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In the classification and typing of breast cancer, triple-negative breast cancer (TNBC) is
one type of refractory breast cancer, while chemotherapy stays in the traditional treatment
methods. However, the impact of chemotherapy is short-lived and may lead to recurrence
due to incomplete killing of tumor cells. The occurrence, development, and relapse of
breast cancer are relevant to T cell dysfunction, multiplied expression of related immune
checkpoint molecules (ICIs) such as programmed death receptor 1 (PD-1), programmed
cell death 1 ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
produce immunosuppressive effect. Immunotherapy (namely, immune checkpoint
inhibitors, adoptive cellular immunotherapy, CAR-T immunotherapy and some potential
treatments) provides new hope in TNBC. This review focuses on the new immune
strategies of TNBC patients.

Keywords: triple-negative breast cancers, immunotherapy, immune checkpoint molecules, PD1/PD-L1 pathway,
CTLA-4, combination therapy
INTRODUCTION: TREATMENT AND PROGNOSIS OF TNBCs

According to the statistics of the World Health Organization (WHO), approximately 8.2 million
people beings die of most cancers every year, accounting for 13% of international deaths. As one of
the oldest tumors in the records of human civilization, breast cancer is the most clinically diagnosed
cancer (1). In the classification and classification of breast cancer, breast cancer that does not express
estrogen receptor (ER) or the progesterone receptor (PR) and does not amplify ERBB2 [commonly
called human epidermal growth factor receptor 2 (HER2)] amplification are categorized as triple-
negative breast cancer (TNBC), accounting for 10–20% of all breast cancers. TNBC subtypes were
categorized by multi-omics data (2): (1) Intracavity androgen receptor subtype characterized by
means of androgen receptor signal (23%); (2) Immunomodulatory (IM) subtype (accounting for
24% of tumors) with excessive immune cell signal and cytokine signal gene expression; (3) A basal-
like and immune-suppressed (BLIS) (39%) subtype, characterized with the aid of upregulation of
cell cycle, activation of DNA restore and downregulation of immune response genes; and (4) a
mesenchymal-like (MES) subtype rich in breast stem cell pathway (15%). In addition, in the clinical
patient population, we can see that TNBC is more common in young female patients. The tumor is
usually large in size and of high grade, with greater lymph node metastasis at diagnosis, and has a
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high biological aggressiveness. Compared with women with
other breast cancer subtypes, female with TNBC have higher
early distant recurrence rate and worse 5-year prognosis.
Therefore, it is very indispensable to obtain the cure purpose
at an early stage or manipulate disorder inside the controllable
range. Currently, the essential scientific remedies for TNBC
consist of surgical resection, chemotherapy, radiotherapy,
targeted therapy (3). Conventional chemotherapy drugs,
including paclitaxel, anthracycline and alkylating agents, are
prone to systemic toxicity and side effects. In addition, as
patients with advanced TNBC are highly metastatic and
aggressive, it is difficult to achieve good results with targeted
therapy or hormone therapy alone (4).
TNBCs AND IMMUNOTHERAPY

In general, the immune system of healthy individuals is strong
enough to shortly get rid of the mutated most cancers cells, while
the immune function of most cancer patients can’t successfully
recognize and kill tumor cells (5). On the other hand, most
tumor cells have many distinct mechanisms to defend them from
being identified by means of immune cells (6). Different from the
traditional therapies mentioned above, immunotherapy cannot
efficaciously kill most tumor cells alone, however additionally
decorate the immunity of patients, in particular in the removal of
minimal residual lesions and drug-resistant tumor cells. It can
keep away from many shortcomings of other therapies to the
greatest extent (7). Cell immunotherapy, as a new technology
with targeted killing effect on tumor cells, has achieved good
results in clinical application in recent years.

Immune Checkpoint Inhibitors
ICIs are inhibitory molecules expressed on the cell surface, which
are usually involved in regulating the activation of T cells.
Basically, its most essential feature is comparable to the braking
device of an auto-cell, which makes it “brake” in time when the
immune system is activated, continues the activation of the
immune system within normal limits, and avoids over-
activation of the immune system. No matter whether
overexpression or over-function of immune checkpoint
molecules leads to suppression of immune function, resulting in
low immunity and susceptibility to tumor and other diseases (8).
Another way to think about it is that if the immunosuppressive
function of checkpoint molecules is poor, the immune function of
the body will be abnormal. Recent studies have shown that
molecular pathways of immune checkpoints, such as
programmed death ligand 1 (PD-L1) and programmed death
ligand 2 (PD-L2), play a very important negative regulatory role
in tumor immunity (9–11).

CTLA-4 and TNBC
It is conventional that CTLA-4 is a negative regulator, which is
very vital for T cell-mediated immunity. In T cells, CTLA-4 and
CD28 bind to the equal ligands (CD80 and CD86) on antigen
imparting cells and have contrary effects. The interplay between
Frontiers in Oncology | www.frontiersin.org 2
CTLA-4 and its ligand inhibits T cell reaction, and when CD28
and its ligand bind, T cell reaction is activated. The affinity of
CTLA-4 to CD80/CD86 is greater than that of CD28 (12). The
upregulation of CTLA-4 in cancer patients is considered as an
important mediator of immune escape. Studies have shown that
tumor cells of TNBC patients express CTLA-4 in different cell
compartments (13). Its foremost ligand, CD80/CD86, is
expressed in TNBC cell lines and tumors. This means that
blocking CTLA-4 with Ipilimumab (anti-CTLA-4 monoclonal
antibody, which has been accredited as checkpoint inhibitor for
melanoma treatment) can significantly activate the molecular
cascade, which may help enhance the immune response to tumor
cells (14). CTLA-4 expressed on the surface of tumor cells during
the treatment of patients with TNBC may be the target of
checkpoint inhibitors and a candidate biomarker for
immunotherapy. In a word, we believe that the operation or
chemotherapy of TNBC patients, not only can the combination
of targeted immune checkpoint drug therapy play a synergistic
role to a great extent, but also can increase the cure probability of
cancer patients.

PD-1 and PD-L1
PD-1 antibody is a most researched and clinically developed
immunotherapy. PD-1 is expressed in activated T cells, B cells,
and myeloid cells. It has two ligands, PD-L1 and PD-L2. The
binding of PD-1 and PD-L1 mediates the co-inhibitory signal of
T cell activation, suppresses the killing function of T cells, and
performs a negative regulatory role in human immune response
(15–17). In a normal immune system, PD-1 is up to preserve the
position of immune tolerance. Tumor cells can escape immune
surveillance through immune escape. Targeted therapy based on
immunosuppressive receptors and immunosuppressive
checkpoint immunotherapy based on immune molecules are
new hotspots in oncology research (18, 19). It is additionally
discovered that PD-L1 binds to PD-1 receptor on activated T
cells and weakens anti-tumor immunity by inhibiting T cell
activation signal. PD-1+ T cells can partially recover by blocking
PD-1/PD-L1 signaling pathway (20–24). Some studies have
proven that PD-L1 antibody combined with paclitaxel is
effective in treating advanced in the treatment of advanced
TNBCs (25). TNBC subtype research based on multi-group
data shows that immunoglobulin subtype has high immune
cell signal (2). Both clinical and economic characteristics
indicate that immune recognition is activated in IM subtype,
which shows that the mechanism of immune break out of these
tumors may additionally contain the recruitment of
immunosuppressive cells or the activation of immune
checkpoint molecules. Based on what has been discussed
above, we may conclude that high expression levels of immune
checkpoint suppressor genes such as PD1, PD-L1, cytotoxic T-
lymphocyte-associated antigen 4 (CTLA4), and IDO1
(Indoleamine 2,3-dioxygenase 1) may inhibit the activation of
the immune system and lead to the occurrence of TNBC. A
Phase III trials confirmed that Atezizumab (PD-L1 inhibitor)
and nabo-paclitaxel in the treatment of advanced TNBC,
compared with placebo + nabo-paclitaxel, atezizumab +
January 2022 | Volume 11 | Article 797092
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nabo- Paclitaxel can significantly improve the progression-free
survival (PFS) (7.5 months vs 5.5 months, respectively) and
overall survival (OS) (25.0 months vs 15.5 months,
respectively) (26). The response rate of TNBC to ICIs is
higher than that of hormone-receptor positive and HER2-
positive breast cancers. Recently, the inhibitory effect of
carbamazepine plus apatinib on PD-1 in advanced patients
in Phase II trial was found, and carbamazepine plus apatinib
had good tolerance and showed good ORR (43.3%) and PFS in
advanced patients, regardless of lines of therapy and PD-L1
status [NCT03394287] (27). Furthermore, PD-1/PD-L1
inhibitors combined with chemotherapy are more successful
in TNBC than single dose ICIs. These results indicate that
combinations with chemotherapy could increase the response
rate to immunotherapy compared to chemotherapy or
immune checkpoint blockade alone.

We summarize the relevant clinical studies in the treatment of
TNBC by ICIs in recent years (Figures 1–3) (28–43).

Adoptive Cellular Immunotherapy
(CD8+ T Cells)
The tumor immune microenvironment (TIME) plays a critical
role in the progression, response to therapy and prognosis of
most cancer patients. Tumor-infiltrating lymphocytes (TIL) are
one of the predominant components of TIME, and the density
and types of lymphocytes in the TIL fraction of a tumor have
marked prognostic associations in breast cancer. This is
especially actual of TNBC, which has the largest number of
TILs. CD8 T cells are necessary immune cell in TIL (44). The
infiltration of CD8+ T lymphocytes into solid tumors is related to
the good prognosis of various types of cancers including TNBC
(45). The T cell antigen receptor (TCR) of CD8+ T cells
recognizes an antigenic peptide containing approximately 13–
17 amino acids. It consists of major histocompatibility complex I
molecules (MHC-I). Some research have observed that in TNBC
transgenic mouse model, the levels of IFN-g and TNF-a
increased tumor-invasive CD8+ T cells, and subsequently led
to apoptosis (46). Inhibition of Tregs (Regulatory cells)
amplification can enhance the anti-tumor response of CD8+ T
cells, thus affecting the growth of primary breast tumors or the
metastasis of cancer cells to the lung (47, 48). Some studies have
shown that LXR-inverse (Liver-X-Receptors) activation
stimulates immune-mediated tumor destruction by means of
Frontiers in Oncology | www.frontiersin.org 3
improving CD8 T-cell activity in TNBC (49). It has currently
been proved that PARP inhibitor olaparib induces CD8+ T cell
infiltration in TNBC model with a BRCA1-deficient (breast
cancer 1) deficiency by activating STING (interferon gene)
pathway. Similarly, the efficacy of PARP inhibitors depends on
the recruitment of CD8+ T cells in BRCA deficient TNBC model
by activating intracavitary STING pathway (50, 51). STING-
targeted immunotherapy enhances anti-tumor immunity
mediated by natural killer cells and CD8+ T cells. It provides a
theoretical basis for combining PARP inhibitors with CAR-T
(Chimeric antigen receptor T) cell remedy to deal with
TNBC disease.

CAR-T and CAR-NK
CAR-T immunotherapy, which directly retargets the immune
system od the patient to perceive and eradicate tumor cells with
tumor-associated antigens (TAAs), and is presently being
explored as a treatment for TNBCs (52, 53). However,
immunotherapy is a new technology, and many bottlenecks
remain to be overcome. For example, identifying specific goal
tumor antigens and designing effective CAR is one of the many
challenges of CAR-T therapy. Studies have shown that epidermal
growth factor receptor-CAR (EGFR-CAR) lentivirus-infected T
cells have a robust specific inhibitory effect on the growth of
TNBC cells and tumor occurrence in vitro and in vivo (54). Some
s find out about exhibit that ICAM1 (intercellular adhesion
molecule-1)-specific CAR-T cells have been in a position to
efficiently recognize ICAM1 expressing TNBC cells, and they can
effectively minimize the growth of TNBC tumor inside and
outside (55). Recently, the University of Pennsylvania
completed a first phase scientific trial, which studied the
security of injecting c-Met-CAR-T cell into TNBC patients
[NCT01837602] (56). Results Inflammatory reaction was
induced in TNBC tumor, and there was no evidence that drug-
related side effects were greater than grade 1. Up to now, the
research on MUC1 (Mucin1 glycoprotein)-CAR-T cell therapy
has been the most investigated in clinical trials (57). The safety
and efficacy of autologous MUC1-CAR-T cells are proposed to
be evaluated in a phase I/II study in patients with relapsed or
refractory TNBC [NCT02587689] (56). In addition, the
inhibition of TGF-b-receptor signaling augments the anti-
tumor function of ROR1 (receptor-tyrosine-kinase-like orphan
receptor 1)-specific CAR T-cells against TNBC (58). Moreover,
FIGURE 1 | Major published clinical trials using CTLA-4 inhibitors in TNBC.
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when recruiting participants, the safety and tolerance of
allogeneic gamma delta (gd) T cells transduced with CARs
targeting NKG2D ligands on TNBC cells will be investigated in
Phase I clinical trials [NCT04107142] (59, 60). The number of
clinical trials of TNBC that CAR-T cell therapy is increasing,
which may produce some exciting clinical effects. In addition,
NK cells play a prominent role in the innate immune system
because multiple receptors on the surface of the NK cells have
Frontiers in Oncology | www.frontiersin.org 4
been approved to kill cancer cells by interacting with their
ligands of cancer cells, leading to apoptosis o cancer cells.
Studies have shown that tissue factor as a new target for CAR-
NK cell immunotherapy of TNBC (61). As EGFR is a potential
therapeutic target for TNBC, EGFR-specific CAR NK cells
(EGFR-CAR NK cells) is a promising strategy to inhibit tumor
growth in breast cancer cell line-derived xenograft (CLDX) and
patient-derived xenograft (PDX) mouse models (62).
FIGURE 2 | Major published clinical trials using PD-1 inhibitors in TNBC.
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COMBINATION THERAPY

In targeted therapy of TNBC, there are some small molecule
therapeutic targets, namely, PARP, DNA (cytosine-5)-
methyltransferase 1(DNMT1), epidermal growth factor (EGF)
and EGF receptor (EGFR), fibroblast growth factor receptor
(FGFR), vascular endothelial growth factor (VEGF), and VEGF
receptor (VEGFR) (63, 64). In TNBC subtype, basic helix-loop-
helix (bHLH) transcription factors inhibitor of differentiation 1
(ID1) and inhibitor of differentiation 3 (ID3) (referred to as Id)
play a vital role in maintaining cancer stem cell (CSC). Many
molecules have been in preclinical trials. The application of
ispinesib (a small molecule inhibitor in the ID1+ CSC results)
to target the ID/Kif11 pathway, combined with chemotherapy,
gave better response in TNBC subtype (65). This targeting ID1–
Kif11 molecular pathway in the ID1+ CSCs, combined with
chemotherapy and small molecular inhibitor, may reduce TNBC
effect more effectively.

In addition, another promising strategy for combination
therapy is to turn the “cold” tumors “hot” (66). Through a
variety of methods, such as attracting T cell to the tumor
through chemotherapy, radiation therapy, vaccines, and
oncolytic viruses and bispecific antibodies (67). Other
combination strategies include inhibition of other checkpoints or
other immunosuppressive mechanisms, or enhancement of the
activity of other checkpoint agonists, combination therapy to
overcome T cell exhaustion, or conversion of immunosuppression
[e.g., regulatory T cells (Tregs), myeloid-derived suppressor cells]
Frontiers in Oncology | www.frontiersin.org 5
into immunoreactive phenotypes (68, 69). In TNBC, however,
chemotherapy combination of Atezolizumab enhanced the
antitumor efficacy of Nab-paclitaxel only in patients with PD-L1
expression on tumor-infiltrating immune cells [NCT03371017]
(26). On the other hand, chemotherapy combination of
pembrolizumab paclitaxel protein-bound, or paclitaxel, or
gemcitabine plus carboplatin also benefit patients with TNBC
[NCT02819518] (70). Above all, tumors that respond to immune
checkpoint inhibitors are typically so-called thermal or “hot”
tumors with CD8 T cell infiltration, indicating that tumor cells
are recognized by the immune system. CD8 positivity is often
assessed as a predictor of response and a pharmacodynamic marker
of response to combination therapies, which are hypothesized to
enhance T cell infiltration and heat so-called “cold” tumors (71).
Similarly, TNBC features immunological “cold” tumor, which with
limited tumor infiltrating lymphocytes (72). To address this
problem, we need to find a methodological strategy that actively
recruits CD8+ T cells into the tumor microenvironment (TME),
reverses “cold” tumors into “hot” tumors, and significantly
improves their reactivity to ICIs (73).
POTENTIAL THERAPEUTIC DIRECTIONS
AND POSSIBLE STRATEGIES

Mesothelin and TNBC
Tumor-associated antigen-mesothelin (MSLN) is a glycoprotein
that exists on the cell surface and is highly expressed in various
FIGURE 3 | Major published clinical trials using PD-L1 inhibitors in TNBC.
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tumor tissues such as mesothelioma, non-small cell lung cancer,
pancreatic cancer, and metastatic triple negative breast cancer,
while no longer expressed in normal tissues or is low expressed in
mesothelial tissues (74). Due to the characteristic of MSLN, it has
become the focus of specific targeting antigen of tumor cells.
Recent lookup used to be discovery of MSLN, a carcinogenic
glycosyl-phosphatidyl-inositol (GPI) is overexpressed in TNBC
(75). Above all, MSLN additionally play an vital position in T cell
cloning and expansion and effector function, including initiating
T cell activation (76). MSLN immune-targeted therapy (mAbs,
CAR-T, vaccine) has top notch potential, and many of them have
entered clinical trials of pancreatic cancer and lung cancer (76,
77). As a new personalized therapy, MSLN targeted therapy may
achieve positive clinical results in TNBC patients.
Frontiers in Oncology | www.frontiersin.org 6
TNBC and Immune Viral Therapy
Recent trends in viral genetic engineering have allowed the
development of oncolytic viruses with enhanced recognition
capability to receptors overexpressed in tumor tissues, and
viruses encoding or packaging suicide or pro-apoptotic genes
or agents for delivery to cancer cells (78). Viruses can be
manipulated to upregulate antigen presentation and T cell
anti-tumor response. Talimogene laherparepvec (T-Vec,
OncoVEXGM-CSF, Imlygic), an attenuated and genetically
engineered herpes simplex virus (HSV) that overexpresses
granulocyte-macrophage colony-stimulating factor (GM-CSF),
is the only oncolytic virus approved for clinical use in the United
States and Europe (ClinicalTrials.gov:NCT00769704) (79–81).
Some studies have shown that cell vaccines primarily based on
FIGURE 4 | A summary of future treatment strategies for TNBC.
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oncolytic vesicular stomatitis virus can improve the prognosis of
TNBC by enhancing the functions of natural killer cells and
CD8+ T cells (82). An oncolytic herpes simplex virus, which
encodes the fundamental anti-tumor cytokine, interleukin 12
(IL-12), (designated G471-mIL12), can selectively kill cancer
cells while inducing anti-tumor immunity (83), which is
mainly manifested by the upregulation of CD8+ T cells
activation markers in tumor microenvironment and the
inhibition of tumor angiogenesis (84). Immunovirotherapy
may be a promising method to treat TNBC patients.

TNBC and Vaccines
Some studies have shown that mixed 19-peptide vaccine alone
can achieve positive results in the treatment of refractory TNBC
(85). The multi-epitope DNA and peptide vaccines is composed
of the most immune dominant epitopes of SYCP1
(Synaptonemal Complex Protein 1) and ACRBP (Acrosin
Binding Protein). As two conventional cancer/testis antigens,
it can effectively activate the cellular and humoral immune
response against 4T1 mouse breast tumor. In addition, this
preventive combined immunization can drastically inhibit the
growth of this mouse triple negative breast tumor (86).
However, there are still some problems to be solved about
vaccines, such as time, administration frequency and combination
therapy strategy.
CONCLUSIONS

Recently, immunotherapy has delivered new hope to TNBC. The
application of ICIs in TNBC will bring new light and advantage to
patients. TNBC is currently exploring other new immunotherapy
strategies, consisting of oncolytic virus and adoptive cell therapy,
such as TIL metastasis and carcinoembryonic antigen T cells.
Breast cancer vaccine constitutes another new therapeutic strategy
to enhance anti-cancer immunity. Although the new preliminary
immunotherapy still needs extensive clinical verification, these
immunotherapies will promote the understanding of anti-cancer
Frontiers in Oncology | www.frontiersin.org 7
immunity of breast cancer and contribute to the development of
effective strategies in the future. Further understanding of the
mechanisms underlying immu-oncology are warranted to
identify new immunotherapy-sensitive tumor types,
combinations of different therapies will also become a
promising strategy in the treatment of TNBC (Figure 4).
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