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prospects of GWAS and predictive 
breeding for european winter 
wheat’s grain protein content, 
grain starch content, and grain 
hardness
Quddoos H. Muqaddasi1,6*, Jonathan Brassac1, erhard ebmeyer2, Sonja Kollers2, 

Viktor Korzun2, odile Argillier3, Gunther Stiewe4,7, Jörg plieske5, Martin W. Ganal5 & 

Marion S. Röder1

Grain quality traits determine the classification of registered wheat (Triticum aestivum L.) varieties. 

Although environmental factors and crop management practices exert a considerable influence 
on wheat quality traits, a significant proportion of the variance is attributed to the genetic factors. 
to identify the underlying genetic factors of wheat quality parameters viz., grain protein content 

(GPC), grain starch content (GSC), and grain hardness (GH), we evaluated 372 diverse European 
wheat varieties in replicated field trials in up to eight environments. We observed that all of the 
investigated traits hold a wide and significant genetic variation, and a significant negative correlation 
exists between Gpc and GSc plus grain yield. Our association analyses based on 26,694 high-quality 
single nucleotide polymorphic markers revealed a strong quantitative genetic nature of Gpc and GSc 

with associations on groups 2, 3, and 6 chromosomes. The identification of known Puroindoline-b 

gene for GH provided a positive analytic proof for our studies. We report that a locus QGpc.ipk-6A 

controls both GPC and GSC with opposite allelic effects. Based on wheat’s reference and pan-genome 
sequences, the physical characterization of two loci viz., QGpc.ipk-2B and QGpc.ipk-6A facilitated 

the identification of the candidate genes for GPC. Furthermore, by exploiting additive and epistatic 
interactions of loci, we evaluated the prospects of predictive breeding for the investigated traits that 

suggested its efficient use in the breeding programs.

Quality traits have a signi�cant bearing on the end-use and monetary value of the wheat grain. In Germany, bread 
wheat varieties are registered at the Federal Plant Variety O�ce (Bundessortenamt) according to four classes. 
Based on the quality parameters, the wheat varieties are classi�ed as (1) E-class, i.e., elite quality, (2) A-class, 
i.e., A-quality, (3) B-class, i.e., bread making, and (4) C-class, i.e., used for stock-feed purposes (https ://www.
bunde ssort enamt .de). Together with the sedimentation values (e.g., SDS and Zeleny tests), falling number and 
minerals, protein content, starch content, and grain hardness are among the leading parameters that form the 
basis of quality criteria of wheat.

�e wheat grain protein content (GPC) in�uence gliadin to glutenin ratio that eventually govern the vis-
coelastic properties and bread-making quality of  dough1,2. High protein wheat ensures maximum dividends for 
the farmers and low protein wheat—especially in the years of high protein discounts and premium—imposes 
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substantial �nancial losses on the  producers3. Coupled with grain yield (GY), improving the GPC is, therefore, 
one of the principal targets of virtually every wheat breeding program. Nevertheless, there exists a tight negative 
correlation between the wheat GPC and  GY4,5. �e GPC is in�uenced by the ambient environmental factors 
such as annual precipitation, crop rotation and cultivation practices, and soil fertility management systems, e.g., 
application of arti�cial nitrogen  fertilizers6–8. However, GPC in wheat varieties is also typically regarded as a 
quantitative trait: it is controlled by a concerted action of several small- to medium-e�ect genetic loci. In addition 
to crop management practices, identi�cation of trait-underlying loci is deemed a sustainable agricultural strategy 
to improve the genetic gains over time. For this purpose, several studies described quantitative trait loci (QTL) for 
GPC in bi-parental or diverse mapping populations in  hexaploid9–14,  tetraploid15–18, and hybrid  wheat19–21. Little 
is, however, known about the genes determining the inheritance of GPC in wheat. A map-based cloning approach 
identi�ed a NAC [for NAM (NO APICAL MERISTEM), ATAF1/ATAF2 (Arabidopsis thaliana ACTIVATING 
FACTOR), and CUC1/CUC2 (CUP-SHAPED COTYLEDON)]22,23 transcription factor (NAM-B1) as a causa-
tive gene underlying high GPC locus (GPC-B1) that originated from the wild emmer wheat Triticum turgidum 
ssp. dicoccoides24,25. �e wild emmer wheat allele accelerates the senescence and results in (1) increased nutrient 
remobilization from leaves to the developing grains, and (2) increased grain protein, iron, and zinc content.

Starch is a major storage component of wheat grain endosperm. Being composed of two polymers viz., 
amylose, and amylopectin in the ratio of 1:3, the grain starch content (GSC) a�ects the end-use value of bread, 
e.g., dough rheology, bread staling, and crumb  structure26,27. �e GSC positively correlates with the increase in 
grain size and, eventually,  GY28. Besides quantity, the quality of starch granules (physicochemical properties) 
helps determine the �our quality, �our yield, and water retention capacity of dough—a vital trait that in�uences 
the loaf volume. �e GSC, however, shows negative correlation with the GPC. �is warrants the �ne-tuning of 
GPC and GSC in experimental lines to maintain the right protein levels while keeping high  GY29,30. Although 
the genetic nature of GSC is less quantitative than GPC, similar to GPC, genes determining the inheritance of 
GSC in bread wheat varieties are unknown. A major QTL controlling the B-type starch granule content was 
 discovered31,32 in wild Aegilops species. Recently, the causative gene was identi�ed as an ortholog of the rice gene 
FLOURY ENDOSPERM 6 coding for an unknown protein containing a CBM48  domain33,34.

Grain hardness (GH) of wheat—primarily determined by the endosperm texture—is a physical quality trait 
that is used for market grading. �e world wheat trade is largely carried out based on the GH grades. Based on 
the endosperm texture, wheat is generally graded into so�, medium-so�, medium-hard, hard, and extra-hard 
 types35. So�er wheat kernels are easily fractured and result in a large number of intact starch granules, whereas, 
harder types need relatively more power-consumption to mill and, therefore, produce coarser and damaged 
starch  granules36. �e wheat GH is distinguished by the expression of a major hardness (Ha) locus located on 
chromosome  5DS37–39. �e Ha locus harbors the genes that encode 15-kD marker protein called friabilins that 
determine wheat so�ness. �e friabilins are composed of a mixture of two lipid-binding puroindoline a and b 
(pinA and pinB)  polypeptides38. It was demonstrated that mutations in the Pin genes control the hardness or so�-
ness in wheat  grains39. Several alleles of the Pinb-D1 locus are known and were characterized in wheat  varieties40.

Since most of the wheat quality parameters harbor a quantitative genetic architecture, genome-wide predic-
tion—based on high-density molecular markers—to predict the total genetic value of a trait becomes a method 
of choice in applied breeding  programs41. Recently, genome-wide prediction on wheat populations of diverse 
genetic backgrounds suggested that wheat quality traits can be predicted with high  accuracy12,20,21,42,43.

Here, we evaluated GPC, GSC, and GH in a panel of registered European winter wheat varieties in �eld tri-
als. Our analyses showed that a high and signi�cant genetic variation exists for wheat grain quality traits. Our 
association analyses with high-density single nucleotide polymorphism arrays revealed a quantitative genetic 
architecture with a few loci being signi�cantly associated with the investigated traits. Exploiting wheat’s refer-
ence genome  sequence44 and genomic diversity across varieties sequenced within the framework of wheat pan-
genome, we identi�ed putative candidate genes determining the inheritance of the investigated traits. We also 
studied the prospects of predictive breeding, and the results suggested that genomic selection can be performed 
to improve the genetic gains for wheat quality traits.

Results
Phenotypic data analyses reveal significant genetic variation, high heritability, and high cor-
relation among wheat grain quality traits. �e assessment of three wheat grain quality traits viz., grain 
protein content (GPC (%)), grain starch content (GSC (%)), and grain hardness (GH (%)) was performed in 
replicated trials in three to eight environments (Table 1) on a set of 372 (358 winter type; 14 spring type) wheat 
varieties registered for European markets (Table S1). We observed a signi�cant genotypic variance, consistent 
performance, and positive average Pearson’s product-moment correlation ( 

−

r  = 0.57–0.75) across all the environ-
ments for the investigated traits (Fig. S1a–c; Tables S2a–c and Table S3a–c). Since quality traits are reported to 
in�uence thousand-grain weight (TGW (g)) and grain yield (GY ( dtha−1)), we evaluated the grain quality data 
against multi-environment TGW and GY data taken from a previous  study45. �e distribution of the best linear 
unbiased estimations (BLUEs) calculated across environments showed a wide genotypic variation in all of the 
investigated traits (Fig. 1a–e; Table 1). Moreover, we observed a signi�cant Pearson’s product-moment correla-
tion (r) among the quality traits plus TGW and GY. �e GPC exhibited a signi�cant negative correlation with 
both GSC and GY while a positive correlation with GH. On the other hand, GSC showed a positive correlation 
with GY and was negatively correlated with GH. Interestingly, TGW was generally neutral for the investigated 
quality traits (Fig. 1f). �e ANOVA revealed that both genotypic and environmental variation was signi�cantly 
larger than zero with the broad-sense heritability estimates ranging from 0.88 to 0.91 (Table 1 and Table S3a–c), 
exhibiting the high quality of the phenotypic data. �e signi�cant genotypic variation and high broad-sense 
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heritability estimates are imperative for e�cient genome-wide association studies (GWAS) and genome-wide 
prediction of the traits. 

Population structure and linkage disequilibrium do not alter significantly by increasing the 
marker density. In the �rst step, the whole panel (n = 372) was genotyped with the SNP genotyping (35 k 
and 90 k) arrays plus 27 functional candidate-gene markers, which resulted in 26,694 high-quality markers (p) 
with 10,823 markers having known genetic mapping (p̂) locations (Figs. S2 and S3; Table S4a, b). Secondly, we 
increased the marker density on a sub-set (half) of the population (n = 186; Trost-set)—that represented the 
complete genotypic diversity space of the full-set—by additionally genotyping with the 135 k array (Fig. S4; 
Table S4c). In total, the quality criteria imposed on the markers combined from the arrays (35 k, 90 k, and 135 k) 
plus the candidate genes on the trost-set resulted in 47,245 high-quality markers, including 29,359 markers with 
known genetic mapping (p̂) locations (Fig. S5; Table S4c).

�e population structure analyzed via principal component (PC) analysis showed the absence of distinct 
sub-populations in our full-set panel with the �rst two PCs explaining only 12.6% of the total variation, most 

Table 1.  Summary statistics of the investigated wheat grain traits, viz., grain protein content (GPC), grain 
starch content (GSC), and grain hardness (GH). Environments number of environments in which the 
corresponding trait was investigated, σ 2

G
 genotypic variance, σ 2

E
 environmental variance, σ 2

e  residual variance, α 
signi�cant at the P < 0.001.

Parameter GPC GSC GH

Minimum 10.57 66.56 40.62

Mean 11.66 69.20 50.48

Maximum 14.14 70.58 57.65

Environments 8 3 4

σ
2
G

0.29 α 0.55 α 10.32 α

σ
2
E

1.04 α 1.36 α 0.44 α

σ
2
e

0.24 0.22 5.13

H
2 0.91 0.88 0.91

Figure 1.  Phenotypic distribution and correlation of the investigated traits in a panel of 372 wheat varieties. 
Distribution of (a) grain protein content (%), (b) grain starch content (%), (c) grain hardness (%), (d) 
thousand-grain weight (g) and (e) grain yield (dt  ha-1); (f) Pearson’s product-moment correlation (r) among the 
investigated traits. P-value denotes the signi�cance of the respective correlation.
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possibly because the panel was composed of recently registered European wheat varieties. However, there was 
a clear classi�cation among the varieties based on the alleles of the Rht-D1 locus (Fig. S2b). �e PC analysis on 
the representative trost-set with increased marker density yielded similar results, and the �rst two PCs explained 
only 11.1% of the total variance (Fig. S5). Since the trost-set is representative of the genotypes in the full-set, the 
distribution of panel based on Rht-D1 marker alleles remained similar (Fig. S5b). Further detailed analyses of the 
structure of the population have been presented earlier using various marker types and  densities46,47, and despite 
increasing the marker density in this study, our results remain consistent with the previous studies.

�e linkage disequilibrium (LD; r2 ) decayed rapidly by increasing the genetic distances. �e LD decay �at-
tened at ~ 5-cM in both full- and trost-set panels, suggesting that—as observed in the PC analyses—increasing 
marker density above a certain level neither improves population strati�cation nor LD-decay pattern (Figs. S3a 
and S6a). �e sub-genome-wise allocation of the marker loci followed the expected distribution in both full- and 
trost-set panels; most of the markers were mapped on the B-genome followed by A- and D-genomes (Figs. S3b 
and S6b). Nevertheless, as shown in a previous  study47, it should be noted that an increase in marker density 
may help in capturing the loci that impart increased genotypic variance and is, therefore, vital for the GWAS.

GWAS reveal medium- to large-effect loci and putative candidate genes in the full-set of 
wheat varieties. We performed GWAS based on di�erent statistical models and, consistent with the theory, 
the model correcting for both the population structure and familial relatedness was the most stringent to avoid 
type-l errors and, therefore, was adopted in this study. �e risk of type-ll errors was avoided by observing the 
distribution of null vs. alternative hypotheses in quantile–quantile (qq) plots. Our GWAS revealed the quantita-
tive genetic nature of the studied traits and identi�ed marker-trait associations (MTA) on chromosomes 2B, 
3B, and 6A for GPC; 2B, 3A, 3B, and 6A for GSC; and chromosome 5D for GH (Fig. 2; Tables 2 and S5a–c). In 
total, 15 MTA were detected for GPC, while 29 and two MTA were detected for GSC and GH, respectively. �e 
total genotypic variance ( pG ) imparted by all MTA for GPC, GSC, and GH amounted to 19.75%, 34.56%, and 
14.66%, respectively. Since, 35 MTA were unmapped according to the genetic map used in our study (i.e., based 
on ITMI mapping population), the chromosome and genetic position of unmapped MTA were retrieved from 

Figure 2.  Summary of the genome-wide association studies (GWAS) of investigated traits, viz., grain protein 
content, grain starch content, and grain hardness in a panel of 372 registered wheat varieties. (a) Manhattan 
plots show the distribution of marker signi�cance (−log

10
P − value) along wheat chromosomes. �e dashed 

red line indicates the signi�cance threshold based on false discovery rate (FDR) of P < 0.20 . (b) Quantile–
quantile plots show the distribution of observed vs. expected (red dashed line) −log

10
(P − value) . �e naïve 

represents the GWAS without correction for population structure, the PC[1–3] represents the GWAS with 
population structure corrected with the �rst three principal components (PC), the G represents the GWAS with 
familial relatedness corrected with a genomic relationship matrix (G), and the PC[1–3] + G represents the GWAS 
corrected with both PC[1–3] and G matrix. Di�erent GWAS models are color coded, and the results of PC[1–3] + G 
model are displayed in the Manhattan plots for individual traits.
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other published  studies48,49—this helped to assign 14 more markers to the chromosomes. It should be noted that 
the chromosomal assignments of the MTA from both the mapping resources generally concur, but the genetic 
positions di�er—this is because the genetic positions were calculated based on di�erent mapping populations. 
�e largest amount of variation was explained by chromosome 2B-QTL (QGpc.ipk-2B; pG = 11.41%) for GPC; 
6A-QTL (QGsc.ipk-6A; pG = 13.20%) for GSC; and 5D-QTL (QGh.ipk-5D; pG = 14.91%) for GH (Table 2). Inter-
estingly, the chromosome 6A-QTL, i.e., QGpc.ipk-6A and QGsc.ipk-6A—represented by markers AX-94973054 
and Tdurum_contig46828_730 (70.20-cM), respectively—controlled both the GPC and GSC; these two markers 
imparted 8.37% and 8.21% of the genotypic variance for GPC and 13.06% and 13.20% for GSC, respectively 
(Table S5a,b). 

Representative genetic nature and GWAS of the trost-set help confirm the full-set’s QTL with 
increased intra-QTL marker density. Being the representative of the full-set (Fig S4b), the phenotypic 
distribution, genotypic variance, and average across-environment Pearson’s product-moment correlation of 
the trost-set lines mirrored the full-set (Figs. S1a–c and Fig. S7a–c; Tables S6a–c and Table S7a–c). �e addi-
tional genotyping of the trost-set with the 135 k marker array resulted in high-quality markers (p = 47,245) that 
were ~ 1.77 times more than the full-set’s marker (p = 26,694) genotypes (Figs. S2a and S5a). As stated elsewhere, 
the high-end genotyping array was employed to see (1) the impact of high marker density on the PC and LD 
analyses, and (2) to con�rm the full-set’s QTL with high intra-QTL marker density. From our PC analysis of the 
trost-set, the increased marker density showed similar results as for the full-set: the two-dimensional scatter plot 
of the �rst two PCs—as seen for the full-set (Fig. S2b)—showed the separation of the varieties based on the Rht-
D1 alleles and explained only 11.1% of the total variance (Figs. S5b). Similar to the PC analyses, our LD analyses 
on the trost-set also showed a similar trend, with LD decaying at ~ 5-cM (Fig. S6a). �e PC and LD analyses on 
the representative trost-set, nevertheless, show that the full-set’s total genotypic diversity space was adequately 
covered.

In total, GWAS performed on the trost-set—by keeping the same model parameters, as described for the full-
set—identi�ed the MTA on chromosomes 2B, 5A, and 6A for GPC, and 5A and 5D for GH. No MTA could be 
identi�ed for GSC (Fig. S8; Table S8a–c). �e increased marker density in trost-set resulted in the detection of 
28 MTA for GPC and four for GH. As expected, the increased marker density helped in capturing the improved 
total genotypic variance imparted by the complete set of MTA that amounted to 56.16% and 39.21% for GPC 
and GH, respectively; substantially larger than that explained by the full-set’s complete MTA, i.e., 19.75% and 
14.66% for GPC and GH, respectively. �e largest amount of variation was explained for GPC by the QTL on 
chromosome 6A (QGpc.ipk-6A; pG = 23.42%), and GH on chromosome 5D (QGh.ipk-5D; pG = 16.75%).

QGpc.ipk-6A shows opposite allelic nature for grain protein and grain starch content in 
wheat. Two markers on chromosome 6A, viz., AX-94973054 and Tdurum_contig46828_730 were signi�cant 
for both GPC and GSC. For further analyses, we selected the marker AX-94973054 as the representative SNP of 
the 6A-QTL since it imparted more genotypic variance as compared to Tdurum_contig46828_730 (Table S5a,b). 
�e box-and-whisker plots of AX-94973054 marker alleles revealed an opposite allelic e�ect for GPC and GSC: 
AX-94973054-T increased the GPC but decreased GSC (Fig. 3a,b). Two more loci for GPC were detected on 
chromosomes 2B (with a total of 10 markers, including the most signi�cant marker wsnp_BG274584B_Ta_2_3), 
and 3B with three markers (Table S5a). However, none of those markers showed an e�ect on GSC. For both loci, 
i.e., QGpc.ipk-2B and QGpc.ipk-6A, a clustering of varieties were observed in the PCA re�ecting a relatedness of 
the high protein varieties (Fig. 4a–c; Table S1). GPC-increasing alleles were rare with a frequency of 5.1%, 7.0%, 
and 9.1% for AX-94973054-T, AX-94457592-T, and wsnp_BG274584B_Ta_2_3-G, respectively. Moreover, the 
allelic distribution in the varieties showed that GPC increasing alleles were enriched in the top third of varieties. 
�ree varieties (i.e., Runal, Lona, and Mewa) carried all three GPC increasing alleles of QGpc.ipk-2B, QGpc.ipk-
3B, and QGpc.ipk-6A—Runal and Lona were the best GPC perfomers (Table S1a). 

Table 2.  Position and genotypic variance of QTL identi�ed in the full set of wheat varieties for grain protein 
content (QGpc.ipk), grain starch content (QGsc.ipk), and grain hardness (QGh.ipk). *Physical position of 
the markers based on wheat RefSeq v1.1. MTA the number of signi�cant marker-trait associations, Marker 
the name of the marker explaining the largest amount of genotypic variance, pG percentage of the genotypic 
variance explained by the corresponding marker.

QTL Chr Pos. (Mb)* MTA Marker pG

QGpc.ipk-2B 2B 658–674 7 wsnp_BG274584B_Ta_2_3 11.41

QGpc.ipk-3B 3B 731 3 AX-94457592 6.04

QGpc.ipk-6A 6A 572 2 AX-94973054 8.37

QGsc.ipk-2B 2B 106 2 BS00009540_51 -0.17

QGsc.ipk-3A 3A 14–15 5 CAP11_c6193_232 5.01

QGsc.ipk-3B 3B 674–677 10 AX-94842052 10.34

QGsc.ipk-6A 6A 572 2 Tdurum_contig46828_730 13.20

QGh.ipk-5D 5D 4 2 AX-94991433 14.91
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Mapping of the markers on the physical map helps to narrow-down the QTL intervals. In 
total, 18 unique high-con�dence and one low-con�dence gene-IDs were obtained by BLASTing the sequences 
of MTA to the corresponding chromosomes of the reference sequence (RefSeq v1.1) of the wheat genome 
(Table S5a–c). For each trait, the MTA explaining the maximum genotypic variance (QGpc.ipk-2B for GPC, 
QGsc.ipk-6A for GSC, and QGh.ipk-5D for GH) were further investigated.

For QGpc.ipk-2B, seven markers (including wsnp_BG274584B_Ta_2_3) hit two di�erent genes within an inter-
val of ~ 50-kb (658-Mb) that encode a basic helix-loop-helix (bHLH) transcription factor (TraesCS2B02G463800) 
and a receptor-like protein kinase (TraesCS2B02G464000) (Table 3, Table S5a). �ree additional MTA (i.e., 
BobWhite_c47573_560, BS00046166_51, and AX-94507002) clustered ~ 16-Mb downstream (674-Mb) repre-
senting a second potential locus, but as they explained only up to 0.89% of the genotypic variance, they were 
not investigated further.

�e QTL responsible for both GPC and GSC on chromosome 6A was represented by the markers AX-
94973054 and Tdurum_contig46828_730. �ese markers were located ~ 75-kb apart and BLASTed on genes 
TraesCS6A01G338300 and TraesCS6A02G338600 that encoded a kinase family protein and an aminotransferase-
related family protein, respectively (Table 4, Table S5a,b).

�e MTA detected for 5D-QTL of GH corresponded to the gene TraesCS5D02G004300, that encodes Puroin-
doline-b, providing a positive proof of the e�ciency of GWAS to detect true MTA.

characterization of the physical regions of QGpc.ipk-2B and QGpc.ipk-6A revealed potential 
candidate genes for grain protein content in wheat. To analyze the two physical regions, we used a 
similar strategy, as described in Muqaddasi et al.50. More speci�cally, ~ 2-Mb (1-Mb upstream and downstream) 

Figure 3.  Allele-wise phenotypic distribution of the most signi�cant markers associated with (a) grain protein 
content (%), (b) grain starch content (%), and (c) grain hardness (%). �e alleles of marker AX-94973054 (blue 
color) on chromosome 6A display opposite e�ects for grain protein and starch content.

Figure 4.  Principal component (PC) analysis of wheat varieties based on the high-quality marker loci 
combined from the 35 k and 90 k single nucleotide polymorphism arrays plus 27 candidate-genes markers. (a) 
�e scree plot shows the �rst ten PCs and their corresponding proportion of variance. (b) �e two-dimensional 
scatterplot shows the absence of pronounced sub-clustering among the investigated wheat varieties. �e varieties 
are highlighted based on GPC associated marker wsnp_BG274584B_Ta_2_3 alleles representing the QTL QGpc.
ipk-2B on chromosome 2B, (c) the two-dimensional scatterplot shows the absence of pronounced sub-clustering 
among the investigated wheat varieties. �e varieties are highlighted based on GPC/GSC associated marker 
AX-94973054 alleles representing the QTL QGpc.ipk-6A/QGsc.ipk-6A on chromosome 6A. n and p denote the 
number of varieties and the number of high-quality markers used in the analyses, respectively.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12541  | https://doi.org/10.1038/s41598-020-69381-5

www.nature.com/scientificreports/

wheat reference genomic sequence around the most signi�cant markers was retrieved to characterize the QTL 
physical region.

�e physical region of QGpc.ipk-2B (656.79–658.85-Mb) harbored 16 high-con�dence genes (Table S9a). 
�e functional annotation of these genes revealed transcription factors, P-loop NTPases, and protein kinases. 
To narrow-down to putative candidate genes for GPC, the haplotype structure and the nucleotide diversity of 26 
genes were investigated across 12 wheat varieties sequenced within the framework of �e 10 + Wheat Genome 
Project (https ://www.10whe atgen omes.com/). Despite four genes being highly conserved across the 12 analyzed 
varieties, the nucleotide diversity within the region was relatively high. In total, up to four haplotypes were iden-
ti�ed (Table 3): four varieties (Arina, Cadenza, Paragon, and SY-Mattis) shared the same haplotype as Chinese 
Spring over an interval of eight genes (from TraesCS2B02G463800 to TraesCS2B02G464500)—a genomic region 
that harbored genes hit directly by the markers (Fig. 5). �ese varieties harbored the allele wsnp_BG274584B_
Ta_2_3-G that increased the GPC. For example, Arina, a variety present both in our GWAS panel and sequenced 
within the pan-genome framework (�e 10 + Wheat Genome Project), showed a high GPC. Two genes showed 
a high number of substitutions: the receptor-like protein kinase (TraesCS2B02G464000; hit by the marker AX-
158547228) and the neighboring gene TraesCS2B02G464100 coding for a putative kinase. �e latter displayed a 

Table 3.  Functional annotation, haplotype structure, and nucleotide diversity within the haplotype block of 
QGpc.ipk-2B.  �e genes indicated in bold were hit directly by the markers. Gene ID gene identi�er retrieved 
from wheat RefSeq v1.1, H the number of haplotypes, SS the number of synonymous substitutions, NS the 
number of non-synonymous substitutions, Pi the nucleotide diversity.

Gene ID Functional annotation Length H SS NS Pi

TraesCS2B02G463800 Basic helix-loop-helix (BHLH) transcription factor 3,704 4 2 2 1.60E-03

TraesCS2B02G463900 Tudor/PWWP/MBT superfamily protein 6,312 3 4 3 1.85E-03

TraesCS2B02G464000 Receptor-like protein kinase 2,439 2 21 10 7.57E-03

TraesCS2B02G464100 Kinase, putative 4,969 4 88 243 1.10E-01

TraesCS2B02G464200 LEAFY-like protein 3,265 2 0 1 1.10E-03

TraesCS2B02G464300 50S ribosomal protein L11 1944 4 0 0 1.18E-03

TraesCS2B02G464400 Seed speci�c protein Bn15D1B 3,597 4 2 3 3.92E-02

TraesCS2B02G464500 Single hybrid motif superfamily protein 7,969 3 5 19 1.40E-03

Table 4.  Functional annotation, haplotype structure, and nucleotide diversity within the haplotype block 
of QGpc.ipk-6A. �e genes indicated in bold were hit directly by the markers. α represents when multiple 
transcripts were annotated, the number of mutations is indicated if di�erent. β indicate genes having a splice 
region variant compared to the reference sequence. Gene ID gene identi�er retrieved from wheat RefSeq v1.1, 
H the number of haplotypes SS the number of synonymous substitutions, NS the number of non-synonymous 
substitutions, Pi and the nucleotide diversity.

Gene ID Functional annotation Length H SS NS Pi

TraesCS6A02G336900 FRIGIDA interacting protein 1 5,854 3 0 0 1.90E-03

TraesCS6A02G337000 Pentatricopeptide repeat-containing protein 4,947 2 1(0)α 0 1.60E-03

TraesCS6A02G337100 70 kDa heat shock protein 5,635 2 1(0)α 0 1.10E-03

TraesCS6A02G337200 Chalcone–�avonone isomerase 4,034 2 0 0 2.90E-04

TraesCS6A02G337300 Endoglucanase 3,884 3 1 1 2.52E-03

TraesCS6A02G337400 cotton �ber protein 1,047 2 0 1 3.70E-04

TraesCS6A02G337500 50S ribosomal protein L14 546 2 0 0 1.60E-03

TraesCS6A02G337600 Xyloglucan endotransglucosylase/hydrolase 1,362 2 3 1 1.98E-03

TraesCS6A02G337700 MTD1 3,903 2 2 0 4.80E-04

TraesCS6A02G337800 Subtilisin-like protease 2,740 2 1 4 9.80E-04

TraesCS6A02G337900 Subtilisin-like protease 2,341 3 3 4β 1.45E-03

TraesCS6A02G338000 BES1/BZR1 homolog 1 3,052 2 1 3 2.02E-03

TraesCS6A02G338200 Kinase family protein 5,167 2 2 3 1.32E-03

TraesCS6A02G338300 Kinase family protein 4,302 3 10 16β 1.06E-02

TraesCS6A02G338400 MADS-box transcription factor 768 2 6 6 5.60E-03

TraesCS6A02G338500 Subtilisin-like protease 1,132 2 8 14 2.01E-02

TraesCS6A02G338600 Aminotransferase-related family protein 3,004 2 6(10)α 1 2.43E-03

TraesCS6A02G338700 UDP-3-O-acylglucosamine N-acyltransferase 587 3 0 1 9.70E-04

TraesCS6A02G338800 DNA (Cytosine-5-)-methyltransferase 6,048 2 2 4 9.20E-04

TraesCS6A02G338900 Pentatricopeptide repeat-containing protein 2008 2 3 1 7.70E-04

https://www.10wheatgenomes.com/
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modi�cation in its leader sequence (with a potential alternative start codon 42 nucleotides upstream) and a large 
number of coding and non-coding substitutions in six varieties from �e 10 + Wheat Genome Project.

�e QGpc.ipk-6A physical region (570.85–572.93-Mb) harbored 26 high-con�dence genes (Table S9b), and 
the functional annotation of the genes indicated the presence of subtilisin-like proteases, proteins involved in 
the degradation of cellulose and cell-walls, kinases, and also transcription factors. A block of 20 genes (from 
TraesCS6A02G336900 to TraesCS6A02G338900) formed two major haplotypes with two varieties (Landmark and 
Mace), shared the same haplotype as Chinese Spring, and harbored the marker allele AX-94973054-T: an allele 
which increased GPC but decreased GSC (Fig. 6). Interestingly, applying the gene models from Chinese Spring 
over the QTL interval revealed a high number of substitutions, including up to 54 synonymous (depending on 
the splice variants considered) and at least 61 non-synonymous mutations (Table 4). In the QTL region, two 
genes, in particular, were a�ected by large-e�ect mutations compared to Chinese Spring: a 558-bp deletion in 
the 3′ region of the subtilisin-like protease (TraesCS6A02G337900) and a splice region variant overlapping with 
the U-box domain of the kinase family protein TraesCS6A02G338300.

The accuracy of genome-wide prediction for grain quality traits suggest the efficient use of 
genome-wide selection in wheat breeding programs. �e mean prediction accuracies resulting 
from the �ve-fold cross-validation scenario of grain quality traits produced similar results across all three tested 
model scenarios, i.e., the GBLUP model that accounted for the main additive e�ects of markers assuming equal 
variances, BayesB by assuming unequal marker variances, and RKHSR that accounted for both additive and the 
epistatic interaction among the loci (Fig. 7a–c). Since the size of the training population and marker density are 
known to a�ect the outcomes of prediction accuracy, di�erent scenarios were studied by employing both full- 
and trost-set panels with varying marker densities across the whole genome. �e size of the training population 
seems to be the primary driver of high mean prediction accuracies: prediction accuracies were consistently 
higher in full-set variety panel as compared to the trost-set. Moreover, the standard deviation was also consider-
ably higher in the trost-set as compared to the full-set (Fig. 7a–c). Nevertheless, it is worth noting that, consistent 
with the theory, BayesB outperformed both GBLUP and RKHSR for the GH: GH is primarily controlled by a sin-

Figure 5.  Haplotype structure across 12 wheat varieties obtained from �e 10 + Wheat Genome Project in 
the ~ 2-Mb sequence window around the most signi�cant marker of QGpc.ipk-2B. �e varieties included in 
the GWAS analyses are indicated with an asterisk, and their best linear unbiased estimations (BLUEs) for grain 
protein content (GPC) and grain starch content (GSC) are given at the bottom. �e marker names (highlighted) 
are located below the gene IDs from the wheat RefSeq v1.1 that they hit. For each gene, the haplotype structure 
is indicated in reference to Chinese Spring and then numbered according to their frequency across the 12 
varieties. An – indicates the missing data. �e allelic information of a given variety is provided for the markers.
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Figure 6.  Haplotype structure across 12 wheat varieties obtained from �e 10 + Wheat Genome Project in 
the ~ 2-Mb sequence window around the most signi�cant marker of QGpc.ipk-6A. �e varieties included in 
the GWAS analysis are indicated with an asterisk, and their best linear unbiased estimations (BLUEs) for grain 
protein content (GPC) and grain starch content (GSC) are given at the bottom. �e marker names (highlighted) 
are located below the gene IDs from the wheat RefSeq v1.1 that they hit. For each gene, the haplotype structure 
is indicated in reference to Chinese Spring and then numbered according to their frequency across the 12 
varieties. An – indicates the missing data. �e allelic information of a given variety is provided for the markers.

Figure 7.  Accuracy of the genome-wide prediction for (a) grain protein content (%), (b) grain starch content 
(%), and (c) grain hardness (%) based on three di�erent genomic selection models viz., genomic best linear 
unbiased prediction (GBLUP), BayesB and reproducing kernel Hilbert space regression (RKHSR) evaluated 
through 100 random runs of �vefold cross-validation cycles. µ and σ denote the mean prediction accuracy and 
standard deviation of the corresponding model, respectively.
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gle large-e�ect Ha locus. For GPC and GSC, however, RKHSR slightly outperformed both GBLUP and BayesB, 
suggesting that epistatic interaction may be prevalent for these traits.

Discussion
the use of a diverse variety panel revealed the opposite genetic nature of wheat grain protein 
vs. starch content and yield. Improvement of grain quality parameters is considered as one of the top 
priorities in applied wheat breeding. While improving grain yield (GY), breeders—especially in the later cycles 
of breeding programs—pay close attention to the baking and milling quality of wheat grain. Along with biotic 
and abiotic stress resistance, GY and quality parameters form the basis of the success of an experimental line in 
the wheat market. Most of the grain quality parameters are heavily in�uenced by environment, crop manage-
ment, and soil fertility practices. Nonetheless, there exists a level of variation among wheat lines that points to 
the underlying genetic factors controlling the quality traits. Exploiting the genetic variation to improve a given 
trait is a sustainable agricultural practice. We investigated—over several environments—a set of 372 recently 
developed wheat varieties registered for the European market for three important grain quality traits viz., grain 
protein content (GPC), grain starch content (GSC), and grain hardness (GH).

�e existence of a large and signi�cant genetic variation for GPC, GSC, and GH in the studied wheat varie-
ties re�ects the genotypic diversity covering all wheat classes. �e large genotypic variance also translated into 
high broad-sense heritability estimates, pointing to trait-underlying genetic factors. GPC is a major component 
de�ning the quality of a wheat variety while GH in�uences endosperm  texture51. A high positive correlation 
between GPC and GH was previously  reported52 and the physicochemical mechanism connecting puroindolines 
and the starch-protein interaction have been attributed to an interaction of PinA and gliadins in�uencing the 
interaction of prolamins with starch  granules53. Moreover, we observed a signi�cant negative correlation of GPC 
vs. GSC and GY: a phenomenon that was previously reported to be due to the genetic  factors54,55. To improve 
both traits simultaneously, breeding-oriented strategies such as multi-trait genomic selection were  applied43. In 
addition, genetic modi�cation approaches were also suggested, e.g., the ectopic expression of a barley sucrose 
transporter in the so-called HOSUT wheat lines resulted in an increased GPC and  GY56,57. However, genetically 
modi�ed varieties are not accepted in Europe. Although—as noted earlier—GPC can be in�uenced by agronomic 
practices, our goal in this study was to identify the genetic factors determining if a variety is a high or low GPC 
variety. �e QTL described in this manuscript mainly re�ect the di�erences between the di�erent variety types 
regarding GPC.

QGpc.ipk-2B and QGpc.ipk-6A influence grain protein content in European winter wheat varie-
ties. Two QTL regions on chromosomes 2B and 6A were detected in the full-set of varieties, and were con-
�rmed in the trost-set (186 varieties representing the genotypic diversity space of all 372 full-set varieties) with 
increased marker density. While QGpc.ipk-2B only in�uenced GPC, the 6A-QTL controlled both GPC (QGpc.
ipk-6A) and GSC (QGsc.ipk-6A) with opposite allelic e�ects. Most of the high GPC varieties carried only the 
GPC-increasing allele of one locus, indicating that these loci may be present in the germplasm of di�erent 
breeding programs. In both cases, however, a clustering of the alleles for high GPC was observed in the PCA, 
highlighting the relatedness of the high GPC varieties. A number of high-GPC varieties, nevertheless, harbored 
neither of both loci: this may be explained by the relatively low genotypic variances of 8.4% for QGpc.ipk-6A 
and 11.4% for QGpc.ipk-2B. �is also suggests that additional factors are in place which could not be detected in 
this study. �e most signi�cant loci for GSC were located on chromosomes 3A, 3B, and 6A that explained geno-
typic variances of 5.0%, 10.3%, and 13.2%, respectively. �e detection of a QTL for GH harboring the known 
Puroindoline-b gene on chromosome 5D con�rmed the appropriateness of our approach and, therefore, can be 
regarded as proof of concept.

A meaningful comparison to other studies based on genetic maps is di�cult due to the use of di�erent refer-
ence populations and marker types/data sets. A more precise comparison is, however, possible by comparing 
the physical positions of the signi�cant markers; for this strategy, the knowledge about the marker sequences 
is a prerequisite. Jernigan et al.11 reported a QTL for �our protein on chromosome 6A in an association map-
ping panel of so� white winter wheat cultivars in the U.S. Paci�c Northwest. �eir reported signi�cant marker 
IWB31459 is located at 609.4-Mb while our QTL on chromosome 6A located at 572-Mb (Table 2). Likewise, 
a GWAS study in durum  wheat17 reported a GPC QTL on chromosome 3B based on marker IWB13886. �e 
physical location of this marker is 725.7-Mb which is relatively close to the 731-Mb of our GPC-QTL (Table 2). 
Two GPC QTL reported in the same study on chromosome 2B were far from 2B-QTL reported in this study.

the physical structure of QGpc.ipk-6A and QGpc.ipk-2B, nucleotide diversity, and candidate 
gene identification. As previously used to investigate the genetic basis of total spikelet  number50 and sug-
gested by Borril et al.58, the availability of high-quality assemblies of cultivars makes it possible to explore the 
physical regions associated with the MTA. We analyzed the haplotype structure and the nucleotide diversity of 
high-con�dence genes annotated in an interval of 2-Mb around the most signi�cant markers of QGpc.ipk-2B 
and QGpc.ipk-6A. In total, 12 varieties sequenced within the frame of the wheat pan-genome were studied to 
identify potential candidate genes for GPC.

Our analysis of QGpc.ipk-6A revealed that, within a haplotype block of 20 genes, there exists a cluster of genes 
coding for protein kinases and subtilisin-like proteases. �e varieties having the allele AX-94973054-G for low 
GPC and high GSC also had large-e�ect mutations for the subtilisin-like protease TraesCS6A02G337900 and 
the kinase family protein TraesCS6A02G338300. �e processes involved in the development of wheat grain are 
certainly multifaceted; however, regulation of vegetative organ senescence appears to be one of the main  factors59. 
Subtilisin-like proteases were shown to be induced by senescence, redirecting nutrients from leaves during grain 
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�lling in  wheat60. A similar mechanism was identi�ed for the QTL GPC-B1 located on chromosome 6B that 
encoded a NAC transcription factor (NAM-B1) regulating leaf senescence and increasing grain protein, iron, 
and zinc  content24,25. Nevertheless, it is important to note that the QTL identi�ed here, i.e., QGpc.ipk-6A, is not 
the homeolog of GPC-B1 (physical location ~ 77-Mb).

�e highly conserved protein kinases are important regulatory components in plant cells. �ey are involved 
in many pathways, including hormonal, nutrient, and cell-cycle  signaling61. Interestingly, the two genes most 
a�ected by substitutions in the QTL region QGpc-ipk-2B code for a receptor-like kinase and a putative kinase, the 
latter having probably its leader sequence modi�ed. �erefore, non-functional or di�erentially regulated alleles 
at those two loci could be related to low protein content in grain. However, it should be noted that, although the 
homologous physical regions can be compared across 12 cultivars, the gene annotation is, for the moment, only 
based on the reference sequence.

the prospects of predictive breeding for quality traits in applied wheat breeding pro-
grams. For GWAS, we used state-of-the-art high-density SNP arrays and multi-environment robust pheno-
typic data. However, the genotypic variance imparted by total MTA amounted to 19.75%, 34.56%, and 14.66% 
for GPC, GSC, and GH, respectively. A large amount of unexplained genotypic variance can be ascribed to many 
small-e�ect loci and, therefore, extremely complex genetic architecture of the investigated traits. Genome-wide 
prediction—a method that is used to predict the total genetic value of a trait based on all maker loci irrespective 
of their e�ect size—therefore, becomes a method of choice to improve the genetic  gain41. Selection decisions 
based on genomic prediction can be robust and may result in higher genetic gain per unit time in comparison 
to both GWAS when no large-e�ect QTL are identi�ed, and phenotypic selection. For example, recently Bat-
ten�eld et  al.62 reported that genetic gain by employing genomic selection were up to 2.7 times higher than 
phenotypic selection. Also, the cost of genotyping ~ 10,000 wheat lines was equivalent to the phenotypic evalu-
ation of 2,000 lines. �is suggests that, if the genomic prediction accuracy is high, (1) the quality traits can be 
predicted relatively early in breeding programs to make informed breeding decisions, and (2) genetic gains can 
be improved per unit of time and capital investment without having to wait till the latter cycles where only the 
high GY candidates are grown. Based on three di�erent models, our genome-wide prediction accuracy results 
suggest that genetic gains can be improved with high con�dence. Our results are in line with the recent reports, 
where similar genome-wide prediction accuracies for quality traits were reported on wheat panels comprising of 
di�erent genetic  natures12,20,42,43,63. �is warrants the e�cient use of genomic selection in elite breeding programs 
to predict the total genetic merit of individuals.

conclusion
Coupled with a diverse genotype panel, robust phenotyping data collected from several �eld locations, and 
dense molecular markers, the use of modern genomic tools such as the reference sequence and the pan-genome 
of wheat allowed the detection of two QTL for GPC located on chromosomes 2B and 6A. �e physical regions 
underlying these QTL were studied in detail in 12 sequenced wheat varieties. Putative candidate genes involved 
(1) protein kinase and kinase family proteins with potential regulatory functions, (2) a subtilisin-like protease 
that may be involved in the regulation of senescence, (3) transcription factors, and (4) an aminotransferase-
related family protein. �e con�rmation of candidate gene/s will require further functional characterization via 
genome editing or TILLING approaches. �e results of genome-wide prediction show promising prospects in 
applied breeding to improve genetic gains for quality traits.

Material and methods
field trials, collection, and analyses of the phenotypic data. An elite European winter wheat panel 
(GABI) comprising 372 varieties (358 winter type; 14 spring type) was evaluated for three major quality traits 
viz., grain protein content (GPC), grain starch content (GSC), and grain hardness (GH). �e phenotypic data 
of the quality traits were gathered from three to eight environments. Each environment was considered a loca-
tion-by-year combination. �e �eld trials were conducted in an alpha lattice design with two replications per 
environment. More details about the �eld trials, agronomic practices, climatic conditions, and calculation of the 
adjusted entry means per environment are described in Zanke et al.64. �e wheat quality parameters were evalu-
ated using a standard near-infrared approach. �e phenotypic measurements were carried out by the collaborat-
ing seed companies by using sample volumes of 400 g grains per harvested �eld plot and an OmegAnalyzer G 
(Bruins Instruments) applying wavelengths of 730–1100 nm.

�e consistency among the individual trait values was investigated by primarily drawing environment-speci�c 
adjusted mean values as box-and-whisker plots. Moreover, to check the general performance of a given trait 
across environments, we calculated the average correlation by performing Fisher’s z  transformation65 as follows:

Firstly, we calculated bivariate Pearson’s product-moment correlation (r) as:

Secondly, each bivariate correlation coe�cient was transformed into Fisher’s z as:
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�irdly, the mean z was back-transformed to 
−

r  as:

�e above transformation is shown to provide a less-biased estimate of the average correlation as compared 
to the average correlation that is estimated based only on the mean of correlation  values66.

To calculate across-environment individual variance components of the genotype, environment, and the 
residuals, the following linear mixed e�ect model was used by assuming all e�ects except the intercept as random:

where, yij is the phenotypic value (adjusted mean value of a given trait in each environment) of the i th genotype 
in the j th environment, µ is the common intercept term, Gi is the e�ect of the i th genotype, Ej is the e�ect of the 
j th environment, and eij is the corresponding residual term. �e broad-sense heritability (H2) was calculated as:

where σ 2
G

 and σ 2
e  denote the variance components of the genotype and residuals, respectively, and nE represent 

the number of environments. �e best linear unbiased estimations (BLUEs) across environments were calculated 
by assuming the e�ects of the intercept and genotype as �xed in Eq. 4. Moreover, the genetic correlations among 
all the traits were calculated based on their BLUEs computed across environments, as described in Eq. (1).

Analyses of the genotypic data, linkage disequilibrium, and population structure. �e whole 
wheat panel (n = 372) was genotyped with state-of-the-art 35 k A�ymetrix and 90 k iSELECT single nucleo-
tide polymorphism (SNP) arrays that generated 35,143 and 81,587 SNP markers (p), respectively. Furthermore, 
the whole wheat panel was genotyped with 27 candidate-gene markers, as described in Schulthess et al.45. �e 
genetic mapping positions were adopted from the International Triticeae Mapping Initiative (ITMI) map, as 
described in Sorrels et al.67. In total, 35 k and 90 k arrays resulted in 13,344 and 11,676 mapped marker loci. 
�e SNP markers from both arrays plus the scores of the candidate gene markers were combined (resulting in 
an n × p matrix of 372 × 116,757) and subjected to the quality check. �e quality criteria were implemented to 
remove the markers with a minimum of 0.05 minor allele frequency and > 5% missing or heterozygous calls; the 
remaining missing or heterozygous calls were imputed with the mean value of both alleles.

�e extent of linkage disequilibrium (LD; the non-random association of alleles at two or more loci) decay 
over genetic distance greatly impacts the outcome of GWAS and genomic prediction. �e genome-wide LD was 
measured based on the squared correlation (r2)  method68 among all the mapped quality markers as:

where, pa and 
(

1 − pa
)

 denote the frequency of two alleles (a and -a) at locus 1, pb and 
(

1 − pb
)

 denote the fre-
quency of two alleles (b and -b) at locus-2, and pab is the frequency of haplotypes harboring alleles a and b at the 
loci 1 and 2, respectively. �e LD values among the adjacent markers were plotted against the genetic distance 
in the form of boxplots, as described in Muqaddasi et al.47.

�e population structure was assessed by principal component (PC) analysis via singular value decomposi-
tion. �e scree plot (depicting the proportion of variance explained by the �rst ten PCs) and two-dimensional 
scatter plots (showing the grouping of the varieties based on the �rst two eigenvectors) were plotted to show the 
variance present in the studied wheat panel.

The selection criterion of the representative sub-set, high-density genotyping, and genetic 
analyses. Based on the hypothesis that improved marker density across the genome helps improve the out-
come of genetic analyses, we selected a sub-set (n = 186, named as trost-set) of varieties representing the full-
set of varieties (n = 372). �e exercise of increased marker density in the representative set was, in particular, 
executed to (1) check if increased marker density substantially a�ects the outcome of PC and LD analyses, (2) 
con�rm the QTL detected in the full-set of varieties, (3) increase the intra-QTL marker density to identify the 
trait underlying candidate genes, and (4) estimate the impact of increased marker density on the genome-wide 
prediction accuracy of a given trait as opposed to the size of training population. �e trost-set selection criterion 
was based on the varieties covering the complete genotypic diversity space of the full-set revealed in the PC 
analyses.

A�er sub-panel’s selection, we genotyped the trost-set with a high-end 135 k A�ymetrix SNP array (https ://
www.trait genet ics.com). In total, the 135 k array yielded 136,780 SNP markers; 41,171 markers were mapped 
according to the ITMI mapping resources. We combined the trost-set’s 135 k markers with the full-set’s 35 k, 90 k, 
and candidate-gene markers that resulted in an n × p matrix of 186 × 253,537. To obtain high-quality makers, we 
implemented the �ltering, as mentioned above for the full set. On the quality trost-set markers, we performed 
the PC and LD analyses, as described above.
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Genome-wide association studies. �e whole panel was evaluated for the presence of the trait-linked 
markers via genome-wide association studies (GWAS). Let n be the number of wheat lines and p the predictor 
markers. A standard linear mixed linear model was employed as:

where y is the column vector of BLUEs of each genotype calculated in Eq. 4, µ is the common intercept, β , v, u , 
and e are the vectors of markers, population structure (principal components), polygenic background, and 
the error e�ects, respectively; X, P, and Z are the corresponding design matrices. In the model, µ,β , and v 
were assumed to be �xed while u and e as random with u ∼ N

(

0,Gσ
2
a

)

 and e ∼ N(0, Iσ 2
e ) . �e n × n variance-

covariance additive genomic relationship matrix (G) was calculated from an n × p matrix W = (wik) of marker 
genotypes (being 0, 1, or 2) as:

where wik and wjk are the pro�les of the k th marker for the i th and j th variety, respectively; pk is the estimated 
frequency of one allele in k th marker, as described by  VanRaden69. Since population strati�cation and familial 
relatedness can severely impact the power to detect the true marker-trait associations (MTA) in GWAS, di�erent 
methods were used to correct for population strati�cation and relatedness viz., (1) multiple linear regression 
(naïve), (2) correction of population structure by the �rst three principal components (PC[1–3]), (3) correction 
of familial relatedness via genomic relationship matrix G, and (4) correction of both population structure and 
familial relatedness by PC[1–3] and G. It is expected that correcting for both PCs and G in the model enhances 
the detection accuracy of MTA in GWAS. �e models described above were compared by plotting expected 
vs. observed −log

10
(P) values in the form of a quantile–quantile (qq) plot. �e best model was determined by 

checking how well the observed −log
10

(P) values aligned with the expected.
To declare the MTA, a liberal false discovery rate (FDR) to account for multiple testing was applied at 

P < 0.2070. As described by Utz et al.71, the genotypic variance ( pG ) explained by all QTL was determined as:

where R2

adj was calculated as R2

adj = R2
−

(

z
′

N−z
′

−1

)

(

1 − R2
)

 by �tting the MTA (z
′

) in the order of their descend-

ing P-values in a multiple linear regression model; R2,N , and H2 denote the regression coe�cient, number of 
observations, and the broad-sense heritability calculated in Eq. 5, respectively. �e pG explained by the individual 
MTA was accordingly calculated from their sum of squares.

Identification of candidate genes and analyses of the haplotypes based on the wheat varie-
ties sequenced within The 10 + Wheat Genome Project. �e sequences of the signi�cant markers 
(MTA) were �rst BLASTed on the corresponding chromosomes of the reference sequence of the wheat genome 
to retrieve the gene identi�ers and their corresponding functional annotations. Furthermore, we recovered 
the sequences of high con�dence genes and their annotated functional descriptions present within a window 
of 2-Mb (1-Mb upstream and downstream) from the most signi�cant markers for GPC on chromosomes 2B and 
6A (QGpc.ipk-2B and QGpc.ipk-6A). Geneious Prime 2020 (https ://www.genei ous.com) was used for all BLAST 
searches and sequence alignments.

To narrow down the QTL regions and identify putative candidate genes, we analyzed the QTL haplotype 
structure and nucleotide diversity by using the genomic resources available from the wheat pan-genome (https 
://www.10whe atgen omes.com/). For this purpose, 12 out of the 14 sequenced varieties were analyzed; among 
them, eight are assembled in pseudomolecules while the remaining four are available only as sca�olds. Two 
varieties were not included in the �nal analyses: Spelt systematically carried private alleles whereas Lancer had 
a highly divergent genomic region on chromosome 2B but shared the same haplotype as the majority of varieties 
in the QGpc.ipk-6A region. �ree varieties (Arina, Julius, and Robigus) sequenced within the wheat pan-genome 
framework were also analyzed in our GWAS analyses (both full- and trost-set) while Claire was only included in 
the full set. All the gene sequences obtained from the reference sequence (Chinese Spring) were BLASTed against 
the genomes of the 12 varieties using MegaBlast by retrieving the sequences with a 2-kb context to overcome 
masked regions. For the varieties assembled in pseudomolecules, the respective chromosomes were used, and the 
best hits were retrieved. For the remaining varieties, six hits per gene were evaluated and the closest sequence was 
retained—in case of doubt about the homology, the sequence was omitted. �e sequences of each gene were then 
aligned using MAFFT v7.45072,73, and SNPs present in the coding regions were called. �e number of haplotypes 
and the nucleotide  diversity74 were analyzed with DnaSP v675.

Genome-wide prediction. To assess the accuracy of genome-wide prediction for grain quality traits, three 
di�erent genomic selection models viz., genomic best linear unbiased prediction (GBLUP), BayesB, and repro-
ducing kernel Hilbert space regressions (RKHSR) were  employed41,76–78.

GBLUP is a standard robust parametric procedure which exploits the additive e�ects of all the loci to predict 
the total genetic value of the trait under consideration by assuming the equal e�ect variances of all loci. It involves 
the regression of the marker genotypes on the phenotypic data in a linear model of the form:

(7)y = 1µ + Xβ + Pv + Zu + e

(8)G =

∑p
k=1

(

wik − 2pk
)(

wjk − 2pk
)

2
∑p

k=1
pk

(

1 − pk
)

(9)pG =

(

R2

adj

H2

)

× 100

https://www.geneious.com
https://www.10wheatgenomes.com/
https://www.10wheatgenomes.com/
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where µ is a common intercept, X is n × p incidence matrix of marker genotypes,β is a p × 1 vector of marker 
�xed e�ects, and e is a n × 1 vector of error term with the assumption that β ∼ N

(

0, Iσ 2
β

)

 and e ∼ N(0, Iσ 2
e ) . 

By setting g = Xβ , GBLUP takes the form as:

where g ∼ N(0,Gσ 2
a ) and G was calculated, as described above in Eq. 8.

In reality, the distribution of genetic variances across loci is not equal, i.e., segregating loci show variance 
while the non-segregating loci show no variance. BayesB model, being of the same form as Eq. 10, utilizes a scaled 
inverse Chi-squared (χ−2) distribution on the marker variances. �is circumvents the problem of equal variance 
by assuming a prior distribution ( π ; the prior proportion of non-zero e�ects) that yield a scaled t-distribution 
for marker e�ects by using both shrinkage and variable selection methods. Following Pérez and de los Campos 
(2014)79, the prior distribution can be modeled as:

where, N and B denote normal and beta densities; β and σ 2
β represent the vector of regression coe�cients and 

respective variance. To set the hyper-parameters, we implemented the built-in procedures of BGLR, as described 
in Pérez and de los Campos (2014) 79.

�e RKHSR is a semiparametric method that accounts for the additive as well as epistatic interactions among 
loci. It is of the same form as GBLUP (Eq. 11) with the assumption that g = Kα , and thus can be represented as:

where, y,µ and e are the same as described in Eq. 10, and α is the vector of random e�ects. In RKHSR, 

a ∼ N(0,Kσ 2
α ) and K  is n × n symmetric positive-de�nite matrix and is de�ned as Kij = e

(

−h×
d2ij
p

)

 where Kij 
represents the measured relationship between the i th and j th variety based on their marker pro�les, d2ij is the 
Euclidean distance between the i th and j th variety and h is the bandwidth parameter. To determine the optimum 
h , three di�erent values as h = 0.5 × (1/5, 1, 5) were tested in a �ve-fold cross-validation scenario, and the value 
representing the highest accuracy was chosen.

We evaluated the accuracy (rGP) of all prediction models by using a �ve-fold cross-validation scenario. �e 
varieties were randomly divided into �ve subsets; four of them were used as the training set to estimate the genetic 
values of the remaining test set. �e accuracy of prediction was de�ned as the Pearson’s product-moment correla-
tion between the observed (y) and predicted (ŷ) genetic values standardized by the square root of the broad-sense 
heritability as rGP =

cor(y ,̂y)
H  . Since the cross-validation runs were repeated for 100 cycles, mean and standard 

deviation values were calculated to show the performance of the individual genomic prediction model to predict 
the genetic value of the traits. Unless stated otherwise, all calculations were performed in so�ware  R80 mainly 
by using packages lme4 and  rrBLUP81,82.
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