
Bulletin of Mathematical Biology (2019) 81:3385–3420
https://doi.org/10.1007/s11538-019-00628-7

SPEC IAL ISSUE : MULT ISCALE MODEL ING OF T ISSUE GROWTH
AND SHAPE

Prospects for Declarative Mathematical Modeling
of Complex Biological Systems

Eric Mjolsness1

Received: 31 March 2018 / Accepted: 30 May 2019 / Published online: 7 June 2019
© The Author(s) 2019

Abstract
Declarative modeling uses symbolic expressions to represent models. With such
expressions, one can formalize high-level mathematical computations on models that
would be difficult or impossible to perform directly on a lower-level simulation pro-
gram, in a general-purpose programming language. Examples of such computations
on models include model analysis, relatively general-purpose model reduction maps,
and the initial phases of model implementation, all of which should preserve or
approximate themathematical semantics of a complex biological model. The potential
advantages are particularly relevant in the case of developmental modeling, wherein
complex spatial structures exhibit dynamics at molecular, cellular, and organogenic
levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit
from both the expressive power of declarative modeling languages and the application
of model reduction methods to link models across scale. Based on previous work,
here we define declarative modeling of complex biological systems by defining the
operator algebra semantics of an increasingly powerful series of declarative modeling
languages including reaction-like dynamics of parameterized and extended objects;
we define semantics-preserving implementation and semantics-approximating model
reduction transformations; and we outline a “meta-hierarchy” for organizing declara-
tive models and the mathematical methods that can fruitfully manipulate them.

Keywords Declarative modeling · Development · Multiscale modeling · Operator
algebra · Semantics · Graph grammars · Graded graphs · Stratified graphs · Cell
division · Cytoskeleton

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11538-
019-00628-7) contains supplementary material, which is available to authorized users.

B Eric Mjolsness
emj@uci.edu

1 Department of Computer Science, University of California, Irvine, CA 92697, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-019-00628-7&domain=pdf
http://orcid.org/0000-0002-9085-9171
https://doi.org/10.1007/s11538-019-00628-7
https://doi.org/10.1007/s11538-019-00628-7

3386 E. Mjolsness

1 Introduction

Central to developmental biology is the genotype-to-phenotype map required to close
the evolutionary loop implied by selection on heritable variation. However, relat-
ing genotype to phenotype in a multicellular organism is an intrinsically multiscale
and (therefore) complex modeling endeavor. Partial automation has the potential to
tame the complexity for human scientists, provided it can address highly heteroge-
neousmathematical dynamics including stochastic reaction networks, dynamic spatial
structures at molecular and cellular scales, and partial differential equations (PDEs)
governing both pattern formation and dynamic geometry within dynamic topology.
Here, we outline such a mathematical modeling framework, founded on the unifying
idea of rewrite rules denoting operators in an operator algebra. The rewrite rules make
this framework declarative: capable of expressing mathematical ideas at a high level
in a symbolically and computationally manipulable form.

To this end, we propose and discuss an informal definition of declarative modeling
in general and provide as examples a collection of specific mathematical constructions
of processes and extended objects for use in declarative models of complex biological
systems and their processing by computer. Such processing can be symbolic and/or
numerical, including for example model reduction by coupled symbolic and machine
learningmethods. The resulting apparatus is intended for semiautomatic synthesis and
analysis of biological models, a computational domain which must typically deal with
substantial intrinsic complexity in the subject modeled.

The necessity for such automation is strongest for the most complex biologi-
cal models, notably those required for developmental modeling. Examples of such
dynamical spatial systems in development include plant cell division under the influ-
ence of dynamic microtubules in the pre-prophase band; neurite branching and somal
translocation dependent on dynamic cytoskeleton in mammalian brain development;
mitochondrial fission and fusion; plant organogenesis in shoot (shoot apical meris-
tem or SAM) and root (lateral root initiation); topological changes in close-packed
2D tissues (e.g., fly wing disk) in response to cell division and convergent extension;
neural tube closure; branching morphogenesis in vascular tissues; and many others.
In all these cases, the spatial dynamics involves nontrivial changes in geometry and/or
topology of extended biological objects; we must be able to represent such dynamics
mathematically and computationally. Our main examples will be networks of dynam-
ically interconnected cells and dynamically interconnected segments of cytoskeleton
within a cell.

This paper is organized as follows. We will define declarative models in Sect. 2
(informally in general but formally in particular cases) and survey a series of declara-
tive quantitative modeling languages of increasing expressive power for biochemical
and biological modeling as exemplified by coarse-scale models of multicellular tis-
sues with cell division and by cytoskeletal dynamics; also we will describe the
“operator algebra” mathematical semantics for these languages and the utility of
structure-respecting maps among these mathematical entities. We will generalize the
declarative modeling language/operator algebra semantics approach to encompass
extended objects in Sect. 3, by way of spatially embedded discrete graph structures
(including dimension and refinement level indices) and their continuum limits; dynam-

123

Prospects for Declarative Mathematical Modeling of… 3387

ics on such structures including PDEs; and dynamics by which such structures can
change including graph rewrite syntactic rules under a novel operator algebra seman-
tics. We will discuss progress toward a general method for nonlinear model reduction
(usually across scales) by machine learning in Sect. 4 including an application of vari-
ational calculus generalized to a higher level. In Sect. 5, we will propose the elements
of a larger-scale mathematically based “meta-hierarchy” for organizing many biolog-
ical models and modeling methods, enabled by the declarative approach to modeling
and by structure-respectingmaps among declarative languages and their mathematical
semantics.

Much of this paper reviews previous work, extending it (e.g., with the multiscale
“graded graph” constructions of Sect. 3, their dynamics of Eq. (17), and graph rewrite
rule operator products defined by Propositions 1 and 2 in Sect. 3.2.2) and setting it in
a broader context. The aim of this paper is not to provide a balanced summary of work
in the field; instead it is aimed mainly at outlining mathematically the possibilities of
particular directions for future development.

2 Declarative Modeling

A distinction made in classical Artificial Intelligence (AI) by Winograd among others
is that between declarative and procedural representations of knowledge; this is the
AI version of a philosophical distinction between “knowing that” and “knowing how,”
as it pertains to knowledge expressed in a formal language that can be used to program
intelligent systems (Winograd 1975). Generic advantages for declarative knowledge
identified by Winograd include its greater flexibility, compactness, understandability,
and communicability compared to procedural knowledge; these are virtues we seek
for complex biological modeling. On the other hand, declarative knowledge may be
incomplete, as it omits for example “heuristic” knowledge of domain-specific strate-
gies for action (terminology surrounding the “declarative/procedural” distinction is
discussed briefly in Supplementary Material Section 7.1).

An example of a formalizable, declarative language for modeling biology is a
collection of partial differential equations in which the variables represent local con-
centrations of molecular species and the spatial differential operators are all diffusion
operators∇x ·(Dα(x)∇x). Such a deterministic reaction/diffusion model can be repre-
sented in a computer by one or more abstract syntax trees (ASTs) including nodes for
variable names, arithmetic operations, spatial differential operators such as the Lapla-
cian, the first-order time derivative operator, equality constraints including boundary
conditions, and possibly function definitions (a simple AST is shown in Fig. 1). Such
an AST can be used to denote a reaction–diffusion model as a data object that can be
manipulated by computer algebra. It can also under some conditions be transformed
symbolically, for example by separation of time scales replacing a subset of ordinary
differential equations (without spatial derivatives) by function definitions of algebraic
rate laws to be invoked in the differential equations for the remaining variables (e.g.,
Ermentrout 2004). The language is “declarative” from a computational point of view
because it does not specify any algorithmic details for numerically solving the dynam-
ical systems specified. Implemented examples will be discussed in Sect. 3.

123

3388 E. Mjolsness

Fig. 1 Schematic view of an abstract syntax tree for the algebraic expression
√
x2 + y2. It can be trans-

formed in many ways. For example, it could be numerically evaluated at x = 5, y = 12 by successive
local transformations of ASTs. AST transformations are used in compilers for programming languages, in
computer algebra systems, and in recent work on “symbolic regression” in machine learning

We generalize from this example. A formal language should have a “semantics”
mapΨ , giving a mathematical meaning to some defined set of valid expressions in the
language. For amodeling language, each validmodel declarationM should correspond
to an instance Ψ (M) in some space S of “dynamical systems” interpreted broadly, so
that such systemsmay be stochastic and/or infinite-dimensional. If some of the seman-
tically meaningful model expressions are composed of meaningful sub-expressions,
and their semantics can be combined in a corresponding way, then the semantics is
“compositional”; composition commutes with the semantic map. Likewise for valid
transformations of model declarations, one would like the semantics before and after
transformation to yield either the same mathematical meaning (equivalent dynamics),
or twomeanings that are related somehow, for example, by approximate equality under
some conditions on parameters that may be partially known by proof and/or numerical
experiment.

So in the context of modeling languages in general and biological modeling lan-
guages in particular, somekey advantages of the declarative language style are captured
by the following informal (but perhaps formalizable) definition:

A declarative modeling language L is a formal language together with (a) com-
positional semantics Ψ : L → S that maps all syntactically valid models M in L
into some space S of dynamical systems, and (b) conditionally valid or conditionally
approximately valid families of transformations on model-denoting AST expressions
in the modeling language L . These AST transformations can be expressed formally
in some computable meta-language, though the meta-language need not itself be a
declarative modeling language.

Under this informal definition, the utility of a declarative modeling language would
depend on its expressive power, addressed in Sects. 2.1–2.3 and 3, and on the range,
value, and reliability of the model-to-model transformations that can be constructed
for it, to be discussed in Sects. 3 (implementation), 4 (model reduction), and 5 (wider
prospects). Multiscale modeling benefits from both the expressive power (e.g., rep-
resenting cellular and molecular processes in the same model) and model reduction
(finding key coarse-scale variables and dynamics to approximate fine-scale ones) ele-
ments of this agenda.

123

Prospects for Declarative Mathematical Modeling of… 3389

Although it is plausible that “one can’t proceed from the informal to the formal
by formal means” (Perlis 1982), so that the task of formalizing a complex biological
system to createmodelsmust begin informally,wewill nevertheless try to be systematic
about this task by building the semantic map Ψ up out of “processes” and “objects”
of increasing generality and structure. These processes and objects are represented by
“expressions” in a language, and mapped to mathematical objects that together define
a model. So the map Ψ will be concerned with expressions, processes, and objects.

We show how to define a series of simple quantitative modeling languages of
increasing expressive power, accompanied by semantic maps Ψ (M) to operator alge-
bras. To do this, we need some idea concerning how to represent elementary biological
processes with syntactic expressions that can include numerical quantities. One such
idea begins with chemical reaction notation.

2.1 Pure Reaction Rules

In biology, generalized versions of rewrite rules naturally specify biochemical pro-
cesses in a declarative modeling language, as well as model transformations in a
meta-language. The most straightforward example is chemical reaction notation. As
in Mjolsness (2010), we could use chemical “addition” notation:

(Amax∑

α=1

m(r)
α Aα

)
k(r)−→

(Amax∑

β=1

n(r)
β Aβ

)
, (1)

where m(r)
α and n(r)

β are nonnegative integer-valued stoichiometries for molecular
species Aα indexed by α in reaction r with nonnegative reaction rate k(r), and we

may omit summands with m(r)
α = 0 or n(r)

β = 0. The left hand side (LHS) and right
hand side (RHS) of the reaction arrow are just formal sums or equivalently multisets
with nonnegative integer multiplicities of all possible reactants, defaulting to zero if a
reactant is not mentioned:

{
m(r)

α Aα

}

∗
k(r)−→

{
n(r)

β Aβ

}

∗. (2)

Concisely, we can summarize reaction rule r as “LHSr → RHSr”. Either detailed
syntax expresses the transformation of one multiset of symbols into another, with a
numerical or symbolic quantitative reaction rate k(r). The syntax is easily encoded in
an abstract syntax tree (AST).

An example AST transformation might be a meta-rule that reverses an arrow
(Yosiphon 2009) and changes the name of the reaction rate to (for example) k(r ′),
for a new reaction number r ′, allowing for the possibility of detailed balance to be
satisfied in a collection of reactions. Many other reaction arrow types (e.g., substrate-
enzyme-product) can then be defined by computable transformation to combinations
of these elementarymass action reactions [e.g., Shapiro et al. (2003), Yang et al. (2005)
and Shapiro et al. (2015) for many examples in a declarative biological modeling con-

123

3390 E. Mjolsness

text], using either commercial (Wolfram Research 2017) or open-source (Joyner et al.
2012) computer algebra system software.

How can we define a compositional semantics for this reaction notation? Fortu-
nately, the operator algebra formalism of quantumfield theory can be adapted tomodel
the case of ordinary (non-quantum) probabilities governed by the law of mass action
in a Master Equation (Doi 1976a, b; Peliti 1985; Mattis and Glasser 1998; Mjolsness
2010) [and Morrison and Kinney (2016) for the equilibrium case]. As in physics, each
operator algebrawe deal withwill be generated by a collection of elementary operators
and their commutation relations, together with their closure under operator addition,
operator multiplication, and scalar multiplication of operators by real numbers. In the
present case, the generators are the identity operator together with, for each molecular
species or other symbol type α in the reaction set, a creation operator âα and an anni-
hilation operator aα the commutation relations are aα âβ = âβaα −2δαβ âαaα + δαβ Iα
as discussed in Supplementary Material Section 7.2.1. Then, the semantics Ψ (M) is
determined by the creation/annihilation operator monomials

Ŵr ≡ ŴLHSr→RHSr ≡ kr

⎧
⎨

⎩

∏

β∈rhs(r)
(âβ)

n(r)
β

⎫
⎬

⎭

⎧
⎨

⎩

∏

α∈lhs(r)
(aα)m

(r)
α

⎫
⎬

⎭
(3)

which specifies the nonnegative flow of probability between states under each reaction
r . The states are given by vectors |n〉 = |[nα]〉 of nonnegative integers nα (distin-
guished from stoichiometry n(r)

β by its lack of a superscript), one for each molecular
species. The full system state is a probability distribution p(|n〉), on which operators
act linearly. Here, kr is conventional notation for a reaction rate; later we will call it ρr
instead. The usual chemical law ofmass action is encoded in the annihilation operators
aα . Annihilation operator subscript α indexes the species present in the multiset on the
left hand side (LHS) of Eq. (2); the corresponding operator is raised to the power of its
multiplicity or ingoing stoichiometrym(r)

α in reaction r , destroying that many particles
of species α if they exist (and contributing zero probability if they don’t). Likewise
creation operator âβ has subscript β indexing the species present in the multiset on
the right hand side (RHS) of Eq. (2), and the operator is raised to the power of its
outgoing stoichiometry n(r)

β which indicates how many particles of species β are to be

created. The “ŴLHSr→RHSr ” notation is also used by Behr et al. (2016). Given Eq. (3),
the actual semantics is then expressed by Ψ (M) = W (M) where W (M) sums over
all reactions r as in Eqs. (4) and (5).

Explicit expressions for the creation and annihilation operators used here, along
with the algebra they satisfy, calculation of probability conservation operator D, and
definition of equivalent models, are provided in SupplementaryMaterial Section 7.2.1.

The model semantics built on Eq. (3) is compositional over processes, hence
structure-preserving, because:

123

Prospects for Declarative Mathematical Modeling of… 3391

(a) The operators for multiple rules indexed by r in a ruleset map to an operator sum:

W =
∑

r

Wr , (rule operators sum up), where (4a)

Wr ≡ Ŵr − Dr , (rules conserve probability) (4b)

Dr ≡ diag(1 · Ŵr) (total probability outflow per state) (4c)

that specifies the combined dynamics under the chemical master equation:

ṗ = W · p. (5)

In Eq. (4), the first statement is ruleset compositionality, the second and third
ensure conservation of probability. Equation (5) is the resulting Chemical Master
Equation (CME) stochastic dynamical system for the evolving state probability
p(n). Also the semantics is compositional because:

(b) The multisets on the left hand side and right hand side of a rule each map to an
operator product in normal form (including powers for repeatedmultiset elements)
in Eq. (3). Each product consists of commuting operators so their order is arbitrary.

The default continuous-time semantics W = Ψ (M) is now be defined by Eq. (3)
(the specific semantic map for each rule of a model M) and Eq. (4), in the context
of Eq. (5). Thus, we have defined a “structure-respecting” mapping Ψ from pure
(multiset-changing) rulesets (each rules weighted by a nonnegative reaction rate) to
operator algebras; Ψ is (at least) a linear mapping of vector spaces.

The integer-valued index r we used to name the reactions is part of a meta-language
for the present theorizing, and not part of the modeling language. One slightly con-
fusing point is that these unordered collections of chemical reactions are expressions
in the language, but they also have a form reminiscent of a grammar for another
language—albeit a language of multisets representing the system state, rather than
of strings or trees, and a language that may be entirely devoid of terminal symbols
(which would represent inert products such as waste). The CME as semantics was sug-
gested by Mjolsness and Yosiphon (2006); Mjolsness (2005) and by Cardelli (2008),
though it can be regarded as implicit in the original Doi–Peliti formalism. There is
also a projection from continuous-time (CME) semantics to discrete-time probabilistic
semantics in the form of a Markov chain (Mjolsness and Yosiphon 2006).

From this operator algebra semantics and the time-ordered product expansion
(TOPE) approach toFeynmanpath integrals (Mjolsness andYosiphon2006;Mjolsness
2005), one can derive valid exact stochastic simulation algorithms including the Gille-
spie stochastic simulation algorithm (SSA) and various generalizations, as detailed in
Mjolsness (2013). Such algorithms can also be accelerated exactly (Mjolsness et al.
2009), and accelerated further by working hierarchically at multiple scales and/or
using parallel computing (Orendorff and Mjolsness 2012). The same theory can be
used to derivemachine learning algorithms for the inference of reaction rate parameters
from sufficient data (Wang et al. 2010) (cf. Golightly and Wilkinson 2011), although

123

3392 E. Mjolsness

sufficient datamay be hard to obtain.One can also develop approximate sampling algo-
rithms by operator splitting, justified, e.g., by the Baker–Campbell–Hausdorff theorem
(BCH), and/or by moment closure methods such as those discussed in Sect. 4.

Symbolic and numerical solutions of some simple stochastic models are discussed
briefly in the Supplementary Material, Section 7.4.1.

Thus, unordered collections of pure chemical reactions provide a simple exam-
ple of a modeling language with a compositional semantics. But for most biological
modeling, we need much more expressive power than this.

2.2 Parameterized Reaction Rules

The first modeling language escalation beyond pure chemical reaction notation is to
particle-like objects or “agents” that bear numerical and/or discrete parameters which
affect their reaction reaction rates. For example, the size of a cell may affect its chances
of undergoing cell division. This kind of multiset rewrite rule can be generalized to
(Mjolsness 2010)

{
τα(p)[xp]|p ∈ Lr

}
∗ −→ {

τβ(q)[yq]|q ∈ Rr
}
∗ with ρr

([
xp
]
,
[
yq
])

. (6)

Here, we have switched frommolecule-like term names Aα to more generic logic-like
term names τα(p). The parameters xp, yq of each term (indexed by positions p, q in
their respective argument lists, and which may themselves be vectors x p) introduce
a new aspect of the language, analogous to the difference between predicate calculus
and first-order logic: each parameter can appear as a constant or as a variable, and the
same variable Xc can be repeated in several components of several parameter lists in
a single rule. Thus, it is impossible in general to say whether two parameters in a rule
are equal or not, and thus whether two terms τα(p)[xp] in a rule are the same or not,
just from looking at the rule—that fact may depend on the values of the variables,
known only at simulation time. The p, q subindex notation is as in Mjolsness (2013).
The reaction rate ρr ([xp], [yq]) now depends on parameters on one or both sides of
the rewrite rule which can be factored [automatically in a declarative environment
(Yosiphon 2009)] into a rate depending on the LHS parameters only and a conditional
distribution of RHS given LHS parameters.

2.2.1 Examples: Cell Division and Dynamic Cytoskeleton

Both multicellular tissue and intracellular cytoskeleton topologies change, discontin-
uously of course, in ways that could be modeled with parameterized reaction rules in
a flexible declarative language. For example, a stem cell of volume V might divide
asymmetrically yielding a stem cell and a transit-amplifying cell in for example mouse
olfactory epithelium (Yosiphon 2009):

stemcell[x, V , . . .] −→ TAcell[x + �x, V /2, . . .], stemcell[x − �x, V /2, . . .]
with ρ̂(V)N (�x; cV 1/d),

(7)

123

Prospects for Declarative Mathematical Modeling of… 3393

where ρ̂(V) is a probability per unit time or “propensity” for cell division depend-
ing on cell volume, and N (�x; cV 1/d) is a Gaussian or normal probability density
function with diagonal covariance proportional to a lengthscale set by cell volume. It
is up to the modeler to impose appropriate invariances in such a model. In this case,
Galilean invariance is ensured by fact that the propensity function depends on position
only through �x, a difference of cell position vectors. Rotational symmetry could be
broken by the prominent apical-basal axis in such a d = 2 model of a pseudostratified
epithelium.

Another stem cell application was to models of plant root growth and pattern for-
mation regulated by the auxin growth hormone (Yosiphon 2009; Mironova et al. 2012;
Mjolsness 2013), implemented in a computer algebra system (Yosiphon 2009; Shapiro
et al. 2013); cf. Julien et. al (2019) in this issue for auxin-based plant shoot patterning.
These examples show that with parameters, reaction-like rewrite rules can represent
(for example) both cellular and molecular processes in the same model, and of course
their interactions, which is a key expressiveness capability for multiscale modeling.
Further discussion of this and other cell division examples is presented in Supplemen-
tary Material Section 7.3.1.

The grammar of Equation (35) happens to have just one object on the LHS of each
rule, so it is “context free” and amenable to analysis. Generally, that is not the case
even for cell division grammars like Equation (34); even less so for biological many-
to-one transitions such as the fusion of mitochondria or of muscle cell, or the merging
of microtubule fibers in cytoskeleton.

A related but more detailed approach to 2D and 3D cell division modeling was
taken in the shoot apicalmeristem (SAM) dynamical patterningmodel of Jönsson et al.
(2006), in which cell positions and radii were again (as in 1D) the dynamical variables,
determined by the mechanics of breakable springs in viscous media, and cell–cell
interface areas were determined by the chordal intersections of corresponding cellular
regions (Fig. 2a). The “Organism” C++ code in which this model was implemented
(Jönsson et al. 2018) is not fully declarative, but is flexible enough to serve as the back
end for a declarative model by translation of input files and to output similar files.1 It
supports bidirectional coupling of regulatory networks such as regulated active auxin
transport and/or gene regulation network models of SAM morphogenetic patterning
[e.g., Jönsson et al. (2005); see also Banwarth-Kuhn et al. (2018) in this issue] to the
biomechanics. A similar mechanical/regulatory model with breakable springs for the
stem cell niche of mouse olfactory receptor neurons was implemented in the Plenum
prototype implementation of the dynamical grammars declarative modeling language
(Yosiphon2009).A similar cell-centeredmodelwas used recently tomodel neural crest
cell group migration, with stronger springs at the rear of each cell group representing
multicellular cytoskeletal structures there (Shellard et al. 2018).

As described in Supplementary Material Section 7.3.2, more detailed quantitative
cell division rules can create growing convex polygonal patterns that appear qualita-
tively similar to those of derived from microscope imagery of SAM tissue as shown
in Fig. 3.

1 A simpler published plant model has been translated from declarative form to Organism input; see http://
computableplant.ics.uci.edu/sw/CambiumOrganism/.

123

http://computableplant.ics.uci.edu/sw/CambiumOrganism/
http://computableplant.ics.uci.edu/sw/CambiumOrganism/

3394 E. Mjolsness

A B

Fig. 2 a Cell–cell spring biomechanical model. Potential energy V for each spring can be something
like, e.g., a Lennard–Jones potential that is repulsive at short range, attractive at intermediate range,
and flat (implies forceless) at long range; another such form is a breakable spring with V (xp, xq) =
(1/2)

∑
q∈Nbrs(p) kpqcpq [(|xp − xq | − l pq |2 − �l pq2], where cpq ∈ {0, 1} is chosen to minimize V

at large separations (cpq = 0 corresponds to a broken spring with continuity of potential energy at the
breaking point). Parameters are spring constant (strength) kpq , resting length l pq , and breaking stretch
distance �l pq . b Cell wall spring biomechanical model. Springs again have nonzero resting lengths, but
cannot break. Cf. more detailed polygonal tessellation models in Wolff et al. (2019). Reproduced from
Shapiro et al. (2013); courtesy Bruce Shapiro

BA

Fig. 3 aTrimmedVoronoi diagram closelymatches cell walls inArabidopsis thaliana shoot apicalmeristem
outer L1 cell layer 2D geometry derived from confocal laser scanning microscopy. Green: cell wall marker.
Yellow: Voronoi diagram edges. Red: nuclear marker. Reproduced from Shapiro et al. (2012); courtesy
Bruce Shapiro and Marcus Heisler. b Growing SAM geometry produced by Cellzilla declarative model,
using optimized cell division rule as described in the text. Reproduced from Shapiro et al. (2013) (Color
figure online)

Dynamic cytoskeleton All of these examples of coarse-scale models of plant cell
division could and probably should be elaborated at amuch finer biophysical scale. But
doing so requires the introduction of models of cytoskeleton in general and micro-
tubule dynamics in particular, a problem of current research interest (Vemu et al.
2018; Chakrabortty et al. 2018). That is because the role microtubules play in deter-
mining the plane of the cortical pre-prophase band, which in turn correlates well with
the subsequent septation and choice of division plane. Here, we simply observe the
composable rule-like behavior of some of the principal processes that cortical micro-

123

Prospects for Declarative Mathematical Modeling of… 3395

tubules undergo: (1) nucleation of new MTs, often in association with old ones; (2)
treadmilling, in which tubulin subunits are added to the ragged growing “+ end” of
a microtubule and removed from the “− end”; (3) probabilistic transitions of + end
state among growth, pause, and catastrophic depolymerization (Shaw et al. 2003); (4)
collision of oneCMT into the side of another in the 2-dimensional cell cortex, resulting
depending on collision angle in (4a) “zippering” or “bundling” into a CMT bundle if
the collision angle is small, or else (4b) an apparently stochastic choice between (4b1)
colliding + end goes into catastrophe state, or (3b2) colliding + end crosses over and
continues past the other CMT, forming a stable junction with it; (5) katanin-induced
severing of a CMT far from either end; and (6) biomechanics of bending. Other pro-
cesses may have to do with anchoring the CMT to the cell membrane and cell wall.
Processes 4a, 4b1 and 4b2 are illustrated in Supplementary Material Section 7.3.3,
Figures 7 and 8. One way to express some of these processes [(1), (2), part of (3), and
(4a)] in a graph grammar will be discussed in Sect. 3.2.

Even for multilevel modeling of a single-scale reaction network, dynamic param-
eters allow for the possibility of aggregate objects that keep track of many individual
particles including their number. Such aggregate objects would have their own rules as
discussed in Yosiphon (2009, Section 6.4), possibly obtained from fine-scale reaction
rules by meta-rule transformation.

A detailed description of the semantics of parameterized rewrite rules as developed
in Mjolsness (2010) is presented in Supplementary Material Section 7.2.2. It is fol-
lowed in Section 7.2.3 by a discussion of the high degree of intrinsic parallelism of
the resulting semantics.

Equations (6) and (28) comprise the syntax and semantics of the basic ruleset portion
of stochastic parameterized grammars (SPG) language of Mjolsness and Yosiphon
(2006) and Yosiphon (2009). A simulation algorithm is derived in Mjolsness (2013).
Equivalence of models can again be defined as “particle equivalence,” Equation (25).
Other features such as submodels, object type polymorphism, and graph grammars
were also included. The idea of a biological modeling language whose models take
the form of grammars goes back to L-systems (discussed below); continuous-time
versions of biomodel grammars to which it would be easy to add differential equation
rules goes back at least to Mjolsness et al. (1991) and Prusinkiewicz et al. (1993); in
the former case there is also in principle an optimization-based semantics for choosing
which collection of discrete-time rules to fire.

Parameterized reaction rule notation is fundamentally more powerful than pure
chemical reactions, because now reaction/process rates ρr ([xp], [yq]) can be functions
of all the parameters involved in a rule, and a rule firing event can change those
parameters. It becomes possible to express sorcerer’s apprenticemodels which purport
to accomplish an infinite amount of computing in a finite simulated time, though
this situation can also be avoided with extra constraints on the rate functions in the
language.

Brief comparisons to other rule- or grammar-like modeling languages, namely
L-systems and the BioNetGen modeling languages, are provided in Supplementary
Material Section 7.2.4. Another relevant graph rewrite rule modeling language is
Kappa (Danos et al. 2007) discussed in Sect. 3.2.

123

3396 E. Mjolsness

We have argued that summation of time-evolution operators corresponds to model
compositionality in terms of processes. To a lesser extent, models are compositional
in their objects as a result, since each object participates in a limited set of pro-
cesses particularly if processes are disaggregated by spatial position as they will be
in Sect. 2.3; thus locality expressed as commutation of spacelike separated operators
helps to license a degree of decomposition by object as well. But process composi-
tionality is primary.

Parameterized rewrite rule models would seem to be non-spatial, but particle move-
ment through space can already be encoded using discrete or continuous parameters
that denote spatial location. Such motion would however have to occur in discrete
steps due to discrete-time rule firing. The solution to that limitation (among others) is
another language escalation.

2.3 Differential Equation Rules

Another form for parameterized rewrite rules licenses locally attached ordinary dif-
ferential equations (ODEs) for continuous parameters, as in Mjolsness et al. (1991),
Prusinkiewicz et al. (1993) and Mjolsness (2013), as part of the language L:

{
τα(p)[xp]|p ∈ Lr = Rr

}
∗ −→ {

τα(p)[xp + dxp]|q ∈ Rr = Lr
}
∗

with
{
dxp = vp([xk])dt

∣∣∣∣p
}
, i.e.,

{
τα(p)[xp]|p ∈ Lr = Rr

}
∗ −→ {

τα(p)[xp]|q ∈ Rr = Lr
}
∗

with
{
dxp, j
dt

= vp, j ([xk])

∣∣∣∣p, j
}
,

(8)

where the second form uses component rather than vector notation for all the ODEs.
The first form is more readily generalizable to stochastic differential equations (SDEs)
{dxp = vp([xk])dt + wp([xk])dBt where dBt is a Brownian motion. The ODE
semantics is given by the corresponding differential operators:

Ŵdrift = −
∫

d {x}
∫

d {y} â([y])a([x])

⎛

⎝
∑

j

∇y j v j ([y])
∏

k

δ(yk − xk)

⎞

⎠ (9)

as shown for example in Mjolsness (2013). The SDE case is discussed in Mjolsness
and Yosiphon (2006, section 5.3).

Equations (6), (8) and (28), (9) comprise the syntax and semantics, respectively,
of the basic ruleset portion of dynamical grammars (DG) language of Mjolsness and
Yosiphon (2006) and Yosiphon (2009), by addition of differential equations to SPGs.
A simulation algorithm is derived from the time-ordered product expansion in Mjol-
sness (2013). The generalization to operator algebra semantics for partial differential
equations (PDEs) and stochastic partial differential equations (SPDEs), as a limit of
spatially discretized ODE and SDE systems, is outlined in Mjolsness (2010). These

123

Prospects for Declarative Mathematical Modeling of… 3397

differential equation bearing rules can be used to describe processes of growth and
movement of individual particle-like objects, as in “agent-based” modeling. Further
comments on differential equation rules are made in Supplementary Material 7.2.5.
Further comments on the reduction relations between alternative semantic maps are
made in Supplementary Material 7.2.6.

Complex biological objects often have substructure whose dynamics is not eas-
ily captured by a fixed list of parameters and a rate function or differential equation
that depends on those parameters. Extended objects such as molecular complexes,
cytoskeletal networks, membranes, and tissues comprising many cells linked by extra-
cellular matrix are all cases in point. There can and sometimes should be several levels
of substructure in a single biological model. We now wish to extend the syntax and
semantics of the foregoing class of declarative languages to handle extended objects
systematically, by creating a compositional language and semantics for biological
objects as well as processes, and then extending the semantics for processes accord-
ingly. In the case of discrete substructure, this can be donewith labeled graph structures
(discussed in Sect. 3.1). In some cases, the sub-objects (such as lipid molecules in a
membrane, or long polymers in cytoskeleton) are so numerous that an approximate
spatial continuum object model is justified and simpler than a large spatially discrete
model. Spatial continuummodels with geometric objects can be built out of manifolds
and their embeddings, along with biophysical fields represented as functions defined
on these geometries, in various ways we discuss in Sect. 3.

3 Extended Objects

Can we declaratively model non-pointlike, extended biological objects such as poly-
mer networks, membranes, or entire tissues in biological development? To achieve
constructive generality in treating such extended objects we introduce, in Sect. 3.1,
ideas basedondiscrete graphs and their possible continuum limits. These ideas include:
graded graphs, abstract cell complexes, stratified graphs, and combinations of these
ideas. Dynamics by rewrite rules, beginning with graph rewrite rules, are developed
in Sect. 3.2. In Supplementary Material Section 7.4.2, we discuss the more general
nonconstructive types of extended objects that we may wish to approximate construc-
tively; here, we turn to constructive types of extended objects.

3.1 Constructive Extended Objects via Graphs

Discrete graphs, especially when augmented with labels, are mathematical objects
that can represent computable objects and expressions at a high level of abstraction. In
SupplementaryMaterial Section 7.2.7, we give standard definitions of graphs (directed
and undirected) and graph homomorphisms, and thence (vertex-)labeled graphs, bipar-
tite graphs, cliques, trees, directed acyclic graphs (DAGs), and their use in abstract
syntax trees; also the standard functors from undirected to directed graphs and from
edge-labeled to vertex-labeled graphs; also binary graph operators including graph
sum, cross product, box product, strong product, and graph function.

123

3398 E. Mjolsness

A special case of a labeled graph is a numbered graph with integer labels λ′
i = i ,

|Λ′| � |V |, and the labeled graph homomorphism to K+
Λ′ is one-to-one (but not nec-

essarily onto), so each vertex receives a unique number in Λ′ = {1 . . . k � |V |}.
Then, one way to express a labeled graph G →Graph K+

Λ is as the composition
G →Graph K+

Λ′ →Graph K+
Λ of a graph numbering G →Graph K+

Λ′ followed by a
relabeling determined by a mapping of sets Λ′ →Set Λ ∪̇ {∅}, with ∅ the value
taken on unused number labels i . The possibility of unused numbers (|Λ′| � |V |)
will be needed when consistently labeling two different graphs. We consider graph
homomorphisms to five particular integer-labeled graphs defined carefully in Supple-
mentaryMaterial Section 7.2.8:N+, the nonnegative integers with successor links, for
level number labels; J+

D , the integers {0, . . . D} with direct and indirect predecessor

links, for dimension labels;N+op
D , the integers {0, . . . D}with direct predecessor links;

CD ≡ N
+�J+

D ; and C̃D ≡ N
+�N

+op
D . Then, we can define the following:

A graded graph is a homomorphism from a graph G to N
+. It labels vertices by

a level number. Additional assumptions may allow an undirected graded graph to
“approach” a continuum topology such as a manifold or other metric space, in the
limit of large level number. The metric can be derived via a limit of a diffusion process
on graphs. For example, D-dimensional rectangular meshes approach R

D this way
(e.g., Mjolsness and Cunha 2012).

A stratified graph of dimension D is a homomorphism from a graph G to J+
D . It

labels vertices by a “dimension” of the stratum of the stratum they are in. The reason
for reversing the edges in the directed graph case, compared to the graded graph
definition, is that the level-changing edges then correspond to standard boundary
relationships from higher to lower dimensional strata. In the undirected graph case,
such a homomorphism is equivalent to a graphwhose vertices are labeled by dimension
number, since it imposes no constraints on edges.

Abstract cell complex a special case of a stratified graph of dimension D is a graph
homomorphism from G to N

+op
D , the directed graph of integers {0, . . . D} with self-

connections and immediate predecessor connections i → i − 1 within the set. Since
N

+op
D maps to J+

D by graph homomorphism, this is (equivalent to) a special case of
stratified graphs.

A graded stratified graph of dimension D is a graph homomorphism from G to
CD = N

+�J+
D . Two nodes in CD are connected, permitting corresponding edge

connections in G, iff either their level numbers are equal (and, in the directed case,
the source node dimension is � the target node dimension), or if their level numbers
differ by one and their dimensions are equal. Because G projects to both N

+ and J+
D ,

a graded stratified graph maps straightforwardly (by functors) to both a graded graph
and to a stratified graph. However, it enforces an additional consistency constraint on
level number and dimension: they cannot both change along one edge (and, in the
directed case, the source node dimension must be � the target node dimension).

A graded abstract cell complex of dimension D is likewise a graph homomorphism
from G to C̃D = N

+�N
+op
D .

Our aim with these definitions is to discretely and computably model continuum
stratified spaces (including cell complexes) in the limit of sufficiently large level num-
bers. Stratified spaces are topological spaces decomposable into manifolds in more

123

Prospects for Declarative Mathematical Modeling of… 3399

general ways than CW cell complexes are. In addition, we would like each manifold
to be a differentiable manifold with a metric related to a Laplacian, since that will be
the case in modeling spatially extended biological or physical objects.

Thus,we arrive at the constructive slice categories S(H) : G → H withmorphisms
h : G → H that makes a commutative diagram ϕG = h ◦ ϕG ′ :

G
h � G ′

(Diagram 1)

H
�

ϕ G
′ϕ

G

�

where H = N
+, J+

D , N
+op
D , CD, or C̃D . Here, it is essential that each

possible target graph H includes all self-connections. In particular, a homomorphism
of graded graphs is a graph homomorphism with H = N

+, so graded graphs together
with level-preserving graph homomorphisms form a slice category.

For a discrete approximation to a stratified space by a stratified graph, we can
identify the “graph strata,” and their interconnections by boundary relationships, as
connected components of constant dimension. So, by eliminating links between nodes
of different dimension, and then finding the connected components that remain, we
identify the strata in a stratified graph (or in a stratified labeled graph). In this com-
mutative diagram:

G
h � GS

(Diagram 2)

J+
D

�
χG

S
χ
G

�

each inverse image (χ−1
GS

)(d) must be a fully disconnected graph, with each ver-

tex then corresponding (by h−1) to a d-dimensional stratum (maximal connected
d-dimensional component) in G. The directed graph associated to GS (directed by
dimension number in the case of undirected graphs) is a DAG, due to disconnection
within each dimension. The graph homomorphism h becomes a homomorphism of
stratified graphs.

Observation 1 The resultingGS inDiagram2 is the graphof strata, aminimal structure
for modeling complex geometries. It is therefore a natural graph on which to specify
rewriting rules formajor structure-changing processes such as biological cell division,
mitochondrial fission/fusion, neurite or cytoskeletal branching, and other essential
processes of biological development.

The geometry of cytoskeleton, in particular, is better captured by stratified graphs
and stratified spaces than by cell complexes, because 1D and 0D cytoskeleton is often
embedded directly into 3D cytosol rather than into 2D membrane structures (this

123

3400 E. Mjolsness

violates the CW complex assumption that cells are d-dimensional balls, whose bound-
aries map continuously into finite unions of lower dimensional balls, both because
dimension 2 is skipped between 3 and 1, and because 3D cytosol is not generally
homeomorphic to a ball if it can be punctured by a 1D + 0D cytoskeleton with 1D
loops and/or multiple anchor points in the biological cell’s surface).

In many developmental biology systems, the spatial dynamics involves nontrivial
changes in geometry and/or topology of extended biological objects. By using rewrite
rules for the graph of strata, togetherODE-bearing rules for the parametric embeddings
of individual strata into 3D space, we now have in principle a way to represent such
dynamics mathematically and computationally.

Observation 2 In a graded stratified graph (and therefore also in a graded abstract
cell complex), a useful special case occurs if GS restricted by level number stabi-
lizes beyond a constant number of levels, so the description in terms of strata has a
continuum limit G∗

S . In that case, the limiting GS is also the natural locus for verifi-
cation of compatible boundary conditions between PDEs of different dimensionality
governing the evolution of biophysical fields defined on continuum-limit strata. Here,
“compatibility” includes local conservation laws.

The edges remaining in GS , connecting strata of unequal dimensionality, model in-
contact relations such as “boundary” and/or “inside”. Further constraints are needed
to disentangle these alternatives. Similar ideas to G∗

S may be involved in the “persis-
tent homology” approach to unsupervised learning of data structure (Bendich et al.
2007). A further discussion of the relation between stratified graphs abstract cell com-
plexes as defined here, and abstract cell complexes as defined elsewhere is given in
Supplementary Material Section 7.2.8.

Given an extended object G constructed as outlined here, it is generally also nec-
essary to define some dynamics that run “in” or “on” such an object: diffusing or
otherwise moving particles with position x ∈ G described by a spatial probability dis-
tribution p(x, t), or other dynamical fields f (x) at a given moment of time t . Several
approaches to this issue are outlined in Supplementary Material Section 7.4.3.

3.1.1 Relation to PDEs

If some of the strata inGS are host to partial differential equations (respecting possibly
dynamical boundary conditions at adjacent lower and higher dimensional strata) then
GS will be too minimal for solution algorithms like finite elements or finite volumes,
and those strata may have to be meshed. In that case, the strata of GS may need to
be subdivided sufficiently finely into patches that can each host a local coordinate
system, compatible with its neighboring patches of different dimension and (under
one possible strategy) separated by extra artificial boundary strata patches from its
neighbors of the same dimension. More detailed approaches to this issue are outlined
in Supplementary Material Section 7.4.3.

By these various means, one would like to generalize from ODE-bearing rules
to PDE-bearing rules which would be of two basic types: (1) PDEs for the evolu-
tion of biophysical fields such as diffusion within a manifold (possibly including a
hyperbolic term for finite speed causal information propagation, as in the hyperbolic

123

Prospects for Declarative Mathematical Modeling of… 3401

Telegrapher’s Equation derivable for stochastic diffusion (Kac 1974) which has as a
limit the parabolic heat equation), and (2) PDEs for the evolution of the embeddings
of strata into higher strata, such as cytoskeleton mechanics (1D into 2D or 3D) or the
biomechanics of 2Dmembranes embedded into ordinary three dimensional Euclidean
space. This could be accomplished by way of level sets and local stress fields, for
example.

Such dynamic biophysical fields can also influence the (discontinuous and usually
much slower) topology-changing dynamics by which the number and connectivity of
a model’s geometric strata change—such as in plant or animal cell division. We study
such dynamic graph structure next.

3.2 Dynamics of Graphs

There are at least two ways to mathematically define the semantics of graph rewrite
rules for use in biologicalmodeling of extended objects. The operator algebra approach
pursued in this paper, extending the form of rewrite rule semantics given in Sect. 2, has
been used as the theory behind some molecular complex modeling and tissue-level
developmental modeling methods (Johnson et al. 2015; Mjolsness 2013). It takes
advantage of the algebra of operators to blend with continuous-time process models
by scalar multiplication of rates and operator addition of parallel processes, thereby
also gaining compatibility with quantitative methods of statistical mechanics and field
theory in physics, and with machine learning by continuous optimization. The essen-
tial step is to express natural graph-changing operations, including a collection of
graph rewrite rules, in terms of an operator algebra generated by the operators for
the individual rules. A second approach, the graph homomorphism pushout diagram
approach championed in Ehrig et al. (2006), has been used in molecular complex
modeling (Danos et al. 2012) by providing a mathematical semantics for the “Kappa”
modeling language (Danos et al. 2007). It takes advantage of the category theory for-
mulation of graphs, discussed above. We will first develop operator algebra semantics
for graph grammars in continuous time in detail. Then, we will briefly compare it with
the pushout semantics approach which leverages category theory in a way similar to
our discussion above.

3.2.1 Graph Rewrite Rule Operators

Bygenerating unique (e.g., integer-valued) “ObjectID” parameters for each newobject
created in a parameterized grammar rule, it is possible to implement graph grammar
rules by parameterized grammar rules (Sect. 2.2) alone, just using repeated ObjectID
values to represent graph links. Since parameterized grammar rules are mapped by
semantic map Ψ (M) to an operator algebra, the composition of two maps I ◦ Ψ

defines an operator algebra semantics for graph grammars. This route was detailed in
Mjolsness (2005) andMjolsness and Yosiphon (2006), and implemented declaratively
in Yosiphon (2009). But it is also possible (Mjolsness 2010) to define graph grammar
rewrite rule semantics directly as a continuous-time dynamical system, using operator
algebra as in the previous semantics definitions of Sect. 2.

123

3402 E. Mjolsness

Suppose we have two labeled graphs G1 : Gpure
1 →Graph K+

Λ1
and G2 :

Gpure
2 →Graph K+

Λ2
. We decompose them each into a numbered graph Gnum

i :
Gpure

i →Graph K+
{1,...ki�|Vi |} and a relabeling K

+
{1,...ki�|Vi |} →Graph K+

Λi
determined by

amapping of sets {1, . . . ki } →Set Λi , determined in turn by an ordered listing of labels
λi , possibly augmented by the nullset symbol ∅. The whole decomposition can be
denoted Gnum

i 〈〈λi 〉〉. We are interested in graph rewrite rules Gnum〈〈λ〉〉 → G ′ num〈〈λ′〉〉
that respect a single consistent numbering of vertices of the two numbered graphs
before their relabelings. In that case, vertices in G1 and G2 that share a vertex number
are regarded as “the same” vertex v, before and after rewriting (similar to the shared
graph “K ” in the double pushout approach discussed in Supplementary Material Sec-
tion 7.2.10), so that any graph edges contacting v and not mentioned in the rewrite
rule are preserved.

3.2.1.1 Graph Rewrite Rule Examples Here (Eq. 10) is an example pertaining to
refinement of triangular meshes in 2D. This is one of four rewrite rules that suffice
to implement a standard triangular mesh refinement scheme [similar examples were
studied in Maignan et al. (2015)]. Three of those rules including this one deal with
partially refined triangle edges, an intermediate state produced by the previous refine-
ment of nearby triangles. It can also be interpreted as an (unlabeled) graded graph
rewrite rule since it preserves the graded graph constraints on level numbers l, if they
are satisfied initially (the other rewrite rules are similar but deal with the cases of zero,
two, or three partially refined triangle sides). The labeled graph rewrite rule is:

⎛

⎝
1

4

2 3

⎞

⎠ 〈〈l1, l2, l3, l4〉〉

−→
⎛

⎝
1

4 6

2 5 3

⎞

⎠ 〈〈l1, l2,l3, l4,max(l1, l2, l3, l4),

max(l1, l2, l3, l4)〉〉

(10)

Note that in this example, there is a shared numbering of nodes of the two graphs, and
node numbers 1–4 occur in both graphs. This is equivalent to identifying the shared
subgraph K in the double pushout semantics of Diagram 4 in Supplementary Material
Section 7.2.10. Any extra edges that contact nodes 1–4 in a subgraph of the pool graph,
e.g., parts of other nearby triangles, will remain after this rule fires. The other required
rules are discussed in SupplementaryMaterial Section 7.3.4, alongwith several variant
grammars that would refine an initial triangular mesh in different ways.

In addition to the forgoing geometric example, we consider briefly how one might
express some of the dynamics of visible plant cortical microtubule bundles previ-
ously described, in particular growth at a growing end (whether + or − ends of
individual MTs in the bundle); retraction at a retracting end, and bundling follow-
ing front-to-side collision, in terms of graph grammar rules. Let a microtubule be
an extended object represented as a chain of super-particles (each much larger than
a tubulin dimer, representing a roughly straight cylindrical segment of one MT of
length approximately on a lengthscale L that is several times an MT diameter, or of

123

Prospects for Declarative Mathematical Modeling of… 3403

a parallel and/or antiparallel bundle of a few such cylindrical segments). Continuous
parameters of such a fiber segment super-particle will include its center-of-mass posi-
tion, and a unit vector pointing toward the growing end and away from the retracting
end of an end segment (interior segments will have lengthwise unit vectors too, but
their sign shouldn’t matter). Discrete parameters will include a four-valued categorical
label s ∈ {internal, grow _end, retract _end, junct} (or s ∈ {�,�,�,�} in diagrams)
for status as interior segment, growth-capable end segment, retraction-capable end, or
junction segment, respectively.

A diagrammatic presentation of an MT graph grammar, with subscripts for the
rule-local arbitrary but consistent numbering of vertices in left- and right-hand-side
graphs of each rule, is here:

(�1) 〈〈(x1, u1)〉〉 −→ (�1 � �2) 〈〈(x1, u1), (x2, u2)〉〉
with ρ̂grow([tubulin])N (x1 − x2; Lu1, σ)N (u2; u1/(|u1| + ε), ε),

(�1 � �2) 〈〈(x1, u1), (x2, u2)〉〉 −→ (�2) 〈〈(x2, u2)〉〉
with ρ̂retract

(�1 � �2 � �3

�4

)
〈〈(x1, u1), (x2, u2), (x3, u3), (x4, u4)〉〉

−→
(�1 � �2 � �3

�4
�

)
〈〈(x1, u1), (x2, u2), (x3, u3), (x4, u4)〉〉

with ρ̂bundle(|u2 · u4|/| cos θcrit|) exp(−|x2 − x4|2/2L2)

(�1 � �2) 〈〈(x1, u1), (x2, u2)〉〉 ←→ ∅ with
(
ρ̂retract,

ρ̂nucleate([tubulin])N (x; 0, σbroad)δDirac(|u1| − 1)δDirac(u1 − u2)
)

(�1) 〈〈(x1, u1)〉〉 ←→ (�1) 〈〈(x1, u1)〉〉
with (ρ̂retract←growth, ρ̂growth←retract)

(11)

A corresponding textual presentation of this MT dynamic graph grammar (DGG)
is given in Supplementary Material Section 7.3.3.

3.2.1.2 Graph Rewrite Rule Theory In general now, suppose G and G ′ are numbered
graphs sharing a common numbering of their vertices, with index-ordered adjacency
matrices [gpq |p, q] and [g′

p′q ′ |p′, q ′] whose elements take values in {0, 1}. Then, an
unambiguous graph rewrite rule can be expressed as:

G〈〈λ〉〉 → G ′〈〈λ′〉〉. (12)

where the double angle brackets denote label substitutions: σ(1) → λ1, σ (2) →
λ2, . . . and σ ′(1) → λ′

1, σ
′(2) → λ′

2, . . . where σ : N → N and σ ′ : N → N

are strictly monotonically increasing mappings of initial segments of integers into the
shared index space.

123

3404 E. Mjolsness

Given the foregoing graph rewrite rule syntax for graphs G and G ′ with adjacency
matrices g and g′, we now define an operator algebra semantics sufficient to bring all
such graph rewrite rules into the general operator algebra/master equation formalismof
previous sections. This is necessary to incorporate all the capabilities of the previously
discussed languages by summing up time-evolution operators of the corresponding
old and new kinds.

We give graph grammar rule operator semantics for the case of directed graphs in
terms of binary state vectors for node and edge existence; in this case creation and
annihilation operators all have dimension 2× 2. As before, the notation is that indices
may have primes or subscripts and are usually deployed as follows: r indexes rewrite
rules, i and j index individual domain objects (now nodes or vertices in a graph), α
and β are generic indices or multiple indices, and p and q index elements in either
side of a rule. Assuming there is at least one label that can be used to indicate node
allocation from available memory, and provided the global state is initialized to have
zero probability of active edges for unused nodes, then the off-diagonal portion of the
operator algebra semantics is slightly modified from Mjolsness (2010):

Ŵr ∝ ρr (λ,λ′)
∑

〈i1,...ik 〉�=

[∏

p∈lhs(r)\ rhs(r)

(∏

i

Ei p i Ei i p

)]

×
[∏

p′,q ′∈rhs(r)

(
âi p′ iq′

)g′
p′ q′

][∏

p′∈rhs(r)
âi p′λ′

p′

]

×
[∏

p,q∈lhs(r)

(
aipiq

)gp q

][∏

p∈lhs(r)
aipλp

]
.

(13)

The sum over indices
∑

〈i1,...ik 〉�= means that none of the indices are allowed to be
equal to any of the others, in the sum. As in Equation (28) there could also be an
integration over all the possible values of some rule variables, in this case a subset of
the incoming and outgoing labels λ and λ′.

Ŵr =
∫

dXŴr (λ(X),λ′(X)) (14)

where Ŵr (λ,λ′) is given by Eq. (13). However, we will not have occasion to use this
extra flexibility. Additional technical discussion of the label encoding from which λ

is drawn appears in Supplementary Material Section 7.2.9.
The main four factors in lines 2 and 3 of Eq. (13) are as inMjolsness (2010) and act

in an analogous way to the previous rule semantics definitions: first (reading operator
products right-to-left) all the vertex labels, hence all the vertices, of the incoming
(LHS) graph are annihilated in an arbitrary order, “then” (instantaneously) all the
edges of the incoming graph are annihilated in an arbitrary order, then all the vertices
and vertex labels of the outgoing (RHS) graph are created, and then all the edges of
the incoming graph are created. However, these ordered operations all happen with

123

Prospects for Declarative Mathematical Modeling of… 3405

zero time delay in the model, and with the same binding of the indices i∗. We note
that the RHS vertex indices i p′ get assigned uniquely since (âi)2 = 0.

In addition to the main four factors, in line 1 provision is made for allocation
and deallocation of integer-valued graph vertex indices i from a single central index

list. The erasure operators
(∏

i Ei p i Ei i p

)
serve to maintain the invariance of the

statements that (a) every vertex has either 0 or 1 labels present (1 defining an “active”
vertex), and (b) edges that are present must connect two active vertices. Additional
technical discussion of these points appears in Supplementary Material Section 7.2.9.

Equations (12) and (13), elaborated here from Mjolsness (2010) which omitted
E factors, provide the built-in syntax and semantics for the basic ruleset portion of a
proposed dynamical graph grammar (DGG)generalization of stochastic parameterized
grammars (6) and (28) or dynamical grammars (6), (8) and (28),(9), all as outlined in
Mjolsness 2005; Mjolsness 2010 and Mjolsness and Yosiphon (2006). The latter two
references also map graph grammars to operator algebras by way of unique ObjectID
node labels—similar to indices i p in that all that matters about them for the graph
grammar is not their numerical values, but just whether two such numbers are equal
or not.

Additional discussion of model equivalence under this semantics, together with
comparison and contrast with related work on graph grammar rule semantics, appears
in Supplementary Material Section 7.2.9.

3.2.2 Product of Graph Grammar Rules

We approach the multiplication of grammar rule operators in two steps. First, we
consider the simpler form omitting cleanup post-factors:

Ŵr ∝ ρr (λ,λ′)
∑

〈i1,...ik 〉�=

[∏

p′,q ′∈rhs(r)

(
âi p′ iq′

)g′
p′ q′

][∏

p′∈rhs(r)
(âi p′λ′

p′)
h′
p′
]

×
[∏

p,q∈lhs(r)

(
aipiq

)gp q

][∏

p∈lhs(r)
(aipλp)

h p

]
.

(15)

where hip ∈ {0, 1} is an indicator function for inclusion of vertex i p independent of
its edges. Again, the sum over indices

∑
〈i1,...ik 〉�= means that none of the indices are

allowed to be equal to any of the others, in the sum. This form can leave and/or delete
undeleted hanging edges, owing to the lack of erasure post-factor. If all hip = 1 this
is the form used in Mjolsness (2010). The advantages of this form are that it is (a)
subpermutation-invariant with respect to indexing, like Eq. (13), and (b) already in
normal form (monomial in â∗ timesmonomial in a∗), and therefore, the product of two
such expressions takes the same general form, by repeatedly using the basic commu-
tation relations of Sect. 2.1 or Supplementary Material Section 7.2.1, Equation (23d):

Proposition 1 Theproduct of twooperators taking the formofEq. (15) canbe rewritten
as an signed-integer-weighted sum of expressions taking the same form. The product
and the sum are equal, and graph-equivalent, and each is subpermutation-invariant
with respect to indexing.

123

3406 E. Mjolsness

The proof is given in Supplementary Material Section 7.4.4.
Alternatively as in the graph rule semantics of Eq. (13), we may wish to eliminate

hanging edges as part of the mechanics of the grammar operator algebra. So we
consider the more general form:

Ŵr ∝ ρr (λ,λ′)
∑

〈i1,...ik 〉�=

[(∏

p∈Br

∏

i �=iq |∀q∈B̄rp
Ei p i

)(∏

p∈Cr

∏

i �=iq |∀q∈C̄rp

Ei i p

)]

×
[∏

p′,q ′∈rhs(r)

(
âi p′ iq′

)g′
p′ q′

][∏

p′∈rhs(r)
(âi p′λ′

p′)
h p′

]

×
[∏

p,q∈lhs(r)

(
aipiq

)gp q

][∏

p∈lhs(r)
(aipλp)

h p

]
.

(16)

where sets Br , Cr , B̄r , and C̄r are finite (assuming lhs(r) and rhs(r) are both finite);
this form encompasses Eq. (13) in which case Br = Cr = lhs(r)\rhs(r) and B̄rp =
C̄rp = ∅ for all p. Owing to the sum over indices {i1, . . . ik} is again subpermutation-
invariant.

Proposition 2 Theproduct of twooperators taking the formofEq. (16) canbe rewritten
as an signed-integer-weighted sum of expressions taking the same form. The product
and the sum are equal, and graph-equivalent, and each is subpermutation-invariant
with respect to indexing.

Note: Less formally, the product of two graph rewrite rule operators is an integer-
weighted sum of other graph rewrite rule operators in a slightly expanded operator
algebra. This proposition establishes an operator algebra of natural graph-rewriting
operations, including all operations in anygiven collection of graph rewrite rules, as the
operator algebra generated by the probability inflow operators Ŵr for the individual
rules. The probability outflow operators Dr are also encompassed, by a variant of
Equation (24) shown in Corollary 2.

The proof is given in Supplementary Material Section 7.4.4. As in Proposition 1,
it uses commutation relations to convert expressions to normal form.

Corollary 1 The commutator [Ŵr1, Ŵr2] of two operators under the semantics of
Proposition 2 [taking the form of Eq. (16)] can also be rewritten as an integer-
weighted sum of expressions taking the same form. The product and the sum are
equal, and graph-equivalent, and each is subpermutation-invariant with respect to
indexing. Likewise, the commutator [Ŵr1 , Ŵr2] of two operators under the semantics
of Proposition 1 [taking the form of Eq. (13)] can also be rewritten as an integer-
weighted sum of expressions taking the same form (13). Compared to the product
Ŵr1 Ŵr2 , however, many summands may cancel in a commutator.

Corollary 2 The product and the commutator of two full graph rewrite rule operators
Wr1 ,Wr2 (including their negative diagonal terms−D̂r1 ,−D̂r2) under the semantics of
Proposition 2 [taking the formofEq. (16)] can also be rewritten as an integer-weighted

123

Prospects for Declarative Mathematical Modeling of… 3407

sum of expressions taking the same form. Likewise the product and the commutator of
two full graph rewrite rule operators Wr1 ,Wr2 under the semantics of Proposition 1
[taking the form of Eq. (13)] can also be rewritten as an integer-weighted sum of
expressions taking the same form. In either case, the product (or commutator) and
the sum are equal, and graph-equivalent, and each is subpermutation-invariant with
respect to indexing.

Proof The diagonal terms Dr are equal to Ŵr ′ for a new rule r ′, not included in the
model, in which the LHS of r is both the LHS and the RHS of r ′. The reason is that
the LHS \ RHS post-factor and any RHS \ LHS prefactor of Ŵr ′ are both empty, so
Equation (32) for Dr also equals Ŵr ′ from Eq. (13). Thus, Dr = ŴLHSr→LHSr , as in
Equation (24) for particle semantics, but now for graphs. Proposition 2 then applies
to Ŵr and Dr alike, for all rules r in the model. ��
Observation 3 In this sense (Propositions 1 and 2 and Corollaries 1 and 2), there
is a higher-level algebra, generated by any collection of graph rewrite rule operators,
together with the identity operator I = N (∅) = Ŵ∅→∅ that can be “implemented” by
(mapped compositionally by operator algebra homomorphism to) a sufficiently large
indexed collection of binary state variables with their own lower-level state-changing
operator algebra.

Observation 4 Semantics alternatives. An alternative semantics to Eq. (13) could
include factors of

∏
LHS(Zipiq)

ḡpq where ḡ is a 0/1-valued matrix representing a sec-
ond type of graph edge that identifies prohibited connections on the LHS, and likewise
∏

RHS(Zi ′pi ′q)
ḡ′
p′q′ for the RHS. The normal form could put these new Z product factors

just to the right of (acting just before) the corresponding factors for g and g′ in Eq. (13).
If corresponding entries of g and ḡ both take the value 1, that inconsistency has no
effect since their product has a factor aZ = a(I−âa) = a−(aâ)a = a−(I−âa)a =
a − a + âa2 = 0.

Instead of the creation and annihilation operators for Boolean edge variables,
we could use creation and annihilation operators for N-valued numbers of identi-
cal particles in definition (13) of Ŵr . But (1) the handling of memory allocation and
deallocation by E factors might have to be revised, and (2) graph grammar rules could
have unintended semantics in terms of multigraphs: graphs with nonnegative integer
edge weights. On the other hand, multigraphs and multigraph grammar rules can also
be useful, if that is the intended semantics.

3.2.3 Slice Rewrite Rule Operators

The slice categories of Diagram 1, with H = N
+, J+

D , N
+op
D , CD, or C̃D for

graded graph, stratified graph, abstract cell complex, graded stratified graph, and
graded abstract cell complex, respectively, are all variants of the category of labeled
graphs ϕ : G → H whose labels κ are nodes of H , with extra constraints added on the
integer-valued labels. We can encode these constraints in each case with a predicate
PH (ϕ), and enforce them with a real-valued “gating” indicator function Θ(PH (ϕ))

which takes the value 1 if the predicate is satisfied and zero otherwise. If an ordering on

123

3408 E. Mjolsness

the nodes of G is established, as we have assumed, then these objects become PH (κ)

and an indicator function Θ(PH (κ)). In the foregoing graph rewrite rule semantics,
such an ordering is established by the arbitrary indexing scheme of p and q. Sowemay
generalize the graph rewrite rule to cover these slice categories as well by mapping
ρslice r (κ, κ ′) to a corresponding ρgraph r ((κ,λ), (κ ′,λ′)):

ρgraph r ((κ,λ), (κ ′,λ′)) = Θ(PH (κ)) × Θ(PH (κ ′)) × ρslice H , r (λ,λ′). (17)

The first indicator function in Eq. (17) could be omitted if the initial condition gives
nonzero probability only to valid H -slice graphs and all rules in the grammar are valid
H -rewrite rules, maintaining the validity conditions PH using the second indicator
function in Eq. (17). The remaining operator products in Eq. (13) can remain the same,
yielding the operator algebra semantics of these (and potentially other) slice category
rewrite rules, complete with provision for extra domain-model specific labels λ.

In this way, we could implement special graph grammar syntax for slice graph
rewrite rules, and thereby achieve summable operator algebra semantics for modeling
languageswith rewrite rules at the level of graded graphs, stratified graphs, abstract cell
complexes, graded stratified graphs, and/or graded abstract cell complexes that could
implement selected continuum limits such as mesh-approximable stratified spaces and
CW complexes (as suggested in Diagram 3).

For example in the case of undirected graded graphs, we could let directed edges
represent �l = +1 edges and undirected edges represent �l = 0. The triangle 2D
mesh refinement example would then become:

⎛

⎝
1

4

�

2
�

3

⎞

⎠ −→
⎛

⎝
1

4
�

6
�

2 �
�

5 � 3
�

⎞

⎠ (18)

Directed graded graphs could be represented too, with just one bit of edge label
information to record whether there is a change of level number along a directed edge
or not. In both cases, the integer-valued level number edge labels are removed, to
be restored automatically by an implementation map I from slice graph grammar
rule syntax to ordinary graph grammar rule syntax [this implementation map could
even be expressed in the form of a declarative model transformation meta-grammar
rule, mapping rules like (18) to a slight variant of rules like (10) with an AST for the
labels]. Similarly, for stratified graphs one could label edges with �d and allow the
interpretation process to restore d. For abstract cell complexes, one instead needs only
to record one extra bit of edge information regarding d: �d ∈ {0,−1}. As in the case
of rule (10), with these extra edge labels rule (18) could be made more elaborate by
retaining all relevant strata and their connections at smaller level numbers rather than
just the graded graph “frontier” comprising the deepest substrata in each stratum.

Observation 5 In all the foregoing slice graph category cases, the implementation
mapping on rewrite rules shouldmatch the implementationmapping on their semantics
as proposed above, so that slice implementation at the model level commutes with
semantics:

123

Prospects for Declarative Mathematical Modeling of… 3409

Slice Rules
Ψ � Gated Op. Alg.

(Diagram 3)

GraphGram Rules

Im
�

Ψ � Operator Algebra

Im
�

where, again, the slice rewrite rules can pertain to graded graphs, stratified graphs,
abstract cell complexes, graded stratified graphs, or graded abstract cell complexes;
the latter two could be used to support continuum limits such as mesh-approximable
stratified spaces and CW complexes.

A systematic alternative to operator algebra semantics for graph rewrite rules is
provided by the “double pushout” category-theoretic construction (Ehrig et al. 2006),
using the category of graphs and graph transformations, discussed in Supplementary
Material Section 7.2.10.

3.2.4 Efficient Implementations

We just saw that slice graph grammar rules can be implemented (efficiently) in terms
of ordinary labeled graph grammar rules.

The efficient implementation of graph grammars rules themselves can also be con-
sidered. We have mentioned that they can be and have been implemented in terms of
parameterized grammars with parameters devoted to recording integer-valued Objec-
tIDs. That implies that worst-case performance for parameterized grammars can be
as bad as finding small unlabeled subgraphs in large unlabeled graphs, though finding
subgraphs in practice is a lot easier than finding them in worst case, and labels help
substantially. So one option is just to deploy algorithms that match small symbolic
expressions, or use computer algebra systems that have done the same. But another
option is available specifically for declarative modeling: to find the rules with the most
commonly occurring rule firings in a model, and to use meta-grammars or a meta-
language (discussed in Sect. 2) to transform those rules into submodels comprising
rules taking only special forms that can be compiled into special-case efficient simu-
lation code. Examples of special-form rules amenable to special-case simulation code
include parameterless rules, terms with parameter sets that take only a few values,
rules that consist only of differential equations, context-free grammar rules such as
in Equation (35), 1D chain preserving rules such as Equation (34), and many other
possibilities. Then, use strategies like operator splitting to simulate quickly most of
the time, slowing down only for occasional higher-cost operations like cell division
in a tissue model or bundling/zippering in a microtubule network model.

3.3 Meta-Hierarchy Via Graphs

If we seek models in discrete mathematics for the idea of a “hierarchy” such as a
hierarchy of biological systems and subsystems, or a hierarchy of modeling methods,

123

3410 E. Mjolsness

the simplest possibility is a tree: a directed graph whose undirected counterpart has
no cycles. This graph could be labeled with the names of the subsystems, methods, or
other concepts in the hierarchy. Such a restrictive definition could be appropriate for
a compositional hierarchy, or for a strict classification aimed at reconstructing clades,
but not in general for a hierarchy of specializations or subsets in which a node may
have several parent nodes. For that case, a less restrictive possibility is to model a
hierarchy as a labeled DAG (directed acyclic graph), which has no cycles as a directed
graph. Thus, a labeled DAG is a natural model for the idea of a hierarchy that is more
general than a tree.

However, as the foregoing examples show, a hierarchy may be composed of items
related in several different ways (composition, specialization, mutually exclusive spe-
cialization, and so on.) This fact suggests a further generalization. If the edge labels
in a labeled DAG take values in a further DAG of possible relationships, themselves
related only by specialization, the resulting compound structure can be called a meta-
hierarchy since it encodes a hierarchy of interrelated hierarchies. This kind of structure
has precedent in, for example, the more general “typed attributed graphs” of Ehrig
et al. (2006).

In Sect. 5, we will consider a meta-hierarchy whose vertices index into (are labeled
by) formal languages for modeling aspects of biology.

4 Model Reduction

Model reduction can be a reasonable strategy to deal with biological complexity.
Instead of picking out the most important variables and processes to include in a
model a priori, one can include some reasonable representation of many variables and
processes (although the model still would not be complete) with reasonable initial
parameter values in a fine-scale model, and then computationally seek a smaller,
coarser scale model that behaves in approximately the same way, on some set of
“observables” or “quantities of interest,” in some relevant region of parameter space.

In addition to eliminating conditionally unnecessary state variables for simplicity’s
sake, model reduction has the potential to: (a) enable scaling up to very large models
through increased computational efficiency in simulation; (b) mathematically connect
predictive models across scales of description for both causal authenticity and greater
accuracy at each scale; (c) enable the study of the great diversity of possible emer-
gent phenomena, as a function of the parameters, structures, and initial conditions
of fine-scale models. Repeated model reduction can result in a hierarchical stack of
interrelated models, with which to systematically maximize these advantages.

How can we use machine learning to perform the computational search for reduced
models? Given enough data from a pure (parameterless) stochastic chemical reaction
network, and the correct structure of the network, it is possible to learn the reaction
rates (Wang et al. 2010; Golightly and Wilkinson 2011). In Sect. 4.1, we summarize
how to learn not just reaction rates but an effective reduced-state space model in the
form of a time-varying Boltzmann distribution in at least some examples by following
very general principles, for the parameterless case (Johnson et al. 2015) and for the
case in which parameters include spatial positions (Ernst et al. 2018).

123

Prospects for Declarative Mathematical Modeling of… 3411

The general theme of using machine learning to create computationally efficient
reduced models is rapidly advancing. In computational chemistry for example Smith
et al. (2017) develop a neural network for learning from, interpolating, and muchmore
efficiently applying the energy and therefore force information computed in density
functional theory fine-scale calculations. Likewise, other work (e.g., Burkardt et al.
2006) addresses difficult problems in fluid flow.

As for the general semantics (Ψ) and implementation (I) families of structure-
respecting mappings, we will denote model reduction mappings by a mapping family
symbol R.

4.1 Learning Boltzmann Distribution Dynamics

In the parameterless rewrite rule [e.g., a chemical reaction as in Eq. (2)] case, we
learn a coarse-scale approximation p̃ of p as a time-varying version of a Boltzmann
distribution or Markov random field (MRF):

p̃(s, t; [μα|α]) = 1

Z(μ(t))
exp

[

−
∑

α

μα(t)Vα(si ∈ Cα)

]

. (19)

Here, eachpotential functionVα is a functionof a subset or cliqueCα of the components
of s, creating a bipartite “factor graph” of variable-nodes indexed by i and factor-nodes
indexed by α (Lauritzen 1995; Frey 2003). If the factor graph is not connected then its
connected components all factorize into independent probability distributions whose
product is p̃.

To get the dynamics of μ, one can minimize the KL divergence between p̃ and p,
where p̃ evolves under a differential equation

dμα

dt
= Fα([μβ |β]) = Fα(μ) (20)

whose right hand sides [Fα|α] can be taken to be a learned combination of a large
number of hand-designed basis functions (Johnson et al. 2015; Johnson 2012), opti-
mizing aKLdivergence between distributions p and p̃. This is the “Graph-Constrained
Correlation Dynamics” (GCCD) model reduction method. It was used to achieve a
substantial reduction in number of variables for modeling a molecular complex in
synapses.

The goal of training for model reduction may be summarized as minimal degrada-
tion over time of the approximation on a set of observables:

p̃(t)
�t � p̃(t + �t)

� O(t) �
� �

≈ O(t + �t)

�
(Diagram 6)

p(t)

R

�

�t �

�

p(t + �t)

R
�

123

3412 E. Mjolsness

Science

Modeling

Mathematics

Computing

Hierarchy labels
 Composition

Constituent
 Scale-change
 Boundary
 Reduction

 Specialization
 Mutually exclusive
 Overlapping

Processes Objects

Expressions

⋉⊠

Fig. 4 Outline of the Tchicoma meta-hierarchy for organizing formal languages for modeling and the
structure-preserving maps between them. First two labeled graphs are fully connected, and the � strong
graph product between provides for plentiful potential connections. They represent major “knowledge
domains” and “ontolexical categories,” respectively. The third element is a DAG of hierarchical relationship
types, as called for in the definition of a meta-hierarchy (see main text); this asymmetric construction is
indicated idiosyncratically here by the “�” operator. Actual formal languages, and structure-preserving
mappings between them, would be positioned deeply inside such a meta-hierarchy—not at the coarse
indexing levels illustrated here

Here, R is a restriction operator mapping fine-scale to coarse-scale states, and �t
indicates the passage of time under model dynamics. This diagram can be stacked
horizontally, for teacher-forcing model training, or vertically, for application across
more than two scales. This definition of model reduction is discussedmore extensively
in Johnson et al. (2015).

This model reduction method has been extended to the case of continuous spatial
parameters (Eqs. 6, 8) as described in Supplementary Material Section 7.4.5 (Ernst
et al. 2018). In addition, a future direction in model reduction by discrete and/or
continuous search over expressions denoting reduced models is introduced in that
section as a speculation.

5 AMeta-hierarchy for Declarative Modeling

We have developed the ideas of declarative modeling including various formal mod-
eling languages, together with structure-respecting maps (some of them category
morphisms or functors) between formal languages and related mathematical objects
for semantics, implementation, and model reduction. We have also defined a “meta-
hierarchy” as a DAG whose edges are labeled by a DAG of types of relationships, the
relationship types forming a specialization hierarchy.

We propose here a particular extensible meta-hierarchy (as defined in Sect. 3.3) of
formal languages aimed at declarative modeling (as defined in Sect. 2) of complex sci-
entific domains such as developmental biology. We attempt to specify the top levels of
themeta-hierarchy (Fig. 4) but leave lower levels free to evolvewith usage. Every node
in the meta-hierarchy is either a symbolic placeholder (typical for top-level nodes) or
represents a formal language or sub-language to be used in a way that satisfies the defi-
nition of declarative modeling. The top-level nodes in themeta-hierarchy are symbolic
placeholders for a classification of deeper-level nodes along two independent label-
ings: (a) “ontolexical,” in which the labels are “process,” “object,” and “expression”
as used in Sect. 2, and (b) knowledge domain (expanded in Fig. 5), in which the labels
are “science,” “mathematics,” and “computing”. In addition there is a “declarative

123

Prospects for Declarative Mathematical Modeling of… 3413

Science

Modeling

Mathematics

Computing

Analytical
Predictions

Numerical
Predictions

Dynamics

Analysis

Geometry
Topology
Logic

Biology
molecular

 cellular
developmental
neuro

Chemistry

Physics
biophysics

biomechanics

Algorithms
numerical algos
 optimization

Software systems
Computer architecture

Fig. 5 First “knowledge domain” factor of the proposedTchicomameta-hierarchy for organizing formal lan-
guages involved in complex biological modeling, with graph edge labels showing the purviews of the main
kinds of structure-preserving mappings between them (Ψ ,I, R, A,C, T), as well as a collection of helper
mapping types (ΨC , {I∗}) aimed at computational implementation. Solid arrows represent the purviews
of various kinds of mappings; the mappings themselves be would defined individually much deeper in the
hierarchy. Mathematically founded implementation maps from modeling to computing should be related
by ICm � ICM ◦ Ψ , and/or IM ◦ Ψ � ΨC ◦ ICm , where defined. Additional mapping kinds could be
defined by further such relations. Implementation maps essential for computation can be built up by com-
positions such as I � IC ◦ ICm ◦ Im , etc., which may vary in their computational efficiency and domain
of applicability. Dotted arrows show workflow information return to science. Semantics maps Ψ apply to
modeling languages as discussed in the text; semantics maps ΨC apply to the semantics of programming
languages and models of computation, as studied in theoretic computer science. The beginnings of a con-
ventional specialization hierarchy for modeling-relevant topics within several knowledge domains are also
indicated

dynamical model informatics” or simply “models” knowledge domain node, aimed
at mediating between the other three. Of course many deep sub-classifications are
possible especially for the knowledge domains, beginning with specialization links
to physics, chemistry, and biology, together with reduction links among their further
specializations. The resulting meta-hierarchy is named “Tchicoma” after a volcanic
formation in the southern Rocky Mountains.

As discussed in Sect. 3.3, the edges of themeta-hierarchy are labeled by relationship
types (e.g., composition vs. specialization, the latter specialized, e.g., into mutually
exclusive and/or exhaustive vs. overlapping specializations; also proven vs. machine-
verifiably proven vs. unproven relationships; and so on) that themselves stand in a
specialization hierarchy. Such relationship links could be used in the construction of
maps Ψ , I, andR (for semantics, implementation and model reduction, respectively)
in declarative modeling, e.g., to retrieve similar known maps from previous work.
Specialization links can be used to insert conditions that enable theorems and algo-

123

3414 E. Mjolsness

rithms to work, and to evolve those conditions as knowledge accumulates. Automatic
curation of these link types would also provide an opportunity to keep usage-based
statistics on the edges of each type at each node in the meta-hierarchy from prior
successful model-building activities, for human visualization, for automatic heuristic
search, and for targeting the invention of new nodes in the meta-hierarchy to regions
with high previous application. New nodes could be specializations or generaliza-
tions of single nodes or of several nodes jointly, resulting in a cumulative resculpting
of the meta-hierarchy and its relationship type DAG under pressure of maximal
utility.

The languages at the nodes of this meta-hierarchy can be specified by formal gram-
mars, or they can be generated by unary and binary operators defined for all objects
in some mathematical category C , including but not limited to category-level binary
operators such as universal sum, product, or function arrow that can be defined purely
in category-theoretic terms. Such a generated language has the advantage that there
is a built-in mathematical semantics taking values in the category C objects denoted
by the operator expression trees. In full generality, the detection of semantic equiv-
alence between expressions in such languages is intractable, though it can often be
specialized to a solvable problem.

The near-top nodes of theTchicomameta-hierarchy comprise aCartesian product of
three ontolexical nodes and four knowledge domain nodes (Fig. 4). With the resulting
twelve-element cross product classification, one can identify the following potential
kinds of structure-respecting inter-language mappings (illustrated in more detail in
Fig. 5), differentiated by top-level source and target positions in the Tchicoma meta-
hierarchy:

1. Mappings discussed in this paper:

(a) Ψ : Semantics: Mapping from model object and/or process expressions in a
modeling language L , to mathematical objects (specifically to time-evolution
operators, in the case of model processes). This mapping is an essential part
of declarative modeling as defined in Sect. 2 and was detailed in Sects. 2 and
3.

(b) I: Implementation: Mapping from mathematical objects that are the seman-
tics of model objects and/or model processes, to computational objects and
processes, respectively; or mapping from model expressions to computational
expressions that denote these objects and processes; as introduced in Sect. 3
and illustrated in Diagram 3. Computer Science seeks common target objects
for many efficient implementation maps; current examples include Trilinos
and PetSc for large-scale scientific computing.

(c) R:Model reduction frommodel expressions tomodel expressionswith approx-
imately the same semantics under projection to a set of observables; as
exemplified in Sect. 4 and Diagram 6.

(d) X : Transformation: From expressions to expressions, preserving or approx-
imating semantics (or projections thereof); an essential part of declarative
modeling as defined in Sect. 2. For example such transformations could include
computational implementation Im at themodel level, model translation T (dis-

123

Prospects for Declarative Mathematical Modeling of… 3415

cussed below), and/or symbolic model reductionRm = an inverse image ofR
under Ψ , if it exists.

2. Mappings not detailed in this paper:

(a) C: Model creation: From domain (object, process) expressions in a domain
language to (object, process) expressions, respectively, in a modeling lan-
guage. Domain languages may incorporate ontology formalizations such as
the Web Ontology Language (“OWL”) or more general Description Logics;
examples include the BioPAX biological pathway description language and
ontology (Demir et al. 2010), and the Gene Ontology (GO) three-part hierar-
chy of biological objects and processes that has an object hierarchy and two
process hierarchies at two scales, with “Is-A” specialization links within each
hierarchy. Declarative model creation packages implemented within computer
algebra problem-solving environments include Cellerator (Shapiro et al. 2003,
2015), Cellzilla (Shapiro et al. 2013), and Plenum (Yosiphon 2009).

(b) T : Translation: From expressions to expressions, preserving or approximating
semantics (or projections thereof to observables). For example, translation
could formalize the process of translating between the inputs to different
modeling software systems. By defining such translations first at the level
of classical (and/or intuitionistic) mathematics rather than software, it is much
easier to establish equivalences where they exist. Then, one can explore
whether and how deeply implementing or updating such translations is worth
the effort.

(c) A: Model analysis (phase diagrams, bifurcation diagrams, and the like): From
models to mathematical analysis products such as reduced-parameter spaces,
discontinuity or phase-change strata therein, and long-time asymptotics of
observables.Model analysis enables further reduction of submodels, for exam-
ple by algebraic solution of fast subnetworks.

For most of these kinds of maps, several maps of the same kind could have the
same source and target nodes (e.g., multiple semantics maps related by refinement as
discussed in Supplementary, 7.2.6); in that case subscripting the mapping symbols by
mapping sub-kinds could become necessary—although one would prefer to elaborate
the meta-hierarchy nodes instead, if possible.

The curation of this meta-hierarchy may provide a fruitful application area for
automatic theorem verification software based on theorem-proving methods, since
(a) many of these map types require the assertion of mathematical equivalences and
approximations that could be proven, possibly with computer help, in an automatically
verifiable form; (b) the applicability of a particular map to a particular modeling
problemcould be subject to logical inference on applicability conditions, perhaps using
advanced type theory and (c) the retrieval or synthesis of valid map compositions that
achieve some formalizable goal could be achieved by forward- and/or reverse-chaining
style theorem-proving algorithm. For “computing” nodes in the meta-hierarchy, and
implementation maps that target them, predictive declarative models of computational
resource use as a function of problem statement could also be collected and trained
on past data. Heuristic search for useful new intermediate nodes in the meta-hierarchy

123

3416 E. Mjolsness

could be based on the utility of constructing commutative diagrams of inter-node
mappings that “lift” one mapping along another, e.g., lifting implementation maps to
more mathematical levels of abstraction where possible, in an internal improvement
process akin to software refactoring.

6 Conclusion

We aim to formalize aspects of mathematical biological modeling so that they become
amenable both to computer assistance and to cooperative human development of com-
plex biological models. This capability will be particularly useful in developmental
biology, where the necessity of relating genotype to phenotype in any fundamen-
tal “evodevo” research program commits a modeler to repeated and often difficult
scale-changes within the modeling enterprise. A conceptual framework, based on
declarative modeling, in support of these goals is presented. The elements of the con-
ceptual framework include an informal definition of declarative biological modeling
with formalized examples; a nested series of declarative biological modeling lan-
guages with compatible mathematical semantics defined in terms of operator algebra;
a model reduction method based on machine learning with which to tame the often
necessary complexity of biological models; and a meta-hierarchy of biological mod-
eling sub-languages and methods, organized and cross-linked by structure-respecting
maps.

The biological modeling languages defined in this framework include physics-
derived operator algebra semantics for processes expressed as reaction/rewrite
rules acting on discrete objects, parameters for such objects that can be discrete
and/or continuous variables, extended objects with graph structure including con-
tainment and adjacency, and approximate spatially continuous object models. Each
of these object types receives appropriate dynamics expressed in reaction/rewrite
rules whose operator algebra semantics is built from elementary creation and
annihilation operators, so they are compatible and can be mixed together into com-
plex multi-rule models by summation of time-evolution operators. A constructive
labeled graph approach to the semantics of extended objects including “graded
graphs” labeled by approximation level number and/or stratum dimension and
identity can approximate and computably implement constructive variants of clas-
sical nonconstructive geometries such as manifolds, cell complexes, and stratified
spaces.

In many developmental biology systems, the spatial dynamics involves nontrivial
changes in geometry and/or topology of extended biological objects. By using rewrite
rules for the graph of strata defined in Sect. 3.1 together ODE-bearing rules for the
parametric embeddings of individual strata into 3D space, we now have in principle a
way to represent such dynamics mathematically and computationally.

An essential step is to express natural graph-changing operations, including a
collection of labeled graph rewrite rules, in terms of an operator algebra gener-
ated by the operators for the individual rules. Each graph rewrite rule operator is
expressed in terms of elementary creation and annihilation operators, hence explic-
itly implementable in terms of binary and/or integer-valued random variables. Using

123

Prospects for Declarative Mathematical Modeling of… 3417

this result (Propositions 1 and 2 and corollaries), we also achieve summable oper-
ator algebra semantics for modeling languages with rewrite rules at the level of
graded graphs, stratified graphs, abstract cell complexes, graded stratified graphs,
and/or graded abstract cell complexes that could implement selected continuum limits
such as mesh-approximable stratified spaces and cell complexes. A very expressive
language of “dynamical graph grammars” results. All rule operator products and com-
mutators are explicitly calculable, enabling the derivation of simulation and analysis
methods.

Significant limitations of the approach as discussed here are of course legion and
notably include the fact that many graph structures can be defined virtually, as the
result of a function of the labels pertaining to two vertices that may or may not be
connected, rather than in terms of explicitly represented edges as we have generally
assumed.

A potentially generic model reduction andmoment closure method for suchmodels
is based on dynamically evolving Boltzmann distributions, derived from fine-scale
models by a formofmachine learning. Othermodel reductionmethodsmay be enabled
by the broad collection of possiblemathematicalmodel types that have been formalized
as possible outcomes ofmodel reduction. In this way, both numeric (machine learning)
and symbolic (declarative model transformations) Artificial Intelligence methods can
be brought to bear on complex biological modeling problems.

Finally, an overarching meta-hierarchy of modeling sub-languages is proposed,
within which the structure-respecting maps required for declarative biological mod-
eling could be defined, curated, and evolved through experience for maximal utility.
This framework may provide opportunities for mathematical biologists to contribute
to systematic mappings for complex biological model creation, definition, reduction,
implementation and analysis in ways that could be greatly amplified by automation
and artificially intelligent computational improvement.

Acknowledgements The author is indebted to many discussants, including several particularly helpful
reviewers, none of whom are responsible for errors herein. I wish to thank Ray Wightman of the Sainsbury
Laboratory for help with sample preparation and microscopy. The Microscopy Facility at the Sainsbury
Laboratory is supported by the Gatsby Charitable Foundation. The author wishes to acknowledge the hos-
pitality of the Sainsbury Laboratory Cambridge University, and the Center for Nonlinear Studies of the Los
Alamos National Laboratory, and funding from the Leverhulme Trust, National Institutes for Health Grant
R01HD073179, USAF/DARPA FA8750-14-C-0011, National Institute of Aging Grant R56AG059602, and
Human Frontiers Science Program Grant HFSP—RGP0023/2018.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Banwarth-KuhnM, Nematbakhsh A, Rodriguez KW, Snipes S, Rasmussen CG, Reddy GV, Alber M (2018)
Cell-based model of the generation and maintenance of the shape and structure of the multilayered
shoot apical meristem of Arabidopsis thaliana. Bull Math Biol. https://doi.org/10.1007/s11538-018-
00547-z

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11538-018-00547-z
https://doi.org/10.1007/s11538-018-00547-z

3418 E. Mjolsness

Behr N, Danos V, Garnier I (2016) Stochastic mechanics of graph rewriting. In: Proceedings of the 31st
annual ACM/IEEE symposium on logic in computer science, New York City, USA, pp 46–55

Bendich P, Cohen-Steiner D, Edelsbrunner H, Harer J, Morozov D (2007) Inferring local homology from
sampled stratified spaces. In: Proceedings of the 48th annual IEEE symposium on foundations of
computer science, pp 536–546

Burkardt J, GunzburgerM, Lee H-C (2006) POD and CVT-based reduced-order modeling of Navier–Stokes
flows. Comput Methods Appl Mech Eng 196(1–3):337–355

Cardelli L (2008) On process rate semantics. Theor Comput Sci 391:190–215
Chakrabortty B, Willemsen V, de Zeeuw T, Liao C-Y, Weijers D, Mulder B, Scheres B (2018) A plausible

microtubule-basedmechanism for cell division orientation in plant embryogenesis. Curr Biol 28:1–13.
https://doi.org/10.1016/j.cub.2018.07.025

Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signaling. Lect
Notes Comput Sci 4703:17–41

Danos V, Feret J, Fontana W, Harmer R, Hayman J, Krivine J, Thompson-Walsh CD, Winskel G (2012)
Graphs, rewriting and pathway reconstruction for rule-based models. FSTTCS 2012:276–288

Demir E et al (2010) BioPAX—a community standard for pathway data sharing. Nat Biotechnol 28(9):935–
942

Doi M (1976a) Second quantization representation for classical many-particle system. J Phys A Math Gen
9:1465

Doi M (1976b) Stochastic theory of diffusion-controlled reactions. J Phys A Math Gen 9:1479
Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation. Springer,

Berlin
Ermentrout B (2004) Simplifying and reducing complex models. In: Bower, Bolouri (eds) Computational

modeling of genetic and biochemical networks. MIT Press, New York
Ernst OK, Bartol T, Sejnowski T,Mjolsness E (2018) Learning dynamic Boltzmann distributions as reduced

models of spatial chemical kinetics. J Chem Phys 149:034107. arXiv:1803.01063
Frey B (2003) Extending factor graphs so as to unify directed and undirected graphical models. In: Proceed-

ings of the nineteenth conference on uncertainty in artificial intelligence (UAI2003). arXiv:1212.2486
Golightly A,WilkinsonDJ (2011) Bayesian parameter inference for stochastic biochemical networkmodels

using particle Markov chain Monte Carlo. Interf Focus 1:807–820. https://doi.org/10.1098/rsfs.2011.
0047

Johnson GT (2012) Dependency diagrams and graph- constrained correlation dynamics: new systems for
probabilistic graphical modeling. Ph.D. thesis, Computer Science Department, University of Califor-
nia, Irvine

Johnson T, Bartol T, Sejnowski T, Mjolsness E (2015) Model reduction for stochastic CaMKII reaction
kinetics in synapses by graph-constrained correlation dynamics. Phys Biol 12:4

Jönsson H, Heisler M, Reddy V, Agrawal V, Gor V, Shapiro BE, Mjolsness E, Meyerowitz EM (2005)
Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioin-
formatics 21(suppl1):i232i240

Jönsson H, Heisler M, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An Auxin-driven polarized trans-
port model for phyllotaxis. In: Proceedings of the national academy of sciences

Jönsson H, Sainsbury Laboratory Cambridge University Research Group (2018) “The Organism-Tissue
Simulator”, simulation software source code in the C++ language. https://gitlab.com/slcu/teamhj/
organism. Accessed December 2018

Joyner D, Čertk O, Meurer A, Granger BE (2012) Open source computer algebra systems: SymPy. ACM
Commun Comput Algebra 45(3/4):225–234

Julien J-D, Pumir A, Boudaoud A (2019) Strain- or stress-sensing in mechanochemical patterning by the
phytohormone Auxin. Bull Math Biol. https://doi.org/10.1007/s11538-019-00600-5

Kac M (1974) A stochastic model related to the telegraphers equation. Rocky Mt J Math 4(3):497–509
Lauritzen SL (1995) Graphical models. Oxford Science Publications, Oxford
Maignan L, Spicher A (2015) Global graph transformations. In: Plump D (ed) Proceedings of the 6th

international workshop on graph computation models, L’Aquila, Italy. CUER workshop proceedings,
vol 1403, pp 34–49 (July 20, 2015). http://ceur-ws.org/Vol-1403/. Accessed June 2019

Mattis DC, Glasser ML (1998) The uses of quantum field theory in diffusion-limited reactions. Rev Mod
Phys 70:979

Mironova VV, Omelyanchuk NA, Novoselova ES, Doroshkov AV, Kazantsev FV, Kochetov AV, Kolchanov
NA,Mjolsness E, Likhoshvai VA (2012) Combined in silico/in vivo analysis of mechanisms providing

123

https://doi.org/10.1016/j.cub.2018.07.025
http://arxiv.org/abs/1803.01063
http://arxiv.org/abs/1212.2486
https://doi.org/10.1098/rsfs.2011.0047
https://doi.org/10.1098/rsfs.2011.0047
https://gitlab.com/slcu/teamhj/organism
https://gitlab.com/slcu/teamhj/organism
https://doi.org/10.1007/s11538-019-00600-5
http://ceur-ws.org/Vol-1403/

Prospects for Declarative Mathematical Modeling of… 3419

for root apical meristem self-organization and maintenance. Ann Botany 110(2):349–360. https://doi.
org/10.1093/aob/mcs069

Mjolsness E, Sharp DH, Reinitz J (1991) A connectionist model of development. J Theor Biol 152(4):429–
454

Mjolsness E (2005) Stochastic process semantics for dynamical grammar syntax: an overview.
arXiv:cs/0511073

Mjolsness E, Yosiphon G (2006) Stochastic process semantics for dynamical grammars. Ann Math Artif
Intell 47(3–4):329–395

Mjolsness E, Orendorff D, Chatelain P, Koumoutsakos P (2009) An exact accelerated stochastic simulation
algorithm. J Chem Phys 130:144110

Mjolsness E (2010) Towards measurable types for dynamical process modeling languages. In: Proceed-
ings of the 26th conference on mathematical foundations of programming semantics (MFPS 2010).
Electronic notes in theoretical computer science (ENTCS), vol 265, pp 123–144, 6 Sept 2010, Elsevier

Mjolsness E, Cunha A (2012) Topological object types for morphodynamic modeling languages. In: PMA
2012: IEEE fourth international symposium on plant growth modeling, visualization and applications.
Shanghai China, October 2012. IEEE Press

Mjolsness E (2013) Time-ordered product expansions for computational stochastic systems biology. Phys
Biol 10:035009

Morrison MJ, Kinney JB (2016) Modeling multi-particle complexes in stochastic chemical systems.
arXiv:1603.07369v1

Orendorff D, Mjolsness E (2012) A hierarchical exact accelerated stochastic simulation algorithm. J Chem
Phys 137:214104. https://doi.org/10.1063/1.4766353. arXiv:1212.4080

Peliti L (1985) Path integral approach to birth-death processes on a lattice. J Phys Fr 46:1469
Perlis A (1982) Epigram No. 102. In: “Epigrams in Programming”, ACM SIGPLAN September, 1982.

https://cpsc.yale.edu/epigrams-programming. Accessed March 2018
Prusinkiewicz P, Hammel MS, Mjolsness E (1993) Animation of plant development. In: SIGGRAPH ’93

conference proceedings, ACM
Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED (2003) Cellerator: extending a com-

puter algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics
19(5):677–678

Shapiro BE, Jönsson H, Sahlin P, Heisler M, Roeder A, Burl M, Meyerowitz EM, Mjolsness ED (2012)
Tessellations and pattern formation in plant growth and development. arXiv:1209.2937

Shapiro BE, Meyerowitz E, Mjolsness E (2013) Using cellzilla for plant growth simulations at the cellular
level. Front Plant Biophys Model 4:00408

Shapiro BE, Mjolsness E (2015) Pycellerator: an arrow-based reaction-like modelling language for biolog-
ical simulations. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv596

ShawSL,Kamyar R, Ehrhardt DW (2003) Sustainedmicrotubule treadmilling in arabidopsis cortical arrays.
Science. https://doi.org/10.1126/science.1083529

Shellard A, Szabo A, Trepat X, Mayor R (2018) Supracellular contraction at the rear of neural crest cell
groups drives collective chemotaxis. Science 362(6412):19

Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy
at force field computational cost. Chem Sci Chem Sci 8:3192–3203

Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM, Roll-Mecak A (2018)
Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science
361(6404):eaau1504. https://doi.org/10.1126/science.aau1504

Wang Y, Christley S, Mjolsness E, Xie X (2010) Parameter inference for discretely observed stochastic
kinetic models using stochastic gradient descent. BMC Syst Biol 4:99

Winograd T (1975) Frame representations and the procedural—declarative controversy. In: Bobrow D,
Collins A (eds) Representation and understanding: studies in cognitive science. Academic Press,
pp 185–210. http://hci.stanford.edu/winograd/papers/FrameRep.pdf. Accessed Oct 2018

Wolff HB, Davidson LA, Merks RMH (2019) Adapting a plant tissue model to animal
development: introducing cell sliding into VirtualLeaf. Bull Math Biol. https://doi.org/10.1007/
s11538-019-00599-9

Wolfram Research, Inc (2018) Mathematica Version 11. Wolfram Research Inc, Champaign
Yang C-R, Shapiro BE, Mjolsness ED, Hatfield GW (2005) An enzyme mechanism language for the

mathematical modeling of metabolic pathways. Bioinformatics 21(6):774–0780. https://doi.org/10.
1093/bioinformatics/bti068

123

https://doi.org/10.1093/aob/mcs069
https://doi.org/10.1093/aob/mcs069
http://arxiv.org/abs/cs/0511073
http://arxiv.org/abs/1603.07369v1
https://doi.org/10.1063/1.4766353
http://arxiv.org/abs/1212.4080
https://cpsc.yale.edu/epigrams-programming
http://arxiv.org/abs/1209.2937
https://doi.org/10.1093/bioinformatics/btv596
https://doi.org/10.1126/science.1083529
https://doi.org/10.1126/science.aau1504
http://hci.stanford.edu/winograd/papers/FrameRep.pdf
https://doi.org/10.1007/s11538-019-00599-9
https://doi.org/10.1007/s11538-019-00599-9
https://doi.org/10.1093/bioinformatics/bti068
https://doi.org/10.1093/bioinformatics/bti068

3420 E. Mjolsness

Yosiphon G (2009) Stochastic parameterized grammars: formalization, inference, and modeling applica-
tions. Ph.D. thesis, Computer Science Department, University of California, Irvine, June 2009. Thesis
and code available at http://computableplant.ics.uci.edu/theses/guy/downloads/DGPublications.html.
Accessed Oct 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://computableplant.ics.uci.edu/theses/guy/downloads/DGPublications.html

	Prospects for Declarative Mathematical Modeling of Complex Biological Systems
	Abstract
	1 Introduction
	2 Declarative Modeling
	2.1 Pure Reaction Rules
	2.2 Parameterized Reaction Rules
	2.2.1 Examples: Cell Division and Dynamic Cytoskeleton

	2.3 Differential Equation Rules

	3 Extended Objects
	3.1 Constructive Extended Objects via Graphs
	3.1.1 Relation to PDEs

	3.2 Dynamics of Graphs
	3.2.1 Graph Rewrite Rule Operators
	3.2.2 Product of Graph Grammar Rules
	3.2.3 Slice Rewrite Rule Operators
	3.2.4 Efficient Implementations

	3.3 Meta-Hierarchy Via Graphs

	4 Model Reduction
	4.1 Learning Boltzmann Distribution Dynamics

	5 A Meta-hierarchy for Declarative Modeling
	6 Conclusion
	Acknowledgements
	References

