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RESEARCH

This study evaluates the potential of accurate within-family 

imputation for enabling cost-e�ective genomic selection in 

plant breeding. Genomic selection has great potential to increase 

the e�ciency of plant breeding (Bernardo and Yu, 2007; Lorenzana 

and Bernardo, 2009). Perhaps most importantly, genomic selection 

increases the accuracy of early assessment of the genetic merit and 

therefore enables rapid recurrent selection. In practice, implement-

ing genomic selection can be challenging due to the high costs of 

collecting the necessary amounts of data, which must meet a set of 

requirements and must integrate with the breeding program.

Two large sets of data are required for the full exploitation of 

the potential of genomic selection; a training set of genotyped and 

phenotyped individuals and a prediction set of genotyped-only 

individuals (Meuwissen et al., 2001; Daetwyler et al., 2008; God-

dard, 2009). The training set is used to estimate parameters of the 

genomic selection model. To accurately estimate the parameters, 

the training set must be comprised of a large number of geno-

typed and phenotyped individuals. The prediction set represents 

the selection candidates, whose genetic merit will be predicted. 

Ideally, the prediction set would be large, because this enables 

high selection intensity and consequently high response to selec-

tion. However, large training and prediction sets increase costs 

that must be balanced against the potential increase in response to 

selection. The two sets of data can be assembled in di�erent ways, 

and this has important implications for use of genomic selection 

in plant breeding.

Prospects for Cost-E�ective Genomic Selection 

via Accurate Within-Family Imputation

Gregor Gorjanc,* Mara Battagin, Jean-Francois Dumasy, Roberto Antolin, R. Chris Gaynor,  

and John M. Hickey

ABSTRACT

Genomic selection has great potential to 

increase the ef�ciency of plant breeding, but its 

implementation is hindered by the high costs of 

collecting the necessary data. In this study we 

evaluated the potential of accurate within-family 

imputation for enabling cost-effective genomic 

selection. We have simulated a breeding program 

with inbred parents and their segregating progeny 

distributed among families, of which some were 

used as a training set and some were used as a 

prediction set. Parents were genotyped at high 

density (20,000 markers), while progeny were 

genotyped at high or low density (500, 200, 100, 

or 50 markers) and imputed. Low-density markers 

were chosen to segregate within each family 

separately. The assumed low-density genotyping 

costs accounted for this assumption. Six sets 

of scenarios were analyzed in which imputation 

was leveraged to maximize cost effectiveness of 

genomic selection by (i) decreasing the genotyping 

costs, (ii) increasing selection intensity by 

genotyping more individuals at fewer markers, or 

(iii) increasing prediction accuracy by genotyping 

more phenotyped individuals at fewer markers. The 

results show that, with a constant size of the training 

and prediction sets, the prediction accuracy was 

unimpaired when at least 200 low-density markers 

were used. However, the return on investment was 

maximal (5.67 times that of the baseline scenario) 

when only 50 low-density markers were used 

because that enabled maximal reduction in the 

genotyping costs and only minimal reduction in the 

prediction accuracy. Increasing either the training 

set or prediction set further increased the return on 

investment when imputed genotypes were used, 

but not when the true high-density genotypes 

were used. The results show how plant breeding 

programs can implement genomic selection in a 

cost-effective way.
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Initial proposals of genomic selection in plant breeding 

suggested training and prediction within a family (Bernardo 

and Yu, 2007; Lorenzana and Bernardo, 2009). Such an 

implementation requires small amounts of data but does not 

fully utilize the potential of genomic selection. For example, 

to achieve genomic prediction accuracy of 0.5 in a biparental 

family, a training set should be composed of about 100 phe-

notyped individuals from the family that are genotyped at a 

few hundred markers (Bernardo and Yu, 2007; Lorenzana 

and Bernardo, 2009; Hickey et al., 2014; Lian et al., 2014). 

These low requirements are due to the limited genetic diver-

sity within a family and high relatedness between the training 

and prediction individuals within a family (Daetwyler et al., 

2008; Goddard, 2009; Pszczola et al., 2012; Hickey et al., 

2014). However, assembling the training set within a family 

is time consuming and delays the use of genomic selection 

until the late generations of genetic improvement within 

a family. The potential for genomic selection at that stage 

is lessened in comparison with early stages and phenotypic 

selection (e.g., Endelman et al., 2014; Jacobson et al., 2014).

Recent proposals of genomic selection in plant 

breeding suggested training and prediction across fami-

lies (He�ner et al., 2011; Hickey et al., 2014; Jacobson 

et al., 2014; Mackay et al., 2014). Such an implementa-

tion requires large amounts of data and fully utilizes the 

potential of genomic selection. For example, to achieve 

genomic prediction accuracy of 0.5 in a new biparental 

family, a training set should be composed of at least a few 

thousand phenotyped individuals from other families 

that are genotyped with about 10,000 markers (Hickey et 

al., 2014). These requirements are due to more diversity 

among families than within a family and potentially low 

relatedness between the training and prediction individu-

als (Daetwyler et al., 2008; Goddard, 2009; Clark et al., 

2012; Pszczola et al., 2012; Hickey et al., 2014).

While training across families with a large number of 

densely genotyped individuals can be signi�cantly more 

expensive than training within a family with a small number 

of sparsely genotyped individuals, it provides important 

advantages for plant breeding programs. Most importantly 

it enables selection for quantitative traits, such as yield, in 

early generations of segregating populations. This enables a 

reduction in generation interval and an increase in selection 

intensity, which are the key advantages of genomic selec-

tion in comparison with phenotypic selection (e.g., Schae�er, 

2006; Bernardo and Yu, 2007; Gaynor et al., unpublished 

data, 2016). Additionally, training the genomic selection 

model across families enables continuous expansion and 

updating of the training set with data from each new family. 

Such an expansion increases the prediction accuracy and 

reduces its sampling variance (Hickey et al., 2014), which 

reduces the variance of response to selection (Nicholas, 

1980). In addition, reuse of the collected data increases its 

value and distributes the costs of setting up the training set 

over a longer time period and a larger number of predictions.

Several studies have suggested leveraging the power of 

imputation for genomic selection in plant breeding (e.g., 

Hickey et al., 2012a; Rutkoski et al., 2013; He et al., 2015; 

Xavier et al., 2016). However, most of these studies used 

relatively inaccurate imputation methods and genotyping 

strategies that do not explicitly leverage the family structure 

of plant breeding programs, such as those used by Hickey 

et al. (2015). In addition, the studies did not quantify the 

potential of imputation to reduce the cost of assembling the 

required data for genomic selection (Huang et al., 2012; 

Cleveland and Hickey, 2013; Jacobson et al., 2015). Plant 

breeders could leverage imputation in several ways to maxi-

mize the return on investment in genomic selection. First, 

breeders could reduce the cost of each prediction by geno-

typing selection candidates at a few markers and imputing 

the untyped markers. Perhaps the same approach could also 

be used to reduce the cost of assembling the training set. 

Second, given a �xed genotyping budget, breeders could 

increase response to selection by genotyping more selection 

candidates with fewer markers and imputing the untyped 

markers with the aim to increase selection intensity. Third, 

breeders could also increase response to selection by geno-

typing more training individuals with fewer markers and 

imputing the untyped markers with the aim to increase 

the genomic prediction accuracy. Both the second and the 

third option would utilize existing phenotypes at a fraction 

of full genotyping costs and would therefore increase the 

return on investment in both phenotype and genotype data. 

Finally, the enlarged training and prediction sets could be 

used jointly with the aim to increase response to selection 

via both increased selection intensity and accuracy.

The aim of this study was to evaluate the poten-

tial of accurate within-family imputation for enabling 

cost-e�ective genomic selection in plant breeding. We 

addressed this by evaluating:

(i) the prediction accuracy and return on investment 

with imputed genotypes in the prediction set 

and/or the training set

(ii) the response to selection and return on investment 

with imputed genotypes in an enlarged prediction set

(iii) the prediction accuracy and return on investment 

with imputed genotypes in an enlarged training set

(iv) the response to selection and return on investment 

with imputed genotypes in enlarged training and 

prediction sets.

MATERIALS AND METHODS
We used stochastic simulation to evaluate the potential of 

accurate within-family imputation to enable cost-e�ective 

genomic selection in plant breeding. The simulation involved 

the following steps, most of which were performed with the 

https://www.crops.org
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These causal loci had additive e�ects sampled from a normal 

distribution with a mean of zero and variance of one divided 

by the number of loci. True breeding value of an individual 

was calculated as the sum of additive e�ects of alleles at the 

causal loci that the individual inherited. Phenotype value of an 

individual was sampled from a normal distribution with a mean 

equal to the true breeding value of the individual and a residual 

variance according to the heritability. The heritability and the 

residual variance were computed relative to the additive genetic 

variance in the base population.

One high-density and four low-density marker arrays were 

constructed. The high-density array had 20,000 markers in 

total (2000 markers per chromosome) sampled from the non-

causal segregating sequence variants with the restriction of an 

equal number from each chromosome. The low-density arrays 

had 50, 100, 200, or 500 markers in total with 5, 10, 20, or 50 

markers per chromosome, respectively. Markers for the low-

density arrays were selected at random from the high-density 

array with two restrictions. First, they were speci�c for each 

family by selecting markers with opposing homozygous geno-

types in parents of a family. We did this to get an exact number 

of segregating markers within each family. This design choice 

was accounted for when we evaluated the genotyping costs. 

We refer to the number of segregating markers throughout the 

manuscript unless otherwise stated. Second, the markers were 

nested, i.e., markers on the smallest low-density array were 

present on the second smallest low-density array, etc.

Breeding Program
A breeding program of a self-pollinating species with inbred 

parents and biparental populations (families) was simulated 

(Fig. 1). The program was initiated by establishing a base pop-

ulation of 40 inbred parents. Each parent had one haplotype 

per chromosome sampled from the base haplotypes, allow-

ing for recombination between base haplotypes. The sampled 

haplotypes were doubled to create inbreds. The parents were 

then crossed at random to create 160 biparental populations, 

with a restriction that the same parents could only be crossed 

once. Each biparental population was developed by sel�ng the 

F
1
 individual to generate 200 F

2
 individuals, who were fur-

ther selfed to generate 200 F
3
 individuals that gave rise to 200 

F
3:4

 populations. These were evaluated in a preliminary yield 

trial with a heritability of 0.1. This phenotype pertained to the 

AlphaSim program (Faux et al., 2016), available at http://www.

AlphaGenes.Roslin.ed.ac.uk/AlphaSuite/AlphaSim:

(i) generating founder genomes

(ii) selecting causal loci, de�ning trait architecture, and 

selecting several marker arrays

(iii) generating a breeding program with inbred parents and 

a series of segregating families

(iv) applying a cost-e�ective genotyping strategy (densely 

genotype the parents and sparsely genotype their 

progeny) and within-family imputation

(v) training the genomic selection model and predicting 

breeding values in a range of scenarios

(vi) describing results within each scenario with prediction 

accuracy or response to selection and return on 

investment.

Obtained results were summarized over 30 replicates and pre-

sented graphically, while Supplemental Table S2 provides results 

in the tabular form. Data preparation and summaries were per-

formed with the R program (R Development Core Team, 2014).

Genome
The genome was simulated by sampling 100 haplotype 

sequences for each of 10 chromosomes using the Markovian 

Coalescent Simulator (MaCS) (Chen et al., 2009). Each chro-

mosome was 100 cM long and included 1 ´ 108 base pairs. 

Chromosomes were simulated using a per-site recombination 

rate of 1 ´ 10-8, a per-site mutation rate of 1 ´ 10-8, and 

an e�ective population size that varied over time. The e�ec-

tive population size was set to 50 in the �nal generation of the 

coalescent simulation, to 100 at 10 generations ago, to 1000 at 

100 generations ago, to 6000 at 1000 generations ago, to 12,000 

at 10,000 generations ago, and to 32,000 at 100,000 generations 

ago, with linear changes in between. The resulting genome 

sequences had approximately 1000,000 segregating variants 

(bi-allelic single-nucleotide polymorphisms) in total.

Causal Loci, Phenotypes, and Marker Arrays
A quantitative trait was simulated as being in�uenced by 10,000 

loci sampled at random from the segregating sequence variants 

with the restriction of an equal number from each chromosome. 

Fig. 1. Breeding program design with 

40 inbred lines used to generate 160 

families, of which 80 families comprised 

a genomic selection training set and 

80 families comprised a prediction set. 

Circles represent individuals (shaded had 

genotype data) and squares represent 

phenotypic data

https://www.crops.org
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genotype of the F
3
 individual used to derive the F

3:4
 population. 

In practice, the development of a biparental population would 

continue for a number of further generations, but for this study, 

it was stopped at this stage, as all the individuals and phenotypes 

required for genomic selection, according to the design that we 

chose to use, had been generated.

Genotyping Strategy and Imputation
All parents were genotyped with the high-density array, while 

F
3
 individuals were either genotyped with the high-density array 

or genotyped with one of the low-density arrays and imputed to 

the high-density array. We performed imputation with a slightly 

modi�ed version of the method of Li et al. (2010), which was imple-

mented in a new version of the AlphaImpute program (Hickey et 

al., 2012b, available at http://www.AlphaGenes.Roslin.ed.ac.uk/

AlphaSuite/AlphaImpute). The imputation method involved (i) 

constructing a set of template haplotypes, (ii) estimating model 

parameters that describe the mapping of the observed genotypes 

onto the template haplotypes, and (iii) estimating (imputing) 

genotype probabilities and allele dosages at untyped markers for 

sparsely genotyped individuals. We used estimated allele dosages 

as imputed genotypes. Each family and chromosome was imputed 

independently. Inputs for imputation were the high-density geno-

types of the two crossing parents and low-density genotypes of the 

200 F
3
 individuals. Accuracy of imputation was measured with 

the Pearson correlation between the standardized imputed allele 

dosages and the standardized true genotype at untyped markers; 

the correlation was computed one individual at a time and aver-

aged over individuals (Hickey et al., 2012a; Calus et al., 2014). 

Standardization included centering (subtracting average allele 

dosage, which is equal to two times the allele frequency) and scal-

ing (dividing by the standard deviation of allele dosages, which is 

equal to square root of heterozygosity). We also report the unstan-

dardized accuracies in parentheses for completeness. Preliminary 

tests showed limited imputation accuracy with the method of Li et 

al. (2010): 0.09 (0.58) with 5 markers per chromosome, 0.31 (0.71) 

with 10 markers per chromosome, 0.60 (0.83) with 20 markers per 

chromosome, and 0.77 (0.89) with 50 markers per chromosome. 

This is expected, as the high-density genotype for each family was 

only available on two parents, which provides limited information 

to construct an informative set of template haplotypes and estimate 

model parameters (Li et al., 2010).

We improved the initially low imputation accuracy by lever-

aging the inbred status of parents; in silico, we generated 98 doubled 

haploid F
2
 individuals from the parental genotypes (assuming 

uniform recombination rates, although in practice, any recombi-

nation map could be used) and used them to expand the set of 

template haplotypes and improve estimates of model parameters. 

This procedure improved accuracy of imputation to 0.61 (0.81) 

with 5 markers per chromosome, 0.76 (0.89) with 10 markers per 

chromosome, 0.86 (0.93) with 20 markers per chromosome, and 

0.93 (0.96) with 50 markers per chromosome. Between families, 

there were some di�erences in the imputation accuracy. The range 

was 0.56 to 0.67 (0.75 to 0.88) with 5 markers per chromosome, 

0.66 to 0.81 (0.81 to 0.95) with 10 markers per chromosome, 0.82 

to 0.88 (0.87 to 0.97) with 20 markers per chromosome, and 0.88 

to 0.95 (0.91 to 0.98) with 50 markers per chromosome.

The computational time to impute 2000 markers per chro-

mosome for 200 individuals was about 10 min with 200 template 

haplotypes and 100 iterations. Preliminary analyses showed that 

increasing number of low-density markers, number of template 

haplotypes, and iterations increased accuracy. We also observed 

an interaction between the number of template haplotypes and 

iterations, i.e., accuracy can be increased by iterating over a few 

template haplotypes many times or iterating over many tem-

plate haplotypes fewer times. Generally, 10 to 20 iterations gave 

high imputation accuracy that was only marginally improved in 

further iterations. On the other hand, computational time for 

certain level of accuracy increased with reduced number of low-

density markers and increased number of template haplotypes 

and iterations. Analysis of the implemented algorithm shows that 

the computational time is quadratic in the number of haplotypes 

and linear in the number of iterations. The chosen setting gave 

accurate imputations with acceptable computational time.

Genomic Prediction
Genomic predictions of breeding values for genotyped-only 

F
3
 individuals within a family were based on estimated marker 

associations from training on other families (Fig. 1). The size 

and composition of the training set varied between and within 

the di�erent scenarios. Marker associations were estimated by 

regressing phenotypic values on allele dosages with the ridge 

regression model (Hoerl and Kennard, 1976; Whittaker et al., 

2000; Meuwissen et al., 2001) as implemented in the AlphaBayes 

program, available at http://www.AlphaGenes.Roslin.ed.ac.uk/

AlphaSuite/AlphaBayes. The model parameters were estimated 

using a Monte Carlo Markov Chain method with one chain of 

10,000 iterations, of which the �rst 1000 were discarded as burn-

in. Posterior means were used as estimates of marker associations.

Prediction Accuracy
Accuracy of genomic prediction was measured with the Pearson 

correlation between predicted and true breeding values. We mea-

sured accuracy in two ways, jointly across families and within each 

family, to remove the between-family source of variation (e.g., 

Windhausen et al., 2012). In the results, we refer to this as the scope 

of prediction. The within-family correlation measures accuracy of 

predicting the within-family variation, commonly referred to as 

Mendelian sampling variation. The across-family correlation mea-

sures accuracy of predicting the within-family and between-family 

variation. The aim of genomic prediction is to capture variation due 

to both components, but it is harder and more important to cap-

ture the within-family variation, as it is this component that drives 

sustainable genetic gain (e.g., Woolliams et al., 1999; Hickey et al., 

2014). We therefore focus largely on the accuracy within a family in 

the results and discussion but report both for completeness.

Response to Selection
Response to selection was measured only for selection within a 

family for the same reasons as described for accuracy (see previ-

ous paragraph). It was calculated by subtracting the mean true 

breeding value of selection candidates within a family from the 

mean true breeding value of the 10 selected individuals. Selec-

tion was based on genomic predictions of breeding values.

Return on Investment
Return on investment was measured by dividing the response 

to selection within a family by the accrued genotyping costs to 

https://www.crops.org
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or fewer phenotyped individuals at fewer or more markers, i.e., 

enlarging the training set at the expense of the precision in the 

genotyping of each individual in the training set. Each scenario 

involved (i) constructing a training set with the true or imputed 

genotypes comprised of individuals from a number of families, (ii) 

estimating parameters of the genomic selection model, and (iii) 

predicting breeding values with the true or imputed genotypes in 

a prediction set of a distinct set of families.

The �rst three scenarios quanti�ed the prediction accuracy 

and return on investment by using imputation with di�erent 

numbers of low-density markers in the training and/or predic-

tion set (Table 2, Supplemental Table S2). The �rst scenario 

used high-density genotypes in the training set and low-density 

genotypes imputed to high density in the prediction set. The 

second scenario used low-density genotypes imputed to high 

density in the training set and high-density genotypes in the 

prediction set. The third scenario used low-density genotypes 

imputed to high density in both the training and prediction set. 

The training set comprised 80 families, with each family con-

tributing 25 training individuals. In total, this gave a training 

set with 80 ´ 25 = 2000 individuals (Supplemental Table S2). 

The families and individuals within families were selected at 

random among all the available families and individuals within 

families. Predictions were performed in the other 80 families, 

for 200 F
3
 individuals within each family.

The fourth scenario quanti�ed the response to selec-

tion and return on investment in an enlarged prediction set 

genotyped at fewer markers (Table 2, Supplemental Table S2). 

Since we always selected the �xed number of individuals, the 

change in the size of the prediction set (the number of selection 

candidates) translates to the increased selection intensity. The 

following four strategies that had approximately the same cost 

were evaluated (denoted as x selection candidates genotyped 

at y low-density markers—xI@yM): 50I@500M, 100I@200M, 

150I@100M, and 200I@50M (Supplemental Table S2). When 

a strategy did not involve genotyping all of the potential selec-

tion candidates of a family, a random sample of candidates was 

taken. The training set was the same as in the �rst scenario and 

was genotyped at high density. The prediction set had either 

the true high-density genotypes or low-density genotypes 

imputed to high density.

The �fth scenario quanti�ed the prediction accuracy and 

return on investment in an enlarged training set genotyped 

at fewer markers (Table 2, Supplemental Table S2). The same 

four strategies were used as in the fourth scenario but were 

applied to the training set. The following four strategies that 

had approximately the same cost were evaluated (denoted 

as 80 families times x individuals per family genotyped at y 

low-density markers—80C´xI@yM): 80C´50I@500M, 

80C´100I@200M, 80C´150I@100M, and 80C´200I@50M. 

When a strategy did not involve genotyping all of the indi-

viduals within a family, a random sample of individuals was 

taken. In total, the training set had 4000 individuals for the 

strategy 80C×50I@500M, 8000 individuals for the strat-

egy 80C´100I@200M, 12,000 individuals for the strategy 

80C´150I@100M, and 16,000 individuals for the strategy 

80C´200I@50M (Supplemental Table S2). The training set 

therefore had low-density genotypes imputed to high density. 

The true high-density genotypes were also used for comparison. 

achieve that response to selection. We expressed it relative to a 

chosen baseline so that all the evaluated scenarios could be com-

pared. We considered only the costs of genotypes, as we assumed 

that a breeding program would already have phenotypes avail-

able. For simplicity, other costs were ignored. We divided the 

cost of training genotypes by 80, because we performed pre-

dictions in 80 families and all of them used the same training 

data. We believe this is a conservative choice, as a real breeding 

program could spread this cost over many more families gener-

ated in several cycles of genomic selection. The cost of prediction 

genotypes was considered for each family separately, because the 

response to selection was measured for each family separately.

We assumed that the cost of a high-density array with 

20,000 markers is US$30.00. Further, we assumed that the 

cost of a low-density array is due to �xed and variable compo-

nents. The �xed component was set to $2.50, while the variable 

component was set to $1.00 for 100 markers. Because the low-

density markers were chosen for each family, we assumed that 

the total number of markers on a low-density array would have 

to be three times larger (e.g., Hickey et al., 2014), and we fac-

tored this into the costs. The cost of low-density arrays therefore 

ranged between 13 and 58% of the high-density array (Table 

1). We provide a spreadsheet in the supplement that details the 

calculations (Supplemental Table S2), which can be used to 

modify our cost assumptions for genotypes and phenotypes.

Scenarios
We analyzed the simulated data in six sets of scenarios in which 

imputation was leveraged to maximize utility of genomic data in 

our chosen breeding program design (Table 2, Supplemental Table 

S2). Across the scenarios, the utility of the resources was maxi-

mized based on three principles: (i) decreasing the genotyping 

costs, (ii) trading o� selection intensity versus prediction accuracy 

by genotyping more or fewer individuals at fewer or more mark-

ers, and (iii) increasing prediction accuracy by genotyping more 

Table 1. Assumed costs of high-density and low-density 

genotype data.

Number of markers Cost Ratio

US$

High-density

 20,000 30.00 1.00

Low-density

 500 17.50 0.58

 200 8.50 0.28

 100 5.50 0.18

 50 4.00 0.13

Table 2. Summary of scenarios.

Scenario
Training  

set†

Prediction 

set Result‡

1 HD LD Accuracy & ROI

2 LD HD Accuracy & ROI

3 LD LD Accuracy & ROI

4 HD LD & enlarge Response to selection & ROI

5 LD & enlarge HD Accuracy & ROI

6 LD & enlarge LD & enlarge Response to selection & ROI

† HD, high-density genotypes; LD, low-density genotypes imputed to high density.

‡ ROI, return on investment.

https://www.crops.org
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The prediction set was the same as in the �rst scenario, but this 

time with the true high-density genotypes.

The sixth scenario quanti�ed the response to selection and 

return on investment in an enlarged training and prediction set 

genotyped at fewer markers (Table 2, Supplemental Table S2). 

This scenario was a combination of the fourth and the �fth sce-

narios with exactly the same setting, with the only di�erence 

that low-density genotypes imputed to high density were used 

both in training and prediction. The true high-density geno-

types were also used for comparison.

RESULTS

This paper uses simulation to evaluate the prospect of 

accurate imputation to enable cost-e�ective genomic 

selection in plant breeding. The results show that accurate 

imputation can enable cost-e�ective genomic selection 

through (i) reduction of genotyping costs in training 

and prediction sets, (ii) increase of selection intensity by 

enlarging the prediction set, and (iii) increase of prediction 

accuracy by enlarging the training set. These advantages 

enable breeders to increase the return on investment in 

the required data for genomic selection.

Prediction Accuracy with Imputation  

in Training and/or Prediction
Prediction accuracy decreased marginally with the 

decreasing number of low-density genotypes used for 

imputation. This is shown in Fig. 2, which plots the 

genomic prediction accuracy against the number of 

markers used in the prediction set. The training set had 

high-density genotypes. Accuracies are shown both for 

prediction across families and within a family. The base-

line accuracy with the true high-density genotypes was 

0.71 for prediction across families and 0.42 for prediction 

within a family. The accuracy decreased with the decreas-

ing number of low-density genotypes. The decrease was 

less pronounced for prediction across families (from 0.71 

to 0.66) than for within a family (from 0.42 to 0.34). Simi-

lar trends were observed when imputation was used in 

the training set and not in the prediction set (scenario 2; 

Supplemental Table S1) and when imputation was used in 

both sets (scenario 3; Supplemental Table S1). Supplemen-

tal Table S1 also shows that the main di�erence between 

the three scenarios was in the rate of the decrease in accu-

racy. The rate was lowest when imputation was used only 

in the training set (scenario 2).

Using imputed genotypes gave greater return on 

investment than using the true high-density genotypes. 

This is shown in Fig. 3, which plots the return on invest-

ment of selecting within a family against the number of 

markers used in the training and prediction set in the 

�rst three scenarios. The baseline for comparison was a 

strategy where both the training and prediction set had 

high-density genotypes. Return on investment increased 

with the decreasing number of low-density markers and 

there were large di�erences between the scenarios. The 

greatest increases were observed when imputed genotypes 

were used both in the training and prediction set. In that 

scenario, the greatest return on investment was 5.67 times 

that of the baseline scenario when we used only 50 low-

density markers. Intermediate increases were observed 

when imputed genotypes were used only in the predic-

tion set. In that scenario, the greatest return on investment 

was 3.52 times that of the baseline scenario when we used 

only 50 low-density markers. The lowest increases were 

observed when imputed genotypes were used only in the 

training set. In that scenario, there were no signi�cant dif-

ferences between the marker densities.

Fig. 2. Prediction accuracy across families and within a family 

against the number of markers used in the prediction set with 

200 individuals; 2000 training individuals had the true high-

density genotypes (HD); LD, low-density genotypes imputed 

to high density; letters denote significant difference within the 

scope of prediction at p £ 0.01 according to the Tukey’s multiple 

comparison test.

Fig. 3. Return on investment for selection within a family against the 

number of markers used in the training set with 2000 individuals 

and prediction set with 200 individuals; HD, true high-density 

genotypes; LD, low-density genotypes imputed to high density; 

letters denote significant difference within a scenario at p £ 0.01 

according to the Tukey’s multiple comparison test.
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Response to Selection with Imputation  

and Enlarged Prediction Set

Enlarging the prediction set through low-density geno-

typing and imputation increased response to selection 

through increased selection intensity. This is shown in 

Fig. 4, which plots the response to selection against the 

number of prediction individuals, i.e., the selection can-

didates. The selection candidates were evaluated based on 

the true high-density genotypes or low-density genotypes 

imputed to high density. Increasing the number of candi-

dates increases response to selection. When the increased 

number of candidates was based on genotyping fewer 

markers, the response to selection stopped increasing 

after a certain number of low-density markers. Signi�-

cant increase in response occurred when we increased 

the number of selection candidates from 50 genotyped at 

500 low-density markers (response was 0.30) to 100 gen-

otyped at 200 low-density markers (response was 0.36). 

Further increases in the number of selection candidates 

(above 100) while decreasing the number of low-density 

markers (below 200 markers) did not increase response 

any further.

Increasing response to selection through increased 

selection intensity was cost e�ective only with impu-

tation. This is shown in Fig. 5, which plots the return 

on investment of selecting within a family against the 

number of prediction individuals, i.e., the selection can-

didates. The selection candidates were evaluated based on 

the true high-density genotypes or low-density genotypes 

imputed to high density. The baseline for comparison was 

the strategy from the �rst scenario, in which 200 selec-

tion candidates were genotyped at high density. When 

selection candidates had the true high-density genotypes, 

increasing selection intensity was not cost e�ective—

the highest return on investment (2.05 times that of the 

baseline scenario) was achieved when 50 candidates were 

genotyped with 500 low-density markers. When selection 

candidates had imputed genotypes, increasing selec-

tion intensity was cost e�ective—the highest return on 

investment was achieved when 150 candidates were geno-

typed with 100 low-density markers, though this strategy 

was comparable with genotyping 100 candidates with 

200 low-density markers or genotyping 200 candidates 

with 50 low-density markers. These three strategies gave 

return of investment between 3.39 and 3.68 times that of 

the baseline strategy.

Prediction Accuracy with Imputation  

and Enlarged Training Set
Enlarging the training set through low-density genotyp-

ing and imputation increased prediction accuracy. This 

is shown in Fig. 6, which plots the genomic prediction 

accuracy against the number of training individuals. The 

training individuals were from 80 families and had either 

the true high-density genotypes or low-density genotypes 

imputed to high density. Accuracies are shown both for 

prediction across families and within a family. Prediction 

accuracy increases with an enlarged training set. Predic-

tions based on the imputed genotypes in training were of 

similar accuracy to those based on the true genotypes over 

a wide range of training set sizes and marker densities. For 

example, the highest loss of accuracy from 0.69 to 0.62 was 

observed when the scope of prediction was within a family 

and 50 low-density markers were used for imputation. The 

turning point at which imputed genotypes in training gave 

Fig. 4. Response to selection within a family against the number 

of selection candidates having the true high-density genotypes 

(HD) or low-density genotypes imputed to high density (LD; 

2000 training individuals had the true high-density genotypes 

(points with a different letter—letters denote significant difference 

between strategies [the first letter] and used prediction genotypes 

[the second letter] at p £ 0.01 according to the Tukey’s multiple 

comparison test).

Fig. 5. Return on investment for selection within a family against 

the number of selection candidates having the true high-density 

genotypes (HD) or low-density genotypes imputed to high density 

(LD); 2000 training individuals had the true high-density genotypes 

(letters denote significant difference between strategies [the first 

letter] and the baseline scenario [the second letter] at p £ 0.01 

according to the Tukey’s multiple comparison test).
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signi�cantly lower prediction accuracy than the true geno-

types di�ered between the scopes of prediction. When the 

scope of prediction was across families, the turning point 

was between 100 and 50 low-density markers. When the 

scope of prediction was within a family, the turning point 

was already between 200 and 100 low-density markers.

Enlarging the training set increased return on invest-

ment when low-density genotyping and imputation were 

used, but not when the true high-density genotypes were 

used. This is shown in Fig. 7, which plots the return 

on investment of selecting within a family against the 

number of training individuals. The training individuals 

had either the true high-density genotypes or low-density 

genotypes imputed to high density. The baseline for com-

parison was a strategy from the �rst scenario, in which 

2000 training individuals were genotyped at high density. 

Doubling the baseline training set with high-density indi-

viduals gave 1.08 times higher return on investment, but 

further increases either gave comparable or lower return 

on investment than the baseline strategy. When low-den-

sity genotyping and imputation were used, the return on 

investment was larger and increased with increasing train-

ing set size. The maximal return on investment with that 

approach was 1.44 times that of the baseline strategy. This 

maximal scenario had a training size of 16,000 individuals 

genotyped at 50 low-density markers.

Response to Selection with Imputation  

and Enlarged Training and Prediction Sets
Enlarging both the training and prediction set through low-

density genotyping and imputation increased response to 

selection with diminishing returns. This is shown in Fig. 

8, which plots the response to selection within a family 

against the number of training and prediction individuals. 

Both sets of individuals had either the true high-density 

genotypes or low-density genotypes imputed to high 

density. Response to selection increased when both the 

number of training and prediction individuals with true 

high-density genotypes increased. However, when low-

density genotypes and imputation were used, the increase 

in response to selection plateaued at strategies that used 

100 low-density markers both in training with 12,000 

individuals across 80 families and in prediction with 150 

individuals per family.

Enlarging both the training and prediction set through 

low-density genotyping and imputation gave greater 

return on investment than using the true high-density 

Fig. 6. Prediction accuracy across families and within a family 

against the number of training individuals from 80 families having 

the true high-density genotypes (HD) or low-density genotypes 

imputed to high density (LD); 200 prediction individuals had the 

true high-density genotypes (letters denote significant difference 

between strategies [the first letter] and used training genotypes 

[the second letter] at p £ 0.01 according to the Tukey’s multiple 

comparison test).

Fig. 7. Return on investment for selection within a family against the 

number of training individuals from 80 families having the true high-

density genotypes (HD) or low-density genotypes imputed to high 

density (LD); 200 prediction individuals had the true high-density 

genotypes (letters denote significant difference between strategies 

[the first letter] and the baseline scenario [the second letter] at p £ 

0.01 according to the Tukey’s multiple comparison test).

Fig. 8. Response to selection within a family against the number 

of training individuals from 80 families and prediction individuals 

having the true high-density (HD) genotypes or low-density (LD) 

genotypes imputed to high density.
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genotypes. This is shown in Fig. 9, which plots the return 

on investment of selecting within a family against the 

number of training and prediction individuals. Both sets 

of individuals had either the true high-density geno-

types or low-density genotypes imputed to high density. 

The baseline for comparison was a strategy from the �rst 

scenario, in which 2000 training individuals and 200 pre-

diction individuals had high-density genotypes. When 

high-density genotypes were used, it was not cost e�ec-

tive to increase either the training set size or the prediction 

set. Using the imputation increased return on investment 

up to 5.12 times that of the baseline strategy. The most 

e�ective strategy was to assemble a training set of 12,000 

individuals and a prediction set of 150 individuals per 

family, both genotyped at 100 low-density markers.

DISCUSSION
Our results highlight four main points for discussion, 

speci�cally (i) the three principles of cost e�ectively assem-

bling the data for genomic selection through imputation, 

(ii) the required number of low-density genotypes, (iii) 

implications for breeding programs, and (iv) the assump-

tions made by the study.

The Three Principles of Cost Effectively 

Assembling the Data for Genomic Selection 

through Imputation
The results show that accurate within-family imputation 

can enable cost-e�ective genomic selection in plant breed-

ing through three complementary principles: (i) reducing 

costs by low-density genotyping and imputation, (ii) increas-

ing selection intensity by genotyping more candidates at 

fewer low-density markers, and (iii) increasing prediction 

accuracy by genotyping more training individuals at fewer 

low-density markers. Each of these principles is underpinned 

by phenomena that a�ect the power and cost e�ectiveness of 

a genomic selection program, and we discuss these in turn.

Reducing Genotyping Costs  

by Low-Density Genotyping and Imputation

Imputation is a technology designed to reduce the 

genotyping costs by exploiting the rules of inheri-

tance on partially observed genotypes of relatives. In 

this study, we have leveraged this technology and the 

prevalent family structure of plant breeding programs 

to assemble the required data for genomic selection in 

a cost-e�ective way. Plant breeding programs are ideal 

for such an approach, because a strategy to genotype 

a small number of parents at high density and a large 

number of their progeny at low density enables large 

cost savings in genotyping the training or prediction 

sets for genomic selection.

When we used imputation only in the prediction set, 

the prediction accuracy was unimpaired when at least 

200 low-density markers were used. However, the return 

on investment was optimal with 50 low-density markers 

(3.52 that of the baseline scenario), because at that den-

sity, the 19% loss in prediction accuracy (= 1 − 0.34/0.42, 

Supplemental Table S2) was more than compensated by 

the 87% cost reduction in genotyping an individual (= 1 

− $4.00/$30.00, Supplemental Table S2). When we used 

imputation only in the training set, the prediction accu-

racy was reduced less, but the return on investment did 

not improve compared with the baseline scenario. This 

was because we spread the cost of genotyping the training 

set across a large number of predictions and the reduction 

in that cost was negligible when analyzed on a per-family 

basis. The return on investment was the greatest when 

imputation was used both in training and prediction 

sets, because this scenario enabled the greatest total cost 

reduction in genotyping. The most optimal strategy was 

to genotype the sets with 50 low-density markers, which 

gave 5.67 times more return on investment than the base-

line scenario. This was achieved through a 24% loss in 

prediction accuracy (= 1 − 0.34/0.45, Supplemental Table 

S2) but an 87% cost reduction in genotyping the sets (= 

1 − $2400/$18,000, Supplemental Table S2).

Of note is the observation that, when imputed gen-

otypes were used only in the training set, the prediction 

accuracy decreased at a lower rate than when imputed gen-

otypes were used only in the prediction set. This can be 

explained by the fact that, for training a genomic selection 

equation, a set of individuals is used to estimate population 

parameters (variance components and allele substitution 

e�ects) and errors for any individual average out across the 

set of individuals to some degree. On the other hand, in the 

prediction set, each individual is evaluated independently 

and is more dependent on having few errors in its genotype 

(e.g., Gorjanc et al., 2015). This observation suggests that a 

Fig. 9. Return on investment for selection within a family against 

the number of training individuals from 80 families and prediction 

individuals having the true high-density (HD) genotypes or low-

density (LD) genotypes imputed to high density.
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small amount of errors introduced by imputation has larger 

e�ect on prediction than on training.

Increasing Selection Intensity by Genotyping 

More Candidates at Fewer Low-Density Markers

Increasing selection intensity increases response to 

selection, but the bene�t must be balanced against 

increased costs of evaluating more selection candidates. 

Our results show that this is hard to achieve with high-

density genotyping but is possible with low-density 

genotyping and imputation. For example, increasing 

selection intensity from 1.4 (10 selected candidates 

out of 50 candidates) to 2.1 (10 selected candidates 

out of 200 candidates) increased response to selection 

by 33% when the candidates were genotyped at high 

density (= 1 − 0.31/0.44, Supplemental Table S2) and 

by 17% when the candidates were genotyped at low 

density and imputed (= 1 − 0.30/0.36, Supplemental 

Table S2). However, this strategy increased the return 

on investment only when low-density genotyping and 

imputation were used, because the total costs of geno-

typing an increasing number of selection candidates at 

fewer markers was nearly constant (between $800 and 

$875, Supplemental Table S2). The return on invest-

ment did not increase when the true high-density 

genotypes were used, because the total costs of geno-

typing increased linearly with an increasing number of 

selection candidates (from $1500 to 6000, Supplemental 

Table S2) and outweighed the bene�t of an increased 

response to selection.

The observed dynamic can be explained by the fact 

that, while selection intensity increases at an increas-

ing (nonlinear) rate against a decreasing proportion of 

selected individuals, it increases almost linearly for a 

wide range of proportions, i.e., when >20% of candi-

dates are selected (Falconer and Mackay, 1996). This 

means that a greater response to selection through more 

intense selection must outweigh greater costs of evalu-

ating more selection candidates at a rate that is more 

than linear. This can only be achieved with genotyp-

ing an increasing number of candidates at ever fewer 

markers. However, this strategy can only be used to 

the point where the loss in prediction accuracy due 

to imputation errors diminishes response to selection 

and the higher cost of genotyping ever more individu-

als outweighs the bene�t. In this study, this point was 

observed when 10 candidates were selected out of 150 

that were genotyped at 100 low-density markers. This 

scenario gave the return on investment of 3.68 times 

that of the baseline scenario (genotyping the 200 can-

didates at high density).

Increasing Prediction Accuracy  

by Genotyping More Training Individuals  

at Fewer Low-Density Markers

Increasing accuracy of selection through enlarging the train-

ing set increases response to selection, but this principle must 

also be balanced with the costs of achieving that level of 

accuracy. Our results show that low-density genotyping and 

imputation enable increasing response to selection with this 

strategy in a cost-e�ective way, while high-density genotyp-

ing leads to overinvestment in genotype data. Since accuracy 

of imputation was high in this study, it is not surprising that 

imputation enabled a cost-e�ective way to increase the size of 

the training set and with that the prediction accuracy. How-

ever, the overinvestment with high-density genotyping was 

surprising. There are at least two phenomena that underlie 

this observation. First, while the genomic prediction accu-

racy increases with an increasing training set size, it does so 

with diminishing returns (Daetwyler et al., 2008; Goddard, 

2009). Since our baseline training set of 2000 individuals was 

already sizeable, it is expected that increases in the training 

set do not increase prediction accuracy substantially. When 

this is coupled with the higher costs of genotyping more 

training individuals at high density, it leads to an expectation 

that the return on investment reduces. Second, the design 

of our simulation likely exacerbated the �rst phenomena. 

Namely, we have increased the baseline training set by sam-

pling more individuals from the same families. In addition, 

each family in the prediction set had, on average, 7.7 families 

with one parent in common in the training set. These two 

design properties imply that the baseline training set already 

covered most of the genetic variability and that the relation-

ship between the training and prediction sets was high (Clark 

et al., 2012; Pszczola et al., 2012; Hickey et al., 2014). Such 

high coverage of genetic variability and high connectedness 

between the training and prediction sets is not expected for 

every breeding program, especially when rapid cycling is 

aggressively used. In such cases, increasing or updating the 

training set every year is essential to maintain prediction 

accuracy (Michel et al., 2016; Pszczola and Calus, 2016). Our 

work shows that this can be achieved in a cost-e�ective way 

with low-density genotyping and imputation.

Required Number of Low-Density Markers
The required number of low-density markers for cost-

e�ective genomic selection depends on many parameters 

and a setting where the data will be used. The results of 

this study suggest that imputation with about 20 segregat-

ing markers per chromosome gives comparable prediction 

accuracy and response to selection as high-density geno-

types. However, in the terms of return on investment, 

the number can be reduced to as few as �ve segregat-

ing markers per chromosome when imputation is used 

both in the training and prediction sets with or without 

enlarging the sets. These numbers refer to the number 
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of segregating markers, and unless marker platforms can 

be cost e�ectively developed for each family speci�cally, 

a greater number of assayed markers will be needed to 

ensure so many segregating markers in a family. Assuming 

that about one third of markers segregate in a family (e.g., 

Hickey et al., 2014), the targeted number of low-density 

markers should be between 15 and 60 per 1-Morgan chro-

mosome or between 150 and 600 per genome with 10 

1-Morgan chromosomes. That so few markers are su�-

cient is consistent with previous results from studies in 

simulated (Hickey et al., 2015) and real data ( Jacobson et 

al., 2015). Hickey et al. (2015) discuss in detail why plant 

breeding populations enable accurate imputation with 

so few low-density markers. Here, we emphasize that a 

strategy of densely genotyping a small number of parents 

and sparsely genotyping a large number of their progeny 

enables large reductions in the total genotyping costs, 

while response to selection is not diminished substantially.

Implications for Breeding Programs
Our study has three implications for plant-breeding programs:

First, the results show that large cost reductions can 

be achieved with the proposed genotyping strategy and 

accurate within-family imputation. This is extremely 

important, because the cost of assembling the required data 

is the key-limiting factor for adopting genomic selection. 

We have shown that this limitation can be overcome by (i) 

lowering the costs of assembling su�ciently large training 

sets that yield accurate predictions in unphenotyped fami-

lies and (ii) lowering the cost of assembling large prediction 

sets that yield measurable response to selection.

Second, low-cost genotyping enables adoption of 

genomic selection in early segregating populations. In that 

stage of the breeding program, the potential of genomic 

selection is likely to be the greatest, because breeders could 

select early for all traits covered by the training set, even 

yield. However, that stage is also the most challenging for 

implementing genomic selection, because early segregating 

populations comprise large number of individuals. Genotyp-

ing costs should be as low as possible to make this a possibility. 

Genomic prediction at that stage could be combined with a 

prior phenotype screening for traits that are inexpensive to 

measure. This strategy would avoid the need to genotype 

individuals with poor phenotypes for these traits. Our results 

show that genotyping with 50 low-density markers and 

imputing can give accuracy of prediction within an unphe-

notyped family of at least 0.3. Coupling this level of accuracy 

with large genetic variance in segregating populations and 

short generation interval promises substantial responses to 

selection, which could be achieved in a cost-e�ective way.

Third, low-density genotyping and imputation a�ect 

accuracy of prediction in a di�erent way when the scope of 

prediction is across families or within a family. Our results 

show that prediction accuracy within a family is more 

sensitive to imputation errors than prediction accuracy across 

families. This is expected, because prediction accuracy across 

families is due to capturing the between- and within-family 

genetic variation, while prediction accuracy within a family 

is only due to capturing the within-family genetic variation. 

It is easy to accurately impute the part of genotypes that is 

due to between-family variation, i.e., the mean genotype 

of the parents. It is much more challenging to accurately 

impute the part of genotypes that is due to within-family 

variation, i.e., the deviation of progeny’s genotype from the 

mean genotype of the parents. This is important, because 

imputation accuracy and the resulting prediction accuracy 

with imputed genotypes are in�uenced by the population or 

family structure in the same way as prediction accuracy with 

non-imputed genotypes is (e.g., Windhausen et al., 2012). 

Ignoring this phenomenon can lead to a breeding program 

that underuses the potential of genomic selection to capture 

within-family variation. This is important also in the terms 

of long-term gain and sustainability of a breeding program, 

which depend largely on the ability to select on the within-

family variation, while selection on the between-family 

variation leads to rapid depletion of genetic variation (e.g., 

Woolliams et al., 1999, 2015).

Assumptions of the Study
The estimated bene�t of imputation for cost-e�ective 

genomic selection in plant breeding depends on some 

assumptions made in this study. Breeding programs 

attempting to follow the described approach might want to 

reevaluate the bene�t of imputation by varying the popula-

tion structure, the size of a program, and most importantly 

the costs. We have modelled the cost of genotyping based 

on inquiries from several genotyping providers, in particular 

from LGC (http://www.lgcgroup.com). The assumed costs 

were for a species with an established genome sequence 

and a fairly large breeding program that would enable the 

economy of scale. We have spread the cost of assembling 

the training genotypes over one cycle of predictions in 80 

families, while the cost of the prediction genotypes was 

attributed to each family. We believe this is a conservative 

approach, because we do not expect large genetic changes 

so that the training set would have to be fully replaced after 

one cycle of selection. This suggests that using imputation 

in training might be even more cost e�ective than sug-

gested in this study. If costs are spread over many cycles of 

selection, drop in prediction accuracy with distancing gen-

erations should be accounted for. More critically, we have 

assumed that phenotype data is available and that a starting 

genomic selection program could simply reuse this data. We 

believe this is a reasonable assumption for existing breeding 

programs, but if this assumption is not met, the return on 

investment can change considerably. The spreadsheet pro-

vided in supplement can be used to change our assumptions 

and corroborate our results under di�erent settings.

https://www.crops.org
http://www.lgcgroup.com


12 WWW.CROPS.ORG CROP SCIENCE, VOL. 57, JANUARY–FEBRUARY 2017

We have performed sensitivity analysis by doubling 

low-density genotyping costs (both �xed and variable parts 

or just one of the two) and found that, while the values for 

the return on investment change, the relative comparison 

of the evaluated strategies in the scenarios does not change. 

Speci�cally, doubling the �xed and variable costs of low-

density genotyping increased total costs of 50 markers from 

$4.00 to 8.00, of 100 markers from $5.50 to 11.00, and of 

200 markers from $8.50 to 17.00. In scenarios 1–3 (�xed 

size of training and prediction sets), these cost changes have 

reduced the return on investment for the optimal scenario 

(low-density genotyping with 50 markers and imputation 

both in training and prediction sets) from 5.67 to 2.84 (a 

50% reduction), but this scenario was still the most optimal. 

In scenario 4 (enlarging the prediction set by low-density 

genotyping and imputation), these cost changes reduced the 

return on investment for 35% in all settings. In scenario 

5 (enlarging the training set by low-density genotyping 

and imputation), these cost changes reduced the return on 

investment for 11% in all settings. In scenario 6 (enlarging 

both training and prediction sets by low-density genotyp-

ing and imputation), these cost changes reduced the return 

on investment for 50% in all settings.

The reviewers pointed out that our simulation design 

does not resemble an evolving breeding program and that 

<20,000 high-density markers might be su�cient for the 

same prediction accuracy but have a lower cost, and hence 

a greater return on investment. The simulation design used 

is not an evolving breeding program, but it is indicative of a 

snapshot of such a program at one time point. The founder 

chromosomes were sampled from a coalescent process with 

e�ective population size of 50 (with increasing values in 

the past). Therefore, there was a trajectory of relationships 

between the founders and families that is representative of 

what may be present in a particular breeding program, and 

our results show average over this trajectory. Hence, our 

results inform about the potential of imputation to lower the 

cost of genotyping large number of individuals for genomic 

selection, but each breeding program should evaluate this 

potential for its speci�c conditions.

We agree that <20,000 high-density markers are 

required for accurate predictions among closely related indi-

viduals. While parents could have been genotyped with fewer 

high-density markers, this might not necessarily reduce costs 

considerably, as there is a nonlinear relationship between the 

number of markers and the cost, in particular when pro-

gressing between the low-density and high-density types of 

arrays. It should be emphasized that the cost of high-density 

genotypes on a relatively small number of parents is only a 

fraction of the total required genotyping budget for genomic 

selection, hence not primary target for cost optimization. 

Also, using a surplus of high-density markers is bene�cial 

for at least two reasons. First, when the relationship between 

the training and prediction sets reduces, the required number 

of markers to achieve a targeted level of accuracy increases 

(e.g., Hickey et al., 2014). By having high-density markers, 

we ensure that, in the longer term, the training set can be 

used for making selection decisions in more families and thus 

have its cost of construction o�set over more selection deci-

sions. Second, surplus of high-density markers ensures good 

coverage of germplasm genetic diversity and reduces ascer-

tainment bias (e.g., Ganal et al., 2012; Heslot et al., 2013).

CONCLUSION
Accurate within-family imputation enables cost-e�ective 

genomic selection in plant breeding. This can be achieved 

through (i) reduced cost of genotyping the training and 

prediction sets by low-density genotyping and imputa-

tion, (ii) increased selection intensity by genotyping more 

selection candidates at fewer markers and imputing, and 

(iii) increased genomic prediction accuracy by genotyping 

more training individuals at fewer markers and imputing. 

These three principles enable plant breeders to cost e�ec-

tively assemble the required data for genomic selection.
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