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Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging 

technology that has potential to increase intraoperative precision, extend resection, and 

tailor surgery for malignant invasive brain tumors because of its subcellular dimension 

resolution. Despite its promising diagnostic potential, interpreting the gray tone fluore-

scence images can be difficult for untrained users. CLE images can be distorted by 

motion artifacts, fluorescence signals out of detector dynamic range, or may be 

obscured by red blood cells, and thus interpreted as nondiagnostic (ND). However, just 

a single CLE image with a detectable pathognomonic histological tissue signature can 

suffice for intraoperative diagnosis. Dealing with the abundance of images from CLE is 

not unlike sifting through a myriad of genes, proteins, or other structural or metabolic 

markers to find something of commonality or uniqueness in cancer that might indicate 

a potential treatment scheme or target. In this review, we provide a detailed description 

of bioinformatical analysis methodology of CLE images that begins to assist the neuro-

surgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, 

and surgical observation into a conclusionary system within the concept of theranostics. 

We present an overview and discuss deep learning models for automatic detection of 

the diagnostic CLE images and discuss various training regimes and ensemble modeling 

effect on power of deep learning predictive models. Two major approaches reviewed in 

this paper include the models that can automatically classify CLE images into diagnostic/

ND, glioma/nonglioma, tumor/injury/normal categories, and models that can localize  

histological features on the CLE images using weakly supervised methods. We also 

briefly review advances in the deep learning approaches used for CLE image analysis 

in other organs. Significant advances in speed and precision of automated diagnostic 

frame selection would augment the diagnostic potential of CLE, improve operative 

workflow, and integration into brain tumor surgery. Such technology and bioinformatics 

analytics lend themselves to improved precision, personalization, and theranostics in 

brain tumor treatment.

Keywords: brain neoplasm, brain tumor imaging, cancer, confocal laser endomicroscopy, convolutional neural 

networks, deep learning, �uorescence, theranostics
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INTRODUCTION

According to the American Cancer Society (1), in 2018 nearly 
24,000 patients will be diagnosed with brain or other nervous 
system cancer and about 17,000 patients will die of the disease. 
Gliomas represent about 25% of all primary brain tumors and 
about 80% of all malignant tumors of the central nervous system 
(2). Over half of gliomas are glioblastoma multiforme (GBM), 
which is the most malignant primary brain tumor. GBMs are 
in�ltrative and normally lack a clear margin making complete 
resection nearly impossible. Maximal resection of gliomas has 
been associated with improved prognosis (3, 4), although inva-
sion and the bounds of functional cortex o�en limit extensive 
removal. Currently, technology for extending the limits of the 
tumor resection relies on intraoperative image-guided surgical  
navigation platforms, intraoperative magnetic resonance imaging  
(MRI), and intraoperative ultrasound (5). Wide-�eld �uore-
scence illumination through the operative microscope has been 
utilized more recently in an attempt identify the margins of 
in�ltrating tumors (6).

Regardless of the means for identifying the tumor margin, 
examining tissue samples during surgery is paramount, especially 
for neurosurgery. Rapid intraoperative assessment of tumor tis-
sue remains key for planning the treatment and for guiding the 
surgeon to areas of suspected tumor tissue during the operation, 
or planning adjunct intraoperative or post-operative therapy. �e 
standard for the preliminary intraoperative histopathological 
interpretation is frozen section biopsy. However, the frozen sec-
tion biopsy method has inherent complications such as sampling 
error, tissue freezing and cutting artifacts, lack of immediate 
pathologist interactivity with the surgeon, time spent for tissue 
delivery, processing, and analysis reporting back to the operating 
room (7, 8).

Handheld (i.e., size of a pen), portable confocal laser endomi-
croscopy (CLE) is undergoing exploration in brain tumor surgery 
because of its ability to produce precise histopathological infor-
mation of tissue with subcellular resolution in vivo in real-time 
during tumor resection (8–13). CLE is a �uorescence imaging 
technology that is used with a combination with �uorescent 
drugs or probes. While a wide range of �uorophores have been 
used for CLE in gastroenterology and other medical specialties, 
�uorophore options are limited for in vivo human brain use due 
to potential toxicity (8, 9, 11, 14). Fluorescent dyes currently 
approved for use in vivo in the human brain include �uorescein 
sodium (FNa), indocyanine green, and 5-aminolevulinic acid 
(5-ALA) (9, 15, 16). Other �uorescent dyes, such as acridine 
orange, acri�avine (AF), and cresyl violet, can be used on human 
brain tissue ex vivo (12, 17). In neurosurgical oncology, CLE has 
been used to rapidly obtain optical cellular and cytoarchitectural 
information about tumor tissue as the resection progresses and 
to interrogate the resection cavity (12, 13). �e details of system 
operation have been previously described in detail (8, 12, 13, 18). 
Brie�y, the neurosurgeon may hold the CLE probe by the hand, 
�xate it with a �exible instrument holder in place, or may glide 
the probe across the tissue surface to obtain an “optical biopsy” 
with an image acquisition speed ranging between 0.8 and 20 
frames per second dependent on operation of the particular CLE 

system. �e surgeon may place the probe in a resting position 
at any time and proceed with the tumor resection, then take up  
the probe conveniently as desired. CLE imaging is believed to be 
potentially advantageous for appraisal of tumor margin regions 
or to examine suspected invasion into functional cortex near 
the �nal phases of tumor resection. �e images display on a 
touchscreen monitor attached to the system. �e neurosurgeon 
uses a foot pedal module to control depth of scanning and image 
acquisition. An assistant can also control the acquisition of 
images using a touchscreen. CLE images can be processed and 
presented as still images, digital video loops showing motion, or 
three-dimensional digital imaging volumes. CLE is a promising 
technology with the strategy to optimize or maximally increase 
the resection of malignant in�ltrating brain tumors and/or to 
increase the positive yield of tissue biopsy. CLE may be of especial 
value during surgery when interrogating tissue at the tumor bor-
der regions or within the surgical resection bed that may harbor 
remnant malignant or spreading tumor.

Cancer is the subject of intense investigation into how thera-
nostics may improve care and survival. As oncology is continu-
ally re�ned in its quest to understand and treat malignant brain  
tumors, such as GBMs, with which it has had very little success, 
utilization of precision and personalized surgical techniques 
would seem to be a logical step forward, especially as tumor 
resection is usually the �rst de�nitive treatment step. Dealing with  
the abundance of images from CLE is not unlike si�ing through  
a myriad of genes, proteins, or other structural or metabolic 
markers to �nd something of commonality or uniqueness in 
cancer that might indicate a potential treatment scheme or target. 
CLE data acquisition is vast, burdened with a near-overwhelming 
number of images, many of which appear not useful at �rst 
inspection, although they may have unrecognized informative 
image subregions or characteristics. Mathematical algorithms  
and computer-based technology may rapidly assist making deci-
sions upon an incredible number of images, such as CLE pro-
duces, that has never been encountered in neurosurgery.

Critical success in theranostics relies on the analytical method. 
Finding meaning can be elusive, and what may seem at �rst 
meaningful may only be super�cial or even a spurious result, thus 
the analytical methodology is critical. In this review, we provide 
a detailed description of bioinformatical analysis methodol-
ogy of CLE images that begins to assist the neurosurgeon and 
pathologist to rapidly connect on-the-�y intraoperative imaging, 
pathology, and surgical observation into a conclusionary system 
within the concept of theranostics. We describe methodology 
of deep convolutional neural networks (DCNNs) applied to 
CLE imaging focusing on neurosurgical application and review 
current modeling outcomes, elaborating and discussing studies 
aiming to suggest a more precise and tailored surgical approach 
and work�ow for brain tumor surgery.

DEMANDING IMAGING INFORMATION 

LOAD OF CLE

Although the number of non-diagnostic CLE images has been 
shown to be high, the �rst diagnostic frames were acquired at 
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an average a�er the 14th frame (about 17 s) in vivo (12). �is is 
certainly faster than for an intraoperative frozen section biopsy 
preparation and diagnostic interpretation. Nevertheless, the high 
number of non-diagnostic images imposed a signi�cant time  
requirement and image storage load for subsequent image reviews,  
leading us and other groups to employ deep learning algori-
thms and neural networks that could potentially sort out non- 
diagnostic frames, while retaining only the diagnostic ones (19, 20).  
Attempts to use advanced feature coding schemes to classify  
cellular CLE images of brain tumor samples stained ex vivo with 
AF have been reported (21). Advantageously, acquired CLE 
images may be exchanged and translated for o�-site digital histo-
pathology review. However, large amounts of data may create an 
information overload that requires novel solutions for data CLE 
management and storage.

While CLE has obvious bene�ts of rapid on-the-�y digital 
imaging of tissue that can obviate long wait times for tissue inter-
pretation and be quickly communicated between surgeons and 
pathologists, there are challenges to manage the amount of infor-
mation provided. Current CLE systems can generate hundreds to 
thousands of images over the course of examination of the tumor 
or resection cavity which may take only a few minutes. It has been 
estimated that since CLE technology was put into use in 2011 
for gastrointestinal (GI) diagnosis, over 100 million images have 
been created, with 30 million images created in the past year (22). 
�e number of images may become rapidly overwhelming for the 
neurosurgeon and neuropathologist when trying to review and  
select a diagnostic or meaningful image or group of images as  
the surgical inspection progresses. CLE is designed to be used in 
real-time while the surgeon operates on the brain, but overcoming 
the barriers of image selection for diagnosis is a key component 
for making CLE a practical and advantageous technology for the 
neurosurgical operating room.

Other barriers for revealing underlying meaningful histology 
are motion and blood artifacts (especially) that are present in 
some of the CLE images, especially for CLE systems functioning 
in the blue laser range versus near-infrared (8, 9, 12, 23, 24). In 
addition, the neuropathologist must begin to work in a world of 
�uorescence images showing shades of gray, black, and white or 
arti�cial colorization, where before natural colored stains existed. 
�e display of suboptimal nondiagnostic (ND) frames interferes 
with the selection of and focuses upon diagnostic images by the 
neurosurgeon and pathologist throughout the surgery to make 
a correct intraoperative interpretation. A previous study of CLE 
in human brain tumor surgeries found that about half of the 
acquired images were interpreted as nonuseful (i.e., ND) due 
to an inherent nature of the handheld microscopic probe with a 
narrow �eld of view that is subject to motion and blood artifacts 
or lack of discernible or characteristic features of the tissue itself 
(12). �ese artifacts or inherent aspects of operation of the probe 
include unsteady hand movements, moving the probe while in 
imaging mode across the tissue surface, and irregularities of the 
tissue surface such as a tumor resection bed in the cortex that 
includes tissue crevices, surface irregularities, bleeding, move-
ment of the cortex with arterial pressure and respiration, etc.

�us, although imaging is acquired on-the-�y, an image dis-
crimination system to optimally si� out and identify useful 

images would substantially improve the performance of the CLE. 
Manually �ltering out the ND images before making an intra-
operative decision is challenging due to the large number of 
images acquired, the novel and frequently unfamiliar appearance 
of �uorescent stained tissue features compared with conven-
tional histology. Interpretation of �uorescence CLE images for 
routine clinical pathology has only recently been trained and 
studied. Great variability among images from the same tumor 
type, and potential similarity between images from other tumor  
types for the untrained interpreter (Figure 1) make simple image 
�lters and thresholding unreliable, thus requiring advanced com-
putational methods.

THERANOSTICS AND CLE

Investigations into cancer genetics have produced treatment 
pathways by the application of bioinformatics methods leading 
to the concept of theranostics. As advances in molecular science 
have enabled “�ngerprinting” of individual tumor with genomic 
and proteomic pro�ling, personalized theranostic agents can be 
developed to target-speci�c tumor microenvironment compart-
ments (26). Although theranostic imaging provides new oppor-
tunities for personalized cancer treatment through the interface 
of chemistry, molecular biology, and imaging, quantitative image 
analysis remains as one of its challenges (27). More sophisticated 
image analysis methods are required to visualize and target every 
aspect of the tumor microenvironment in combination with 
molecular agents (28). CLE technology potentially allows a more 
personalized, precise, or tailored approach to the surgical proce-
dure to remove an invasive brain tumor because of its capability 
to image at cell resolution intraoperatively on-the-�y. Fluorescent 
stains or markers allow the imaging and potential targeting of 
cells—nearly we are at the surgery of the “cell” as speci�c stains 
or �uorescent markers are developed. Whether this technology 
has practicality or yields survival bene�t for malignant invasive 
brain tumors awaits the results of the �rst substantial in  vivo 
explorations.

DEEP LEARNING APPLICATION IN CLE 

BRAIN TUMOR DIAGNOSTICS

Deep convolutional neural networks are a subset of “deep learn-
ing” technology, a machine learning sub�eld that has achieved 
immense recognition in the �eld of medical image analysis. 
Advances in computer-aided detection and diagnosis (CADx) 
systems in ultrasound, MRI, and computed tomography have 
been reviewed previously (29). �ere have been only a few 
studies that investigated deep learning application to enhance 
the diagnostic utility of CLE imaging in brain tumors. �e utili-
zation of deep learning approaches is mainly focused around 
three goals: diagnostic image detection, tumor classi�cation, and 
feature localization originating from image segmentation. Here, 
we provide an overview of the basics of a deep learning metho-
dology applicable to CLE images, summarize current results of 
brain tumor CLE image analysis using DCNNs, and juxtapose 
these with related works in other cancers.
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FIGURE 1 | Representative confocal laser endomicroscopy (CLE) images from glioma and meningioma acquired with Optiscan 5.1, Optiscan Pty., Ltd. (A) 

anaplastic oligodendroglioma, (B) recurrent astrocytoma, (C) glioblastoma multiforme, (D) fibrous meningioma (grade I), (E) chordoid meningioma (grade II), and (F) 

atypical meningioma (grade II). Field of view = 475 μm × 475 μm, resolution = 1,024 pixels × 1,024 pixels, bar = 100 µm. [Glioblastomas are a brain malignancy of 

astrocytic cell origin, show wild pleomorphism, proliferation of abnormal tumor-associated vasculature, necrosis, and vast brain invasion. Meningiomas arise from 

meningothelial cells and are usually attached to the dura. Although of a common origin, meningiomas have histological pattern subtypes and more aggressive types 

show atypical or anaplastic features. They do not display malignant brain infiltration (25)].
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A DCNN consists of several layers, each having multiple units 
called feature maps (30). �e �rst layer includes the input images 
that will be analyzed. To produce the second layer’s feature maps, 
each pixel of layer 2 is connected to a local patch of pixels in layer 
1 through a �lter bank followed by an activation function, which 
is usually a recti�ed linear unit because of its fast-to-compute 
property compared with other functions (31). Model parameters 
are learned by minimizing the loss (the error between model  
prediction and the ground truth) using an optimization algori-
thm in two steps: forward and backward propagations (32, 33).  
To adjust the weights of �lter banks, a�er each iteration of forward 
propagating the network, the derivatives of the loss function with 
respect to di�erent weights are calculated to update the weights 
in a backward propagation (33). A pooling layer accumulates the 
features in a smaller region by replacing windows of a feature 
map with their maximum or the average value. By stacking sev-
eral convolutional, pooling, and fully connected layers, a DCNN  
can learn a hierarchy of visual representations to recognize class- 
speci�c features in images (30). Figure  2 shows an example 
network architecture and how the feature maps are calculated to 
perform diagnostic brain tumor image classi�cation.

�e validity of recommendations resulted from the DCNN 
analysis greatly depends upon the ground truth established by 
the expert professional. Unlike other conventional surgical tissue 
examination modalities like hematoxylin and eosin (H&E)-
stained histopathological slides, the CLE images are novel to 
neuropathologists and neurosurgeons. Since the beginning of 
CLE investigation in brain tumor surgery, the ground truth was 
established by surgical biopsy and subsequent standard histo-
pathology analysis acquired from the same location as the CLE 

“optical biopsy” and correlating the features on CLE images to the 
histopathological sections. Neuropathologists and neurosurgeons 
at a few select centers are correlating CLE features to histopathol-
ogy in order to establish an expertise in reading CLE images, and 
such investigations are ongoing (10, 12, 18). �e experience in 
CLE image interpretation is imperative for meaningful DCNN 
analysis. However, as described later, delving deeper into the 
DCNN analysis of the CLE while using ground truth established 
by the standard histopathology, results in identi�cation of novel 
CLE features and allows many more images that may be termed 
suboptimal to in fact become useful. �e improvement in 
work�ow and diagnostics, and thus theranostics in CLE, will be 
dependent on robust computer learning architecture.

Tumor Classi�cation
One of the �rst deep learning approaches for making a diagnosis 
of a brain tumor type based on the CLE images was a cascaded 
deep decision network (DDN), a type of DCNN (35). A network 
was trained for classi�cation of glioma and meningioma images 
using their previously proposed multistage DDN architecture (36) 
for developing the model. �e training process was as follows: 
LeNet, a relatively shallow CNN architecture initially proposed 
by LeCun et al. (37) for handwritten digit recognition, was trained 
on the training dataset until it produced descent classi�cation 
results on validation images. �en, the images were divided into 
two categories: easy images (classi�ed correctly by the model 
with high con�dence) and challenging images (classi�ed either 
wrongly or even correctly yet with a low con�dence). �e chal-
lenging images were passed to the next stage for retraining. In 
the second stage, a convolutional stage and two fully connected 
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FIGURE 2 | Deep convolutional neural network (DCNN) architecture. A schematic diagram of AlexNet (34), a DCNN architecture that was trained on CLE images for 

diagnostic classification by Izadyyazdanabadi et al. (20), is shown in panel (A). CONV1—CONV5 are the first five convolutional layers and FC6 and FC7 are the fully 

connected layers 6 and 7. Different feature maps of the first convolutional layer (color images) were calculated by convolving different filters (red squares) with the 

corresponding regions of the input image [illustrated in panel (B)].
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layers and a so�max layer were stacked to the previous network 
and trained, while freezing the previous layers’ parameters. A�er 
training the second stage on the challenging images from stage 1,  
the same process was repeated (�nding con�dence threshold, 
�ltering the easy images, passing the challenging images to next 
stage, stacking the new layers to the previous network) until the 
model fails to improve on the validation dataset. A�er removing 
uninformative images using image entropy, a dataset was created 
of about 14,000 GBM and 12,000 meningioma images. �e �nal 
proposed DDN could classify the GBM images with 86% accu-
racy while outperforming other methods such as SVM classi�er 
applied on manual feature extraction, pretrained networks, and 
shallow CNNs (36).

We have previously developed an architecture to classify CLE 
images from experimental brain gliomas into three classes: tumor 
tissue, injured brain cortex tissue (no tumor), and normal brain 
cortical tissue (38). �is study was undertaken to examine the 
ability of CLE image analysis to discriminate between tumor 
tissue, tissue subjected to the minor tissue trauma that surgical 
resection produces, and normal brain tissue. FNa may extravasate 
in the �rst two situations potentially causing surgeon confusion. 
�is classi�cation model was inspired by Inception, which is a 
DCNN for classifying generic images (39). Due to the small size 
of our training dataset (663 diagnostic images selected from 1,130 
images acquired), we used �ne-tuning to train the model with a 
learning rate of 0.001. We used a nested le�-out validation method 
to estimate the model performance on images from new biopsies. 

Images were divided into three data sets based on biopsy level: 
training (n =  446), validation (n =  217), and test set (n =  40). 
Model performance increased to 88% when images were classi-
�ed using two classes only (tumor tissue or non-tumor tissue) 
which was only slightly lower than the neuropathologists’ mean 
accuracy (90%). �e sensitivity and speci�city of the model in 
discriminating a tumor region from non-tumor tissue were 78  
and 100%, respectively. �e area under the ROC curve (AUC) value  
for tumor/non-tumor tissue classi�cation was 93%. Subgroup 
analysis showed that the model could discriminate CLE images 
from tumor and injury with 85% accuracy (mean of accuracy for 
neuropathologists was 88%), 78% sensitivity, and 100% speci�city. 
We expect that performance of the model will be improved in 
terms of accuracy and speed by going forth from a small experi-
mental data set to operation on large clinical data sets.

Diagnostic Image Classi�cation
Entropy-based �ltering is one of the simplest ways to �lter out 
non-diagnostic CLE images. In a study by Kamen et al. (21), CLE 
images obtained from brain tumors were classi�ed automatically. 
An entropy-based approach was used to remove the noninforma-
tive images from their dataset and two common brain tumors 
(meningioma and glioma) were di�erentiated using bag of words 
(BoW) and other sparse coding methods. However, entropy 
might not be an ideal method since many ND images have nearly 
as high entropy as diagnostic ones, as shown in Figure 3. Due 
to the large number of CLE images produced during surgery, 
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TABLE 1 | The composition of our dataset in the diagnostic image  

classification (20).

Development Test Total

No. of patients 59 15 74

No. of images 16,366 4,171 20,537

No. of diagnostic images 8,023 2,071 10,094

No. of nondiagnostic images 8,343 2,100 10,443

Number of patients and images used for model development and testing is provided.

FIGURE 3 | Entropy of diagnostic (orange) and nondiagnostic (ND) (blue) images. The overlap between the entropy of diagnostic and ND CLE frames limits its 

feasibility for precise discrimination between the two classes (19).
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importance of data pruning, as has been shown in our previous 
study (38), and the incompetency of entropy method, we devel-
oped a deep learning model for reliable classi�cation of images 
into diagnostic and non-diagnostic categories (20). A blinded 
neuropathologist and two neurosurgeons pro�cient with CLE 
image interpretation individually annotated all the images in our 
dataset. For each patient, the histopathological features of cor-
responding CLE images and H&E-stained frozen and permanent 
sections were reviewed and the diagnostic value of each image 
was examined. When a CLE image revealed any clear identi�able 
histopathological feature, it was labeled as diagnostic; otherwise, 
it was labeled as ND (12). Table 1 provides the composition of 
our dataset. We tested the developed diagnostic frame detection 
models on 4,171 CLE images chosen from various patients iso-
lated during training.

Aiming to improve the diagnostic image classi�cation method, 
we then developed 42 new models, which included 30 single and 
12 ensemble models using 2 network architectures, 3 training 
regimes, and 2 ensemble methods (20). During training of each 
single model, di�erent sections of the dataset were used to re�ect 
the diversity of training data in the developed models’ knowledge. 
We exercised various training regimes to investigate how “deep” the 
training should be for CNNs applied to a CLE image classi�cation 
problem to produce optimal (i.e., diagnostically useful) results. 
Depending on which layers of the network are being learned 
through training, we had three regimes. In the deep training (DT) 

regime, the whole model parameters were initialized randomly 
(training from scratch) and were updated through training. In 
the shallow �ne-tuning (SFT) regime, the whole model weights, 
except the last fully connected layer, were initialized with the 
corresponding values from the pretrained model and their values 
were �xed during training. �e last fully connected layer was 
initialized randomly and was tuned during training. In the deep 
�ne-tuning (DFT) regime, all model weights were initialized with 
the corresponding values from the pretrained model and were 
tuned with nonzero learning rates. Our cross validation showed 
SFT and DFT experiments required 10 times smaller initial learn-
ing rates (0.001) compared with the DT regime (0.01). We also used 
a dropout layer (ratio = 0.5) and L2 regularization (λ = 0.005).

For this interobserver study, we created a validation review 
dataset consisting of 540 images randomly chosen from the test 
dataset in the second review. Two new neurosurgeons reviewed 
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FIGURE 4 | A schematic diagram of interobserver study. Gold standard was defined using the initial review and one of the secondary raters. The agreement of the 

ensemble model as well as the other rater with the gold standard is calculated (20).
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the validation review dataset without having access to the cor-
responding H&E-stained slides and labeled them as diagnostic 
or ND. �e ensemble of DCNN models for detecting diagnostic 
CLE images achieved 85% agreement with the gold standard 
de�ned by the trained expert with subsequent con�rmation by 
another independent observer (Figure  4), without considering 
or comparison to the H&E slide images. In comparison, the two 
trained neurosurgeons achieved 75 and 67% agreement with the 
gold standard using only CLE images. �ese results indicated that 
when only CLE images were provided, the model could detect 
the diagnostic CLE images with better agreement to the H&E-
aided annotation. �e example CLE images assessed with our 
diagnostic analysis model are presented on Figure  5. In order 
to compare the power of deep learning models with �ltering 
approaches used in other related studies, we used entropy as a 
baseline (21, 35). Subsequent evaluation of our test dataset of 
CLE images suggested that DCNN-based diagnostic evaluation 
has a higher agreement with the ground truth compared with the 
entropy-based quality assessment (Table 2).

Feature Localization and Image 

Segmentation
Most of the current object localization studies in medical imag-
ing use supervised learning that requires an annotated dataset for 

the training process. Physicians need to review the images and 
mark the location of interesting areas for each image, thus mak-
ing it a costly and time-consuming process. Weakly supervised 
localization (WSL) methods have been proposed in computer 
vision to localize features using a weaker annotation, i.e., image-
level labels instead of pixel-level labels.

We have previously investigated feature localization on brain 
tumor CLE images (20). Following the training and testing of 
the DCNN model for diagnostic image classi�cation, 8 of 384 
reviewed colored neuron activation maps from the �rst layer of 
the model were selected for 4 diagnostic CLE images represen-
tative for glioma. Selected activation maps highlighted diag-
nostic tissue architecture patterns in warm colors. Particularly,  
selected maps emphasized regions of optimal image contrast, where  
hypercellular and abnormal nuclear features could be identi�ed, 
and could serve as diagnostic features for image classi�cation 
(Figure 5, bottom row). In addition, a sliding window method 
was successfully applied to highlight diagnostic aggregates of 
abnormally large malignant glioma cells and atypically hyper-
cellular areas (20) (Figure 5). Such feature localization from the 
hidden layers makes the interpretation of the model results more 
illustrative and objective, especially from a clinical point of view 
where diagnosis cannot be made without su�cient evidence. In 
addition, model-based feature localization can be performed 
considerably faster than human inspection and interpretation.
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TABLE 2 | Deep convolutional neural network (DCNN) and entropy-based 

performance in diagnostic image classification (20).

Model Accuracy (%) Area under the ROC curve

DCNN 1 78.8 0.87

DCNN 2 81.8 0.89

Entropy-based 57.20 0.71

DCNN methods showed higher agreement with the neurosurgeons’ evaluation. 

DCNN2 (39) has a deeper architecture with fewer parameters than DCNN1 (34).

FIGURE 5 | Unsupervised semantic localization of the CLE histopathological features (20). First row displays the original CLE images, along with the probability of 

each image being diagnostic (D) and nondiagnostic (ND), estimated by the model. Red arrows mark the cellular regions recognized by a neurosurgeon. Second row 

shows the corresponding activation of neurons from the first layer (conv1, neuron 24) (shallow features learned by the model); it highlights some of the cellular areas 

(in warm colors) present in the images which were identified as diagnostic regions by the neurosurgeon reviewer. The color bars show the relative diagnostic value 

for each color: red marks the most diagnostic regions (1.0) and blue marks the ND regions (0.0). Field of view = 475 μm × 475 μm, 

resolution = 1,024 pixels × 1,024 pixels, bar = 100 µm.
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In another study, we applied a state-of-the-art WSL approach 
(40) to localize glioma tumor features in CLE images (41). In 
this method, a global average pooling layer was stacked to the 
convolutional layers of the network to create diagnostic feature 
maps. Representative localization and segmentation results are 
shown in Figures  6 and 7. A neurosurgeon with expertise in  
CLE imaging identi�ed and highlighted the cellular areas in 
each CLE image (�rst column of both �gures). By inserting the 
images and their labels (i.e., overall diagnostic quality: diagnostic 
and ND) to the network, the model automatically learns the 
primary diagnostic features of gliomas (e.g., cellular areas). In 
Figure 6, the �rst column shows three CLE images along with 
the annotated diagnostic areas (red arrows) by a neurosurgeon, 
while the second column presents the diagnostic areas that the 
model highlighted with warm colors. �e color bar near to each 
intensity map shows the relative diagnostic value for each color—
red marks the most diagnostic regions and blue marks the ND 
regions. In Figure 7, a�er producing the diagnostic feature maps, 
each image was then segmented into diagnostic and ND regions 
by thresholding (highlighted in green and purple); the recog-
nized diagnostic regions correlated well with the neurosurgeon’s 

annotation. �is method has two potential bene�ts: (1) improve-
ment of the e�ciency of glioma CLE imaging by recognizing the 
present diagnostic features and guiding the surgeon in tumor 
resection and (2) further investigation of the detected diagnostic 
regions may extend the physician’s perceptions about the glioma 
appearance and its phenotypes in CLE images.

DEEP LEARNING-EMPOWERED CLE 

DIAGNOSTICS IN OTHER CANCERS

Oral Squamous Cell Carcinoma (OSCC)
Oral squamous cell carcinoma is a common cancer a�ecting 1.3 
million cases worldwide annually (42). Because of the insu�-
cient precision in current screening methods, most OSCC cases  
are unfortunately diagnosed at advanced stages leading to poor 
clinical outcome. CLE has allowed in vivo examination of OSCC 
which may lead to earlier and more e�ective therapeutic outcomes  
during examination (43). In a study by Aubreville et al. (44), a 
CNN was trained to classify normal and carcinogenic CLE image 
patches. A dataset of 11,000 CLE images was evenly distributed 
between the two classes. �e images were acquired from 12 patients 
and images with artifact (motion, noise, mucus, or blood) were 
excluded, leading to 7,894 good quality images. Consequently, 
each image was divided into 21 overlapping patches, all of which 
were labeled the same as the whole image. �e artifact patches 
were removed from images and the remaining ones were normal-
ized to have zero mean and unit SD. Image rotation was used to 
augment the image dataset size.

LeNet was used to train the model for patch classi�cation. 
�is network has only two convolutional and one fully connected 
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FIGURE 6 | Histological glioma feature localization with a weakly supervised 

approach: global average pooling (41). (A,C,E) Left column shows CLE 

images from glioma cases [(A,C) recurrent infiltrating astrocytoma  

(E) oligodendroglioma]. Red arrows mark the cellular regions recognized  

by a neurosurgeon. (B,D,F) Second column shows the important regions 

detected with the model (highlighted in warm colors). The color bars show 

the relative diagnostic value for each color: red marks the most diagnostic 

regions (1.0) and blue marks the nondiagnostic regions (0.0). Field of 

view = 475 μm × 475 μm, resolution = 1,024 pixels × 1,024 pixels, 

bar = 100 µm.

FIGURE 7 | Diagnostic image segmentation in CLE images of gliomas with 

global average pooling approach (41). First column (A,C,E) shows the 

original diagnostic images from glioma cases [(A) recurrent glioblastoma 

multiforme, (C) recurrent infiltrating astrocytoma, and (E) anaplastic 

oligodendroglioma]. Red arrows mark the cellular regions recognized  

by a neurosurgeon. (B,D,F) Second column shows the segmented key 

features highlighted in purple. Field of view = 475 μm × 475 μm, 

resolution = 1,024 pixels × 1,024 pixels, bar = 100 µm.
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layers with drop out. �e model combined the probability scores 
from each constituent patch as being carcinogenic to arrive at the 
�nal prediction for the whole image. �e network was trained 
from scratch with initial learning rate of 0.001 and Adam opti-
mizer to minimize the cross-entropy.

To compare the proposed method with conventional 
textural feature-based classi�cation approaches, two feature 
extraction methods [gray-level co-occurrence matrix (GLCM) 
and local binary patterns (LBP)] and a classi�cation approach 
[random forest (RF)] methods were combined to discriminate 
images at two scales (1.0× and 0.5×). Furthermore, CNN 
transfer learning was explored by SFT the last fully connected 
layer of the pretrained Inception-v3 network (45), using the 
original dataset. For cross validation, a leave-one-patient-out 
cross validation was followed, meaning images were used from 
one patient for testing the model and the remaining cases for 
training the model.

Both the patch-based and whole image CNN approaches 
outperformed the textural feature extraction and classi�cation 
methods. �e proposed CNN method could di�erentiate the 
normal and carcinogenic CLE images with 88% accuracy, 87% 
sensitivity, and 90% speci�city when applied at 0.5× scale (the 
1× scale produced suboptimal results). �e shallow �ne-tuned 
Inception-v3 model could also achieve 87% accuracy, 91% sen-
sitivity, and 84% speci�city. �e AUC values for the two methods (the 
proposed CNN and Inception-v3) were roughly similar (95%). 
�e AUC values for feature extraction methods and RF classi�er 
was signi�cantly lower than CNN methods (RF-GLCM = 81%, 
RF-LBP = 89%). Interestingly, the trained model on OSCC CLE 
images was successfully applied for classi�cation of CLE images 
from a di�erent organ site, vocal cord squamous cell carcinoma.

In transfer learning with pretrained Inception-v3, the authors 
only modi�ed the weights of the last layer, while keeping the 
previous layers parameters stationary. However, studies (20, 46) 
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have shown that deeply �ne-tuning the pretrained networks may 
help the network adapt better to the new dataset by upgrading 
the feature extraction layers as well. However, SFT only allows 
updating the classi�cation layer, which might not be su�cient  
for optimal performance.

Vocal Cord Cancer
To di�erentiate between healthy and cancerous tissue of vocal 
cords, Vo et al. (47) developed a BoW based on textural and CNN 
features using a dataset of 1,767 healthy and 2,657 carcinogenic 
images from �ve patients. Small patches with 105  pixel  ×  105 
pixel size were extracted and augmented (with rotation), leading 
to 374,972 patches. For the textural feature-based classi�cation, 
each image was represented by the concatenation of all its con-
stituent patch-driven feature descriptors. For the CNN features, a 
LeNet shallow CNN was trained on the patch dataset for a binary 
classi�cation (with SGD optimizer; momentum = 0.9 and learn-
ing rate = 0.0005). To create the visual vocabulary, two feature 
encoding [Fisher vector (48) and Vector of Locally Aggregated 
Descriptors (VLAD) (49)] and two classi�cation methods 
(SVM and RF) were tested for comparing their classi�cation 
performance.

A Leave-One-Sequence-Out cross validation was used to eva-
luate these methods. �e CNN features combined with VLAD 
encoder and RF classi�er achieved an accuracy of 82% and sen-
sitivity of 82% on the test images that surpassed other approaches. 
However, despite its promising accuracy, the proposed multi- 
stage approach (patch creation, feature extraction, feature enco-
ding, clustering, and classi�cation) is much more complicated 
than the current end-to-end DCNN architectures, which have 
all these procedures embedded in their stacked layers. However, 
even with this approach, the CNN features could outperform 
textural features extracted manually (47).

Lung Cancer
Gil et al. (50) investigated visual patterns in bronchoscopic CLE 
images for discriminating benign and malignant lesions and 
aiding lung cancer diagnosis. A pretrained network developed 
by the visual geometry group (VGG) (51) on a large generic 
image dataset was used for feature extraction and reduced the 
resulting feature vector dimension from 4,096 to 100, while 
preserving roughly 90% of the original feature vector energy 
for computational e�ciency. �ree di�erent methods [k-means, 
k-Nearest Neighbor (kNN), and their proposed topology-based 
approach] were applied on the feature codes to group images with 
similar features together and intrinsically discriminate images 
from benign and malignant tissue. Model predictive power was 
compared with the �nal diagnosis on 162 images from 12 cases 
(6 with malignant and 6 with benign lesions) and achieved 85% 
accuracy, 88% sensitivity, and 81% speci�city.

Interobserver studies were performed with three observers 
to compare the subjective visual assessment of images with the 
model performance (the observers were blinded to the �nal 
diagnosis). Interestingly, the three observers could make a cor rect 
diagnosis only for 60% of the selected CLE images (sensitivity: 
73% for malignant and 36% for benign images) on average.  
In the second experiment, two observers made a �nal diagnosis 

a�er examining all the images from each case. �e model was 
also supplied with all the images from each of the 12 cases and 
rendered a �nal decision for each case. While the model could 
di�erentiate malignant and benign cases with 100% accuracy 
(12/12), the two observers could con�rmatively make the cor-
rect diagnosis only in 67% (8/12) of cases.

Although the observers’ knowledge in the domain might 
have a�ected their performance, the objective results suggest 
that the bronchoscopic CLE images contain enough visual 
information for determining the malignancy of the tumor 
and the VGG network is an excellent candidate for extracting 
these discriminative features. �e proposed topology-based 
clustering method could outperform common clustering and 
classi�cation methods (k-means and kNN) in di�erentiating the 
two classes of images.

Despite its advantages, the proposed method had two major 
limitations. First, even though it can di�erentiate images from 
the two classes, it cannot predict the label for each cluster. 
�e method can separate the images into two groups, but it 
is not able to give information about their labels. Second, it is 
unclear if there was independent development (for determin-
ing model parameters) and test datasets to avoid bias in model 
development.

GI Tract Cancer
Hong et  al. (52) proposed a CNN architecture for classifying  
CLE images from three subcategories of Barret’s esophagus: 
intestinal metaplasia (IM), gastric metaplasia (GM), and neo-
plasia (NPL). �e network was composed of four convolutional 
layers and two max-pooling and fully connected layers. �e size 
of convolutional kernels was 3  ×  3 and zero padding was also 
used. Stride of max-pooling was 2  ×  2 which was applied in 
layers two and four. Fully connected layers followed the fourth 
convolutional layer, and each had 1,024 neurons. �e output label 
was determined by a so�max layer which produced three prob-
abilities for each subcategory.

�e network was trained on the augmented CLE images of 
Barret’s esophagus (155 IM, 26 GM, and 55 NPL) for 15,000  
iterations with the batch size of 20 images. Cross-entropy was 
used as a cost function in their experiment. �e trained model 
was then tested on 26 independent images (17 IM, 4 GM, and 5 
NPL) for validation. �e imbalance in size of di�erent subcate-
gories caused the model to observe more frequent instances of  
IM and NPL compared with GM during training. �is created 
a bias in the model prediction which can be seen in the high 
accuracy for predicting IM and NPL instances (100 and 80%) and  
very low accuracy for predicting GM instances (0%). However, 
CLE is being used with increasing frequency for detecting pre-
cancerous and cancerous lesions in the GI tract. �e highest 
numbers of CLE images have been acquired from the GI tract 
where such imaging technology has been approved for use clini-
cally for a few years.

CONCLUSION

Precision, personalization, and improved therapeutics in medi-
cine can only progress with improved technology, analysis, and 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


11

Izadyyazdanabadi et al. Theranostics for CLE

Frontiers in Oncology | www.frontiersin.org July 2018 | Volume 8 | Article 240

logic. �e science and philosophy of theranostics is the nexus 
of these. Several studies have emphasized the importance of  
theranostic imaging in personalized treatment of cancer (26–28). 
Medical data acquired on patients has become more voluminous, 
and it will continue in such manner. �e amount of data avail-
able and necessary for analysis has already eclipsed human 
capabilities. For example, the new technology of handheld 
surgical tools that can rapidly image at the cellular resolution 
on-the-�y produces more images than a pathologist can pos-
sibly examine. As CLE technology develops, there will not be 
one �uorophore, but multiple �uorophores applied directly to 
the tumor or administered to the patient varying from nonspe-
ci�c to speci�cally identifying cell structures or processes used  
simu ltaneously and presented in a myriad of image combinations  
for greatly varying histopathology. Analytic methods for selec-
tion and interpretation of the CLE images is already being 
explored to be incorporated into CLE operating systems, so that 
the unit display can di�erentiate tissue and label the image as 
well with near-on-the-�y capabilities. Computational hardware 
power and e�ective analytic model infrastructure are the only 
two limits. CLE systems and other related systems are being 
produced by several imaging technology companies and groups 
and are close to approval with European and American medical 
device regulatory agencies. However, it seems prudent given 
the enormous numbers of images already produced and those 
projected with adoption of such technology, that there is imme-
diate exploration into such image analysis methods to allow the 
pathologist and neurosurgeon to make optimal decisions based 
on the CLE imaging and to take advantage of the on-the-�y 
technology proposition.

Success or meaningful diagnostic and therapeutic indication 
in the burgeoning �eld of theranostics is only as good as the 
data incorporated and the methodology employed for analysis 
and to extract meaning, including its validation. In many cases, 
relatively simple statistics have been used for analysis, while 
pattern recognition or neural network techniques may be used 
in more complicated scenarios. For images such as from CLE, 
the whole image may be important, or perhaps only certain 
subregions, or crucial data may lie in regions on cursory inspec-
tion deemed to be nonuseful, such as in areas of motion artifact. 
Complicating this situation are the overwhelming numbers 
of images yielded from the CLE application. Clinical decision 
environments currently require assistance to not only access and 
categorize the collection of images but to also draw conclusions 
and inferences that have critical diagnostic and treatment con-
sequences. A pathologist and neurosurgeon will not have time 
to inspect a thousand images per case, especially in the midst 
of CLE use intraoperatively. �erefore, a theranostics approach, 
i.e., the nexus of biological data, rapid informatics scrutiny and 
evaluation, and tailored human decision, must be employed as 
we venture into realms of ever increasing information in neu-
rosurgery in search of personalization and precision, especially 
as we have encountered it �rst in the surgery and treatment of 
malignant invasive brain tumors. In addition, pathologists and 
neurosurgeons will need to become versed in the methodology 
of the CLE decision making processes to have con�dence in 
diagnostic labels and to base treatment decisions upon them, 

thus the reason for presenting details of analytical architectures 
in this review.

Two DCNN-based approaches are reviewed in this paper: 
models that can automatically classify CLE images [classi�ca-
tions of images that are diagnostic/ND (20), glioma/nonglioma 
(19), tumor/injury/normal (38)] and models that can localize 
histological features from diagnostic images using weakly 
supervised methods (41). Manually annotated in-house datasets 
were used to train and test these approaches in most of the stud-
ies. For the tumor classi�cation purpose, data pruning could 
enhance the results for both DCNN models and outperformed 
manual feature extraction and classi�cation (21). Fine-tuning 
and ensemble modeling could enhance the model performance 
in the diagnostic image classi�cation. �e ensemble e�ect was 
stronger in DT and DFT than SFT developed models.

Despite extensive research on CLE clinical application in 
neurosurgery (9–14, 18), there have been few attempts in the 
automatic analysis of these images to enhance CLE clinical util-
ity. Deep learning could be bene�cial in �ltering the ND images 
with higher speed and reasonable accuracy compared with 
subjective assessment (19). Our inter-rater agreement evaluation 
(20) showed that the proposed model could achieve promising 
agreement with the gold standard de�ned by a majority assess-
ment by neurosurgeon reviewers. Overall, results suggest that 
DCNN-based diagnostic evaluation has a higher agreement with 
the ground truth than the entropy-based quality assessment used 
in other studies (21, 35). Furthermore, such methods suggest that 
semantic histological features may be highlighted in CLE images 
as con�rmed by a neurosurgeon reviewer. �is shows that the 
DCNN structure could learn semantic concepts like tumor type 
or diagnostic value of CLE images through di�erent levels of 
feature representation. Early results show that WSL-based glioma 
feature localization was able to precisely mark the cells in the 
images. DCNNs are also much faster than handcra�ed methods 
at deployment phase. Our deeply trained models could classify 
about 40 new images in a second, while the handcra�ed method 
takes 5.4 s to process single image (21).

Other confocal imaging techniques may be aided by such 
deep learning models. Confocal re�ectance microscopy (CRM) 
has been studied (53, 54) for rapid, �uorophore-free evaluation 
of brain biopsy specimen ex vivo. CRM allows preserving the 
biopsy tissue for future permanent analysis, immunohistochemi-
cal studies, and molecular studies. Proposed DCNN classi�ca-
tion and localization approaches are well suited for analysis and 
interpretation of CRM images as well as CLE. Further studies 
on application of DCNN on CRM images are needed to further 
validate their utility for intraoperative diagnosis.

Continued use of unsupervised image segmentation methods 
to detect meaningful histological features from confocal brain 
tumor images will likely allow for more rapid and detailed 
diagnosis. With the large rate of images produced, a technology-
free and unassisted approach to analyze the CLE images would 
impede the exploitation of maximal pathological information 
during surgery. Accessible databases of CLE images would allow 
various image analysis methods to be tried on large numbers of 
images. Such image collection strategies are part of the platform 
of the relatively new International Society for Endomicroscopy. 
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DCNNs can enhance extraction and recognition of CLE diag-
nostic features that may be integrated into the standard brain 
tumor classi�cation protocols similarly to the current research 
�ow in the whole-slide digital image analysis for personalized 
cancer care (55, 56). �is may re�ne current diagnostic criteria 
and potentially aid the discovery of novel-related features. 
With such technology, neurosurgery truly enters the realm of 
theranostics in the operating room itself—we are on the verge of 
highly tailored and precise surgery at the cellular level. Such an 
approach is critical for neurosurgery because surgery and treat-
ment for an invasive brain tumor frequently deals with spread 
into eloquent cortex—the areas that make us “human.” In fact, 
even before entering the operating room the neurosurgeon can 
begin to discuss strategy with the patient if tumor is located or 
not located in eloquent cortex based on a CLE “optical biopsy.” 
�us, theranostics also involves treatment strategies and deci-
sions of when to “stop,” especially true when the CLE system 
intraoperatively reveals cells invading, for example, primary 
motor or language cortex. With analytical pathologists uniting 
di�erent clinical and morphological information for an inte-
grated diagnosis, such a computer-aided CLE analysis work�ow 
would improve imaging (diagnostics) and achieve maximal, 

more precise removal of tumor mass (therapy) as the initial 
treatment goals toward greater precision, personalization and 
success in the surgery and treatment of malignant invasive brain 
tumors (theranostics).
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