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Since the previous kaon conference in 2009, there has been very significant improvement in the
precision which can be reached in lattice simulations for standard physical quantities, such as
quark masses, the leptonic decay constants, BK and the form factors for K`3 decays. In this talk
I focus on quantities which have not been previously computed in lattice computations and for
which the RBC-UKQCD collaborations are developing the necessary theoretical and computa-
tional framework. There are rare-kaon decays and the long-distance contributions to the KL - KS

mass splitting, ∆mK . For ∆mK exploratory numerical studies have been performed to test the tech-
niques and to gain some understanding of the precision which might be reached. For rare kaon
decay amplitudes the exploratory work is now beginning.
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1. Introduction

At this conference we are seeing that there has been very significant progress since Kaon 2009
in the precision which can be reached for important quantities in flavour physics in general and
kaon physics in particular [1]. This improvement has been made possible largely because of new
algorithms and increased computing resources. It is now both necessary and possible to extend the
range of physical quantities which can be studied using lattice simulations and the RBC-UKQCD
collaborations are leading on several important extensions in kaon physics. In this talk I discuss
the prospects of computing the decay amplitudes K→ π`+`− and K → πνν̄ as well as reporting
on the recent RBC-UKQCD exploratory study of the KL - KS mass difference [2], considering in
particular the evaluation of long-distance effects in these quantities, i.e. contributions which cannot
be written in terms of matrix elements of local operators.

Standard physical quantities which are studied using lattice simulations include those in which
non-perturbative QCD effects can be written as matrix elements of local composite operators be-
tween single-hadron states or between a single hadron and the vacuum:

〈0 |O(0) |h〉 and 〈h2 |O(0) |h1〉 , (1.1)

where h, h1 and h2 represent hadrons. An important recent extension is the evaluation of K→ ππ

decay amplitudes with the goal of understanding the ∆I = 1/2 rule and the numerical value of
ε ′/ε [3–7]. Here we have two hadrons in the final state, in which the final-state interactions and
non-exponential finite-volume effects have to be accounted for.

2. The KL – KS Mass Difference [2]

In this and the following section I will discuss our early attempts to extend the range of physical
quantities which can be computed in lattice simulations by computing long-distance contributions.
These are not given in terms of matrix elements of local operators but require the evaluation of
integrals of non-local products of operators of the form∫

d4x
∫

d4y 〈h2 |T{O1(x)O2(y)}|h1〉 , (2.1)

where O1,2 are local composite operators. For ∆mK = mKL−mKS , the relevant integral is∫
d4x

∫
d4y 〈 K̄0 |T{HW (x)HW (y)}|K0〉 , (2.2)

where HW is the ∆S = 1 weak Hamiltonian given explicitly in eqs. (2.6) and (2.7) below. In both
equations (2.1) and (2.2) T represents time-ordering.

Weak perturbation theory leads to the following expression for ∆mK :

∆mK ≡ mKL−mKS =
1

2mK
2P ∑

α

〈K̄0 |HW |α〉〈α |HW |K0〉
mK−Eα

= 3.483(6)×10−12 MeV , (2.3)

where the numerical value is the experimental result. Here the sum over α includes the integrals
over the relevant phase-space and P indicates that the principal value prescription is to be used for
the poles at Eα = mK .
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Figure 1: Schematic diagram of the evaluation of long-distance contributions to ∆mK . The integrals in (2.2)
are performed over the fiducial volume tA ≤ tx,y ≤ tB. n labels a generic state between the two HW .

In lattice calculations of long-distance effects, it is not so much the discrete (i.e. lattice) nature
of space time which presents difficulties for the evaluation of ∆mK as the fact that the calculation
is necessarily performed in a finite volume. In a finite volume, the practical way to isolate the
initial and final states correctly while still performing the time integrals is to integrate over a large
subinterval in time, tA ≤ tx,y ≤ tB, and to create the K0 and annihilate the K̄0 well outside of this
region (see Fig. 1). This is the natural modification of standard field theory for which the asymptotic
states are prepared at t→±∞ and then the operators are integrated over all time. The corresponding
4-point correlation function is then

C4(tA, tB; ti, t f ) = |ZK |2e−mK(t f−ti)∑
n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)2

{
e(mK−En)T − (mK−En)T −1

}
,

(2.4)
where, in units of the lattice spacing a, T = tB− tA + 1 and ZK is the matrix element of the kaon
interpolating operator between the vacuum and a kaon at rest. From the coefficient of T we can
obtain

∆mFV
K ≡ 2∑

n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)

. (2.5)

In order to evaluate ∆mK itself we need to be able to:
1. Evaluate the four types of diagram illustrated in Fig. 2. The four-quark current-current operators
in the weak Hamiltonian are represented by two small filled circles, each representing a bilinear
quark current operator. The type of diagram is defined in terms of the quark flow between the
interpolating operators for the mesons and the insertions of HW . Other diagrams, in addition to
those in Fig. 2, contribute to each type.
2. Use the T dependence of C4 in (2.4) to isolate the coefficient of T . Note that in general there
may be states |n〉 with En < mK implying that there will be terms which grow exponentially with T
which may be difficult to subtract. The contributions from the vacuum and single pion states can
be explicitly removed by respectively adding the pseudoscalar density s̄γ5d and the scalar density
s̄d to the weak Hamiltonian with coefficients cP and cS such that 〈0|HW + cP(s̄γ5d) |K0〉 = 0 and
〈π0|HW +cs(s̄d) |K〉= 0 1. As the volume of the lattice is increased there are an increasing number
of two-pion states with energies smaller than mK , making the practical problem of isolating the
linear term in T in the integrated correlation function more difficult. For the foreseeable future
however, we anticipate that the available volumes will be such that there will be at most one such

1I am grateful to Guido Martinelli for discussions on this point.
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Figure 2: Four types of diagram which have to be evaluated for the calculation of ∆mK .

term. Indeed, in our exploratory studies at unphysical quark masses there are no two-pion states
with energies below mK .
3. Relate ∆mK and ∆mFV

K . Following the pioneering papers of Lüscher [8] concerning two-pion
states in a finite volume, it is known that in general finite-volume effects are not exponentially
small in the volume, but decrease only as powers. The evaluation of finite-volume corrections for
∆mK requires a significant extension of the theory of finite-volume effects developed previously for
the two-pion spectrum [8] and for K→ ππ amplitudes [9, 10]. Results for the case for which the
volume is tuned so that one of the two-pion states has energy equal to mK were presented in [2,11]
and a study of the general case is being prepared for publication| [12]. I do not present the details of
the derivation here other than to observe that the complete term on the right-hand side of Eq. (2.4)
does not have a pole as one of the En→ mK which confirms that the finite-volume corrections to
the correlation function itself are exponentially small as expected [10]. The term linear in T by
itself however, does have a pole and hence power-like corrections which need to be subtracted to
obtain a precise result.
4. Control the additional ultraviolet divergences as the weak Hamiltonians come close together.
Power counting implies that these corrections are quadratic in the ultraviolet cutoff (a the lattice
spacing) and this is indeed the case. This divergence is cancelled by the GIM mechanism which
requires the presence of charm quarks. We also find that after the GIM subtraction of the power
divergences there are no remaining logarithmic ones [2].

The ∆S = 1 effective weak Hamiltonian including four flavours is

HW =
GF√

2 ∑
q,q′=u,c

VqdV ∗q′s(C1Qqq′
1 +C2Qqq′

2 ) (2.6)

where
Qqq′

1 = (s̄idi)V−A(q̄ jq′j)V−A and Qqq′
2 = (s̄id j)V−A(q̄ jq′i)V−A . (2.7)

In our exploratory study on the 163 ensembles with mπ = 420 MeV, we only evaluated the
type 1 and 2 graphs. The development of techniques necessary to evaluate disconnected diagrams
effectively is an area of worldwide active research and in this study we focused instead on learning

4



P
o
S
(
K
A
O
N
1
3
)
0
1
9

Rare Kaon Decays Chris T Sachrajda

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cutoff Radius

M
a

s
s
 d

if
fe

re
n

c
e

 

 

Mass Differece

Quadratic Fit

Figure 3: Contribution to the mass difference from the correlation function of Q1 – Q1 as a function of the
cut of radius R as described in the text. The curve is a fit to the function b/R2 + c, where b,c are constants.
The quadratic divergence is cancelled when the GIM mechanism is applied.

how to control the remaining systematics. The physical value of ∆mK is 3.483(6)× 10−12 MeV,
whereas we obtain values in the range {5.81(28) – 10.58(75)}×10−12 MeV as mK is varied from
563 to 839 MeV. In spite of the unphysical masses and neglecting type 3 and 4 diagrams we are
nevertheless able to obtain a result reasonably close to the physical value and are encouraged to
proceed to a full physical calculation. We are currently completing a study on a larger lattice (with
a spacial volume of 243 points) at the same value of the lattice spacing with a pion with mass
330 MeV and evaluating all 4 types of diagram.

The details of our first study are presented in [2]. As an example of the investigations, consider
the ultraviolet behaviour of the Q1 – Q1 correlation function (i.e. taking the Q1 component of each
HW in (2.2)) without the GIM subtraction but with an artificial lower cut-off, R =

√
{(ty− tx)2 +

(~x−~y)2}, on the separation of the two Q1 insertions. The plot in Fig.3 exhibits the quadratic
divergence as the two operators come together. This divergence is canceled by the GIM mechanism.

3. Rare Kaon Decays

Rare kaon decays which are dominated by short-distance FCNC processes, K → πνν̄ de-
cays in particular, provide a potentially valuable window on new physics at high-energy scales.
The decays KL → π0e+e− and KL → π0µ+µ− are also considered promising because the long-
distance effects are reasonably under control using ChPT [13]. They are sensitive to different
combinations of short-distance FCNC effects and hence in principle provide additional discrimi-
nation to the neutrino modes. A challenge for the lattice community is therefore to calculate the
long-distance effects reliably. The existing phenomenology on rare kaon decays is based largely
on SU(3)L×SU(3)R chiral perturbation theory (ChPT) and lattice calculations will also provide
the opportunity for checking the range of validity of ChPT and evaluating the corresponding Low
Energy Constants.

As an example consider the decay KL → π0`+`− which has three main contributions to the
amplitude [13],
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(i) short distance contributions corresponding to matrix elements of the local operators
(s̄γµd)( ¯̀γµ`) and (s̄γµd)( ¯̀γµγ5`). The hadronic (non-perturbative QCD) contribution is sim-
ply given by the form-factors of semileptonic K→ π`ν̄` decays, which are known to much
better precision than the remaining contributions.

(ii) long-distance indirect CP-violating contribution from the CP-even component of KL,
AICPV (KL→ π0`0`−) = εA(K1→ π0`+`−) and

(iii) the two-photon CP-conserving contribution KL→ π0(γ∗γ∗→ `+`−).

A summary of the corresponding phenomenology is presented in Ref. [14]. For example the
branching ratios for the CP-violating (CPV) component are written as:

Br(KL→ π
0e+e−)CPV = 10−12 ×

{
15.7|aS|2±6.2|aS|

(
Imλt

10−4

)
+2.4

(
Imλt

10−4

)2
}

(3.1)

Br(KL→ π
0
µ
+

µ
−)CPV = 10−12 ×

{
3.7|aS|2±1.6|aS|

(
Imλt

10−4

)
+1.0

(
Imλt

10−4

)2
}

, (3.2)

where aS is the (unphysical) amplitude for the decay KS'K1→ π0`+`− at momentum transfer q2 =

0. Using ChPT based phenomenology, |aS| = 1.06+0.26
−0.21 but the sign of aS is unknown [14]. One

goal of future lattice calculations is the determination of aS, together with similar other quantities.
In addition however, we will be able to vary the external momenta and study the behaviour of the
amplitude as a function of q2. Using partially twisted boundary conditions [15, 16], this has been
done very successfully for the form factors in K`3 decays [17]. See [18] for a review of the current
status of the calculations of K`3 decay amplitudes.

From the above discussion we wish to compute the amplitudes for the CP-Conserving decays
KS→ π0`+`− and K+→ π+`+`− and start by considering

T µ

i =
∫

d4xe−iq·x 〈π(p) |T{Jµ
em(x)Qi(0)}|K(k)〉 , (3.3)

where Qi, i = 1,2 is an operator in the effective Hamiltonian and Jµ
em is the electromagnetic current.

Electromagnetic gauge invariance implies that T µ

i takes the form

T µ

i =
ωi(q2)

(4π)2

{
q2(p+ k)µ − (m2

K−m2
π)qµ

}
. (3.4)

It is the form factor ω(q2) which will be the output of the calculation. The computation will
proceed in a similar way to the evaluation of ∆mK , by inserting the interpolating operators for the
initial kaon and final pion states at times which are sufficiently far from the "fiducial volume", i.e.
the range of integration over which the time of the insertion of the current is integrated.

Although the lattice computation does not rely on ChPT nevertheless, since most of the exist-
ing phenomenology is performed in the ChPT framework, it may be useful to compute the neces-
sary low energy constants. The LECs a+ and aS are defined by

a =
1√
2

V ∗usVud

{
C1ω1(0)+C2ω2(0)+

2N
sin2

θW
f+(0)C7V

}
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where Q1,2 are the two current-current GIM subtracted operators and the Ci are the Wilson coeffi-
cients, (C7V is the coefficient of s̄γµd)(l̄γµ l)) [19]. An interesting target for the lattice calculations
is to check the validity of the phenomenological values: a+ =−0.578±0.016 and |aS|= 1.06+0.26

−0.21,
as well as to determine the sign of |aS|.

The generic non-local matrix elements which we need to evaluate are

X ≡
∫

∞

−∞

dtx d3x 〈π(p) |T
[

Jµ(0)HW (x)
]
|K(~0)〉 (3.5)

= i ∑
n

〈π(p) |Jµ(0) |n〉〈n |HW (0) |K(~0)〉
mK−En + iε

− i ∑
ns

〈π(p) |HW (0) |ns〉〈ns |Jµ(0) |K(~0)〉
Ens−Eπ + iε

. (3.6)

Jµ represents a vector or axial, electromagnetic or weak, current and {|n〉} and {|ns〉} represent
complete sets of non-strange and strange states. In Euclidean space we envisage calculating corre-
lation functions of the form∫ Tb

−Ta

dtx 〈φπ(~p, tπ)T
[

Jµ(0)HW (tx)
]

φ
†
K(
~0, tK)〉 ≡

√
ZK

e−mK |tK |

2mK
XE
√

Zπ

e−Eπ tπ

2Eπ

, (3.7)

where φπ and φK are interpolating operators for the pion and kaon respectively and

XE− = −∑
n

〈π(p) |Jµ(0) |n〉〈n |HW (0) |K〉
mK−En

(
1− e(mK−En)Ta

)
and (3.8)

XE+ = ∑
ns

〈π(p) |HW (0) |ns〉〈ns |Jµ(0) |K〉
Ens−Eπ

(
1− e−(Ens−Eπ )Tb

)
. (3.9)

We use the time dependence to subtract the exponential terms in a similar way to the corresponding
subtraction for ∆mK .

Sample diagrams which have to be evaluated to determine the amplitudes for K → π `+`−

decays are presented in Fig. 4.
The authors of ref. [20] investigated the ultraviolet behaviour as the current Jµ approaches

HW . For illustration consider the diagram of type 2 shown in Fig. 5, redrawn using the Fierz iden-
tity. Dimensional counting allows for a quadratic divergence in such diagrams but conservation of
the vector current suggests that the degree of divergence is reduced by 2 to result in a logarithmic
divergence. For this to be the case the conserved lattice vector current must be used in the simu-
lations. This was checked in an explicit one-loop perturbative calculation for Wilson and Clover
fermion actions in [20]. This absence of power divergences does not require the use of the GIM
mechanism and for a chiral symmetric formulation of lattice QCD, such as DWF, the same applies
for the axial current. If the calculations are performed in the four-flavour theory, i.e. with charm
quarks, then the GIM mechanism also cancels the logarithmic divergence in this diagram.

4. Summary, Conclusions and Prospects

The goal of the lattice flavour-physics community is to develop a programme with an ever
increasing precision and a growing range of physical quantities which can be studied. Precision
flavour physics complements the large p⊥ approach to testing the limits of the standard model and
searches for new physics. Standard quantities, such as quark masses, mesonic decay constants,

7
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Figure 4: Sample diagrams which need to be evaluated to determine the amplitudes for K→ π `+`− decays.
For diagrams of type 1, 2 and 5 the photon can be emitted of any internal quark line. Diagrams of type 1 - 4
contribute to both K+→ π+`+`− and K0→ π0`+`− decays. The diagrams of type 5 only contribute to K0

decays.

Z0, γ

K π
s d

u, c

Figure 5: Contribution in spite of power counting is logarithmically divergent in the ultraviolet, in spite of
naïve dimensional counting. HW is represented by the two small filled circles.

the BK parameter of neutral kaon mixing and K`3 form factors are now calculated with excellent
precision [21]. In this talk I have reviewed some recent ideas from the RBC-UKQCD collaboration,
focussing on new quantities in kaon physics which we are learning to compute. Norman Christ
at this conference has explained how we have performed the first direct calculation of the K →
(ππ)I=2 decay amplitude A2 and how we are well on our way to computing A0 [3]. In this talk
I have described the progress towards evaluating long-distance effects in ∆mK , the procedure for
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which is now largely tested, and our preparation for the similar computations of the amplitudes for
rare kaon decays.

It is our hope that by discussing the prospects for calculations of rare kaon decay amplitudes
at this conference we will encourage a discussion with the wider community with the aim of opti-
mising plans for our future research programme at an early stage.

Acknowledgements I warmly thank my colleagues from the RBC-UKQCD collaboration with
whom the ideas and calculations described in this talk were developed and performed. I acknowl-
edge partial support from STFC Grant ST/G000557/1.
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