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Abstract: An image quality matrix provides a significant principle for objectively observing an image
based on an alteration between the original and distorted images. During the past two decades, a
novel universal image quality assessment has been developed with the ability of adaptation with
human visual perception for measuring the difference of a degraded image from the reference image,
namely a structural similarity index. Structural similarity has since been widely used in various
sectors, including medical image evaluation. Although numerous studies have reported the use
of structural similarity as an evaluation strategy for computer-based medical images, reviews on
the prospects of using structural similarity for medical imaging applications have been rare. This
paper presents previous studies implementing structural similarity in analyzing medical images
from various imaging modalities. In addition, this review describes structural similarity from
the perspective of a family’s historical background, as well as progress made from the original to
the recent structural similarity, and its strengths and drawbacks. Additionally, potential research
directions in applying such similarities related to medical image analyses are described. This review
will be beneficial in guiding researchers toward the discovery of potential medical image examination
methods that can be improved through structural similarity index.

Keywords: medical image analysis; structural similarity index; computer-based observer; image
quality assessment

1. Introduction

An image quality assessment (IQA) plays a crucial role in accurately measuring a
degraded image from a reference image. In general, there are two types of IQA used to
evaluate the quality of an image, i.e., subjective and objective [1–3]. A subjective mea-
sure [4] involves individuals (mostly groups of experts) inspecting an image, and then
conducting an evaluation according to their specialties. This measure is considered the
best strategy because it offers consistency when assessing the images. However, to reach a
reliable conclusion after image measurements, a subjective measure is often inconvenient,
time-consuming, and expensive. This is natural because the involvement of human beings
is directly connected to their ability, knowledge, and insight. For instance, to analyze a
medical image, a medical doctor specializing in radiology is necessary. Renieblas et al. re-
ported inspecting bone plain films, magnetic resonance, and chest plain films, selecting four
medical doctors with diagnostic experiences in measuring such images to participate [5]. By
realizing the shortcomings of a subjective method, several attractive measurements related
to objectively evaluating such images have been developed during the past few decades.
The most popular image quality measures are the mean square error (MSE), signal-to-noise
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ratio (SNR), contrast-to-noise ratio (CNR), and absolute error (AE), as well as a derivation
of such measures, such as Laplacian MSE (LMSE), peak MSE (PMSE), normalized MSE
(NMSE), PSNR, and NAE [6,7]. Although such measures are accepted as a universal image
quality index, they provide less sensitivity compared with a human visual system (HVS) [8].
They are considered common measurements because they can be calculated easily and
may interpret the physical meaning of an image [9,10]. In addition, contrast-and-size detail
(CSD) was developed to separate the visible and invisible inclusions in mimicking the
breast environment through simulations by embedding a numerical tumor. In this case,
an inclusion represents a breast tumor [11,12]. Again, this image quality metric (IQM) has
issues in terms of inconsistency when increasing the contrast ratio with a raised inclusion
size and an ambiguous threshold value. Therefore, it is challenging to implement this
method and distinguish seeable and unseeable inclusions inside the breast tissue with a
provided threshold value.

In early 2000, Wang et al. developed a new universal IQA and tried to replace
conventional methods such as MSE and PSNR for measuring the quality of the images,
namely the structural similarity (SSIM) index, and adapt to the HVS [10,13]. Their first
attempt regarding the possibility of substituting traditional strategies with an applicable
metric to measure various images from numerous sectors was reported in 2002. It was
reported that the IQA calculates the distortions in a combination of the loss of correlation,
luminance distortion, and contrast distortion [14]. In addition, their results indicate that
the novel universal index is more exceptional than MSE because the new index measures
the information loss and is not focused on the energy loss. This is reasonable because the
MSE values of two different distorted images can be the same, although one image is more
flawless than another image. Their follow-up study complementing their previous research
was published in 2004, and one of the most popular IQMs in this era, i.e., SSIM, was
described [10]. They proposed a novel philosophy by considering that image degradation
is the perceived changes in structural information, whereas error sensitivity is an estimation
of the perceived errors to assess a noised image in comparison with the original. This new
philosophy is easy to understand because the human perceptual measure is comfortable
quantifying the changes in structural information when two images are compared, and it is
more complicated to indicate the error. Moreover, the novel metric suggests the IQA by
considering three factors, i.e., luminance, contrast, and structure comparisons. In addition,
they suggested that SSIM may be used for several applications [15] other than image
processing because SSIM quantifies two signals and compares them to obtain the similarity
score, regardless of the complexity in calculating the SSIM when compared to that of the
MSE. Research on a single mean SSIM (MSSIM) motivated several further developments of
SSIM, and to date, numerous versions of SSIM have been achieved, for example, multiscale
SSIM (MS-SSIM), gradient-based SSIM (GSSIM), a three-component weighting region,
a four-component weighting region, a complex-wavelet, and an improved SSIM with a
sharpness comparison (ISSIM-S) [16–22]. The SSIM method has recently become popular
as a way to improve the sensitivity according to the measurement scope and goal by
applying an image processing procedure [23]. Several publications have even reported
SSIM implementation in clinical applications and biomedical fields [24–28].

SSIM has shown signs of progress, not only in digital images for communication,
video, monitor, television, and watermark technologies [29–35] but also in medical image
analyses [36–45] to assist clinicians or physicians in complementing an opinion before mak-
ing a final decision [46–49]. SSIM can be considered a “second opinion” in an assessment.
By understanding the recent progression of SSIM related to medical image quantification,
this study reviewed articles concentrating on the SSIM implementation as an objective mea-
sure used to evaluate medical images from several modalities, such as magnetic resonance
imaging (MRI), ultrasound (US), computerized tomography (CT) scans, X-rays, and optical
imaging, as well as other implementations in the medical field. Moreover, we discuss
the history and popular progress of SSIM from its origin to recent structural similarities,
its strengths and shortcomings, and its potential future research directions in relation to
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medical image analyses. This review is expected to be a guide for researchers in identifying
the potential application of SSIM when objectively measuring medical images.

The remainder of this study is organized as follows. Section 2 describes the history
and basic principles of SSIM, and Section 3 describes the types of improvements made
to this index. Section 4 presents the use of SSIM in medical imaging, whereas Section 5
presents some final concluding remarks by providing the future prospects of SSIM for
medical image analyses.

2. Historical Review and Basic Principles of SSIM

Quantifying an image objectively to acquire quality statistics is a crucial task in an
image processing procedure because it can provide the feature and property information
of the image; thus, several attempts at developing a computer-based observer have been
conducted by researchers. Nevertheless, creating a reliable algorithm for measuring an
image is challenging and is concerned with the HVS because humans are the end-users of
the images. For example, in terms of video communication, a perfect IQM can be deployed
as a benchmark for measuring other IQMs when assessing a particular task. We can select
the best IQM algorithm based on performance [33,35,50,51]. Moreover, in the field of
medical image analysis, with the assistance of computer vision, clinicians can improve
their confidence when diagnosing patients. This becomes more vital if the task is related to
human disease diagnosis [52–56].

Two traditional quality metrics, MSE and PSNR, are widely used to evaluate images
because they are able to provide a physical meaning and are relatively simple in terms
of their calculation. However, such quality measures are frequently inconsistent with the
HVS because they can provide the same value of quality for two completely different
distorted images, even when one image is more perceivable than another [6,7]. The
performances of common IQAs were shown by Eskicioglu and Fisher [9] in 1995, inspiring
Wang and Bovik [14] to develop a novel universal IQM to overcome the MSE and PSNR
incompatibility in 2002. At the time, MSE and SNR, along with their differentiations
considered, were incompatible with HVS, particularly when employing a specific condition
directed at an image with a particular level of degradation.

This first attempt in developing a new universal quality index can be utilized not
only in a two-dimensional image processing system but also in other areas, such as speech
and pattern recognitions relative to a one-dimensional analysis, because the new universal
quality metric offers comparisons between two signals. These two signals refer to one
signal as a reference and the other acting as the original signal with implemented noise.
Using these two signals, we can calculate the signal quality quantitatively. Therefore, their
study was recognized as a full-reference (FR) [57] IQA when considering that the model of the
image distortion is influenced by three aspects, i.e., correlation loss, luminance distortion, and
contrast distortion. A description of the developed novel universal quality index is as follows:

Q =
4σxyxy(

σ2
x + σ2

y

)
+
(

x2 + y2) , (1)

where x = {xi|i = 1, 2, 3, . . . , N} is the original image, and y = {yi|i = 1, 2, 3, . . . , N}
denotes the image under test, with x = 1/N ∑N

i=1 xi and y = 1/N ∑N
i=1 yi as the average

grayscale level (luminance) for the original and test images, respectively. In addition,
σ2

x = 1/N − 1 ∑N
i=1(xi − x)2 and σ2

y = 1/N − 1 ∑N
i=1(yi − y)2 are squares of the standard de-

viation for the original and test images, and σxy = 1/N − 1 ∑N
i=1(xi − x)(yi − y) refers to

the covariance between the original and test images. Moreover, the quality score Q is
within the range of −1 to 1; however, in most cases, Q is from 0 to 1 with 0 representing
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a non-similarity and 1 demonstrating a perfect match between the reference and noised
images. To simplify Equation (1) into three important components, Q can be defined as

Q =
σxy

σxσy
· 2xy
x2 + y2 ·

2σxσy

σ2
x + σ2

y
, (2)

Because an image is space-variant, for measuring an image, a local assessment is
preferred over a global evaluation that quantifies the image by employing a sliding window.
This window slides over the entire image from the left-top to right-bottom corners pixel
by pixel both horizontally and vertically. During each stride, we obtain Qj, and thus if the
window slides over the image for M strides, we acquire the total quality Qtot = ∑M

j=1 Qj,
and Q can be written as

Q =
1
M

M

∑
j=1

Qj, (3)

indicating the mean quality score.
Furthermore, Wang and Bovik indicated that the new quality metric is superior to the

MSE. They employed the same MSE value with various distortions to the “Lena” image.
They set the MSE value to approximately 255; however, the Q score could validate the
quality by showing the different scores with respect to the perception of a human observer.
However, in this first effort, they did not claim to use any HVS models.

Two years later, in 2004, they published their study on SSIM with the help of two
additional co-authors [10]. They reported that the assumption of HVS can be well adapted
with the perception of the structural information and that human observers have limitations
in recognizing errors. This is reasonable because humans can easily identify changes in
physical information while complicatedly detecting the variations of an error in the images.
To match with the HVS, SSIM demonstrates comparisons of l luminance, c contrast, and s
structure, which are specified as

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (4)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (5)

s(x, y) =
σxy + C3

σxσy + C3
, (6)

where µx and µy denote the mean intensity for reference image x and distorted image y,
respectively. Compared with Equation (2), Equations (4) and (5) have the same definitions
as luminance and contrast comparisons, and meanwhile, Equation (6) has a different
description from the correlation to be applied in a structural comparison. Likewise, SSIM
considers constant values to avoid instability when µ2

x + µ2
y, σ2

x + σ2
y , and σxσy are extremely

close to zero. These constants are C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2. In addition,
K1 and K2 should be� 1 and L is 255 for an 8-bit grayscale image or an image in three
channels, such as red, green, and blue (RGB). As in Equation (2), the SSIM also can be
formulated as

SSIM(x, y) = [l(x, y)]α·[c(x, y)]β·[s(x, y)]γ, (7)

with α = β = γ = 1, and thus a specific form can be defined as

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) . (8)

Figure 1 shows a diagram of the SSIM measurement procedure. First, the luminance is
calculated over the two images by utilizing Equation (4) when employing a sliding window;
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here, image x is a reference image, whereas image y denotes a noise-degraded image. The
contrast is then measured using Equation (5). To obtain the structure, the covariance
between x and y must be computed using Equation (6). Once these three factors have been
obtained, the combination of the comparisons, as indicated in Equation (7), shows a quality
score within the range of −1 to 1 because of the structural influence. However, in various
cases, the score is between 0 and 1. Therefore, the SSIM satisfies the following conditions:

1. Symmetry: SSIM(x, y) = SSIM(y, x);
2. Boundedness: SSIM(x, y) ≤ 1;
3. Unique maximum: SSIM(x, y) = 1 if and only if x = y.
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As in previous studies regarding the universal quality index (UQI) [14], SSIM is also
effective in inspecting the image locally by implementing a sliding window. Hence, according
to the original article on SSIM [10], the sliding window was 11 × 11. In addition, there
was an improvement in the sliding window by applying a Gaussian weighting function
w = {wi|i = 1, 2, 3, . . . , N}with a standard deviation of 1.5. The value of w should fulfill
a unit sum of ∑N

i=1 wi = 1. Because of this Gaussian weighting function with a 11× 11 local
window, the local statistics, such as µx, µy, σx, σy, and σxy, have the following adjustments:

µx =
1
N

N

∑
i=1

wixi, (9)

µy =
1
N

N

∑
i=1

wiyi, (10)

σx =

(
N

∑
i=1

wi(xi − µx)
2

)1/2

, (11)

σy =

(
N

∑
i=1

wi
(
yi − µy

)2
)1/2

, (12)

σxy =
N

∑
i=1

wi(xi − µx)
(
yi − µy

)
, (13)
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where K1 and K2 are 0.01 and 0.03, respectively. When completing the SSIM computation
over the entire image using a local window, the mean SSIM (MSSIM) can be obtained as

MSSIM(X, Y) =
1
M

M

∑
j=1

SSIM
(

xj, yj

)
, (14)

where X and Y denote the reference image and the image under testing, respectively,
whereas xj and yj are the images at the j-th window when the local window slides over the
original and distorted images, and M is the number of local windows in the image.

MSSIM showed consistency when compared with human observers. In addition, these
results were confirmed by implementing the PSNR as an evaluation tool to measure other
IQAs, which, in this case, is MSSIM. Further, the previous UQI with K1 and K2 is 0, which
presents the smallest correlation with the human observers. These results indicate that
MSSIM can improve the UQI ability in avoiding a zero in the denominator by setting K1
and K2 as� 1. Hence, SSIM has become popular as an objective investigative tool for other
fields included in medical image analysis [58–67].

To overcome the weakness of a single-scale SSIM associated with a limitation of view, a
multi-scale SSIM (MS-SSIM) was established [22]. The viewing conditions are incorporated
with the display resolution, distance when reading the image, luminance background, and
other set environments that can affect the image investigation results. Figure 2 shows the
procedure used by MS-SSIM in evaluating an image. First, images x and y are processed
inputs, as in a single-scale SSIM for a scale of 1. In this process, we only store the contrast c
and structure s for such a scale, namely, c1 and s1. Then, the reference and noised images are
filtered using an LPF followed by downsampling by 2. In this step, again, the downsampled
images are computed using single-scale SSIM formulas to obtain c2 and s2. This procedure
is repeated until K iterations. Once iteration K is completed, we save all three parameters,
cK, sK, and luminance lK. Thus, the MS-SSIM is formulated as

MS− SSIM(x, y) = [lK(x, y)]αK
K

∏
k=1

[ck(x, y)]βk ·[sk(x, y)]γk . (15)
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filtering, and 2 ↓ denotes downsampling by 2.

Here, αK, βk, and γk accommodate the comparative importance of the three compo-
nents. In addition, for simplification, because αk = βk = γk, thus ∑K

k=1 αk = ∑K
k=1 βk =

∑K
k=1 γk = 1 when the normalization of the cross-scale setting is established. The genuine

MS-SSIM sets K = 5 with β1 = 0.0448, β2 = 0.2856, β3 = 0.3001, β4 = 0.2363, and
β5 = 0.1333 [20,22].

MS-SSIM has shown promising results in comparison with a PSNR, single-scale SSIM,
and Sarnoff. MS-SSIM outperformed when evaluated by human observers’ perception. Its
correlation presented the highest.

We have reviewed the historical background of SSIM and several of its basic principles,
and have found that UQI, MSSIM, and MS-SSIM are triggers acting as the foundations for
all types of SSIM. Developed some years later, they have tried to complement and improve
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on the original SSIM in terms of image processing when applied to a specific area. In the
next section, we described the types of SSIM developed from 2006 to 2021.

3. Current Improvement in SSIM

This section describes several improvements in SSIM since it first emerged. The
objective of this section is to provide an adequate understanding of the development of
SSIM, thus allowing researchers to select the appropriate SSIM type for comparison when
applying a specific SSIM for medical image analysis.

3.1. Gradient-Based SSIM

Gradient-based SSIM (GSSIM) was the upgraded version of SSIM after realizing that
the original SSIM has a defect in evaluating badly blurred images. The concept was derived
by Chen et al. in 2006 when comparing the similarity values between the “Cameraman”
image with Gaussian white noise and a blurred image [16]. The original SSIM showed a
similarity score contrary to human perception by presenting a low MSSIM for a Gaussian
white-noise-contaminated image while exhibiting a high similarity score for a blurred
image. The image with Gaussian noise was perceived more subjectively than the blurred
image, and by identifying this flaw, a GSSIM attempts to resolve this discrepancy.

The background of GSSIM emphasizes the sensitivity of the human eye in detecting
the edge and contour information. From these two pieces of information, a human can
capture the image structure from the scene. Therefore, to modify the original SSIM into
GSSIM, the essential image processing insight is highlighting the edge of the images. In
the original article on GSSIM, Chen et al. utilized a Sobel operator to spot the edges in the
images because it simply generates masks and implements them over the entire image. The
Sobel masks consist of two 3× 3 windows as filters, namely vertical and horizontal edge
masks. Figure 3 shows the Sobel operator masks.
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The vertical mask Gx exposes the vertical edges, whereas the horizontal mask Gy
discovers the horizontal edges in the images. The magnitude of the gradient, otherwise
known as a gradient vector, can be calculated by

G =

√
(Gx)

2 +
(
Gy
)2

= |Gx|+
∣∣Gy
∣∣, (16)

and the edge angles can be formulated as

θG = tan−1 Gy

Gx
. (17)

By applying the masks over the entire image and using Equation (16), we can obtain a
gradient map indicating the edge and contour information [68].
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Once we acquire the reference image gradient map X′ and noise-contaminated image
gradient map Y′, the calculation technique for GSSIM is similar to that of SSIM by changing
the contrast comparison cg and structure comparison sg as follows:

cg(x, y) =
2σx′σy′ + C2

σ2
x′ + σ2

y′ + C2
, (18)

sg(x, y) =
σx′y′ + C3

σx′σy′ + C3
, (19)

where σx′ is the standard deviation of vector x′, σy′ denotes the standard deviation of vector
y′, and σx′y′ is the covariance for vectors x′ and y′. Hence, GSSIM can be written as

GSSIM(x, y) = [l(x, y)]α·
[
cg(x, y)

]β·
[
sg(x, y)

]γ, (20)

or

GSSIM(x, y) =

(
2µxµy + C1

)(
2σx′y′ + C2

)
(

µ2
x + µ2

y + C1

)(
σ2

x′ + σ2
y′ + C2

) . (21)

Using the same steps as formulated in Equations (9)–(13) and Figure 4, MGSSIM is
as follows

MGSSIM(X, Y) =
1
M

M

∑
j=1

GSSIM
(

xj, yj

)
. (22)
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Figure 4 depicts the GSSIM approach used to obtain the similarity score. The en-
tire process is similar to that shown in Figure 1 in terms of the original SSIM; however,
GSSIM implements images x and y only to calculate the luminance. For contrast and
structure measures, however, they use the gradient images X′ and Y′. Then, by utilizing
Equations (20)–(22), the similarity score can be obtained.

Although GSSIM shows promising results when comparing two different images, it
is only effective when the badly blurred image is contaminated with Gaussian blur. In
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addition, SSIM evolving into GSSIM was a breakthrough to the extent of MGSSIM evolving
into MS-GSSIM, using the procedure shown in Figure 5.
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Images x and y are inputs treated as in a single-scale GSSIM for a scale of 1. Then,
x and y are processed by applying a Sobel operator to obtain the gradient maps of the
reference and noise-contaminated images. In this step, we calculate the contrast cg1 and
structure sg1 on a scale of 1. Next, the reference and distorted gradient map images are
filtered by LPF proceeded by downsampling by 2. The downsampled gradient map images
are calculated using single-scale GSSIM formulas to obtain cg2 and sg2. This method is
repeated until K iterations. When iteration K is complete, we collect three parameters, cgK,
sgK, and luminance lK. For MS-GSSIM, lK is obtained using the input images after filtering
and downsampling by 2 in the last iteration. Thus, MS-GSSIM can be written as follows:

MS− GSSIM(x, y) = [lK(x, y)]αK
K

∏
k=1

[
cgk(x, y)

]βk ·
[
sgk(x, y)

]γk
. (23)

3.2. Three-Component Weighted SSIM

A three-component weighted SSIM or three-component SSIM (3-SSIM) is an upgraded
SSIM used to overcome the issues in blurred and noisy images. This 3-SSIM has the same
objective as GSSIM, and thus 3-SSIM uses a similar step in the gradient map comparison
of reference and distorted images. In other words, 3-SSIM was inspired by GSSIM [16]
and three-component image comparisons segmenting the images into three components,
namely edge, smooth, and texture regions [19]. The similarity score can then be calculated
utilizing the assigned weights for each region.

A 3-SSIM was first introduced in 2009 and was the initial research direction for
developing the SSIM into a four-component weighted SSIM (4-SSIM), as described later
in Section 3.3. There are four steps to compute 3-SSIM. First, the SSIM index is calculated.
Second, the images are divided into three regions: edge, smooth, and texture regions. An
edge region can be found when the gradient is large, whereas a smooth region is relative to
a small gradient. In addition, the texture region is extracted from the two thresholds. Third,
non-uniform weights are implemented into the SSIM from the three regions. Fourth, the
weighted SSIM is united by extracting the weighted average; hence, a similarity score can
be obtained [19]. Figure 6 shows the 3-SSIM procedures used to yield a similarity score.
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Procedures for 3-SSIM also exist for a multiscale method, called 3-MS-SSIM. In general,
the 3-MS-SSIM approach is the same as the procedure depicted in Figure 2 but follows
a quantifying procedure, as shown in Figure 6. The steps in Figure 6 can be described
as follows:

• Step 1: Compute the SSIM map using Equation (14). Using this SSIM map, we can call
up the structure information.

• Step 2: Calculate the gradient magnitude utilizing a Sobel operator over the reference
and noised images.

• Step 3: Define the threshold value TH1 = 0.12× gmax and TH2 = 0.06× gmax, where
gmax denotes a maximum grayscale level of gradient magnitude when computed over
the original image.

• Step 4: Based on step 3, partition the images into edge, smooth, and texture regions
using the following rules: If po(i, j) > TH1 or pd(i, j) > TH1, it is an edge region;
if po(i, j) < TH2 and pd(i, j) ≤ TH1, it is a smooth region; and otherwise, if the
pixels belong to a texture region but are not edge pixels, it is a texture region. Here,
(i, j) denotes the gradient coordinate, po is the original image pixel, and pd denotes a
degraded image pixel.

Figure 7 shows the images for every process in a specific region. Figure 7a depicts the
original “Lena” image, whereas Figure 7b shows its blurred image, Figure 7c depicts the
edge region image, Figure 7d shows the smooth region image, and Figure 7e depicts the
texture region image.
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3.3. Four-Component Weighted SSIM

The concept of 4-SSIM was derived from the same authors as in 3-SSIM to overcome
the SSIM issue related to blurred image measures. However, 4-SSIM in the original article
is fractioned into 4-SSIM itself, 4-MS-SSIM, 4-GSSIM, and 4-MS-GSSIM. Therefore, using
the four-component model, it is possible to compute four types of SSIM by partitioning the
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original images into four regions, namely a changed-edge region, preserved-edge region,
smooth region, and texture region. The difference between 3-SSIM and 4-SSIM is in the
edge region: whereas 3-SSIM has only one edge region, 4-SSIM has two edge regions. In
addition, the condition used to determine which pixel belongs to which region is also
different [18,19].

Figure 8 shows the procedures used to yield the similarities of 4-SSIM, 4-MS-SSIM,
4-GSSIM, and 4-MS-GSSIM. The steps in Figure 8 can be defined as follows:

• Step 1: Calculate the SSIM map. This SSIM map is called the structure information.
• Step 2: Compute the gradient magnitude applying the Sobel operator for the reference

and distorted images.
• Step 3: Define the threshold value TH1 = 0.12× gmax and TH2 = 0.06× gmax, where

gmax denotes a maximum grayscale level of the gradient magnitude when computed
over the original image. Here, TH1 and TH2 have an effect on the component regions
under these situations, i.e., the smaller the first value, the more “edgey” the region.
Furthermore, the smaller the second value, the less smooth the region is.

• Step 4: Based on step 3, the images are segmented into the changed edge, preserved
edge, smooth, and texture regions using the following rules: If po(i, j) > TH1 and
pd(i, j) > TH1, the edge region is preserved; If (po(i, j) > TH1 and pd(i, j) ≤ TH1) or
(po(i, j) ≤ TH1 and pd(i, j) > TH1), edge region is changed; and If po(i, j) < TH2 and
pd(i, j) > TH1, it is a smooth region. Otherwise, the pixels belong to a texture region
if they are not part of the edge pixels. Here, (i, j) denotes the gradient coordinate, po is
original image pixel, and pd denotes a degraded image pixel.
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Figure 9. Demonstration using “Lena” to present (a) preserved edge pixel image, (b) changed edge 
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Figure 8. 4-SSIM and its differentiation model procedures to quantify the image quality (adapted
from [18]).

Figure 9 shows the images for every process within a specific region. Figure 9a depicts
a preserved edge image of “Lena,” whereas Figure 9b shows a changed edge region image.
In addition, Figure 9c displays a smooth region image, and Figure 9d depicts a texture
region image.
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3.4. Complex-Wavelet SSIM

After dealing with the SSIM issues in overestimating the similarity of the blurred
images, a complex-wavelet SSIM was developed in 2009 to overcome the drawbacks of
the original SSIM in the spatial domain related to a high sensitivity when measuring
images with a few rotations, translations, and scaling in comparison with the original
image [21]. The fundamental aspect behind CW-SSIM is using the wavelet coefficients
inspired from [69] over the images to extract the similarity value. Similarly, the main
objective of CW-SSIM is to develop an insensitive IQA in evaluating the images under a
nonstructured geometric image distortion. CW-SSIM is emphasized more to resolve the
drawbacks of the spatial domain by converting the images into a complex wavelet domain
and acquiring the wavelet coefficients for determining the similarity score.

CW-SSIM attempts to model the complex wavelet domain IQA with the ability to
separate the magnitude and phase distortion assessment. Moreover, it was developed
to be more sensitive to phase distortions than magnitude distortions and insensitive to
consistent relative phase distortions. The symmetric complex wavelet can be formulated
as w(u) = g(u)ejωcu for a low-pass-filter modulation, where ωc denotes the modulated
band-pass filter center frequency and g(u) is a slowly varying and symmetric function. The
dilated and translated version of w(u) can be written as follows:

ws,p(u) =
1√

s
w
(

u− p
s

)
=

1√
s

g
(

u− p
s

)
ejωc(u−p)/s, (24)

where s ∈ R+ denotes the scale factor, and p ∈ R is the translation factor. In addition, the
continuous wavelet transformation of the real signal x(u) is expressed as

X(s, p) =
1

2π

∫ ∞

−∞
X(ω)

√
sG(sω−ωc)ejωpdω, (25)

where X(ω) and G(ω) are the Fourier transform (FT) of x(u) and g(u), respectively. In a
complex wavelet domain, we can determine the coefficients within the same spatial domain
location represented in the same wavelet subbands of two images under comparison as
cx{cx,i|i = 1, 2, 3 . . . , N} and cy

{
cy,i
∣∣i = 1, 2, 3 . . . , N

}
, respectively. Then, CW-SSIM can be

formulated as

S̃
(
cx, cy

)
=

2
∣∣∣∑N

i=1 cx,ic∗y,i

∣∣∣+ K

∑N
i=1|cx,i|2 + ∑N

i=1
∣∣cy,i

∣∣2 + K
, (26)

or can be written as a product of two components:

S̃
(
cx, cy

)
=

2 ∑N
i=1|cx,i|

∣∣cy,i
∣∣+ K

∑N
i=1|cx,i|2 + ∑N

i=1
∣∣cy,i

∣∣2 + K
·
2
∣∣∣∑N

i=1 cx,ic∗y,i

∣∣∣+ K

2 ∑N
i=1

∣∣∣cx,ic∗y,i

∣∣∣+ K
, (27)



Appl. Sci. 2022, 12, 3754 13 of 34

where c∗ is the complex conjugate of c, and K denotes the small positive constant to
improve the CW-SSIM robustness at an extremely small local SNR. As in the original SSIM,
S̃
(
cx, cy

)
is altered from 0 to 1 depending on the degree of similarity. The first component

in Equation (27) is a maximum of 1 if |cx,i| =
∣∣cy,i

∣∣. The first component is related to the
magnitude. By contrast, the second coefficient is relative to the phase changes.

3.5. Improved SSIM with Sharpness Comparison

In 2016, Lee and Lim developed an improved version of SSIM, called improved SSIM
with the sharpness comparison (ISSIM-S) [17]. The idea behind this improvement is to
anticipate the shortcomings of SSIM in overestimating when quantifying blurred images
but underestimating when measuring the images with a spatial translation; however, the
spatial translated images are more visible from a human perspective than the blurred
images. ISSIM-S uses the spatial domain with an improved assessment comparison in
terms of sharpness. Although the focus of ISSIM-S is to accommodate the feasible IQA
in measuring the images contaminating the rotation, translation, and scaling, ISSIM-S
shows promising results in the assessment of images through several acquisitions, such as
histogram equalization, mean luminance shifting, median filtering, impulsive noise, JPEG
compression, and mean filtering.

The main shortcomings of SSIM are in the structural comparison, as in Equation (6).
When the calculated SSIM does not include a structural comparison and only consists of
the luminance and contrast, as in Equations (4) and (5), respectively, the similarity score of
the spatial translation is not predicted to be low and has a consistent measurement with
respect to HVS. However, if the three components of the SSIM are integrated into the SSIM
calculation, the measure index evaluates the blurred image with a high SSIM value. By
contrast, a slight vertical translated image has a low SSIM score, whereas the blurred image
is noisier than the translated image.

Figure 10 shows a demonstration of using the “Lena” image to present the original,
spatial translated, and JPEG compressed images with a green line in the vertical center of
the images. As compared, the JPEG compression image is less perceptible than the image
with the spatial translation, as shown in Figure 10b,c when they are compared with the
reference image, as shown in Figure 10a.
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According to the original article on ISSIM-S, the evaluation of the images shown in
Figure 10 offers an overestimation of the SSIM score for Figure 10c; however, there is an
underestimation of Figure 10b. Under normal circumstances, Figure 10b is more perceptible
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than Figure 10c. This small SSIM score is obtained because of the drawback in the structural
comparison. Therefore, to fix this disadvantage, ISSIM-S defines a new structure factor to be

s̃(x, y) =

(
2σx−σy− + C2

)(
2σx+σy+ + C2

)(
σ2

x− + σ2
y− + C2

)(
σ2

x+ + σ2
y+ + C2

) , (28)

where σx− denotes a standard deviation for image x smaller than µx, whereas σx+ is the
standard deviation for image x larger than µx. In addition, σy− denotes a standard deviation
for image y smaller than µy, and meanwhile, σy+ is the standard deviation for image y
larger than µy. The definition of s̃(x, y) is the correlation of the standard deviation when
having positive or negative scores because σx− and σx+ (or σy− and σy+) can correspond to
the object structure by fractioning into brighter and darker regions locally. Nevertheless,
by improving only s(x, y) into s̃(x, y), the presence of an overestimation even exists in the
JPEG compressed image. Therefore, a new comparison is necessary to be added, namely
a sharpness comparison h(x, y). With the added h(x, y), ISSIM-S has confidence in the
improvement by two novel upgraded parameters. Here, h(x, y) is the correspondence to
the normalized digital Laplacian, which is formulated as

h(x, y) =
2
∣∣∇2x

∣∣∣∣∇2y
∣∣+ C2

|∇2x|2 + |∇2y|2 + C2
, (29)

where ∇2x and ∇2y are the normalized digital Laplacian determined by

∇2x = x− µx, (30)

∇2y = y− µy. (31)

Therefore, ISSIM-S is

ISSIM− S(x, y) = l(x, y)·c(x, y)·s̃(x, y)·h(x, y). (32)

Figure 11 shows the ISSIM-S measure used to inspect the images. The luminance and
contrast are compared as in the original SSIM, whereas the structure is calculated using
the improved version. In addition, the sharpness calculation completes this new IQM. The
final step is to combine all comparisons and then obtain the dot product. As described
previously, SSIM is better in a local pixel utilizing a sliding window. Therefore, ISSIM-S
applies the same method to yield the mean of ISSIM-S (MISSIM-S):

MISSIM− S(X, Y) =
1
M

M

∑
j=1

ISSIM− S
(

xj, yj

)
. (33)

The similarity score is also a variant from 0 to 1, with 1 if x = y.
Several comparisons of SSIM have been conducted [70]. In 2021, Mudeng et al. at-

tempted to use the benefit of MISSIM-S for the first time to assess the reconstructed images
from simulated images of diffuse optical tomography (DOT) [71]. They compared four
types of SSIMs, i.e., MSSIM, MS-SSIM, MISSIM-S, and MS-ISSIM-S. MS-ISSIM-S can be
developed using MS-SSIM and MISSIM-S. Figure 12 shows the measurement processes of
MS-ISSIM-S.
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The procedure used to calculate MS-ISSIM-S is the same as MS-SSIM, but h(x, y)
is computed independently. When h(x, y) is yielded at each k-scale, the mean value is
employed to complete the procedure, and thus MS-ISSIM-S can be written as follows:

MS− SSIM(x, y) =

(
1
K

K

∑
k=1

hk(x, y)

)(
[lK(x, y)]αK

K

∏
k=1

[ck(x, y)]βk ·[s̃k(x, y)]γk

)
. (34)

3.6. Other SSIM Types

Since SSIM has emerged by bringing about a new IQM model to quantify the images,
it has had the potential to substitute for the MSE or PSNR, and thus, to the best of our
knowledge, there are more than 20 different types of SSIM that have been developed to
solve the issues of the original SSIM or according to the main objective of a specific task.
In addition, SSIM IQA can be modified by combining the information content weighting
with an MS-SSIM [72]. This paper merely reviews the popular SSIMs suitable for the goal
of this paper. Subsequently, this subsection provides a brief description of the improved
SSIM developed from 2015–2020.

By splitting the images into two regions according to their inter-patch and intra-
patch, a novel SSIM scheme was introduced [73]. The two-component indices complement
each other. The first index has a goal to inspect the inter-patch feature by examining the
disparities on the center patch and the spatial neighborhoods. By contrast, the second
component makes an effort to evaluate the intra-patch feature by measuring the similarity
in the curvature and gradient. To obtain a single similarity score, an integration approach
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is executed. If the quality of the image is low, the assigned weight is higher for the
first component.

The SSIM can be expanded to examine not only the image but also the other scopes,
such as three-dimensional (3D) video displays [74]. The prime major is focused on the
availability of a source image or reference image, and thus SSIM is called FR IQM. In [74],
the authors proposed using the SSIM as a perceptual IQA to measure the 3D video visual
quality by combining it with a joint bit, which they called the SSIM-based joint bit allocation
approach. This scheme promises an enhanced 3D video visual quality. Surprisingly, in
2018, Zhang et al. offered an upgraded SSIM version by providing a no-reference SSIM
(NSSIM) [75]. They improved the SSIM from an FR to no-reference (NR) IQA. This scheme
offers a solution in a practical environment because the original image is not always
available, and even distorted images are widely accessible. Using the re-blur theory by
utilizing Gaussian blur, NSSIM may extract the features of the images and then use them
to obtain the information related to the blurriness. In addition, the blurriness can define a
novel model of NSSIM and can be written as

b(x, y) =
2dxdy + C4

d2
x + d2

y + C4
, (35)

where dx and dy are the distorted image and its re-blurred image, respectively. In addition,
C4 is a small constant to avoid instability when d2

x + d2
y is close to zero. A new metric of

SSIM is formulated as

SSIMr(x, y) = [l(x, y)]α·[c(x, y)]β·[s(x, y)]γ·[b(x, y)]λ, (36)

with λ as the exponent coefficient for b(x, y). As with the original SSIM, this new metric
applies a sliding window to measure the local similarity, and thus the mean score is

MSSIMr(X, Y) =
1
M

M

∑
j=1

SSIMr

(
xj, yj

)
. (37)

Finally, the NSSIM can be determined as

NSSIM(x, y) = 1−MSSIMr(X, Y). (38)

Another type of SSIM is the contrast sensitivity function SSIM (CSF + SSIM) [76].
This CSF + SSIM combines the non-linear characteristics of the luminance perception
with the contrast sensitivity characteristics from the HVS for a contrast-distorted image
evaluation. However, CSF + SSIM is deemed complex in terms of its computations because
it separates the images in the color space transform into the luminance, red–green channel,
and blue–yellow channel to yield their perceptions. Moreover, CSF + SSIM employs a
discrete cosine transform (DCT) to acquire the weights corresponding to the CSF. It then
deploys an inverse DCT (IDCT) to obtain the color space for the perceived images, and
as the last step, it applies the SSIM to obtain the similarity score. In addition, a spherical
SSIM is used to objectively inspect the video quality of omnidirectional video [33]. A
spherical uniform SSIM for assessing panoramic video has also been established [77], and a
multi-exposure image fusion (MEF) approach by optimizing the SSIM, which is called the
color MEF structural similarity (MEF-SSIMc), has been presented [78]. Finally, a topological
SSIM (T-SSIM) was introduced for a specific task to identify a nearby organ populated with
tumor-organ distances and volumes for two compared patients [79].

4. SSIM in Medical Imaging

This section discusses the implementation of SSIM, particularly for imaging techniques
such as MRI, ultrasonography, CT scan, X-rays, and optical imaging. This section aims to



Appl. Sci. 2022, 12, 3754 17 of 34

emphasize reviews of SSIM applied to the measurement of medical images. We reviewed
SSIM in medical imaging based on the published year of the articles.

To identify the relevant studies, a systematic methods overview [80] along with
several major databases were used to search the matched keywords, such as “SSIM” AND
“Magnetic Resonance Imaging” OR “Computed Tomography” OR “Ultrasonography”
OR “Ultrasound” OR “X-ray” OR “Optical Imaging” OR “Medical Images” OR “Medical
Imaging”. The main databases included Google Scholar, PubMed, IEEE, MDPI, Springer,
Elsevier, and others. There were 125 identified articles related to the keywords including
journals, conference proceedings, and book chapters, consisting of the original articles on
UQI, SSIM, MS-SSIM, three- and four-component weighted SSIMs, CW-SSIM, ISSIM-S, and
other SSIM families, as well as the SSIM implementation for MRI, CT, ultrasonography,
X-ray, and optical imaging. Overall, 72 articles relevant to the goal of this review paper
regarding SSIM applied in medical imaging were reviewed. We did not exclude the same
SSIM implementation in medical imaging as with an IQA, and instead, we mentioned,
classified, and briefly reviewed them in Sections 4.1 and 4.5 according to the medical
imaging technique used. We provided this method because we prefer to offer a wide range
of SSIM implementations and fulfill the objective of this review paper of providing the
readers or researchers with potential medical image examination research methods that can
be improved using SSIM. Additionally, Section 4.6 provided a thorough review of 4 articles
related to SSIM application in medical imaging for loss function in convolutional neural
network (CNN), reducing metal artifact, contour extractor, and IQA. Thus, we described
in detail the image acquisition method, filtering, or the other approaches used to acquire
the distorted images for comparing with the original image from the medical modality
imaging scheme. Additionally, this study’s limitation was stated in Section 4.7.

To avoid misleading and maintain the objective of this review, we emphasized that
the SSIM measure has an original goal to substitute the common measures, such as MSE
and PSNR in measuring any signals in 1D, 2D, and 3D, as long as there is a reference
signal. Thus, the SSIM measure can assess digital images including medical images. To
offer a better representation of the methodology when using SSIM to evaluate medical
images, we provided Figures 13–15 to depict medical images when they were processed
using three- and four-component SSIMs, as well as ISSIM-S. However, since this study’s
goal is to provide the SSIM prospect in medical images, we did not measure each SSIM
type (three-component SSIM, four-component SSIM, and ISSIM-S) similarity score. We
used a digital database for screening mammography (DDSM) [81] containing 2620 cases
of normal, benign, and malignant breast cancers extracted from calcification and breast
masses abnormalities. Figure 13 shows the images for every process in a specific region for
three-component SSIM. Figure 13a depicts the original DDSM right breast masses benign
cancer with craniocaudal (CC) view image, Figure 13b shows its blurred image, Figure 13c
depicts the edge region image, Figure 13d shows the smooth region image, and Figure 13e
depicts the texture region image. Figure 14 shows the images for every process within a
specific region for four-component SSIM. Figure 14a depicts a preserved edge image of
DDSM right breast masses benign cancer with CC, whereas Figure 14b shows a changed
edge region image. In addition, Figure 14c displays a smooth region image, and Figure 14d
depicts a texture region image. Figure 15 shows a demonstration of using DDSM right
breast masses benign cancer with CC image to present the original, spatial translated,
and JPEG compressed images with a green line in the vertical center of the images. As
compared, the JPEG compression image is less perceptible than the image with the spatial
translation, as shown in Figure 15b,c when they are compared with the reference image, as
shown in Figure 15a. As depicted in Figures 13–15, using the image processing steps for
medical images, we may compute the similarity score to obtain the image quality. These
motivated us to review articles related to SSIM in the medical field.
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4.1. Magnetic Resonance Imaging

To the best of our knowledge, the first SSIM implementation for evaluating the images
of MR was in 2005 [82,83]. The attempt in [83] used distorted MR images and then compared
them with the original MR image. Three modules creating a closed-loop system containing
de-noising filters, evaluations method, and adjustment rules were used. The corrupted
images were examined using SSIM along with the mean absolute error (MAE), root-mean-
square error (RMSE), SNR, and PSNR. Their results indicate that SSIM shows a high
similarity score when the distorted images are close to the reference image. This is the first
time an exploration of the original SSIM was started for use in other applications, such
as MR medical images. As we mentioned previously, the original SSIM may interpret the
blurred images with a high similarity score owing to the effect of the structural comparison.
However, their results indicate that SSIM has the potential to assess medical images. In
addition, in [82], the SSIM showed a relatively decent performance to quantify the head MR
images. However, there were inconsistencies in the 40% and 70% quality factors. Various
quality factors were deployed to acquire the similarity value. Nonetheless, with the higher



Appl. Sci. 2022, 12, 3754 19 of 34

quality factor of compression, the SSIM predicted the similarity with a low score and was
deemed unsuitable for the quality metric in [82].

In 2007, a group of researchers applied an SSIM application for security in the MR
and computed tomography (CT) images related to the watermarked medical images [31].
Medical image watermarks are crucial because they may comprise the medical information
of the patients, proving ownership, and alternating location on the images. Moreover,
watermarked medical images frequently store hidden messages for later extraction to obtain
the reports. Their results showed that SSIM is less capable of measuring the degradation of
medical images when the images are embedded with a watermark. They speculated that
the best metric for a watermarking measure is a steerable visual difference predictor (SVDP).
By contrast, SSIM and a quality index based on local variance (QILV) have been exploited
for the quality measure of estimating the magnitude of MR based on the linear minimum
mean squared error (LMMSE) [84]. The SSIM in this task performed competitively in
measuring images fused with an LMMSE estimator.

The compression of medical images is challenging in teleradiology because teleradiol-
ogy requires transmission to transfer the images [85]. In the transferring process, the image
quality may be reduced owing to the limited communication, and thus the image fidelity
can be decreased. The quality measure is necessary to determine the threshold value to
compress these medical images; hence, in the transmission, the important information of
the images is not diminished. A partitioning in hierarchical tree (SPIHT) compression algo-
rithm has also been used to determine the maximum threshold standard for compression.
The compressed images were compared with their original to assess their similarity. In
this specific task, SSIM and PSNR showed agreeable results with the mean opinion score
(MOS), and thus for this case, SSIM is considered appropriate to cut off the threshold value
when the medical images are compressed with a defined bit rate. Subsequently, medical
image fusion to improve the confidence of radiologists in diagnosing a specific disease was
accomplished in 2009 by Zhang and Zheng [86]. The objective of this research is to decrease
the inconsistency of a diagnosis when subjective observers read the medical images. In
addition, SSIM contributed significantly to the fusion approach. A unique SSIM implemen-
tation in this article was shown because SSIM was not used as the IQA metric; instead, it was
utilized as the image fusion itself. Based on an understanding of the image fusion from several
imaging modalities, the decision confidence may be improved, and the images combined
from MRI and CT were employed to generate more perceivable images. Because CT can offer
better information in denser tissue with less distortion and MRI provides adequate imaging
for soft tissue, a fusion was executed to reduce the workload of the radiologists. Their results
indicated that image fusion using SSIM is remarkable compared with existing image fusion
methods, such as a Laplacian pyramid (LP), gradient pyramid (GP), contrast pyramid (CP),
steerable pyramid (StrP), and discrete wavelet transform (DWT).

For a denoising method to remove Rician noise from MR images, the SSIM and MSE
as objective metrics were compared with the MOS to measure the denoising methodology
using the discretized total variation [87]. In this study, SSIM performed suitably with
the MOS, which is related to HVS. With the highest standard deviation, the SSIM scores
diminished following the subjective measurement scores. In addition, in 2013, to reduce the
presence of aliasing, an improve compressed sensing technique was introduced, whereas
the SSIM and PSNR were the objective measures used to assess the effectiveness of this
approach [37]. Their results showed that SSIM is suitable for use with the proposed method
as an objective IQM. Subsequently, in 2015 and 2017, to restore the MR images from the
existence of noise during the acquisition steps, the SSIM along with SNR, PSNR, MSE, and
RMSE was used to evaluate novel denoising algorithms [40,88–90]. With the computational
improvements, an artificial intelligence (AI) method including deep learning has been
proposed to solve the medical image analysis issues, and the results were compared
using SSIM [38,39,91–94]. SSIM was also compared with other objective IQAs to obtain
comprehensive insight related to an effective IQM for diagnosis by five radiologists [36]
and was employed in measuring an image acquisition [95].
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To conclude this subsection, Table 1 briefly presents the SSIM applications for MR
medical images. In Table 1, SSIM is adopted not only for IQA but also for other purposes,
such as image fusion, segmentation, clustering, and loss function. In addition, compared to
other metrics, SSIM performances are competitively adequate according to the applied task.
Most of the SSIM implementations as an IQA showed that SSIM is suitable for an assigned
task, indicating that it offers reliable performance for measuring an enhancement of the
image quality in comparison to the other traditional measures.

Table 1. Summary of published articles encompassing SSIM for MRI. MRI, magnetic resonance
imaging; CT, computed tomography; MAE, mean-absolute error; RMSE, root-mean-square error; SNR,
signal-to-noise ratio; PSNR, peak-signal-to-noise ratio; SVDP, steerable visual difference predictor;
QILV, quality index based on local variance; LN, level on noise; LP, Laplacian pyramid; GP, gradient
pyramid; CP, contrast pyramid; StrP, steerable pyramid; DWT, discrete wavelet transform; QAB/F,
visual information quality; MOS, mean opinion score; SI, similarity index; NRMSE, normalized-
root-mean-square error; VIF, visual information fidelity; FSIM, feature similarity index; NQM, noise
quality metric; GMSD, gradient magnitude similarity deviation; HDRVDP, high dynamic range
visible difference predictor; CNN, convolutional neural network.

Study Year Modality SSIM
Implementation

Compared
Matrix Results

Castellanos et al. [83] 2005 MRI IQA MAE, RMSE, SNR,
and PSNR SSIM is suitable for this task

Rajagopalan and Robb [82] 2005 MRI IQA Subjective measure The subjective measure
is superior

Dowling et al. [31] 2007 MRI and CT IQA PSNR and SVDP SVDP is suitable for
this research

Aja-Fernández et al. [84] 2007 MRI IQA MSE, QILV, and LN SSIM has competitive results
compared to QILV

Kumar et al. [85] 2009 MRI and CT IQA PSNR SSIM is suitable for this task

Xiao and Zheng [86] 2009 MRI and CT Images fusion LP, GP, CP, StrP,
and DWT QAB/F = 0.62

Varghess et al. [87] 2012 MRI IQA MSE and MOS SSIM is suitable with MOS

Zhu et al. [37] 2013 MRI IQA PSNR SSIM is suitable for this task

Srivastava et al. [88] 2015 MRI IQA PSNR SSIM is suitable for this task

Srivastava et al. [89] 2015 MRI IQA PSNR SSIM is suitable for this task

Saladi and Prabha [40] 2017 MRI IQA SNR, PSNR,
MSE, RMSE SSIM is suitable for this task

Chandrashekar and Sreedevi [90] 2017 MRI IQA PSNR, entropy,
and MSE SSIM is suitable for this task

Mostafa et al. [92] 2017 MRI Segmentation SI Accuracy = 97.5%

Duan et al. [39] 2019 MRI IQA MAE SSIM is suitable for this task

Pawar et al. [93] 2019 MRI IQA NRMSE SSIM is suitable for this task

Krohn et al. [95] 2019 MRI Clustering - SSIM = 0.7 to > 0.9

Wang et al. [94] 2020 MRI IQA PSNR and NRMSE SSIM and NRMSE
performances are decent

Mason et al. [36] 2020 MRI IQA
MOS, VIF, FSIM,

NQM, GMSD,
HDRVDP, PSNR,

and RMSE
VIF shows the decent results

Nirmalraj and Nagarajan [91] 2020 MRI IQA PSNR, MSE,
and entropy SSIM is suitable for this task

Jaubert et al. [38] * 2021 MRI Loss function MAE p value < 0.05

* A detailed review is provided in Section 4.6.

4.2. Computed Tomography

To the best of our knowledge, SSIM was used for the first time to evaluate CT images
in 2007 and was assigned as the IQM for image fusion between CT and MR images [96],
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as well as for CT, US, and X-ray medical image compression using DCT [97]. According
to [94], SSIM was able to quantify the improvement of fused images by showing the tumor
location, whereas in [97], the SSIM aided in assessing the compressed medical images
to determine the optimal block size for use in a compression method. SSIM showed a
decreasing similarity score when the compressed block size was increased. This situation
states that the SSIM can measure well the quality of the images according to the compression
level. More compression makes more blurriness. With a certain blurriness, the medical
images may not be easily readable, thus leading to the wrong diagnosis in telemedicine. The
compression level is crucial because, with abundant compression, the important structural
information of the images may be lost. By implementing the objective IQM, the threshold
value of the compression level can be identified. Herein, we imply implicitly that SSIM has
the potential to develop into the direction of a computer-aided diagnosis (CAD) method.

In 2016, studies related to SSIM for CT images were identified for investigating the
ability of a denoised method utilizing a Wiener filter and the threshold in the wavelet
domain [62]. In addition, a two-dimensional (2D) filter to enhance the CT image resolution
by maximizing the SSIM similarity value [98], a low-dose CT denoising algorithm using
locally consistent non-local means (LC-NLM) [63], and fusion between CT and MR images
implementing a principal component analysis (PCA) and the maximum selection [99] were
developed. These four studies presented SSIM as a reliable quality measure to assess the
improvement of the images. In 2017–2019, SSIM was found to be a quality metric for
measuring the results from 3D printed lung vessels [100], an approach to reducing the
metal artifact in CT images by excluding the luminance comparison [101], an IQM for deep
learning [41,43,102], and an alternative random forest (ARF) regression tool [103]. It was
also used for CT tooth images extracted from denoised images filtered using a wavelet
and bilateral filter [65], the removal of Gaussian noise [42], and image restoration and
reconstruction [64]. In [101], the role of SSIM was distinguished from IQA as a method to
reduce the artifacts caused by metal. In addition, a modified SSIM was utilized to construct
this task by ignoring the luminance factor but maintaining the contrast and structural
comparisons. This modified SSIM should be completed because the metal artifacts and
a superposition map may vary substantially, whereas the structural or edge information
can be indistinguishable. With the role of SSIM, correlated images can be obtained, and
two correlation maps can then be compared to acquire reduced metal artifact images. In
2020–2021, SSIM was used as an evaluation metric for ovarian cancer [104], a generative
adversarial network (GAN) [105], and Franken-CT [67].

To conclude this subsection, Table 2 describes SSIM used for CT medical images.
As indicated in Table 2, SSIM has been embraced not only for IQA but also for other
objectives, such as noise reduction. In addition, compared to other metrics, SSIM performs
competitively well according to the specialized task. In practical terms, all SSIM roles listed
in Table 2 are for image quality measures. They indicate that SSIM has the potential to
become a favorable IQA.
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Table 2. Summary of the published articles encompassing SSIM for CT. CT, computed tomography;
MRI, magnetic resonance imaging; RMSE, root-mean-square error; MSE, mean-square error; PSNR,
peak-signal-to-noise ratio; PRD, percent rate of distortion; CC, correlation coefficient; FF, fusion factor;
LI-MAR, linear interpolation metal artifact reduction; NMAR, normalized metal artifact reduction;
RMAR, refined metal artifact reduction; IQI, image quality index; VIF, visual information fidelity;
ZNCC, zero-normalized cross-correlation; MAE, mean-absolute error.

Study Year Modality SSIM
Implementation

Compared
Matrix Results

Senthilkumar and Muttan
[96] 2007 CT and MRI IQA RMSE SSIM is suitable for this task

Singh et al. [97] 2007 CT, US,
and X-ray IQA MSE, PSNR, PRD,

and CC SSIM has the highest score

Diwakar and Kumar [62] 2016 CT IQA PSNR SSIM is suitable for this task

Mahmoud et al. [98] 2016 CT IQA PSNR SSIM is suitable for this task

Green [63] 2016 CT IQA - SSIM is suitable for this task

Himanshi et al. [99] 2016 CT and MRI IQA FF SSIM is suitable for this task

Joemai and Geleijns [100] 2017 CT IQA - SSIM is suitable for this task

Zhang et al. [102] 2018 CT IQA RMSE SSIM is suitable for this task

Kim and Byun [43] 2018 CT IQA - SSIM is suitable for this task

Hu and Zhang [103] 2018 CT and MRI IQA PSNR SSIM is suitable for this task

Wang et al. [65] 2018 CT IQA PSNR SSIM is suitable for this task

Kuanar et al. [41] 2019 CT IQA PSNR SSIM is suitable for this task

Kim et al. [99] * 2019 CT Reducing
metal artifact

LI-MAR, NMAR,
and RMAR MAE = 8.52 and 10.12

Elaiyaraja et al. [42] 2019 CT and MRI IQA PNSR, IQI, and VIF SSIM is suitable for this task

Sun et al. [64] 2019 CT IQA PSNR SSIM is suitable for this task

Urase et al. [104] 2020 CT IQA PSNR SSIM is suitable for this task

Gajera et al. [105] 2021 CT IQA PSNR SSIM is suitable for this task

Martinez-Girones et al. [67] 2021 CT and MRI IQA
ZNCC, MAE, and
Dice coefficient for

bone class
SSIM is suitable for this task

* A detailed review is provided in Section 4.6.

4.3. Ultrasonography

We review SSIM applications for ultrasonography in this section. We found that
the first implemented SSIM for US was in 2007. SSIM along with the SNR, coefficient of
correlation (CoC), edge preservation index (EPI), and QI were used to quantify the image
enhancement when a versatile wavelet domain algorithm was utilized [106]. In the same
year, US with two other medical images, CT and X-ray images, were measured using SSIM,
MSE, PSNR, CC, and PRD to identify the effectiveness of a novel algorithm for compressing
images in the field of teleradiology using an adaptive threshold value of variance [107].
In 2008, an algorithm was developed to reduce the effects of speckle, and the developed
algorithm was measured with the Michelson contrast measure (CM), the Beghdadi and Le
Négrate contrast measure (CBN), PSNR, and SSIM [108]. Their results showed that SSIM
has potential effectiveness as an IQM for the US, although, at the time, SSIM had existed
for only 3 or 4 years.

The reduction in speckle in US images has brought several types of studies to this issue.
In 2016, the least-squares Bayesian [60], adaptive non-local means [109], local statistic, and
non-local mean filter [110] algorithm estimations were established to reduce the speckle in
US images, and several IQAs including SSIM, SNR, MSE, and a sum of the variance (SV)
were designated to evaluate the improved algorithms. An uncommon SSIM implementation
was conducted using CW-SSIM as a contour extractor of a tongue by Xu et al. [61,111]. They
compared the performance of MSSIM and CW-SSIM with the normalized PSNR (NPSNR).
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MSSIM and the NPSNR demonstrated similar results, whereas CW-SSIM presented superior
results by showing the tongue position with the peak of CW-SSIM.

Apparently, more attention from researchers was drawn in 2017–2021 for creating an
efficient algorithm to eliminate speckle in US images [58,59,66,112–118]. In addition, US images
can be analyzed using deep learning to conduct breast tumor segmentation and reconstruct
images from raw channel data [53,119]. In [53], the combination between SSIM and L1-norm in
the loss function was applied to capture the local context information from the surrounding
tumor area, whereas in [119], MS-SSIM and PSNR were utilized as the loss function.

To conclude this subsection, Table 3 illustrates the purposes of using SSIM for US
medical images. As indicated in Table 3, SSIM is accepted not only for IQA but also for
other purposes, such as a contour extractor and loss function. In addition, compared
to other metrics, SSIM performances are competitively appropriate according to their
dedicated assignment.

Table 3. Summary of the published articles encompassing SSIM for the US. US, ultrasound; CoC,
coefficient of correlation; EPI, edge preservation index; QI, quality index; MSE, mean-square error; PSNR,
peak-signal-to-noise ratio; CC, correlation coefficient; PRD, percent rate of distortion; CM, Michelson
contrast measure; CBN, Beghdadi and Le Négrate contrast measure; SNR, signal-to-noise ratio; IQI,
image quality index; SV, a sum of the variance; MSD, mean sum of distances; NPSNR, normalized
peak-signal-to-noise ratio; MAE, mean-absolute error, UQI, universal quality index; ENL, equivalent
number of looks; CNR, contrast-to-noise ratio; C, variation of conductance; SNR, signal-to-noise ratio;
RMSE, root-mean-square error; IoU, intersection over union; SD, standard deviation.

Study Year Modality SSIM
Implementation Compared Matrix Results

Gupta et al. [106] 2007 US IQA CoC, EPI, and QI SSIM is suitable for this task

Singh et al. [107] 2007 US and X-ray IQA MSE, PSNR, CC, and
PRD SSIM is suitable for this task

Munteanu et al. [108] 2008 US IQA CM, CBN, and PSNR SSIM is suitable for this task

Nagaraj et al. [60] 2016 US IQA SNR, PSNR, CoC,
and IQI SSIM is suitable for this task

Ai et al. [109] 2016 US IQA PSNR SSIM is suitable for this task

Yang et al. [110] 2016 US IQA SNR, MSE, and SV SSIM is suitable for this task

Xu et al. [61] * 2016 US Tongue contour
extractor

No similarity
constraint and

similarity constraint
MSD = 2.96± 0.95 to 3.65± 1.02

Xu et al. [111] 2016 US Tongue contour
extractor NPSNR CW-SSIM has the best performance

Sagheer and George [59] 2017 US IQA PSNR and EPI SSIM is suitable for this task

Javed et al. [112] 2018 US IQA PSNR SSIM is suitable for this task

Gupta et al. [113] 2018 US IQA PSNR, MSE, and
MAE SSIM is suitable for this task

Ahmed [58] 2018 US IQA MSE, SNR, and PNSR SSIM is suitable for this task

Gupta et al. [114] 2019 US IQA PSNR SSIM is suitable for this task

Nadeem et al. [115] 2019 US IQA SNR SSIM is suitable for this task

Balamurugan et al. [118] 2020 US IQA PSNR SSIM is suitable for this task

Lan and Zhang [116] 2020 US IQA PSNR, ENL, and
CNR SSIM is suitable for this task

Singh et al. [66] 2020 US IQA EPI and UQI SSIM is suitable for this task

Singh et al. [53] 2020 US Loss function -

Dice coe f f icient = 0.8682 to 0.9376,
IoU = 0.8037 to 0.8882,

Sensitivity = 0.9011 to 0.9155,
and Speci f icity = 0.9949 to 0.9973

Strohm et al. [119] 2020 US Loss function MAE mean and SD = 0.91± 0.04
and 0.90± 0.01

Bharadwaj [117] 2021 US IQA C, SNR, PSNR, MSE,
and RMSE SSIM is suitable for this task

* A detailed review is provided in Section 4.6.
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4.4. X-ray

The fourth discussion on medical images is focused on X-ray images. Unlike MRI,
CT, and US images, SSIM implementation for medical X-ray images was introduced in
2012 for the first time to the best of our knowledge. As is typical, SSIM was constructed to
measure a designated algorithm to estimate the similarity score between the ground-truth
image and the denoised images. In 2012, SSIM, PSNR, SNR, and MSE were appointed to
evaluate an improved algorithm [120]. Similarly, in 2016, a method to eliminate Gaussian
noise was established using an edge preserved wavelet packet transformation [121], and
the denoising of a contrast-enhanced X-ray image was accomplished [122]. In addition,
SSIM was allocated together with the MSE, RMSE, SNR, PSNR, recall, accuracy, precision,
and error rate as an objective IQA. Subsequently, in 2017, a security watermark algorithm
was developed to secure the diagnostic information of a patient, as well as the ownership
and authentication [123] in X-ray and MR images. Again, SSIM has a role as an IQM along
with wavelet domain SNR (WSNR) and PSNR. The feasibility of SSIM was not only shown
for a numerical analysis but also in regard to deep learning, such as a CNN. The improved
algorithm with deep learning may be measured using SSIM related to compression and
noise reduction [124–127]. Moreover, comparisons of filter techniques used to reduce the
noise and image reconstruction, as well as apply image compression, were conducted using
X-ray images [44,128–130].

To conclude this subsection, Table 4 exemplifies the purposes of using SSIM for X-ray
medical images. As in Table 4, we describe the whole article using X-ray images conveying
the SSIM metric as an IQM.

Table 4. Summary of the published articles encompassing SSIM for X-ray. PSNR, peak-signal-to-noise
ratio; CT, computed tomography; MRI, magnetic resonance imaging; SNR, signal-to-noise ratio; MSE,
mean-square error; RMSE, root-mean-square error; WSNR, wavelet domain signal-to-noise ratio;
RMSE, root-mean-square error; FSIM, feature similarity index.

Study Year Modality SSIM
Implementation

Compared
Matrix Results

Cerciello et al. [120] 2012 X-ray IQA PSNR, SNR, and
MSE SSIM is suitable for this task

Rajith et al. [121] 2016 X-ray IQA

MSE, RMSE, SNR,
PSNR, recall,

accuracy, precision,
and error rate

SSIM is suitable for this task

Jeon [122] 2016 X-Ray IQA PSNR SSIM is suitable for this task

Kunhu et al. [123] 2017 Xray and MRI IQA PSNR and WSNR SSIM is suitable for this task

Zhang and Yu [124] 2018 X-ray CT IQA RMSE SSIM is suitable for this task

Sushmit et al. [125] 2019 X-ray IQA PSNR SSIM is suitable for this task

Islam et al. [126] 2019 X-ray IQA PSNR SSIM is suitable for this task

Haiderbhai et al. [127] 2020 X-ray IQA RMSE and PSNR SSIM is suitable for this task

Roy and Maity [128] 2020 X-ray IQA MSE, PSNR,
and SNR SSIM is suitable for this task

Saeed et al. [129] 2020 X-ray IQA RMSE, PSNR,
and FSIM SSIM is suitable for this task

Villarraga-Gómez and Smith [130] 2020 X-ray CT IQA RMSE and PSNR SSIM is suitable for this task

Pourasad and Cavallaro [44] * 2021 X-ray IQA PSNR and MSE SSIM is suitable for this task

* A detailed review is provided in Section 4.6.

4.5. Optical Imaging

To complete the reviews of SSIM implementation in medical imaging systems, we
presented a novel modality using optical imaging. Because optical imaging is a relatively
new modality, acquiring SSIM applications in optical imaging is considered rare. Despite
our best efforts, we found only two articles comprising SSIM as an IQM to measure the dis-
torted medical images related to the reference images. We excluded optical imaging using
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SSIM for a scope other than the medical field, such as optical imaging for communication
and simulations to predict the optical properties of a reconstruction. In 2020, SSIM along
with MAE were utilized to examine images from a single snapshot of optical properties
(SSOP) and the ground-truth images [131].

In 2021, SSIM was used for comparing the optical images of a mouse with an em-
bedded tumor [132]. The article reported the application of machine learning, such as
K-means and fuzzy c-means, to automatically cluster the tumor. They compared the results
between manual clustering and automatic clustering with the aid of SSIM and the Dice
coefficient to evaluate the similarity of two images. Here, SSIM performed satisfactorily
in objectively examining the segmentation results through a manual approach, showing a
similarity score of 0.9168. In addition, when Gaussian noise was added to the background,
SSIM demonstrated a robust performance by showing a stable similarity score. With the
assistance of SSIM, the article reported that their clustering algorithms are robust to noise.

To conclude this subsection, Table 5 represents the purposes of using SSIM for optical
medical images. As in Table 5, we describe two articles using optical images assigning the
SSIM metric as an IQM.

Table 5. Summary of the published articles encompassing SSIM for optical imaging. MAE, mean-
absolute-error.

Study Year Modality SSIM Implementation Compared Matrix Results

Aguénounon et al. [131] 2020 Optical imaging IQA MAE SSIM is suitable for this task

Ren et al. [132] 2021 Optical imaging IQA Dice coefficient SSIM is suitable for this task

4.6. Current Status of SSIM Research in Medical Imaging

We identified that the SSIM applications evolve from only for IQA to be able to
implement as a loss function in CNN, reducing metal artifact, and contour extractor.
Therefore, this section describes the articles using SSIM for such goals with a “*” mark, as
shown in Tables 1–4.

4.6.1. Loss Function

The loss function along with the activation function, optimizer, and other hyperpa-
rameters in CNN is an essential parameter to predict the model architecture ability. A
common loss function is MSE since it can provide simple mathematical expressions. In
2021, Jaubert et al. attempted to develop a CNN-based algorithm to suppress the artifact of
phase-contrast cardiac MR images in real time. Here, they assigned MAE and SSIM as the
loss function when training the model architecture. They called their CNN model U-Net
MAE and U-Net SSIM [38].

To begin their study, they prepared the synthetic dataset using 520 breath-hold, retro-
spectively cardiac gated, uniform density phase-contrast MR in the aortic position. The
dataset was comprised of 40 combinations between magnitude and phase subtracted im-
ages. They split the dataset into 490 training images and 15 images were for validation
and test dataset each. The ground-truth training dataset was obtained by interpolating the
phase-contrast MR images to the target temporal resolution. To generate the corrupted
images, the original dataset was processed using Fourier transform and undersampled
utilizing the chosen trajectory. Then, with the inverse Fourier transform, they acquired
the aliased data. The ground-truth and noise-contaminated images were normalized and
cropped into 192× 192× 40.

After the dataset preprocessing, they fed the dataset into the U-Net architecture
for training. U-Net model consisted of max-pooling, transpose three-dimensional (3D)
convolution, 3D convolution, and 1D convolution layers. They trained the model by
implementing an adaptive moment estimation algorithm (Adam) as the optimizer, a batch
size of 2, an epoch of 100, as well as with an initial learning rate of 0.0005. To complete
the configuration, they assigned two loss functions, namely MAE and SSIM (AvgSSIM).
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Especially for SSIM, the loss can be computed with the complex images over the real (real)
and imaginary (imag) elements, as follows

AvgSSIM =
SSIM

(
real+1

2

)
+ SSIM

(
imag+1

2

)
2

, (39)

These loss functions were utilized to obtain the selected best performance of the U-
Net with the most minimum loss calculated from the validation dataset. To measure the
effectivity of their U-Net, MAE, PSNR, average SSIM, magnitude SSIM, and phase SSIM
were applied.

According to their results, U-Net MAE and U-Net SSIM have a significant improve-
ment to suppress the artifact when compared to the gridded images. Additionally, U-Net
SSIM enhanced the images’ sharpness, whereas U-Net MAE was deemed blurrier. U-Net
MAE was superior when the metric evaluations were MAE and PSNR; meanwhile, U-Net
SSIM was exceptional in the average SSIM, magnitude SSIM, and phase SSIM. Moreover,
they compared the U-Net MAE and U-Net SSIM using flow compensated, flow encoded,
and combined images to obtain the denoised images. Both U-Net performed sufficiently
with the magnitude images. However, U-Net SSIM was remarkable in denoising the phase
images compared to U-Net MAE. With these results, U-Net SSIM outperformed U-Net
MAE for the 20 pediatric patients with congenital heart disease.

4.6.2. Reducing Metal Artifact

A metal artifact can exist due to the presence of high-density objects, i.e., dental
fillings and surgical clips. In CT imaging, the presence of metal artifacts causes issue of
complications in imaging the region of interest (ROI) and may reduce the dose calculation
accuracy. In order to suppress the metal artifact, a robust metal artifact reduction (MAR)
algorithm is vital to be established. Therefore, in 2019, Kim et al. tried to develop a MAR
algorithm based on the tilted CT scan images. Their idea began from the understanding
of the normal CT scan position may produce metal artifact contaminated images, and the
tilted CT scan can complement the original CT scan position by offering reconstructed
images with less metal artifact. Additionally, to obtain the less metal artifact images, they
implemented modified SSIM by neglecting the luminance factor and only considering the
contrast and structure components in the calculation. They claimed that the luminance
factor containing intensity in the areas with the metal artifact between CT images and the
superposition map is different completely, whereas the edge information is fairly identical.
Thus, the correlation map calculated using the original SSIM may not accurately predict
the metal artifact similarity score [99].

The algorithm steps are described in Algorithm 1 for MAR with SSIM.

Algorithm 1. MAR with SSIM

Input: Reconstructed original CT and tilted CT images
Output: Reconstructed image with the smallest SSIM
1. for reconstructed images of original CT and tilted CT do
2. Subtract original CT and tilted CT images
3. Obtain the artifact map
4. Modified SSIM calculation with 5×5 windows
5. Obtain the original CT and tilted CT correlation maps
6. Compare original CT and tilted CT correlation maps that contain SSIM score
7. if original CT SSIM < tilted CT SSIM do
8. Choose the intensity of the original CT image as the best reconstruction image
9. Otherwise do
10. Choose the intensity of the tilted CT image as the best reconstruction image
11. End if
12. End for

To show the superiority of their proposed MAR, they compared the proposed method
with well-known linear interpolation metal artifact reduction (LI-MAR), normalized metal
artifact reduction (NMAR), and refined metal artifact reduction (RMAR). They obtained an
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exceptional result when using MAR with SSIM by presenting a mean absolute percentage
error (MAPE) of 8.52%, whereas the original CT scan, tilted CT scan, LI-MAR, NMAR,
and RMAR exhibited 62.98%, 9.27%, 19.97%, 14.12%, and 11.79%, respectively, in the
simulation study. Moreover, in the experiment study, they extended the proposed method
by combining it with RMAR and generated two new methods, namely tilted CT-based MAR
(T-MAR) and augmented tilted CT-based MAR (AT-MAR). Particularly when employing
AT-MAR, their results indicated that the metal artifact suppression algorithm can reduce the
existence of streaks and bright/dark band artifacts near metallic objects by demonstrating
MAPE of 10.12%, whereas original CT scan, tilted CT scan, T-MAR, LI-MAR, NMAR, and
RMAR had MAPE of 92.12%, 60.62%, 46.37%, 45.84%, 34.62%, and 29.93%, respectively.

4.6.3. Contour Extractor

Contour extraction for tongue image sequences may be beneficial for speech recog-
nition, speech production, and swallowing study. The tongue images can be obtained
utilizing the US modality. In 2016, Xu et al. compensated the manual tongue contour
tracking by employing CW-SSIM for re-initializing the tongue contour position automati-
cally [61]. They considered CW-SSIM due to its invariant with a few rotations, translations,
and scaling distortions. They started the procedure by computing the similarity score be-
tween the reference image (the first frame image in this case) and the current frame image.
In total, they can have a thousand images depending on the number of frames. Then, they
set a threshold value of CW-SSIM for the purpose of re-initializing the contour position to
the first frame if the similarity score was greater than the designed threshold value (0.8).
Their results indicated that the CW-SSIM along with similarity constraint achieved the
best performance by showing the less mean sum of distances (MSD) for three subjects,
i.e., 3.36± 0.86, 3.65± 1.02, and 2.96± 0.95.

4.6.4. Image Quality Assessment

Most of the SSIM implementation is for IQA/IQM since the initial objective of SSIM is
to substitute the traditional measures, such as MSE and PSNR. Thus, in this subsubsection,
we reviewed one article allocating SSIM as an IQA to complete the comprehensive insight
regarding the SSIM prospect for medical image analysis.

The image compression and quality enhancement in medical image processing are
substantial factors in reducing the content redundancy to attain the image optimal form
when storing and transferring the images. Thus, Pourasad and Cavallaro in 2021 demon-
strated two novel algorithms, namely lossless and lossy compression algorithms [44]. After
they compressed the images, they applied several enhancement techniques to acquire the
leverage image quality from the compressed images. To assess the algorithms’ performance,
they analyzed them with MSE, PSNR, and SSIM. Moreover, lossy compression was used
to execute DCT and DWT. Likewise, the lossless method with run-length encoding (RLE)
and block truncation coding (BTC) was operated for the study. To achieve a satisfactory
medical image quality, two spatial domain enhancement techniques have been used, such
as adaptive histogram equalization (AHE) and morphological operations (MO).

Their study employed the medical images from MedPix®, which is a free and open
access medical images, teaching cases, and clinical topics database. This database has
approximately 59, 000 medical images with 12, 000 patients case scenarios and 9000 topics.
Their findings indicated that neither AHE nor MO is not suitable for image quality enhance-
ment because the SSIM and PSNR score is decreased after processing the image quality
enhancement algorithms. However, their image compression methods are outstanding
compared to the other studies, such as the joint photographic experts group (JPEG) and
JPEG2000. The best compression can be achieved using DCT with an SSIM of 0.9761.

4.7. Limitation

We attempted to collect the SSIM-related articles in the medical image analysis to
provide a comprehensive review for researchers in guiding the SSIM application for the
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medical field. However, we limited our reviews by merely describing more detailed
information about SSIM implementation as a loss function, MAR, contour extractor, and
IQA. We did not describe the SSIM implementation as the segmentation and clustering
algorithms as in [90,93] in detail. Additionally, for effectiveness, we reviewed one article
on the IQA SSIM because SSIM-related articles are usually relative to IQA; thus, it is
reasonable to review only one article representing the other IQA SSIM studies. Furthermore,
by providing a brief review in Sections 4.1–4.5, we may hope this review is valuable
for readers.

5. Future Potential of SSIM in Medical Image Analyses and Conclusions

This review offers comprehensive insight related to state-of-the-art SSIM approaches
for medical imaging, as well as the potential medical image examination research methods
that can be improved using SSIM. It is likely that, in the future, SSIM may be used not
only for IQM but also for segmentation, clustering, classification, image fusion, and object
detection in regard to image processing in medical imaging, and as a feature extractor
and loss function relative to the deep learning method [133–135]. Furthermore, SSIM can
be extended to CAD for assisting physicians and clinicians in their predictions and for
providing conclusions when diagnosing a specific disease based on the work of radiologists.
Here, SSIM can act as a second opinion to improve the confidence of radiologists. In
addition, using an objective measure, SSIM can be efficient in terms of cost and time
consumption. However, we must give more attention to the drawbacks of SSIM. As
reviewed, the original SSIM showed some shortcomings when evaluating badly blurred
images, scaling, rotation, and spatial translation images. Nevertheless, these issues can
be overcome by implementing an improved SSIM, such as MS-SSIM, three- and four-
component weighted SSIMs, GSSIM, CW-SSIM, ISSIM-S, and other types of SSIM. SSIM has
been identified as easy to use and improve because, based on image processing knowledge,
it can be upgraded based on the goal of a particular study. Therefore, future studies should
address the SSIM implementation by focusing on the improved SSIM for obtaining the
optimal SSIM model when assigning it as an IQM or other image processing approach in
medical imaging.
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