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Abstract—It is a remarkable fact that two prominent problems
of algebraic complexity theory, the permanent versus determi-
nant problem and the tensor rank problem (matrix multiplica-
tion), can be restated as explicit orbit closure problems. This
offers the potential to prove lower complexity bounds by relying
on methods from algebraic geometry and representation theory.
While this basic idea for the tensor rank problem goes back to
work by Volker Strassen from the mid eighties, the geometric
complexity program has gained visibility and momentum in the
past years. Some modest lower bounds for border rank have
recently been proven by the construction of explicit obstructions.
For further progress, a better understanding of irreducible rep-
resentions of symmetric groups (tensor products and plethysms)
is required. Interestingly, asymptotic versions of the the latter
questions are of relevance in quantum information theory.

Index Terms—permanent versus determinant, tensor rank,
matrix multiplication, complexity lower bounds, orbit closure
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