensing techniques as in [99], [111]),

which translates into enhanced channel estimation accuracy.

Lens-based topologies are inherently inflexible in this sense

since the analog precoders have to be DFT matrices. This

makes the conventional channel estimation schemes tailored

towards hybrid architectures with phase shifters problematic.

We can categorize the channel estimation schemes for lens-

based topologies that have been developed over the past years

into two categories:

• Narrowband channel estimation: The estimation of the

narrowband beamspace MIMO channels with lens arrays

was originally studied in [112], [113]. The techniques in

both those references, though seemingly different, harness

the sparsity of the beamspace channel to select only the

dominant beams which capture most of the EM power. By

doing so, the dimension of the beamspace channel is sub-

stantially reduced and this facilitates the signal processing

manipulations; for instance, in [113] the conventional

linear minimum mean-squared error (MMSE) estimator

was used. The weakness with the approach in [112] is that

the number of pilot symbols to scan across all the beams

is proportional to the number of antennas. In the massive

MIMO regime, this number will scale poorly leaving

limited resources for data transmission. An alternative

route for improving the channel estimation accuracy

is through the support detection (SD)-based scheme of

[114], [115]. Here, the main idea is to decompose the total

channel estimation problem into a series of sub-problems

each containing a sparse channel component. As a next

step, for each of these components, their support is first

detected then removed sequentially.

• Wideband channel estimation: In a massive antenna array,

it is very likely that the propagation delay across the

array is comparable to the symbol period. In such a

case, different antenna elements will receive different

time-domain symbols emanating from the same physical

path at the same sampling time. This phenomenon is

known in the literature as the spatial-wideband effect

[116], [117]. With wideband signaling, such an effect

will cause beam squint in the frequency domain meaning

that the AoAs (AoDs) will become frequency-dependent2.

Despite the importance of this phenomenon, to the best

of our knowledge, the only relevant paper is [118], which

proposed a successive support detection (SSD) technique;

the main idea here is that each sparse path component

has frequency-dependent support determined by its spa-

tial direction which can be estimated using beamspace

windows. Then, the authors apply the principle of serial

interference cancelation on each single path component.

It is also worth mentioning two earlier works in the area

of wideband channel estimation for hybrid systems with

phase shifters, namely [119] and [106]. In the former, a

distributed grid matching pursuit algorithm was proposed

while in the latter utilized the orthogonal matching pursuit

technique. Yet, neither of these papers considers the beam

squint effect.

Open challenges: From the above discussion, it is obvious

that the area of channel estimation for lens-based topologies

at mmWave frequencies is still in its infancy. We will now

outline some open problems that require further investigation:

a) Following a stream of recent papers [116], [117], [120],

one can recast the channel estimation problem as a

channel reconstruction problem by harnessing the AoA-

delay reciprocity between the uplink and downlink in an

FDD system. Hence, one only needs to regularly estimate

the frequency-dependent path gains. A comprehensive

performance analysis is currently missing.

b) The area of channel estimation for 3D lenses is also

very timely given the importance of such geometries at

higher frequencies (e.g. mmWave, sub-THz bands). A

recent article on this topic is [121], which showed that

the dominant entries of the channel matrix of 3D lens

arrays form a dual crossing shape and then introduced an

iterative algorithm that leverages this property.

c) As was previously mentioned, lens arrays offer substantial

hardware and power savings compared to phase shifters.

Nevertheless, the total implementation cost and power

consumption of a mmWave transceiver can be further

reduced by deploying coarse ADC quantizers. In such

a case, the problem of channel estimation becomes far

more complicated, particularly for wideband systems

where different antennas at each sampling time collect

non-identical data symbols [117]. To the best of our

knowledge, the only relevant paper in this space is

[122], which addressed channel estimation using the

Expectation-Maximization algorithm.

2) Hardware imperfections: Lens arrays are lossy devices,

as was identified already in some early papers in the field of

microwave engineering and antenna theory (e.g. [123]). A neat

classification of the different types of losses in constrained lens

arrays can be found in [124]. Yet, in the field of communica-

tions engineering, hardware imperfections of lens arrays is a

vastly unexplored problem. We will now provide an overview

of some recent contributions in this context.

2To articulate the importance of beam squint, one can think of an OFDM
system where each subcarrier will experience distinct AoAs for the same
physical path, thereby making channel estimation and transceiver design
complicated exercises.
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Figure 5: Electric field distribution 200 µm inside the substrate layer of the
Rotman lens in [126].

In [125], the aggregate impact of switching errors and

spillover losses was characterized for an uplink multiuser

MIMO mmWave system with a lens array at the BS. The

former losses are a result of imperfect absorption and isolation

characteristics of concurrent RF switches, which result in

impedance mismatches and poor port-to-port isolation [126].

On the other hand, spillover losses are due to the fact that the

finite number of antenna elements renders the sampling of the

AoAs imperfect. As such, the RF power desired for a particular

beam port also leaks into neighboring beam ports. In Fig. 5,

we elucidate this phenomenon by illustrating the electric field

distribution inside the substrate of the Rotman lens3 of [126].

The figure demonstrates the importance of spillover losses in

lens arrays since a significant portion of the incoming energy is

dissipated towards one of the dummy ports and the remaining

portion is bounced back to other beam ports. The numerical

simulations showed that out of 1 Watt power entering the beam

port, only 0.55 Watt is calculated to leave all the array ports.

On a similar note, [129] provided a full EM characterization

of spillover losses at 28GHz and demonstrated that the EM

focusing inside a lens is more accurate towards the broadside

excitation angles; see Fig. 6, which shows the surface electric

field distribution at multiple AoAs for a 13×13 Rotman lens.

From Fig. 6(a), we see that the maximum power is concen-

trated on the central beam port, i.e., port 7, while a small

portion of the power is spilled over to the neighboring ports.

However, as the AoA moves towards φ = 50◦, one can observe

not only stronger EM energy spillover but also reflections

towards the opposite ports. This loss of focusing ability of lens

arrays is one of their fundamental limitations and underlines

the importance of careful circuit design and advanced signal

processing. A very recent contribution in this context is [130],

which examines the power leakage problem (equivalent to

the spillover problem mentioned before) in mmWave massive

MIMO systems with lens arrays. The authors proposed a beam

alignment precoding scheme to alleviate this inherent problem

by developing a phase shifter network structure.

Open challenges: It is an indisputable fact that the perfor-

3A Rotman lens, originally proposed by Rotman and Turner in [127], is a
type of microwave beamforming network that allows multiple antenna beams
to be formed without the need for switches or phase shifters. In principle, a
Rotman lens can steer the direction of the output array transmission based
on the input direction of the incoming beam, such that gains of 10 to 15 dB
are obtained. Over the years, it has been successfully integrated in low-cost
communications, remote-piloted vehicles, radar and satellite systems [128].

(a) φ = 0
◦ (b) φ = 12.5◦

(c) φ = 26.5◦ (d) φ = 50
◦

Figure 6: Surface electric field distribution 200 µm inside the substrate layer
of the 13×13 Rotman lens at multiple AoAs, denoted by φ. Data taken from
[129].

mance characterization of lens topologies in the presence of

hardware imperfections requires synergies between commu-

nications engineers and microwave engineers. Unfortunately,

these two communities have very often worked in isolation

from each other, and this has created a critical knowledge

gap. There are many opportunities for research, and a non-

exhaustive list of open problems is the following:

a) The impact of the switching matrix is largely overlooked

in the literature. In an ideal world, this matrix is binary and

each row of it contains only one nonzero entry correspond-

ing to the selected beam index. Yet, practical switches are

not fully absorptive, which implies that energy is reflected

back to the lens beam ports, whilst the poor isolation

between switches causes energy leakage in the neighboring

switches [125].

b) The investigation of non-ideal mmWave RF components

(e.g. mixers, local oscillators, power amplifiers) which

induce in-band and out-of-band distortions is a very im-

portant topic since their aggregate impact can seriously

undermine the theoretically predicted performance.

3) Physical implementation: The physical implementation

of a communication system based on lens arrays is a new

topic and we will now pinpoint the most important advances.

We first recall that the two most popular approaches to im-

plementing EM energy focusing using lens arrays are layered

scattering and guided wave techniques [131]. A contemporary

overview of the different types of lens arrays and their key

characteristics can be found in [132]. Also, we refer the read-

ers to [133], which meticulously covers Rotman lens-based

MIMO systems with beam selection and digital beamforming.

A CAP-MIMO demonstrator at 10GHz was first presented

in [109] and later extended to multibeam operation at 28GHz

in [110], [134]. In [135], a MIMO system at 77GHz that uses

different types of RF lenses was manufactured and measured.

The authors also proposed a multivariance codebook quan-

tization scheme to reduce the feedback overhead. The same

group also developed a number of prototypes at 28GHz using
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a hyperbolic, dielectric lens made from polyethylene for static

and mobile applications [105]. The authors in [136] presented

a 2D beam steerable lens antenna prototype at 71–76 GHz

with a 64-element feed antenna, that can deliver 700Mbit/s

throughput at an operating range of 55m. Most recently, [137]

synthesized and measured a 28GHz lens array using constant

dielectric material with antenna feeds for multibeam operation.

This geometry was shown to systematically outperform a ULA

and the Rotman lens solution of [129] thanks to sharper EM

focusing.

IV. INTELLIGENT REFLECTING SURFACE

While the great spectral efficiency gains offered by MIMO

communication are well established [138], there are doubts

regarding the technology’s ultimate cost and energy efficiency.

In fact, it was shown in [139] that an exceedingly larger

number of antennas is not the way to improve the energy

efficiency (measured in bit/Joule) of future networks, as the

total energy consumption increases linearly with respect to

the numbers of RF chains required by the active components

while the data rates only grows logarithmically. There have

been serval attempts to maximize the energy efficiency of

MIMO systems by both optimizing the power allocation

[140]–[142] and the network topology [143]–[145]. While

these works find an optimal trade-off between data rates

and energy consumption, the optimal design is often one

with many hardware components and therefore high cost.

Hence, the advantages of MIMO do not come for free and

the performance improvements of the wireless technology

might eventually saturate due to financial reasons. Hence,

the design of spectrally- and energy-efficient communication

system with low hardware cost is of utmost importance for

realizing economically sustainable wireless communication

networks [146], [147]. In this section, we explore one potential

way to achieve that by using passive MIMO antennas in an

architecture4 known as an intelligent reflecting surface (IRS)

[149]–[151] or software-controlled metasurfaces [152].

A. Motivation

The roll-out of MIMO has fueled the development of high-

speed wireless communication systems [153], [154]. However,

the performance of a wireless system is still determined by its

channels. Specifically, the EM waves radiated by a transmitter

experience reflections, refraction, diffractions, and pathloss in

the channel before reaching a receiver. Conventionally, the

communication channel is treated as an uncontrollable envi-

ronment which can be modeled probabilistically [155], [156].

In fact, most of the communication techniques developed in

the literature (e.g. beamforming, diversity, channel coding)

were designed to either counteract or exploit the effects of

the channel without changing its behavior. In contrast, the

recently proposed IRS concept builds on manipulating the

4IRS is a passive surface that only reflects impinging RF signals gener-
ated from ambient transmitters. In contrast, Large Intelligent Surfaces and
Holographic Massive MIMO are two names used for large active surfaces
exploiting active MIMO antennas driven by active energy-hungry components
[148].

propagation of EM waves in a communication channel so

as to improve the performance of communication systems.

Specifically, an IRS is a metasurface consisting of a large

set of tiny elements that diffusely reflects incoming signals

in a controllable way. IRS builds on the classical concept of

reconfigurable reflectarrays [157] with the added requirement

of having real-time reconfigurability and control.

Normally, a flat finite-sized surface reflects the incoming

wave in the main direction determined by Snell’s law [158]

but with a beamwidth that is inversely proportional to the

size of the surface relative to the wavelength [159]. While

perfect specular mirror reflections often occur in the visible

light range, that is typically not the case for signals in cellular

networks which have on the order of 104 to 105 times longer

wavelengths [159]. The use of metasurfaces cannot change

the reflection losses, but it can create anomalous reflections

[160], meaning that the main direction of the reflected signal

can be controlled. This can be achieved by letting every point

on the surface induce a certain phase shift to the incoming

signal. Ideally, this should be done in a continuous way over

the surface [161], but metasurfaces approximate this using

many discrete “meta-atoms” of a sub-wavelength size that

each induces a distinct phase-shift [162]. Hence, an IRS is

an array of meta-atoms that each scatter the incoming signals

with a controllable phase-shift [149], [163], [164], so that the

joint effect of all phase-shifts is a reflected beam in a selected

direction. This resembles beamforming from a classical phased

array but with the main difference that the signal is not

generated in the array but elsewhere. Fig. 7 illustrates how

different phase-shift patterns among the meta-atoms lead to

the incoming signal being reflected as a beam in different

directions. Even if it tempting to view an IRS as a mirror, it

actually behaves as a reconfigurable lens that can focus signals

at points in the near-field or beamform signals towards points

in the far-field [165].

Unlike cell-free massive MIMO systems and cooperative re-

lays, which also attempt to improve the propagation conditions

by deploying active hardware components, an IRS is believed

to only require a small operational power making it suitable

for implementation in energy-limited systems. Besides, an

IRS can operate naturally in a full-duplex manner without

the need of costly self-interference cancelation. For example,

when using meta-atoms with the size 8 × 8 mm, the energy

consumption is only 125 mW/m2, which is considerably lower

than for many existing wireless communication devices [166].

Furthermore, an IRS can be of thin and conformable material,

allowing for nearly invisible deployment on building facades

and interior walls. Hence, once a conventional network has

been deployed, one or multiple IRSs can be flexibly deployed

to mitigate coverage holes that have been detected or to

provide additional capacity in areas where that is needed. In

fact, the IRS is not supposed to replace or compete with con-

ventional massive MIMO technology, but rather complement

it. It is similar to the dish that is used in satellite receivers; it

is a passive device that reflects signals to improve the SNR.

In practice, the deployment of an IRS in conventional

MIMO systems facilitates two types of beamforming which

are illustrated in Fig. 8. In Fig. 8(a), there is one IRS
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Figure 7: An IRS consists of many discrete meta-atoms of a sub-wavelength
size, illustrated as colored squares. Each atom assigns a phase-shift to the
incoming signal before it is scattered. The color of each atom represents its
optimized phase shift values (indicated in the vertical color bar on the right
hand side). As illustrated in (a) and (b), different selections of the phase-shifts
lead to beamforming from the IRS in different directions.
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Figure 8: An IRS-enhanced multiple antennas wireless communication system.

deployed in a system assisting the communication between

a multiple-antenna transmitter and a user. The information

signal is radiated from the transmitter. A direct path may exist

between the transmitter and the user for communication, and

beamforming is performed at the transmitter to improve the

signal reception at the user. Meanwhile, the information signal

is also received by the IRS due to the broadcast nature of

wireless channels and the IRS will reflect the signal. With

the help of an IRS controller, the main direction of the

reflection can be controlled. In particular, proper phase shifts

are introduced on all the meta-atoms to deliberately create a

coherent combination of their individually scattered signals,

thereby creating a signal beam focused at the user. The larger

the surface is, the narrower the beam will be. This strategy is

known as energy focusing [149], [164], [167].

On the other hand, if a direct path does not exist due to

heavy shadowing or blockage, the transmitter should perform

beamforming with respect to the IRS. Then, the IRS can

act as a non-amplifying full-duplex relay which reflects and

focuses the incident information signal to the UEs for assisting

the end-to-end communication. In Fig. 8(b), we consider a

scenario where a multiple-antenna transmitter serves user 1
in the presence of user 2. We assume the two UEs have

different security clearance levels where the message of user 1
should not be decodable at user 2. In this situation, destructive

reflection can be performed at the IRS, by adjusting the phases

of the scattered signals to null out the signal at user 2. This

strategy is known as energy nulling [149], [164], [167]. By

exploiting these two principles, it is expected that IRSs have

wide applications in various communication systems involving

interference management, coverage extension, and capacity

improvement, such as in wireless-powered communication

systems, cognitive radio networks, physical layer security

systems, etc.

B. Signal Model of IRS

The amalgamation of IRS and conventional communication

systems has introduced a new paradigm for the design of

energy-efficient communication. In this paper, we focus on

the point-to-point communication system in Fig. 8(a) for

the illustration of the signal model. There is a transmitter

equipped with M antennas serving a single-antenna user. In

particular, an IRS consisting of N meta-atoms elements is

deployed to assist the end-to-end communication. Besides, an

IRS controller is adopted to control each meta-atom such that

the phase of the scattered incident signal can be dynamically

adjusted to achieve different purposes. Assuming deterministic

flat-fading channels, the signal received at the single-antenna

user is

y = (

Reflected path
︷ ︸︸ ︷

hT

rΘG +

Direct path
︷︸︸︷

hT

d
︸ ︷︷ ︸

Composite channel

)wx+ z, (21)

where x ∈ C and w ∈ C
M×1 are the unit-power information

symbol and beamforming vector from the transmitter for the

user, respectively. Furthermore, hd ∈ C
M×1, hr ∈ C

N×1,

and G ∈ C
N×M denote the channels of the transmitter-to-

user, IRS-to-user, and transmitter-to-IRS links, respectively.

The N -by-N diagonal matrix Θ ∈ C
N×N contains complex

exponentials, ejθn , ∀n ∈ {1 . . . , N}, on the diagonal, where

θn ∈ [0, 2π] is the phase-shift introduced at the nth meta-atom

of the IRS. Finally, z ∼ CN (0, σ2) denotes the independent

noise at the receiver.

To obtain the system model5 in (21), it is assumed that the

delay spread of the reflected path is approximately the same as

the delay spread of the direct path, which is valid if the IRS is

placed close to either the transmitter or the user. The channels

hd, hr, G can be modeled as conventional MIMO channels,

and each might consist of multiple paths. The antenna gains at

5This system model can be used for many different purposes. We only ex-
emplify the use of it for information transfer, but we stress that wireless power
transfer, cognitive radio, information nulling, etc. can also be considered in
future works.



13

the transmitter, receiver, and each meta-atom are also included

in the channels to keep the notation simple.

1) Rate Optimization: If the receiver knows the composite

channel, its achievable rate is log2(1+SNR), where the signal-

to-noise ratio (SNR) at the user is

SNR =
|(hH

rΘG+ hH

d )w|2
σ2

. (22)

To maximize the rate, the transmit beamforming vector w

and the phase-shift matrix Θ can be jointly optimized to

maximize the SNR. This can be mathematically formulated

as the following optimization problem:

maximize
w,Θ

|(hH

rΘG+ hH

d )w|2 (23)

subject to ‖w‖2 ≤ Pmax, (24)

0 ≤ θn ≤ 2π, ∀n = 1, . . . , N, (25)

where Pmax in (24) denotes the maximum transmit power

budget of the transmitter and (25) is the constraint on the

phase introduced by each reflection element. Although the

constraints span a convex feasible set, the objective function

in (23) is non-concave due to the coupling between w and

Θ. Another big challenge is the constant modulus elements of

Θ. For M ≥ 2, there is generally no systematic approach for

solving such non-convex optimization problems optimally and

efficiently. In some cases, brute force approaches are needed

to obtain the globally optimal solution which incurs a pro-

hibitively high computational complexity even for moderate-

sized systems. To strike a balance between system complex-

ity and performance, different suboptimal approaches (e.g.

alternating optimization, semidefinite relaxation, successive

convex approximation, manifold optimization, etc.) have been

proposed in the literature to obtain a computationally efficient

solution [149]–[151], [164], [167].

In Fig. 9, we provide simulation results illustrating the

performance gain brought by the deployment of an IRS in

a MIMO system. We follow a similar system setting as in

[149]. We assume that there is an IRS located at 51m away

from a MIMO transmitter equipped with M = 2 transmit

antennas. There exists a user located on a horizontal line

which is parallel to the one connecting the transmitter and the

IRS.As illustrated in Fig. 9 (a), the horizontal distance from the

transmitter to the user is a variable d and the vertical distance

between the user and the horizontal line connecting the BS

and IRS is 2m. We consider a 1 MHz bandwidth, for which

the transmit power is 0 dBm and the noise power is −110
dBm. There are N meta-atoms forming a rectangular array6

at IRS with a rows and b columns such that a×b = N . Fig. 9

(b) shows the SNR that is achieved with different transmission

schemes as a function of the distance d. We compare the SNR

that is achieved by three schemes: 1) benchmark scheme, 2)

suboptimal scheme, 3) baseline without an IRS. The results

of the benchmark and suboptimal schemes are obtained by

6In practice, the position arrangement of atoms at the IRS may have some
impact on the system performance when the communication distance between
the transmitter/user is short compared to the physical size of the IRS. However,
such near-field effects have virtually no impact for the values of N and
distances considered in this simulation [168].
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(b) SNR versus the horizontal distance d between the transmitter and the user
for various schemes

Figure 9: SNR versus the horizontal distance d between the transmitter and
the user for various schemes. It is assumed that the transmitter-to-IRS channel
is a free-space LoS link while the IRS-to-user channels are modeled by
independent Rayleigh fading with a pathloss exponent of 3.

solving the optimization problem in (23) via semi-definite

relaxation (SDR), leading to an upper bound, and the SDR

with Gaussian randomization, respectively. First, it can been

seen from Fig. 9 (b) that the suboptimal scheme achieves

a close performance compared to the upper bound. In other

words, the suboptimal scheme represents the actual achievable

SNR by deploying an IRS. Second, it is obvious that the

introduction of an IRS can substantially increase the SNR

compared to the baseline without an IRS. The SNR gains are

largest when the user is close to the IRS, which is logical since

otherwise the reflected path would be too weak make a true

contribution in the numerator of (22).

C. Open Research Problems

The introduction of an IRS into a traditional communication

system revolutionizes the design of beamformers and network

topologies. In the following, we discuss some research chal-

lenges for IRS-assisted MIMO communication systems.

1) Channel Estimation: The performance of an IRS de-

pends on its beamfocusing capability which relies on the

availability of CSI at the IRS controller. In other words, we

need to acquire the information about the channels hr, hd,

and G in order to properly select Θ and w. In general,

the transmitter-to-user link, hd, can be obtained by applying

traditional channel estimation strategies based on pilot trans-

mission. In contrast, the channel estimation for the transmitter-
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to-IRS and the IRS-to-user links is more challenging due to

the following three reasons. First, an IRS consists of passive

elements which cannot initiate transmission to facilitate accu-

rate channel estimation. Second, although the IRS controller

may be equipped with a simple communication module for

exchanging wireless control signals between the IRS and the

transmitter, its limited computational ability may introduce

an exceedingly long delay for estimating both G and hr.

Third, in order to achieve a reasonable system performance, a

large aperture with a large number of meta-atom elements is

required [169]. For example, there can be 15, 625 meta-atoms

in a 1× 1m IRS, if each one is 8× 8 mm as was considered

in [166] for a carrier frequency of 5GHz. Performing channel

estimation for such a high-dimensional channel would put

heavy signal processing burdens and energy consumption at

wireless transceivers. Hence, there is an emerging need for

the design of low-cost channel estimation algorithms for IRS-

supported communication, which might be achieved using

parameterizable channel models or sparsity [170]. Also, the

beamspace approach, described in Section III, might be a key

part of the solution. Besides, there are some initial attempts

in the literature for addressing the channel estimation problem

in IRS-assisted systems. For example, in [171], compressive

sensing-based channel estimation was studied for IRS-assisted

mmWave systems. In [172], a practical transmission protocol

was proposed to execute channel estimation and reflection

optimization successively. In [173], a tailor-made three-phase

pilot-based channel estimation framework was designed to es-

timate the overall uplink channels in an IRS system. However,

the related energy costs for channel estimation and signaling

overhead in these works are not taken into account, which

somewhat conflicts with the purposes of applying IRSs. Over-

all, designing a practical channel estimation for IRS systems

with low energy consumption, low signaling overhead, and

low computational complexity is still an open problem which

requires dedicated research efforts for further investigation.

2) Controlling IRSs: Despite various preliminary research

works have been conducted to unlock the potential of IRSs,

controlling IRSs in practical systems is challenging. In fact, in

order to fully exploit the performance gain of IRS systems, a

smart controller should be installed at the IRS which controls

the reflection amplitude and phase of the reflected signals.

Besides, the smart controller should communicate with the

transmitter to facilitate the estimation of CSI and for real-time

adaptive beamforming. Furthermore, certain time synchroniza-

tion control between a transmitter and an IRS is needed.

However, practical control protocols for smart controllers are

still unavailable in the literature. It is still unclear if the

IRS should be controlled via a separate wireless link or via

dedicated time slots. One may follow a similar approach/

protocol as narrowband Internet of things systems for handling

controlling signals7. Yet, if the smart controller is powerful

enough for handling complicated real-time controlling pro-

tocols between the transmitter and the IRS, the associated

energy consumptions of the IRS will become a concern of

7Note however that although the hardware of meta-atom-made IRS has
been realized by some existing proof-of-concept prototype of IRS systems,
e.g. [174].

system performance as IRSs are supposed to be energy-limited

devices.

3) Hardware Impairments: The system models for IRS-

assisted communication have been developed based on the

assumption of perfect hardware. However, both IRSs and IRS

controllers are preferably fabricated using low-cost compo-

nents which will be subject to hardware impairments. For

example, the phase-shifting capability might have limited

resolution, such as only two states [160]. A preliminary study

on the impact of finite resolution phase shifting is provided in

[164]. Thorough performance analysis of IRS-assisted systems

taking into account the impact of mutual coupling, phase noise,

and other hardware impairments is desired in future work.

4) Deployment of IRS: The position of an IRS is crucial

for achieving a useful performance improvement in IRS-

assisted communication systems, as shown in Fig. 9. The SNR

of the reflected path is proportional to the product of the

pathlosses between the transmitter and the IRS and between

the IRS and the receiver [159], which is why physically large

surfaces are needed for an IRS to beat competing range-

extension technologies such as relays [169]. Under optimized

transmission, the SNR grows with the square of the surface

area, since the area first determines how large a fraction of the

transmitted power that reaches the IRS and then determines

how narrowly it can be beamformed towards the receiver

[168]. Hence, if a large IRS is placed at a location with

clear LoS with respect to the transmitter and close distance

to the receiver, it can efficiently increase the SNR. However,

such kind of deployment may not work well for helping the

transmitter to convey multiple data streams for multiple UEs.

In fact, the single strong LoS path between the IRS and the

transmitter might result in a low-rank MIMO channel which

only offers a limited spatial multiplexing gain. To achieve

a multiplexing gain, one should consider deploying multiple

IRSs in the system to artificially create sufficient numbers of

controllable “scatterers”. Yet, the optimal positioning of IRSs

for maximizing the total system capacity is an open problem.

Besides, the problem of controlling multiple IRSs and the

associated channel estimation problem for joint reflection

remains unsolved in the literature.

5) Identifying a “Killer Application”: There is a series of

survey papers that speculate on how an IRS can be used in

future networks [14], [15], [166], [167], but there is a need to

demonstrate a “killer application” or a metric for which IRS-

aided transmission makes a paradigm shift in performance.

Massive MIMO provides orders-of-magnitude improvement

in spectral efficiency in sub-6 GHz bands and enables un-

precedented data rates in mmWave bands. What will be the

corresponding key benefit of IRS? Energy focusing and energy

nulling, as illustrated in Fig. 8, can be also achieved with

conventional beamforming methods, but likely would result

in higher implementation cost. Similarly, range extension is

the classical use case of relays, which already have a low

cost [169]. A relay can be much smaller than an IRS since its

transmit power determines the signal amplification it provides,

not the physical size as is the case of the IRS. The ability to

control the propagation environment is conceptually appealing

but must be associated with a practical performance gain. The
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research community needs to think outside the box to find the

right context in which IRS-supported systems will prevail.

V. MIMO MEETS OTHERS

The evolution of cellular technology has focused on cre-

ating a single system that can simultaneously support all

communication applications. However, some important future

applications (e.g. augmented reality (AR), virtual reality (VR),

holography, ultra-reliable coverage) have so stringent require-

ments that the network needs to reconfigure itself to support

these applications. It is envisioned that MIMO technology will

continue to be a main driving force for the development in

beyond-5G networks. In the following, we provide a brief

discussion on how other communication technologies would

complement MIMO for fulfilling upcoming stringent quality-

of-service (QoS) requirements set by potential future use cases.

A. Unmanned Aerial Vehicle-Based MIMO Communication

Although massive MIMO can improve the SNR of a com-

munication link proportionally to the number of antennas,

there are harsh physical environments where this is not enough

to provide decent coverage and capacity. For example, if heavy

shadowing exists between a transmitter and a receiver due to

blockage, the user device might not be able to connect to the

network at all. Although cell-free massive MIMO, described

in Section II, can be used to shorten distances between

transmitter and receivers, this might not be sufficient to combat

the shadowing due to the physical and financial constraints

on where the fixed network infrastructure can be deployed.

In fact, deploying a terrestrial infrastructure might be neither

cost-effective nor feasible in practical cases such as in complex

terrains, private areas, or remote areas. Also, on some occa-

sions, terrestrial wireless networks may malfunction due to

natural disasters, power outages, maintenance, etc. To handle

these issues, aerial communication systems based on UAVs is

regarded as a promising new paradigm to facilitate fast and

highly flexible deployment of communication infrastructure

due to their high maneuverability [175]–[179]. In practice,

UAVs equipped with MIMO communication modules can act

as aerial base stations or aerial relays to assist communication.

Fig. ?? shows two common usages of UAVs. On the right-

hand side of the figure, there is a blockage between a MIMO

transmitter and a ground user. Then, a UAV can be deployed as

an aerial relay for establishing a reliable communication link

between the desired transceivers. It can either use traditional

relaying protocols or, potentially, the new IRS approach de-

scribed in Section IV. On the left-hand side of Fig. ??, when

communication infrastructure is out of service or unavailable,

a UAV can be dispatched to serve as an aerial base station

to create a temporary communication hotspot for multiple

ground UEs. Unlike conventional ground base stations and

relays deployed at fixed locations, the high mobility of UAVs

introduces additional spatial degrees of freedom in resource

allocation for improving system performance. In particular,

when the locations of the UEs are known, UAVs can adapt

their trajectory for flying close to a region with dense UEs to

offer efficient communication services.

Despite the promising benefits brought by UAVs [175],

[176], the integration of conventional communication systems

and UAVs have imposed new challenges to researchers for the

design of efficient MIMO communication systems. First, the

unique constraints on size, weight, and energy consumption of

UAVs are the major obstacles in applying conventional com-

munication theories for improving the system performance.

In practice, small UAVs (less than 25 kg) are commonly

deployed due to safety reasons [176]. Under that weight

restriction, UAVs can only carry a light load to achieve high

mobility and low energy consumption. In particular, the limited

surface area, battery capacity, and computational capability

do not facilitate the implementation of massive MIMO on

UAVs. Second, in MIMO-UAV communication systems, the

three types of channels (i.e., air-to-ground, ground-to-air, and

air-to-air) are LoS dominated. Although the LoS channel

characteristics facilitate the establishment of strong desired

communication links, they are also vulnerable to multi-cell

interference or potential eavesdropping [180]–[183]. While

pilot contamination might be less of a problem for ground-

to-ground than initially believed [138], it is a major concern

in MIMO-UAV communications. Furthermore, the low-rank

nature of LoS MIMO channels also offers limited spatial

multiplexing capabilities for carrying multiple data streams.

Thus, novel MIMO communication techniques enabling ef-

ficient interference management and exploiting multiplexing

gains are needed, potentially by exploiting multiple UAVs

to create distributed arrays with a large aperture. Third, the

performance of a MIMO-UAV depends on its trajectory and

resource allocation design. In general, since the channels in

MIMO-UAV systems are LoS dominated, there is a non-trivial

coupling between the trajectory of UAVs, location of UEs,

and beamforming vectors design via trigonometric geometry.

The joint design of trajectory and resource allocation generally

leads to non-convex problems and obtaining a globally optimal

solution is challenging if not impossible. Up to now, there

only exists one algorithm for achieving a globally optimal

solution of the joint design problem for the case of a single-

antenna UAV [178]. As a result, the use of advanced global

optimization techniques is needed to solve the design opti-

mization problems of MIMO-UAV to unleash its full potential

for performance improvement.

There are many open problems related to realizing efficient

MIMO-UAV systems:

1) 3D Beamforming: Traditionally, directional high-gain

antennas with predefined antenna patterns are deployed to

focus the signal energy onto the ground-based coverage area

and simultaneously reduce inter-cell interference. Although

this kind of deployment has worked well for ground UEs in

past decades (until massive MIMO became a standard feature

of 5G), it is not a viable option for UAVs. In particular, a

fixed beam pattern is only suitable for fixed deployments with

a 2D distribution of UEs, while a UAV is highly mobile and

serves a 3D distribution of UEs. Hence, 3D beamforming

is suitable for UAVs [184], [185]. By deploying a two-

dimensional array at the bottom of a UAV and controlling

the magnitudes and phases of each antenna element, adaptive

beamforming can be achieved towards different locations on
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the ground. Unfortunately, the beamwidth is limited by the

array’s aperture [12, Sec. 7.4] and thus a limited-sized UAV

cannot achieve particularly narrow beams. However, zero-

forcing and other interference mitigation methods can still be

implemented. Efficient algorithms for joint 3D beamforming

at the base station and trajectory design of the UAVs need to

be developed.
2) UAV Cooperation (Distributed MIMO): Due to the phys-

ical constraints on weight, size, and energy consumption of

UAVs, only a small number of onboard antennas can be

equipped on every single UAV which limits the MIMO gains.

Nevertheless, the angular field of view (FoV) of a UAV is

usually small to ensure high SNR at the desired ground UEs,

as shown in the left part of Fig. ??. Yet, the small FoV can only

provide limited coverage for communications. For example,

when there is only one UAV serving a communication network

having a large coverage area, a UAV may need to fly back

and forth in the system to satisfy the QoS requirements of

all the UEs. This may introduce an exceedingly long delay

and energy consumption in the system. Alternatively, the UAV

can fly to a higher altitude to create a large coverage area but

that is associated with lower SNRs. One effective solution is

to deploy multiple UAVs for improving system performance.

In particular, a large service area can be divided into several

small clusters, each of which is served by a small number

of UAVs. Meanwhile, if there is high-rate communication

among UAVs via air-to-air communication links, distributed

MIMO arrays can be formed by sharing antennas among all

cooperative UAVs in each cluster for better interference mit-

igation and information transmission [186]–[189]. Depending

on how this is implemented, methodology from the cell-free

massive MIMO literature can be reused to achieve a lean

and scalable architecture. In summary, a thorough study on

user clustering and UAV cooperation algorithms is needed to

realize the performance gain that can be achieved via joint

transmission from multiple UAVs.

B. MIMO for Sub-Terahertz Communications

Each new network generation usually requires new spectrum

bands to enable deployment on top of legacy networks. Since

the spectrum is scarce in sub-6 GHz bands, 5G will rely

on a combination of sub-6 GHz spectrum that can provide

wide-area coverage and mmWave spectrum for high capacity

in hotspots [191]. The main reason for the exploration of

mmWave spectrum is the relatively wide bandwidths that are

available, while the main drawbacks are the more complicated

hardware design and propagation conditions [6]. The pathloss

in free space is the same at any band but the antenna size

shrinks with an increasing carrier frequency, thus MIMO

arrays are necessary for mmWave bands to achieve the same

antenna aperture as in legacy systems. The implementation of

compact MIMO arrays is one of the challenges that is tackled

in 5G literature [8], [192], [193]. Furthermore, mmWave

signals interact with objects in the propagation environment

in a less favorable way, often limiting the coverage area to

LoS scenarios [194].

The first release of 5G supports the spectrum range from 450
MHz to 52.6 GHz [191]. The range might increase in future

releases but it is fair to say that 5G is a technology for the

sub-100 GHz frequency range. To identify new spectrum bands

for beyond-5G networks, systems will have to move beyond

the 100 GHz barrier. There are extremely wide bandwidths

available above that barrier, at least 50 GHz in the range of

90–200GHz [195] and 100GHz in the range of 220−320GHz

[196]. Around 21 GHz of this spectrum is currently open for

unlicensed use in the USA [197]. The World Radiocommuni-

cation Conference 2019 has allocated 137 GHz for the land-

mobile and fixed services applications [198]. Although the

concerned bands are, formally speaking, mmWave bands, it

has become popular to call bands in the 100–300 GHz range

sub-THz bands to distinguish them from the mmWave bands

considered in 5G [197].

The research into sub-THz communications is still in its

infancy, but in comparison with 5G, one can expect even more

directive transmission and limited range, with channels only

consisting of LoS paths and possibly a few single-bounce re-

flections. On the other hand, with a bandwidth of 100 GHz, the

data rates can reach 1 Tbit/s at the cell center and 100 Gbit/s

at the cell edge [197]. Reaching such extreme data rates is the

main reason for considering sub-THz frequencies. It might

become suitable for fixed outdoor installations with high-gain

antennas (e.g. fixed wireless access or fronthaul/backhaul links

[199]) and short-range transmission to UEs that are mobile but

move very slowly [200]. There is also a potential of using sub-

THz signals for sensing, imaging, and positioning [197].

In the remainder of this section, we will briefly describe

some of the MIMO-related challenges that will appear in sub-

THz communications.

1) Hybrid Beamforming: The design of mmWave com-

munications has become almost synonymous with hybrid

analog-digital beamforming implementations, where a low-

dimensional digital beamformer is combined with analog

beamforming; the latter may, for example, be implemented

using phase shifters as shown in Fig. ??. Hybrid beamforming

represents a compromise between hardware complexity and

beamforming flexibility that simplifies the initial transceiver

design. However, for the mmWave bands considered in 5G,

hybrid beamforming may be a temporary solution that is

applied until digital transceivers can be built [15]. In fact,

there are already digital testbeds for the 28 GHz band [201].

When moving to the sub-THz band, it will be natural to

once again begin with building analog or hybrid transceivers

[200], [202]. Each antenna element will be so small that

one cannot yet place a dedicated RF chain behind it [197].

By having a smaller number of RF chains connected to

the antenna elements, the maximum beamforming gain can

still be obtained but the beamforming design becomes more

cumbersome.

Many of the same challenges that have been previously

tackled in the mmWave literature [8], [192], [193] need to be

revisited, under partially different conditions: a) More antenna

elements per RF chain; b) Increasing frequency-selectivity

in the channels due beam-squinting over wide bandwidths;

c) Unknown propagation behaviors make it harder to use

parameterized models for channel estimation; and d) Hardware

impairments such as phase noise and non-linearities become
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increasingly influential on the performance [203]. It is plau-

sible that low-resolution hardware must be utilized to achieve

a cost and energy efficient implementation [204]–[207], and

there is a hope that the resulting distortion will (partially) fall

into the null-space of the desired communication links [197],

[208]–[210]. It is necessary to first determine how the channel

and hardware constraints will affect sub-THz bands and go

back to the hybrid beamforming literature and determine

which features remain. The beamspace approach, described

in Section III, is a suitable methodology when designing the

signal processing for sub-THz bands.

2) Innovative Network Architectures: A typical sub-THz

communication system will consist of a point-to-point MIMO

channel with low rank, due to the directive transmis-

sion/reception and lack of scattering in higher bands. The

multiple antenna technology can provide three main benefits:

beamforming gain, spatial diversity, and spatial multiplexing.

However, not all of these benefits can be utilized in every

situation. A beamforming gain can be achieved even if the

channel has low rank, provided that the CSI is available.

Spatial diversity can be utilized to improve the reliability

but requires a MIMO channel with (partially) independent

fading between the antennas, which is not the case for low-

rank MIMO channels. To combat this deficiency, it will be

of interest to consider distributed antenna deployments, for

example, based on the cell-free massive MIMO methodology

described in Section II. Spatial multiplexing also requires a

high-rank channel and that can be achieved in the same way.

Alternatively, the deployment of many IRSs (described in

Section IV) can improve the propagation conditions in similar

ways.

C. MIMO for Rural Areas

Supplying broadband wireless access in rural areas may

become very important for beyond-5G. A cellular massive

MIMO BS can provide services for 3, 000 homes in a rural

area with similar data rates as in cable- or fiber-based access

with the set of parameters given in [11]. The fading channel

in rural areas is typically LoS, which may reduce the rank

of channel matrix. As a result, novel network architecture

with MIMO for rural area should be considered. For example,

a promising solution could be UAV-based MIMO commu-

nication introduced in Section V-A. Furthermore, effective

MIMO beamforming techniques can be utilized in multiple

spatially-separated high altitude platform drones to exploit

spatial multiplexing and boost spectral efficiency for ground

users in rural areas [211].

VI. CONCLUSION

Multiple antenna technology has become mainstream with

5G, where it plays a key role in significantly improving

capacity, coverage, and QoS over legacy cellular networks.

While there are still many practical aspects that must be dealt

with before 5G can reach its full potential, it is never too

early to search for new multiple antenna technologies for

beyond-5G applications. In addition to providing revolutionary

performance gains to beyond-5G networks, the new technolo-

gies must also provide orders-of-magnitude gain in energy

efficiency at a reasonable cost to enable scalable ubiquitous

connectivity.

In this survey, we outline three very promising beyond-

5G research directions: Cell-free massive MIMO, beamspace

MIMO, and IRS. Reference points set by recent technical ad-

vances in conjunction with historic perspectives are presented

in terms of system models, performance analyses, signal

processing schemes, and deployment visions. Importantly, we

provide in-depth discussions on crucial open problems in

each of these areas. From a broader perspective, networks

are becoming increasingly complex and heterogeneous in the

future, with conventional massive MIMO technology being

combined with distributed cell-free deployments, supported

by IRS, and signal processing simplifications enabled by the

beamspace methodology. These technologies may be used in

both conventional frequency bands and new sub-THz bands,

and the networks might include UAVs for improved coverage.

Even after decades of research and development, we believe

that multiple antenna technology will remain a very important

and exciting research avenue for beyond-5G systems.
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