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The last decade witnessed an unprecedented increase in the adoption of genomic
selection (GS) and phenomics tools in plant breeding programs, especially in major
cereal crops. GS has demonstrated the potential for selecting superior genotypes with
high precision and accelerating the breeding cycle. Phenomics is a rapidly advancing
domain to alleviate phenotyping bottlenecks and explores new large-scale phenotyping
and data acquisition methods. In this review, we discuss the lesson learned from GS and
phenomics in six self-pollinated crops, primarily focusing on rice, wheat, soybean,
common bean, chickpea, and groundnut, and their implementation schemes are
discussed after assessing their impact in the breeding programs. Here, the status of
the adoption of genomics and phenomics is provided for those crops, with a complete GS
overview. GS’s progress until 2020 is discussed in detail, and relevant information and links
to the source codes are provided for implementing this technology into plant breeding
programs, with most of the examples from wheat breeding programs. Detailed information
about various phenotyping tools is provided to strengthen the field of phenomics for a plant
breeder in the coming years. Finally, we highlight the benefits of merging genomic
selection, phenomics, and machine and deep learning that have resulted in
extraordinary results during recent years in wheat, rice, and soybean. Hence, there is a
potential for adopting these technologies into crops like the common bean, chickpea, and
groundnut. The adoption of phenomics and GS into different breeding programs will
accelerate genetic gain that would create an impact on food security, realizing the need to
feed an ever-growing population.

Keywords: genetic gain, genomics, high throughput phenotyping, machine and deep learning, plant breeding, root
phenomics

INTRODUCTION

Classical plant breeding has evolved considerably during the last century. This can be attributed to
the combined action of molecular markers, improved experimental designs, statistical methods,
understanding of the concepts of population and quantitative genetics, and integration of other
disciplines such as entomology, pathology, soil science, engineering, agronomy, and physiology
(Lopes et al., 2012; Ray et al., 2012). The evolution and adoption of all these techniques and tools has
pushed the annual genetic gain of grain yield approximately 1% for major cereals like maize (Zea
mays L.), rice (Oryzae sativa L.), and wheat (Triticum aestivum L.) (Lopes et al., 2012; Masuka et al.,
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2017a; Cobb et al., 2019). However, the rate of genetic gain in
these crops is insufficient to cope with a 2% annual increase in the
human population, which is expected to reach 9.8 billion by 2050
(Ray et al., 2012, 2013). Plant breeders and scientists are under
pressure to develop new varieties and crops having higher yield,
higher nutritional value, climate resilience, and disease and insect
resistance. The solution requires the merging of new techniques
like next-generation sequencing, genome-wide association
studies, genomic selection, high throughput phenotyping,
speed breeding, and CRISPR mediating gene editing with
previously used tools and breeder’s skills (Varshney et al., 2021).

Since the 1980s, various molecular marker systems such as
restriction fragment length polymorphism (RFLP), amplified
fragment length polymorphism (AFLP), randomly amplified
fragment polymorphic DNA (RAPD), simple sequence repeats
(SSR), and single nucleotide polymorphism (SNP) have been
developed and led to the identification of several quantitative trait
loci (QTL) by linkage mapping in most crops (Zhu et al., 2008;
Buerstmayr et al., 2009). This was further supported by the
development of high throughput genotyping tools like
diversity array technology (DArT), genotyping by sequencing
(GBS), SNP array platform (for instance in wheat, several high-
density SNP arrays are available including the IlluminaWheat 9K
iSelect, Wheat 15K SNP array, 35K Axiom array developed from
an 820K array, 55K SNP array developed from 660 arrays,
Illumina 90K iSelect SNP array, and the Axiom wheat 660K
SNP array), and next-generation sequencing, all of which provide
tremendous amounts of marker information for utilization in
mapping studies (Poland and Rife, 2012; Wang et al., 2014; Cui
et al., 2017). Linkage mapping started with great hype for
deciphering each trait’s genetic architecture and improving
traits. This hype was later unrealized and attributed to low
mapping resolution, QTL by genotype interaction, QTL by
environment interaction, and QTL specific to a particular
segregating population. However, there are some success
stories utilizing linkage mapping for cultivar development,
such as identification of Sub1 QTL for submergence tolerance
in rice, Fhb1QTL for providing tolerance to fusarium head blight
in wheat, and QTL for providing resistance to cyst nematodes in
soybean (Glycinemax L.) (Concibido et al., 2004; Anderson et al.,
2007; Septiningsih et al., 2009).

As the excitement about linkage mapping began to fade in the
early 2000s, association mapping emerged as a new technique for
studying marker-trait associations (Lander and Botstein, 1989;
Breseghello and Sorrells, 2006; Yu et al., 2006). Association
mapping has two main advantages over linkage mapping.
Firstly, it saves the time, cost, and effort required to create a
mapping population, as it uses a collection of germplasm, which
can be easily assembled. Secondly, QTL can be mapped with
higher resolution due to multiple historical recombination in the
germplasm (Korte and Ashley, 2013). Several statistical models
were developed, which varied from single locus to multi-locus
models and multivariate models, including genotype by
environment interaction, dominance, and epistasis components
depending upon the associated crop’s nature (Huang et al., 2018;
Tibbs Cortes et al., 2021). It was later realized that association
mapping suffers from several limitations and has not shown the

same potential as linkage mapping. The main reason for its low
success was that it detects variants common in the mapping panel
and thus has low power for detecting the rare variant. These rare
variants could be identified by linkage mapping with segregation
of alleles in the mapping population, which will provide higher
power to detect rare QTL. Furthermore, several nested
association mapping (NAM) and multi-parent advanced
generation intercross (MAGIC) populations have been
developed in most of the crop species discussed in this review
for marker trait associations (MTAs) with high power and
resolution during mapping studies (Yu et al., 2008; Diaz et al.,
2021; Sandhu et al., 2021d).

By the late 2000s, plant breeders realized that they needed a
technique that can not only identify associated QTL, but provides
enough information to improve complex quantitative traits, for
which previous mapping techniques had failed. Bernardo
(Bernardo, 1994) achieved the earliest success for predicting
breeding values by replacing pedigree based matrix with a
marker based kinship using RFLP markers in maize. The term
genomic selection (GS) was first coined in 2001 and uses whole
genome-wide markers for predicting genomic-estimated
breeding values (GEBVs) of individuals (Meuwissen et al.,
2001; Bassi et al., 2015). GS is a technique that is not a design
approach to create a cultivar with a specific QTL combination but
uses a predictive approach to identify the line with the best
breeding values using whole genome wide markers. It uses
hundreds to thousands of genome-wide markers and previous
years phenotypic data to build the GS model and predict the
performance of new lines for quantitative traits (Isidro et al.,
2015). If a marker is in linkage disequilibrium (LD) with the
associated QTL, it will capture a large proportion of the genetic
variance for predicting that trait’s performance. The interest of
GS in plant breeding started after it was reported in maize in 2007
(Bernardo and Yu, 2007), and subsequently, several studies
followed up utilizing this technique in different crop species
(Crossa et al., 2014; Sun et al., 2017b). Plant breeders are
rapidly adopting GS for selecting the parents of new crosses,
removing poorly performing lines, predicting the performance of
lines in untested environments, predicting quantitative traits
early in the breeding pipeline (which was previously difficult
due to less seed availability), and predicting the performance of
traits that were not expressed in a particular environment owing
to weather conditions (such as disease incidence) (Mohammadi
et al., 2015; Millet et al., 2019; Cui et al., 2020; Krause et al., 2020).

Techniques like linkage and association mapping, marker-
assisted selection (MAS), and GS need accurate phenotyping
information for obtaining the desired results. GS requires
phenotypic information for building models, and MAS
requires phenotypic information for validating that a
particular marker is associated with a trait (Kaur et al., 2021).
In a large-scale breeding program, especially institutes such as the
international maize and wheat improvement center (CIMMYT),
international crops research institute for the semi-arid tropics
(ICRISAT), international center for tropical agriculture (CIAT),
and many breeding programs, approximately one hundred
thousand breeding lines are screened every year at multiple
locations, and the ability to accurately collect phenotyping
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data from this many lines and locations is challenging (Araus and
Cairns, 2014; Araus et al., 2018; Zhang et al., 2020b; Juliana et al.,
2020). Until now, advancements in phenotyping have not able to
keep pace with developments in the field of genomics. However,
the period from 2010 to 2019 witnessed the development and
adoption of various phenomics tools in plant breeding under
controlled and field conditions. Phenomics has unlocked the
potential for phenotyping in plants for various traits like biotic
(disease, insects, pests, viruses, and weeds) and abiotic stresses
(drought, salinity, nutrient deficiency, flood, and other
environmental factors), physiological (water use efficiency,
photosynthesis mechanisms and different pigments), and
agronomic traits (plant height, ear count and yield estimation)
(Sankaran et al., 2015a; Zaman-Allah et al., 2015; Araus et al.,
2018; Zhang et al., 2019). Merging phenomics with current
genomics methods have improved progress in increasing the
rate of genetic gain in many plant breeding programs (Masuka
et al., 2017a, 2017b; Araus et al., 2018).

Several ground-based and aerial sensing platforms are being
used with multiple sensors for measuring various traits in plants
at different growth stages accurately, rapidly, and precisely
(Sandhu et al., 2021e). The advancements in imaging sensors
in plants varied from remote sensing to advanced autonomous
vehicles equipped with RGB (red, green, and blue), near and far
infrared, hyperspectral, light detection and ranging (LIDAR), 3D
laser scanning, fluorescence, thermal, and spectro-radiometry
imaging (Mewes et al., 2011; Atieno et al., 2017; Duan et al.,
2018; Jimenez-Berni et al., 2018). Advanced autonomous
platforms include ground robots, unmanned aerial vehicles
(UAVs), and moving carts, which can take real-time data
from several plots multiple times in a day to cover the whole
season, generating enormous data for the plant breeders
(Sankaran et al., 2019; Pattanashetti et al., 2020). Data
generated from these sensors are longitudinally distributed in
time and space, thus requiring skills from mathematics,
statistics, data science, and machine learning for obtaining
useful results, which could be merged with the genomic
datasets and field breeding notes to make the best selections
(Sun et al., 2017b; Sun et al., 2019).

The main objectives of this review are to 1) provide current
status and overview about the advancements in genomics and
phenomics for rice, wheat, soybean, common bean (Phaseolus
vulgaris L.), chickpea (Cicer arietinum L.), and groundnut
(Arachis hypogaea L). These six crops are chosen after
considering the different rate of development during the last
decade and importance in the human diet and crops were chosen
separately from each cereal, legume and oilseed category; 2) offer
an overview of GS and its implementation in cereal, legume, and
oilseed breeding programs; 3) present developments in
phenotyping platforms and imaging sensors for collecting
phenotypic data; 4) discuss the status of below ground
phenotyping techniques in plant breeding; and 5) discuss the
merging of GS, machine learning, and phenomics information for
increasing the genetic gain of breeding programs. This review is
unique as it combines GS and phenomics in several important
crops and will assist upcoming plant breeders understand the
progress of this technology.

OVERVIEW OF SIX CROPS USED IN THIS
STUDY

This review focuses on six important crops: rice, wheat, soybean,
common bean, chickpea, and groundnut, as described above.
Average productivity and area harvested from these crops are
provided in Figure 1 from 1961 to 2019 (FAO 2019) (https://
www.fao.org/statistics/en/). The average productivity increased
from 1.9 to 4.7 ton/ha in rice, 1.1–3.5 ton/ha in wheat, 1.1–2.
8 ton/ha in soybean, 0.5–0.9 ton/ha in common bean, 0.6–1.
0 ton/ha in chickpea, and 0.8–1.6 ton/ha in groundnut from
1961 to 2019 (Figure 1A). There was an approximately three-
fold increase in rice, wheat, and soybean productivity due to
breeding and agronomic efforts. However, in common bean,
chickpea, and groundnut, similar gains have not been
observed (Figure 1A). Total area harvested for rice, wheat,
and soybean constantly increased from 1961 to 2019
compared to common bean, chickpea, and groundnut
(Figure 1B). Organizations like CIMMYT, ICRISAT, and
CIAT are working on collaborative projects to increase the
crop’s yield and awareness among farmers to use better
agronomic practices in these crops (Pandey et al., 2020b;
Thudi et al., 2020). Figure 2 shows the productivity of these
six crops across continents from 1961 to 2019. The green
revolution has resulted in the highest increase in productivity
of rice and wheat in Asia, but since the last 2 decades, the rate of
increase is linear, which won’t be sufficient for the current
increasing population, thus, demanding additional scientific
and technological breakthroughs (Ray et al., 2013).

Rice is a major staple food consumed by more than one third
of the world’s populations and meets up to 80% of the daily
calorie intake for a vast majority of the Asian population
(Kearney, 2010). Rice is a diploid species and has the smallest
genome among the crops of economic importance, which assisted
in its genome sequence in early 2002 (Sun et al., 2017a).
Currently, several landraces, cultivar’s and wild relatives of rice
have been sequenced, providing novel insights into the genome
evolution of the crop and enhancing knowledge of new genes for
rice breeding programs (Sun et al., 2017a). Due to its ease of
transformation, abundant genetic and genomic resources
(including mutants, cultivated landraces, and wild species),
compact genome, and collinearity with other cereal crops, rice
has become a model plant for crop genetic studies (Chen et al.,
2014; Sun et al., 2017a). Rice was one of the crops which benefited
from next generation sequencing due to its relatively modest level
of repetitive sequences, making it easy to accurately align small
reads to its reference genome (Abe et al., 2012; Takagi et al.,
2013). Great success has been seen in rice for releasing cultivars
having disease resistance, stress tolerance, improved nutritional
value, and higher yield using CRISPR and other genome editing
tools compared to the other five crops studied in this review
(Mishra et al., 2018). The individual timeline for the genomics
breakthrough in rice are depicted in Figure 3A.

Wheat is one of the three most consumed cereal crops globally,
providing one-fifth of the total caloric input. It is grown on
approximately 200 M ha globally and has widespread adaptation
from 45 S in Argentina to 67 N in Scandinavia, including some
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FIGURE 1 | The trend for yield and area harvested for the six crops, namely, rice, wheat, soybean, common bean, chickpea, and groundnut, staring from 1961 to
2019. (A) shows the yield trend and (B) shows the total area harvested for each crop since 1961. Source FAO, 2019 dated 02/20/2021.

FIGURE 2 | The average productivity of the six crops, namely, rice (A), wheat (B), soybean (C), common bean (D), chickpea (E), and groundnut (F), across the
continents starting from 1961 to 2019. These trends show huge potential for improving the crops using genomics and high throughput phenomics approaches in the
coming years. Source FAO, 2019 dated 02/20/2021.
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high-altitude regions in the tropics and subtropics. Wheat went
through two green revolution events, one in the late 1960s and
another during the 1980s. During these green revolutions, the
amount of gain for grain yield was approximately 3% in Asia, but
has now declined to <0.9% annually, causing concern for breeders
(Pingali, 2012). In spite of its hexaploid nature (2n � 6x � 42),
wheat is one of the most widely studied crops at the genetic and
cytogenetic level (Chhabra et al., 2021). The hexaploid nature of
wheat has allowed the creation of major numerical and structural
changes in chromosome constitution, that was made possible due
to the efforts of Ernie Sears Sears et al, (1993). Sears et al. Sears
et al, (1993) created aneuploid stocks of wheat, which were later
used for several mapping and genome sequence studies. The last
3 decades witnessed a profound improvement in understanding
wheat genomics and genetics due to the rapid adoption of DNA-
based molecular markers such as RFLP, SSR, AFLP, DArT and
SNPs from the early 1990s (Saini et al., 2022). These molecular
markers have aided in conducting several QTL mapping studies
using interval mapping, single-marker analysis, and GWAS
(Muhu-Din Ahmed et al., 2020). Several development events
in wheat, such as the first QTL mapping study, map-based
cloning, first consensus map, adoption of high throughput

genotyping arrays, translational genomics, gene editing, GS,
and pangenome sequence are listed in Figure 3B to compare
the development of genomics among the six crops (Poland et al.,
2012; Rutkoski et al., 2016; Montenegro et al., 2017). Recently, the
wheat pangenome sequence was released, with an average of
128,656 genes in each cultivar used, providing insights into
genomic assisted crop improvement (Montenegro et al., 2017;
Khan et al., 2020).

Soybean is a unique legume and oilseed crop consumed by
humans, livestock, and poultry worldwide, as it is a rich source of
protein, oil, essential amino acids, and metabolizable energy. The
total protein and oil content is important for soybean, as 60% of
its value comes from its meal and the remaining 40% from its oil
(Warrington et al., 2015). Aminimum of 47.5% protein content is
required in soybean meal to develop livestock and poultry
properly (Hurburgh et al., 1990). Although the domestication
of soybean started in Asia, it found a welcomed home in the
United States and Brazil. Brazil led production in 2019 (37%),
closely followed by the United States (28%), Argentina (16%) and
China (5%) (http://soystats.com/). Advancement of genomics
started after 2010 in soybean with the genome sequence of
cultivated soybean variety Williams 82 (Wm82) in the

FIGURE 3 | Timeline for advancement of genomics in rice (A), wheat (B), soybean (C), common bean (D), chickpea (E), and groundnut (F).
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United States (Schmutz et al., 2010). In addition to the genome
sequence ofWm82, several other accessions/lines were sequenced
by China and Japan. The genome sequence was the base point for
developing millions of SNP markers and thousands of SSR
markers (Deshmukh et al., 2014). The development of next-
generation sequencing and complexity reduction methods,
namely GBS, restriction site-associated DNA (RAD)
sequencing, and reduced representation libraries (RRL), are
being routinely used. Technology advances have resulted in
the development of several SNP arrays such as Illumina
Infinium BeadChip (50K), Affymetrix Axiom (355K), Illumina
Infinium BeadChip (8K), and Affymetrix Axiom (180), with
many more routinely used for genotyping soybean plant
introduction lines (Xu et al., 2013; Deshmukh et al., 2014).
Recently, whole-genome assemblies released from 26 different
soybean varieties and lead to the structuring of the soybean
pangenome and the sequences of previously cultivated lines in
the United States, China, and Japan (Liu et al., 2020). QTLs have
been mapped for many quality, biotic and abiotic stress, and
agronomic traits in soybean using QTL mapping and GWAS
(Merry et al., 2019; Qin et al., 2019; Ravelombola et al., 2020;
Shook et al., 2021). The complete details about the adoption of
various genomic tools is presented as a timeline in Figure 3C.

Common bean is an important cultivated legume crop
consumed worldwide, especially in developing countries in the
tropics. It’s seed is rich in protein and other micronutrients like
zinc and iron and provides a cheap energy source to millions of
people in Africa, South Asia, and Latin America, where per capita
consumption can reach up to 65 kg annually (Keller et al., 2020).
Until now, the main hindrance in reaching the maximum
threshold in bean is challenging environmental conditions.
The important biotic and abiotic stresses affecting their
performance include drought, low phosphorus, and diseases.
Drought and low phosphorus have resulted in up to 70 and
50% yield loss and are the main focus for the common bean
breeding programs worldwide (Beebe et al., 2008). Another
important breeding objective is to reduce cooking time, as it
retains the minerals and proteins which usually get lost with long
cooking time. Less cooking time also saves energy and time for
other tasks (Diaz et al., 2021). Mesoamerican and Andean have
been described as two gene pools in common bean, with greater
diversity present in the Mesoamerican pool. More progress for
improving yield, disease resistance, and quality traits is reported
in the Mesoamerican pool, but moving of genes/QTLs from this
pool to the Andean pool has been challenging, especially due to
linkage drag and incompatibility (Schmutz et al., 2014).
Furthermore, with the sequencing of 100 landraces and 60
wild relatives, it is confirmed that there were two
independent domestication events for common bean
(Schmutz et al., 2014). MTAs have been performed for
different disease traits, quality attributes, and yield traits for
both pools in different studies (Giovannoni et al., 1991; Berry
et al., 2020; Diaz et al., 2021). The timeline for the adoption of
several genomic tools in common bean is provided in
Figure 3D.

Chickpea is an important food legume crop grown on
13.72 M ha in 55 countries globally, producing 14.25 M tons

(FAO 2019). Chickpea can produce 3.0–4.0 tons/ha, but
currently it is restricted to ∼1 ton/ha due to limited work on
biotic and abiotic stresses (Roorkiwal et al., 2018b). Total
production of chickpea increased from 1961 at a slow pace
due to the use and reuse of limited germplasm/donor parents
(Varshney et al., 2013). Important abiotic stresses include
drought and heat, while biotic stresses include ascochyta blight
(Ascochyta rabiei), collar rot (Sclerotium rolfsii), dry root rot
(Rhizoctonia bataticola), botrytis grey mold (Botrytis cinerea),
and fusarium wilt (Fusarium oxysporum) that reduce crop yield.
Chickpea is a rich source of dietary protein, minerals,
carbohydrates, and essential nutrients, thus has the potential
for improving malnutrition problems in south Asia and sub-
Saharan Africa, where it is mostly grown (Varshney et al., 2013;
Pandey et al., 2016; Roorkiwal et al., 2018b). The last couple of
years have witnessed the adoption of several whole-genome
sequencing and resequencing projects for sequencing several
cultivars and landraces to explore genetic diversity (Verma
et al., 2015; Varshney et al., 2019). The adoption of these
next-generation sequencing methods in this decade has
witnessed a shift from maker-based genotyping to sequenced
based genotyping of diversified germplasm and breeding lines
(Jaganathan et al., 2015; Li et al., 2018b). The development of
chickpea varieties is further strengthened by the adoption of GS
and speed breeding methods. The timeline for adopting several
genomic tools in chickpea is provided in Figure 3E for
comparison with other crops.

Groundnut or peanut is a nutritious oilseed and legume crop
grown on 29.5 M ha in more than 100 countries globally, with a
total productivity of 48.8 tons during 2019. Africa (55%) and Asia
(40.3%) together have more than 95% of the groundnut
cultivation area, account for 31.5 and 59.6% of the total
production, respectively (FAO 2019). All parts of groundnut
are a nutrition source for humans and animals. Groundnut
plays an important role in fighting malnutrition as 80% of its
seed consists of nutritious fats and proteins; furthermore, the crop
can improve soil fertility and break the disease cycle when grown
under rotation with cereal crops (Pandey et al., 2020b).
Previously, groundnut was used as an edible crop in western
countries, while in Asia and Africa, it was mainly used for oil
production. The development of high oleic acid groundnut lines
and awareness about its nutritional value has resulted in the rapid
adoption of this crop as a primary food source across the globe.
Genomic studies in groundnut gained momentum after the first
SSR based genetic map was developed in 2009 (Varshney et al.,
2009). Several MAGIC and NAM populations were developed for
deciphering the genetic architecture of complex traits like
aflatoxin contamination, oleic acid content, drought, and
disease tolerance (Pandey et al., 2016; Chu et al., 2018). The
last decade was the golden era for developing genomics in
groundnut and several resources, such as a reference genome
for cultivated tetraploid and progenitors, high density
genotyping, genome-wide genetic markers, gene expression
atlases, and MAGIC and NAM populations, were developed,
with a timeline shown in Figure 3F (Akohoue et al., 2020; Pandey
et al., 2020b, 2020a). Still, this crop has many other priorities for
coming years like reference genome sequence for wild diploids,
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functional genomics, and high throughput genotyping assays,
which might improve breeding for groundnut.

GENOMIC SELECTION AND ITS
IMPLEMENTATION IN THE BREEDING
PROGRAM
As mentioned in the introduction, GS is a technique for
predicting GEBVs using training and testing populations
(Bhandari et al., 2019; Crossa et al., 2019). GS has been
efficiently applied in wheat, rice, and soybean; however, in
crops like chickpea, common bean, and groundnut, its
progress is slow. Figure 4 summarizes the trends for GS
studies conducted from 2011–20, and it is clear that GS was
rapidly adopted in wheat, and other crops are following the trend
at a slower pace. The slow rate of adoption in chickpea, common
bean, and groundnut is due to the recent advancement of
genomics tools, genome sequences, assembly of the core
collection, pangenome, and whole-genome resequencing
(Verma et al., 2015; Roorkiwal et al., 2018a; Pandey et al.,
2020b). Thus, the coming years will see efforts in the adoption
of GS and other new genomics tools to improve the genetic gain
for these globally important crops.

Several factors affect the performance of GSmodels. They have
been explored in multiple studies during the last decade, ranging
from training population size, relatedness between training and
testing population, cross-validation strategy, marker density,
heritability of the trait, population structure, and prediction
model (Yabe et al., 2018; Frouin et al., 2019; Huang et al.,
2019). It is observed that a certain population size is required
for model training to avoid model overfitting (Liu et al., 2018). A
large training population size results in higher prediction
accuracy; however, a smaller than desirable size is often used
due to the costs associated with their phenotyping and
genotyping (Heffner et al., 2011). In wheat, it was observed
that prediction accuracy constantly increased when training
population size was increased from 24 to 96 (Heffner et al.,

2011). Similarly, another study in wheat showed the same trend
when population size was increased from 250 to 2000 (Heslot
et al., 2012). Relatedness between genotypes in the training and
testing sets significantly affects prediction accuracy (Lozada et al.,
2019). More related lines share common ancestors in a small
number of prior generations, have fewer recombination events,
and conserve marker and QTL linkage phases (Heslot et al.,
2012). The effect of training population size is not observed on
prediction accuracy when individuals are closely related in the
training and testing set (Mujibi et al., 2011).

Since GS uses genome-wide markers, proper genotyping is
required. To date, several genotyping platforms like RFLP, AFLP,
SSR, DArT, and SNP chips have been explored for GS; however,
since 2012, with the emergence of the GBS platform, it has
dominated all previous platforms due to the low cost, genome-
wide coverage, and reduced sampling bias compared to SNP chips
(Poland and Rife, 2012; Poland, 2015). It has been seen that large
marker density results in model overfitting, causing lower
independent prediction accuracies (Werner et al., 2018).
However, larger marker density is favored as it increases the
probability of LD between the QTL and marker. Lower LD
combined with a larger training population and higher marker
density largely improves prediction accuracy (Crossa et al., 2014;
Norman et al., 2018). Heritability and population size plays an
important role in prediction, as they determine the amount of
genetic variation that the associated prediction model could
capture (Guo et al., 2014). A strong correlation is observed
between the GS model’s prediction accuracy and the trait’s
heritability in the training population (Edwards et al., 2019).
Various parametric and non-parametric machine and deep
learning models have been explored for GS in all the
mentioned crops (Table 1). Until now, none of the models
have significantly demonstrated superiority for all traits in all
crops (Liu et al., 2019; Ravelombola et al., 2020; Sandhu et al.,
2021b). Breeders should explore various models in their
programs for different traits and use the best performing
model final predictions after considering accuracy, error and
computational burden (Wang et al., 2018). Table 1 provides
information about models explored for GS, with their associated
characteristics and links to the source codes, for breeders, if they
want to explore them in their crop of interest.

GS is being applied with two approaches in the plant breeding
program. Firstly, it is applied at the early generation (F1) or (F2:3)
for a rapid generation cycle with a short interval. This selection is
used to predict the breeding values and helps the researchers
select parents for new crosses or remove inferior performing lines
earlier in the pipeline (Bassi et al., 2015; Gaynor et al., 2017).
Therefore, linear additive models are sufficient for predicting at
this stage. The second approach involves predicting the plant’s
total genetic value by considering additive, dominance, epistasis,
and environmental effects (Monteverde et al., 2019; Francki et al.,
2020; Guo et al., 2020b). Genetic values are predicted for most
environments using different combinations of environment,
genotype by environment, and weather parameters in the GS
models (Monteverde et al., 2019; Francki et al., 2020). Rapid
progress is happening in the second approach for predicting traits
in an untested environment with better prediction accuracy

FIGURE 4 | Trends in publications mentioning/discussing the six crops
and genomic selection since last decade (2011–2020). Search was made
using associated crop and genomic selection keywork in the abstract. Source
PubMed dated 02/25/2021.
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TABLE 1 | The detailed information about various models explored for genomic selection in different crops, with associated model type, characteristics, and links to the
source codes that could be easily implemented in various breeding programs.

Model Model type Characteristics Codes References

Ridge regression best
linear unbiased prediction
(RRBLUP)

Mixed model/
parametric model

Ridge regression is equivalent to traditional
BLUP, which assumes each marker has a
small effect with constant variance and
obtain this by using ridge regression
parameter

https://github.com/cran/rrBLUP Endelman (2011)

Genomic best linear
unbiased prediction
(GBLUP)

Mixed model/
parametric model

GBLUP uses the relationship between
genotypes for predicting their performance

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/GBLUP.md

Bernardo and Yu
(2007)

Bayes A Bayesian model/
parametric model

Marker effects are obtained assuming a
scaled inverted chi-square distribution of
variance parameters, and all the markers are
assumed to have an effect

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/Validation.md

Meuwissen et al. (2001)

Bayes B Bayesian model/
parametric model

It losses the restrictions of Bayes A and
allows some markers to have zero effect

https://github.com/ShiuLab/
GenomicSelection/blob/master/working/
predict_BGLR.R

Meuwissen et al. (2001)

Bayes C Bayesian model/
parametric model

Bayes C uses the scaled-t mixture with a
point mass at zero with scaled-t distribution

https://github.com/cma2015/G2P/blob/
master/R/GSEnsemble.R

Pérez and De Los
Campos (2014)

Bayes Cpi Bayesian model/
parametric model

Bayes Cpi is a special case of Bayes B but it
assumes a constant variance for markers
with non-zero effect

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

Pérez and De Los
Campos (2014)

Bayes D Bayesian model/
parametric model

Bayes D uses the scaled-t distribution by
estimating scale parameter from the
datasets

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

Pérez and De Los
Campos (2014)

Bayes Lasso (BL) Bayesian model/
parametric model

BL assumes a fixed set of markers have zero
effect, and the remaining follow the double
exponential distribution for variance
components

https://github.com/Sandhu-WSU/Genomic-
Selection-tutorial/blob/master/
GSworkshop_InProg.R

Tishbirani (1996)

Elastic net (EN) Parametric model EN is the intermediate between ridge
regression and Lasso using an average
weight penalty for marker effect estimation

https://datadryad.org/stash/dataset/doi:10.
5061/dryad.7f138

Crain et al. (2018)

Bayesian threshold
GBLUP (TGBLUP)

Bayesian model/
parametric model

TGBLUP is a threshold models for ordinal
and categorical data

https://github.com/gdlc/BGLR-R Montesinos-López
et al. (2019a)

Bayesian multi-trait and
multi-environment model
(BMTME)

Bayesian model/
parametric model

BMTME is the multi-trait version of the
Bayesian models

https://www.g3journal.org/content/9/5/
1355#app-1

Montesinos-López
et al. (2018)

Reproducing kernel
Hilbert space (RKHS)

Bayesian kernel-
based/semi-
parametric model

RKHS uses the kernel functions on the set of
distances among markers to estimate the
relationship matrix between the individuals
and assumes the absence of linearity
assumption

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/RKHS.md

Pérez and De Los
Campos (2014)

Reaction norm Mixed model/
parametric model

Reaction norm model the interaction
between the markers and environmental
covariates using covariate functions

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

Jarquín et al. (2014)

Support vector
machine (SVM)

Machine learning/
semi-parametric
model

SVM is another semiparametric model that
uses kernel function, and its cost function is
sensitive to residuals coefficient

https://github.com/afiliot/Kernel-Methods-
For-Genomics

Ravelombola et al.
(2020)

Random forests (RF) Machine learning/
non-parametric
model

RF uses a network of the tree with varying
number of nodes, mtry, and depth for
building the final forest for predictions

https://github.com/xuanxu/nimbus Guo et al. (2020a)

Gradient boost
machine (GBM)

Machine learning/
non-parametric
model

GBM is an ensemble learning model and is
similar to tree-based models used to reduce
the subset the SNPs using linkage
disequilibrium for obtaining higher prediction
accuracy

https://cran.r-project.org/web/packages/
gbm/index.html

Li et al. (2018a)

Functional B spline Machine learning/
non-parametric
model

Functional B splines use the piecewise
polynomial of degree n-1 in a variable x.
Different spline functions are tried at a given
degree for predicting the output

Montesinos-López
et al. (2017)

Partial least square
regression (PLSR)

Machine learning/
non-parametric
model

PLSR is a dimensional reduction approach
which uses latent variables derived from
predictors to link with the response variables

https://datadryad.org/stash/dataset/doi:10.
5061/dryad.7f138

Crain et al. (2018)

Sandhu et al. (2021b)
(Continued on following page)
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(Jarquín et al., 2017; Gill et al., 2021) (Table 2). We provided an
outline of the implementation of GS in a plant breeding program
for self-pollinated crops, where GS could be either applied within
the cycle selection, across cycles, with multi-location selection
and the inclusion of genotype by environment interactions, and
utilization of phenomics datasets for improving prediction
accuracies for complex traits (Figure 5). In this outline, it is
assumed that a single generation is possible in a year until speed
breeding is used to reach homozygosity (Watson et al., 2018).

Figure 5 provides the outline for a breeding cycle for wheat
and few modifications can be made in this scheme in order to
adjust for other crops. In the first year two different parents are
crossed with subsequent chromosome doubling in the second
year using double haploid (DH) or any other technique for
reaching 100% homozygosity (i.e., speed breeding, single seed
descent, rapid generation advance, shuttle breeding or tissue
culture). These early stage testing lines are evaluated in the
third year, and selection is made for high heritable traits, like
pod type in groundnut and soybean cyst nematode resistance
(Akohoue et al., 2020; Ravelombola et al., 2020). Each set of early-
stage testing progenies has a specific set of genes, and the breeder
aims to identify the best combination for advancing to the next
generation and seed multiplication trial. The measurement of
several agronomic traits, such as grain yield and aflatoxin content
in groundnut, quality attributes in rice, common bean and wheat,
for which a large amount of seed is required, is not possible at this
stage (Battenfield et al., 2016; Pandey et al., 2020a). Seeds from the
selected lines are multiplied at a single location known as a
preliminary yield trial (PYT), and spectral information could be
collected using phenomics tools like unmanned aerial vehicles
(UAVs), remote sensing, handheld scanners, or tractor-mounted

instruments (Rutkoski et al., 2016; Sandhu et al., 2021c). The
information generated with these phenomics tools provides a
secondary source of trait information for selecting complex traits
by understanding G by E interaction, field variation, and
explanation of various physiological processes occurring in the
plants. Furthermore, these phenomics tools have been used to
measure several agronomic traits and disease severity more
efficiently and effectively. The lines selected from the PYT are
later planted for 1 year at various locations with different
replications depending upon the seed generated in the PYT
and constitutes the advanced yield trials (AYT). Spectral
information can be collected in a similar way as done during
PYT to increase selection efficiency. After AYT, breeders keep
reducing the population’s size, owing to limited resources and
space, and selected lines are continually planted at multiple
locations for measuring more quantitative traits. This step is
repeated for two-three years depending upon the trait and
constitutes elite yield trials (EYT) (Bassi et al., 2015; Gaynor
et al., 2017).

Across cycles, predictions are possible at early stages, when
seed is limited, to measure quantitative traits like grain yield, end-
use quality traits in rice and wheat, and protein content in
chickpea and common bean (Jernigan et al., 2018; Diaz et al.,
2021). Figure 5 shows that GS and phenomics data sets collected
at PYT and AYT from the previous cycle could be used to predict
quantitative traits for the F2-F4 population and early-stage testing
lines in a new selection cycle. Similarly, in the subsequent years,
data from previous cycles and the same cycle can predict AYT
performance at multiple locations (Montesinos-López et al., 2017;
Crain et al., 2018). Phenomics information provides a significant
advantage for within cycle and across cycle prediction in multi-

TABLE 1 | (Continued) The detailed information about variousmodels explored for genomic selection in different crops, with associatedmodel type, characteristics, and links
to the source codes that could be easily implemented in various breeding programs.

Model Model type Characteristics Codes References

Multilayer
perceptron (MLP)

Deep learning/non-
parametric model

MLP uses the combination of input, multiple
hidden and output layers using a large
number of neurons for building the
relationship between the predictors and
output

https://github.com/saeedkhaki92/Yield-
Prediction-DNN

Convolutional neural
network (CNN)

Deep learning/non-
parametric model

CNN employs convolutional, flattening,
pooling, and dense layer for prediction using
filers and kernels to reduce the excess
predictors from the model

https://github.com/Sandhu-WSU/DL_
Wheat

Sandhu et al. (2021b)

Dual CNN Deep learning/non-
parametric model

Dual CNN uses two parallel streams of CNN
and sums up layer is used for predictions

https://github.com/kateyliu/DL_gwas Liu et al. (2019)

Arc-cosine kernel (AK) Deep learning/non-
parametric model

AK estimates the stepwise covariance matrix
by adding more hidden layer in model
training

https://www.frontiersin.org/articles/10.
3389/fgene.2019.01168/full#h7

Crossa et al. (2019)

DeepGS Deep learning/non-
parametric model

DeepGS uses deep CNN consisting of one
input, one convolutional, one sampling, two
fully connected and one output layer for
building a relationship

https://github.com/cma2015/DeepGS Ma et al. (2018)

Recurrent neural
network (RNN)

Deep learning/non-
parametric model

RNN is best for predictions under the
presence of longitudinal or time-series data,
as it uses the memory state to retains the
information from previous data and update
its prediction with new information

https://figshare.com/s/
5cd5e5e4eaeef55b721f?file�24963563

Maldonado et al. (2020)
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TABLE 2 | Genomic selection studies covering important breeding traits conducted in 2019 and 2020 for rice, wheat, soybean, chickpea, common bean, and groundnut
throughout the world. Complete detail about the population size, validation strategy, marker density, model type, the accuracy obtained and country where the study
was conducted is provided.

Crop Trait Population
size

Validation
strategy

Marker
intensity

Model Single
or multi-trait

analysis

Accuracy Country References

Rice Arsenic content 228
accessions

CV and IV 22,370
SNPs

GBLUP, Bayes
A, RKHS

Single trait 0.43–0.48 France Frouin et al. (2019)

Days to heading 112 cultivars CV and IV 408,372
SNPs

GBLUP Single and
multi-trait
models

0.93–0.98 Japan Jarquin et al. (2020)

Drought
tolerance

280
accessions

CV 215,000
SNPs

GBLUP and
RKHS

Single and
multi-
environment
models

0.22–0.80 France Bhandari et al.
(2019)

Grain weight
distribution

128 cultivars CV 42,508
SNPs

GBLUP
and PLS

Single trait
models

0.28–0.53 Japan Yabe et al. (2018)

Grain yield and
quality traits

327 & 320
breedinglines

CV and IV 92,430
and
44,598
SNPs

GBLUP, PLS,
and reaction
norm mode

Single and
multi-
environment
models

0.11–0.82 Uruguay Monteverde et al.
(2019)

Rice blast 161 and 162
accessions

CV and IV 66,109
and
29,030
SNPs

GBLUP, Bayes
A, Bayes C
and MLP

Single and
multi-trait
models

0.15–0.72 United States Huang et al. (2019)

Ten agronomic
traits

1,495 hybrid
rice

CV and IV 232,935
SNPs

GBLUP,
additive and
dominance
model

Single trait 0.54–0.92 China Cui et al. (2020)

Wheat Anther extrusion 603 lines CV and IV 7,649
SNPs

Reaction norm
model

Single trait
models

-0.03–0.74 CIMMYT Adhikari et al. (2020)

Days to heading 286
accessions

CV 9,047
SNPs

RRBLUP, BA,
BB, BC, BL,
and BRR

Single trait
models

−0.04–0.45 Iran Shabannejad et al.
(2020)

Days to heading
and plant height

3,486 lines CV 2,083
SNPs

MTDL Multi-trait
models

0.39–0.62 CIMMYT Montesinos-López
et al. (2019b)

End-use quality
traits

401 lines CV and IV 4,598
SNPs

RRBLUP Single trait
models

0.38–0.63 Austria Michel et al. (2018)

End-use quality
traits

1912 lines CV and IV 21,210 GBLUP Single and
multi-trait
models

0.28–0.69 France Ben-Sadoun et al.
(2020)

End-use quality
traits

179 lines CV 16,383
SNPs

RRBLUP Single trait
models

0.10–0.48 Spain Mérida-García et al.
(2019)

Fusarium head
blight and
Septoria tritici
blotch

642 lines CV and IV 8,398
SNPs

RRBLUP Single trait
models

−0.41–0.88 Germany Herter et al. (2019)

Grain yield 1,325 lines CV and IV 9,290
SNPs

GBLUP Single and
multi-trait
models

0.18–0.31 Denmark Tsai et al. (2020)

Grain yield 1716 lines CV and IV 15,853
SNPs

RRBLUP Single trait −0.05–0.20 United States
of America

Lozada et al. (2020b)

Grain yield, days
to heading, and
plant height

270 lines CV and IV 14,163
SNPs

GBLUP
and DL

Single and
multi-
environment
models

0.02–0.91 CIMMYT Montesinos-López
et al. (2019c)

Grain yield and
end-use quality
traits

282 lines CV and IV 7,426
SNPs

BL, RF, RKHS,
and RRBLUP

Single trait 0.07–0.68 United States Hu et al. (2019)

Grain yield and
protein content

480 lines CV 7,300
SNPs

GBLUP Single and
multi-trait
models

−0.60–0.74 Austria Michel et al. (2019a)

Leaf and stripe
rust

1744 single
crosses

CV 15K SNPs GBLUP Single trait 0.16–0.50 Germany Beukert et al. (2020)

Powdery mildew 467 lines CV RRBLUP 0.36–0.67 Sarinelli et al. (2019)
(Continued on following page)
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trait GS models. Spectral reflectance indices (SRI) derived from
these phenomics measurements have increased prediction
accuracy in various GS studies in wheat (Rutkoski et al., 2016;
Crain et al., 2018; Sandhu et al., 2021c). Higher prediction

accuracies are obtained for grain yield due to lower heritability
and higher genetic correlation with SRI. Utilization of these SRI
in multi-trait GS models, and as a covariate in the GS models,
increases the capture of total variation for a particular trait and

TABLE 2 | (Continued) Genomic selection studies covering important breeding traits conducted in 2019 and 2020 for rice, wheat, soybean, chickpea, common bean,
and groundnut throughout the world. Complete detail about the population size, validation strategy, marker density, model type, the accuracy obtained and country
where the study was conducted is provided.

Crop Trait Population
size

Validation
strategy

Marker
intensity

Model Single
or multi-trait

analysis

Accuracy Country References

34,095
SNPs

Single trait
model

United States
of America

Septoria tritici
blotch

175 lines CV 6,097
SNPs

RRBLUP Single trait
model

0.47–0.62 Sweden Odilbekov et al.
(2019)

Snow mold 753 lines CV and IV 12,681
SNPs

RRBLUP,
GBLUP and
RKHS

Single trait −0.09–0.92 United States Lozada et al. (2019)

Winter hardiness
and frost
tolerance

504 lines CV and IV 1,413
SNPs

GBLUP Single traits −0.02–0.58 Austria Michel et al. (2019b)

Soybean Amino acids 249 lines CV 23,279
SNPs

RRBLUP and
GBLUP

Single trait
model

0.18–0.85 United States Qin et al. (2019)

Chlorophyll
content
tolerance

172 lines CV 4,089
SNPs

RRBLUP,
GBLUP, BL,
RF and SVM

Single trait
model

0.31–0.76 United States Ravelombola et al.
(2019)

Soybean cyst
nematode

234 lines CV 3,782
SNPs

RRBLUP,
GBLUP, BL,
RF and SVM

Single trait
model

0.05–0.53 United States Ravelombola et al.
(2020)

Yield, protein
content, oil and
height

5,000 lines CV 4,236
SNPs

DualCNN,
deepGS,
singleCNN and
RRBLUP

Single trait
model

0.23–0.47 United States Liu et al. (2019)

Yield 5,600 lines CV 4,600
SNPs

GBLUP Single trait
model

0.27–0.60 United States Howard and Jarquin
(2019)

Groundnut Leaflet length,
100 seed
weight, days to
maturity and
total yield

281
accessions

CV 493 SNPs RRBLUP Single trait
model

0.02–0.62 South Africa Akohoue et al.
(2020)

Seed weight,
oleic acid
content, total
yield, and days
to maturity

340 lines CV and IV 13,355
SNPs

Reaction norm
model

Single and
multi-
environment
models

0.19–0.89 India Pandey et al. (2020a)

Chickpea Grain yield,
podding time,
emergence
score and seed
number

132 lines CV 144,777
SNPs

BL and BRR Single trait
model

0.22–0.81 Australia Li et al. (2018b)

Seed weight,
biomass, harvest
index, and seed
yield

320 breeding
lines

CV and IV 89,000
SNPs

Reaction norm
models

Single and
multi-
environment
models

−0.01–0.94 India Roorkiwal et al.
(2018b)

Common
bean

Cooking time,
and water
absorption
capacity

922 lines CV and IV 5,738
SNPs

RKHS, BA, BC
and BL

Single trait
model

0.22–0.55 Colombia Diaz et al. (2021)

Grain yield and
days to maturity

481 breeding
lines

CV and IV 5,820
SNPs

GBLUP, BL,
BA, BB, and
RKHS

Single and
multi-
environment
models

0.6–0.8 Colombia Keller et al. (2020)
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helps explain various physiological phenomena that are difficult
to observe under field conditions (Rutkoski et al., 2016; Lozada
and Carter, 2019). We were not able to find any GS study which
used phenomics information in GS models in chickpea, common
bean, and groundnut. Table 3 provides the studies that have used
GS and phenomics information for predictions in wheat, and the
improvement in the model’s performances are provided. There is
a significant advantage of including phenomics datasets in GS
models due to observed increase in prediction accuracy,
suggesting that merging these two techniques can assist in
increasing the yield of these crops in the coming decade.

DEVELOPMENT IN PHENOTYPING
PLATFORMS AND IMAGING SENSORS

The last three-decades witnessed an unprecedented increase in
the adoption and development of genomics in plant breeding
programs, leading to a rise in genetic advances in the major cereal
crops (Thudi et al., 2020). However, genetic gain has stagnated in
major cereal crops globally, which requires the need to raise the
efficiency of breeding programs. It is perceived that limitations in
the progress and development of phenotyping tools and
platforms contribute to lower efficiency in breeding (Rincent
et al., 2018). With this in mind, several phenomic initiatives and
facilities have been launched at regional, national, and
international levels; still, breeders are skeptical about the
application of these tools (Atieno et al., 2017; Duan et al.,

2018). Breeders are concerned that results obtained from
phenotyping platforms under controlled conditions are not
indicative of field performance for complex traits, especially
under large environmental variability (Atieno et al., 2017;
Duan et al., 2018). Moreover, the high throughput platform’s
extensive phenotyping is onerous and not cost-efficient compared
to the benefits achieved so far. Lastly, data generated from these
tools results in data management and big data problems, causing
an issue for making a legitimate conclusion for decision-making
without understanding data science andmachine learningmodels
(Singh et al., 2016). In spite of these challenges, several phenomics
platforms, tools, and sensors have been developed, and their
improvement and adoption rate is fairly high with the hope of
breaking this stagnated genetic advance (Ashourloo et al., 2014;
Dobbels and Lorenz, 2019). The next one or 2 decades have
considerable potential for phenomics to reach the stage where
genomics is today, allowing collection of a large amount of data,
gaining understanding from previously unknown traits, and
making valid conclusions based on those.

Imagers and sensors have allowed collection of
multidimensional and high-resolution datasets from plants to
quantify crop growth, yield, biotic or abiotic stress, and other
physiological processes under both fields and controlled
conditions (Cai et al., 2016; Sankaran et al., 2019). These
sensors can measure spectral reflectance ranging from radio
waves to gamma waves of the electromagnetic spectrum and
create an abundance of information to select from. The resulting
imaging sensors varies from LIDAR, X-ray computed

FIGURE 5 | The standard breeding scheme outline for self-pollinating crops with the implementation of genomic selection and phenomics information for predicting
various traits earlier in the pipeline in different selection cycles. Three columns show the three separate breeding cycles starting from the cross initiation to the variety
release. The yellow arrows represent how genomic selection can be used on datasets from previous years to predict phenotype in F2-F4 stage and early-stage testing
stages. The red arrows show the stages where selection is imposed for low and high heritable traits in traditional breeding; however, with genomic selection,
decisions can be performed for low heritable traits earlier in the pipeline. Here it is assumed that a single generation is planted in a year. The DH represents the double
haploid, PYT is preliminary yield trial, AYT is advanced yield trial, and EYT is elite yield trial.
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tomography (CT), time-of-flight based systems, positron
emission tomography, thermal, visible to near-infrared,
multispectral, hyperspectral, fluorescence, and stereovision
(Kobayashi et al., 2001; Zhang et al., 2018). The field-based
platforms range from Internet-of-Things (IoT) based sensor
systems, field mounted system (e.g., tower), tractor/sprayer
modified systems (manually operated), small autonomous

systems, scanning platforms, UAVs, aircraft, and more
recently, low orbiting satellite systems (Sangjan et al., 2021). In
general, most of the phenotyping systems in controlled
environment are commercial systems developed by the private
industry. Recently, there has been interest in the development of
IoT based systems for customized operation in controlled
environment (Sangjan et al., 2021). The commonly used
sensors in the phenotyping platforms used in plant breeding
are RGB, multispectral, hyperspectral, thermal, and fluorescence
sensors employed on ground-based or aerial platforms. These can
cover large numbers of plots at a time by measuring absorption,
reflection, and refraction information from the plant canopy.
RGB sensors are most often used owing to their cost and
simplicity (Ashourloo et al., 2014). All these remote sensing
tools provide information about several physiological
parameters related to crop yield by considering the plant’s
nutrient, water, radiation, pigment contents, resource
allocation, and biomass partition (Duan et al., 2018; Dobbels
and Lorenz, 2019). Most imagers and sensors are equipped on
ground-based platforms, mainly stationary in the field or on
phenomobiles at experimental facilities to develop new
applications and require specialized training and
considerations for their use (Cai et al., 2016; Jimenez-Berni
et al., 2018). The increase in resolution and miniaturization
has lowered their cost and could be easily purchased by small
scale labs. The main success in plant phenotyping has come with
higher resolution andminiaturization of the sensors coupled with

TABLE 3 |Genomic selection studies that have used phenomics information in wheat is summarized. The traits or spectral information derived from the phenomics data sets
and the physiological parameters which they explain is provided with information about their effect on the final prediction accuracies when included in the genomic
selection model is added to show their potential.

Trait Population
size

Model Phenomics traits
used

Physiological trait explained Effect on
prediction

accuracy with
inclusion

of phenomic
information

Country/
institute

References

Grain yield 1,092 lines RRBLUP GNDVI, RNDVI
and CT

Canopy size, greenness,
chlorophyll content, and
temperature

70% increase in
prediction accuracy

CIMMYT Rutkoski et al.
(2016)

Grain yield 1,092 lines GBLUP, EN, and
PLSR

CT and NDVI Canopy temperature and
greenness

7% increase in
prediction accuracy

United States Crain et al.
(2018)

Grain yield 3,282 lines RRBLUP CT and GNDVI Canopy temperature and nitrogen
status

46% increase in
prediction accuracy

United States Sun et al. (2019)

Grain yield 456 lines Recommender
system & GBLUP

NDVI, NWI, and SR Biomass, greenness, and water
status

19% increase in
prediction accuracy

United States Lozada and
Carter (2020)

Grain
protein
content

650 lines RRBLUP NDVI, GNDVI, NWI,
WI, ARI, and PRI

Biomass, chlorophyll, nitrogen,
water, anthocyanin, and
photochemical pigments status

20% increase in
prediction accuracy

United States Sandhu et al.
(2021c)

Grain yield 4,368 lines GBLUP GNDVI Biomass and greenhouse 11–23% increase in
prediction accuracy

CIMMYT Juliana et al.
(2019)

Grain yield 242 lines GBLUP CT, SPAD, SGT,
NDVI

Canopy temperature, chlorophyll
content, stay green and
senescence traits

63% increase in
prediction accuracy

United States Guo et al.
(2020b)

Grain yield 1716 RRBLUP NDRE, NDVI,
and SR

Biomass, vegetation, and water
status

13% increase in
prediction accuracy

United States Lozada et al.
(2020a)

Grain yield 771 lines GBLUP Reflectance bands Whole spectrum from visible to
infra-red were used

10–16% increase in
prediction accuracy

CIMMYT Krause et al.
(2019)

Grain yield 630 lines Random regression
and GBLUP

CT and NDVI Canopy temperature and biomass 70% increase in
prediction accuracy

United States Sun et al.
(2017b)

FIGURE 6 | Trends in publications mentioning/discussing the six crops
and high throughput phenotyping since last decade (2011–2020). Search was
conducted using associated crop and high throughput phenotyping
keywords in the abstract. Source PubMed dated 02/20/2021.
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UAVs for covering a large number of plots in a limited time frame
and is preferred over the ground-based platforms in many
programs (Sankaran et al., 2015b; Gracia-Romero et al., 2019).

Figure 6 provides the studies using high throughput
phenotyping (HTP) in these six crops for the last decade
(2011–2020). An observed 3–4 fold increase in the number of
studies that are using HTP for rice and wheat can be found, but
for chickpea, common bean, groundnut, and soybean, there is no
improvement observed in this regard (Zhang et al., 2020a; Zhang
et al., 2021). Fewer number of studies using HTP in chickpea,
common bean, and groundnut might be attributed to the recent
adoption of genomics technology (Pandey et al., 2020b). These
crops can still benefit from the use of HTP technology to better

evaluate various agronomic, biotic, and abiotic stress-related
traits. Table 4 shows recent studies conducted for these six
crops where different phenotyping platforms and imaging
sensors were used for various agronomic, biotic, and abiotic
stress studies. In general, most of the studies used RGB or
multispectral imaging due to their lower cost, easy
management of data, and avoidance of problems related to big
data. Furthermore, UAVs have relatively high adoption rates over
ground-based platforms by utilizing the same imaging sensors
with better resolution and throughput in collecting data from
large plots.

RGB and multispectral imaging have shown a tremendous
adoption rate during the last decade for studying biotic and

TABLE 4 | Important studies conducted using phenomic tools in the last decade for the six crops explored in this study. Information about the trait, phenotyping platform,
sensor and study description is provided.

Crop Trait Platform Sensor/imager Discrimination References

Rice Rice blast Hand-held, simulating aircraft
imagery

Multispectral imaging Reflectance values in the visible and
near-infrared regions were used to link
with a disease severity rating

Kobayashi et al. (2001)

Rice sheath
blight

UAVs RBG and multispectral
imaging

Derived vegetation indices from
multispectral images and percentage of
infected leaf areas with RGB were used
for disease detection

Zhang et al. (2018)

Drought stress Greenhouse automated system
at the Rice Automatic
Phenotyping (RAP) facility in
Germany

RGB imaging Stay green values were used to assess
the stress tolerance ability of genotypes

Duan et al. (2018)

Wheat Powdery
mildew

German Aerospace Centre Hyperspectral imaging Powdery mildew was detected, and the
best hyperspectral bands were
identified for detecting this fungal
disease for application in breeding
programs

Mewes et al. (2011)

Leaf rust Hand-held ground-based
sensing

RGB imaging and
multispectral
(spectroradiometer) sensors

Vegetation indices from multispectral
imaging and percentage of infected
leaves from RGB imaging were used for
the classification of leaf rust

Ashourloo et al. (2014)

Plant biomass
and height

Phenomobile portable buggy 3D imaging with LIDAR Plant height, biomass, and canopy
cover was measured in a labor-
intensive way

Jimenez-Berni et al. (2018)

Soybean Seed yield UAVs RGB imaging Average canopy cover obtained at an
earlier stage was used as a covariate in
yield prediction models

Moreira et al. (2019)

Iron deficiency UAVs Multispectral imaging Image processing and unsupervised
classification models were used for
classifying the iron-deficient plots

Dobbels and Lorenz (2019)

Seed yield UAVs Hyperspectral imaging Feature selection approach was used
to identify best bands for predicting
seed yield with different ML models

Yoosefzadeh-Najafabadi
et al. (2021)

Chickpea Salinity
tolerance

Plant accelerator installed at
University of Adelaide

RGB imaging The plant growth rate was monitored
throughout the growth stages to study
the effect of salinity

Atieno et al. (2017)

Progression of
senescence

Camera established on a stand RGB imaging Color distortion correction algorithms
were applied on time series data to
quantify the onset and progression of
senescence

Cai et al. (2016)

Common
bean

Seed yield and
biomass

UAVs Multispectral imaging Derived vegetation indices showed a
strong relationship with seed yield and
biomass

Sankaran et al. (2019)

Root
architecture

Root excavation, ground-based RGB imaging and traits
estimation with DIRT

Genotypes were differentiated for their
root traits

Burridge et al. (2016)

Groundnut Iron deficiency Chlorophyll meter SPAD, Hand-
held

Infrared sensor Genetic loci associated with increasing
iron deficiency were identified

Pattanashetti et al. (2020)
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abiotic stresses in crops. Rice sheath blight (Rhizoctonia solani)
and blast (Magnaporthe oryzae) are devastating diseases of rice
observed worldwide, and accurate detection and management are
the focus of several breeding programs. RGB and multispectral
imaging sensors on UAVs are an affordable and user-friendly
option for disease detection and rating (Kobayashi et al., 2001;
Zhang et al., 2018). Color space transformation and color feature
extraction have been used to select the diseased varieties or
qualitatively detect the infected portions; however, estimation
of disease quantitatively was less effective. Vegetation indices
extracted from multispectral images showed high accuracy for
quantitatively predicting these diseases (Kobayashi et al., 2001;
Zhang et al., 2018). Hyperspectral imaging covers a broader
region of the electromagnetic spectrum (400–2,500 nm) with a
narrow bandwidth, non-destructively explaining various
biochemical and physiological changes occurring in the plant
due to environmental conditions. For example, in wheat,
hyperspectral imaging has been used to detect powdery
mildew severity and infection using feature selection
algorithms (Mewes et al., 2011). As hyperspectral imaging
provides information about various spectral bands, most of
which are unnecessary, feature selection is required. This
became possible due to the adoption of machine learning
models by plant breeders. Here, Mewes et al. (2011) used
support vector machine and spectral angle mapper
classification methods for feature selection to identify the most
important spectral band. Later, those selected bands showed
higher prediction accuracy for powdery mildew.

Phenomics aids in the collection of high-quality data earlier in
the breeding pipeline from thousands of breeding plots with high
temporal and spatial resolution (Krause et al., 2020). Data
collected at earlier stages in the growth cycle has shown an
advantage in soybean breeding, where canopy coverage during
vegetative growth stages have high heritability and genetic
correlation with seed yield (Moreira et al., 2019). UAVs are
commonly used for collecting canopy coverage with RGB
cameras, which is later used for predicting seed yield from
multiple plots (Moreira et al., 2019). In a recent study,
Yoosefzadeh-Najafabadi et al. (2021) used hyperspectral
imaging collected at vegetative stages in soybean and feature
selection with machine learning models and demonstrated 93%
prediction accuracy for seed yield prediction. There are various
other examples where phenomics is used in soybean for studying
biotic stresses (powdery mildew, phomopsis seed decay, and
target spot), abiotic stresses (nutrient deficiency, drought, and
waterlogging), and agronomic traits (seed yield, pod number and
biomass estimation) (Mo et al., 2015; Moreira et al., 2019;
Yoosefzadeh-Najafabadi et al., 2021). Multiple vegetation
indices [normalized difference vegetation index (NDVI),
normalized water index (NWI), photochemical reflectance
index (PRI)] derived from multispectral imaging were used to
find the best time point for predicting the above ground mass and
seed yield using correlation and regression analysis (Sankaran
et al., 2019). Furthermore, thermal sensors were used to obtain
the mean plot temperature and showed a high correlation with
plant biomass (Sankaran et al., 2019). A couple of studies have
shown the potential of multispectral imaging using UAVs for

common bean to predict the seed yield and biomass, but the total
number studies are limited when compared to wheat, rice, and
soybean (Figure 6) (Burridge et al., 2016; Sankaran et al., 2019).

Ascochyta blight is a devastating disease in chickpea, and
remote sensing has shown opportunities for its monitoring in the
field (Zhang et al., 2019). Multispectral and thermal sensors
deployed on UAVs were used to extract canopy area,
percentage of cover, and vegetation indices for predicting
disease severity and seed yield in chickpea. The study showed
the potential for timely management of the disease by monitoring
the crop with remote sensing techniques (Zhang et al., 2019). In a
different study, two hundred forty-five chickpea accessions were
evaluated using image-based phenotyping to study genetic
variation for salt tolerance (Atieno et al., 2017). Pod abortion
and pod filling inhibition are the main effects of salinity, and
imaging sensors were used to identify the accessions with salt
tolerance by phenotyping pod number and seed density (Atieno
et al., 2017). In groundnut, iron deficiency occurs when plants are
grown on neutral and alkaline soils, reducing the availability of
Fe2+ in plants. Infrared sensors were used in groundnut for
measuring chlorophyll and iron deficiency chlorosis systems
(Pattanashetti et al., 2020). The adoption of phenomics for
groundnut in high production countries like India and
Ethiopia offers an advantage for reducing yield gaps by
understanding various physiological and biochemical process,
along with genomic technologies, to improve yield performance.

GOING UNDERGROUND, A CHALLENGE
FOR A BREEDER

Although genomics and phenomics tools have helped plant
breeders study above-ground traits in great detail, limited
work has been done on belowground root systems, which play
a vital part in a plants affecting overall grain yield potential.
Figure 7 shows the trend for publications using HTP and root
phenomics, and it can be concluded that root phenotyping studies

FIGURE 7 | Trends in publications mentioning/discussing root
phenomics and high throughput phenotyping since last decade (2011–2020).
Search was conducted using root phenomics and high throughput
phenotyping keywords in the abstract. Source PubMed dated 02/
20/2021.
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are lagging behind other phenomics studies. Roots play an
essential role by directly influencing plant growth by
regulating water and nutrient uptake, regulating drought
stress, resisting soil-borne diseases, and maintaining the crop’s
yield and quality (Seck et al., 2020; Wu et al., 2021). The study of
root system architecture (RSA) is challenging in situ compared to
above-ground phenotyping. Several 2D transparent growth
mediums are available that allow sequential capturing of RGB
imaging to study growth dynamics and root hair development,
such as PlaRoM, Rhizoslides, RootPainter, SNAP, Rhizovision,
Rhizoponics, RADIX, and RhizoTubes (Le Marié et al., 2014;
Mathieu et al., 2015; Falk et al., 2020; Smith et al., 2020). Various
open-source image analysis tools like SmartRoot, RootNav,
RootTrace, and EZ-Root-VIS are available to study RSA
(French et al., 2009; Pound et al., 2013). To study 3D RSA, a
gel-based cylinder can be used to study up to 16 roots traits (Iyer-
Pascuzzi et al., 2010). Other 3D image reconstruction and image
analysis tools are RootReader3D and GiaRoots (Iyer-Pascuzzi
et al., 2010). All these platforms work under lab conditions.

The above-mentioned transparent media does not entirely
mimic field conditions. GROWSCREEN-Rhizo, an intelligent
mechanized root phenotyping platform, was developed to
phenotype roots and shoots simultaneously in transparent soil-
filled rhizotrons (Bodner et al., 2018). In a separate study, these
Rhizotrons were equipped with thermal and hyperspectral
cameras for measuring the temperature and root chemical
components like lignin change, water content, and mineral
observation capacity (Pound et al., 2013; Le Marié et al.,
2014). The difference in the X-ray attenuation capacity of
roots and soils is utilized to visualize the inner 3D structure in
the X-ray CT. Open-source tools like RootViz3D and RooTrak
are used for analyzing different X-ray attenuation capacity to

reconstruct the 3D RSA (Mairhofer et al., 2015). However, X-ray
CT suffers from some limitations, which vary from the impact of
soil type, compaction, and homogeneity of soil particles on X-ray
attenuation values. Furthermore, high doses of X-ray affect plant
and microbial growth in the soil, and lastly, scanning resolution
and volume increase the time of data collection for large pots,
limiting the frequency of data acquisition (Metzner et al., 2015).

Other root phenotyping approaches include positron emission
tomography (PET), magnetic resonance imaging (MRI), thermal
neutron tomography, and neutron radiography. MRI uses the
absorption and re-emission of electromagnetic radiation from the
nuclei to determine its root architecture and functional attributes
(Courtois et al., 2013; Beyer et al., 2019). But MRI is highly
sensitive to moisture content and is only applicable if the root
diameter is more than 1 mm. Similarly, PET uses the radiotracer
distribution for non-invasively studying root attributes. PET has
been used to scan the roots up to 85 mm deep non-invasively, and
used to monitor carbohydrate transportation assimilates over a
more extended period (Garbout et al., 2012). X-ray CT, MRI, and
PET have been used differently and have their own strengths and
limitations, and hence used interchangeably. For instance, 1) PET
has lower signal deterioration by water content and soil structure
compared to CT and MRI; furthermore, high water content
affects the performance of CT more than MRI (Garbout et al.,
2012); 2) CT is more effective for providing high-resolution
information from small pots; however, when pot size is large,
MRI provides more information about root structure than CT
(Pflugfelder et al., 2017); 3) MRI and CT provide higher spatial
resolution than PET, but PET provides better contrast between
roots and soil owing to gamma radiation; and 4) PET and MRI
scanning requires a large amount of time compared to CT, and is
problematic for genetic studies where a large number of samples

TABLE 5 | Description of the important root phenotyping techniques and associated growth media’s for studying the root system architecture.

Root phenotyping
technique

Growth media Description References

Shovelomics Soil (field based) Involved excavation of root samples from the soils to visually score various attributes. The
pipeline involves digging of sample, soaking and rinsing, picture collection and finally scoring
the characteristics

Garbout et al. (2012)

Digital imaging Liquid media (lab) Roots are scanned in a liquid media for length, diameter, topology, and branching patterns Piñeros et al. (2016)
Digital imaging Growth pouch system Roots are scanned in a growth pouchmedium for length, diameter, topology, and branching

patterns
Falk et al. (2020)

Soil coring Soil (field based) It uses tractor mounted hydraulic soil corer for digging steel alloy sampling tubes into soil and
assist in phenotyping roots

Iyer-Pascuzzi et al.
(2010)

Minirhizotrons Soil (field-based) A transparent tube is permanently inserted into the ground and growth of shoot and root is
continuously monitored throughout the growth stages

Le Marié et al. (2014)

Rhizolysimeters Soil (field-based) It uses underground concrete pipes, silos and corridor to house soil containing cores for
constant observation of root traits

Bodner et al. (2018)

Rhizoponics Liquid media (lab) It is combination of rhizotrons and hydroponics, where set up is immersed in tank filled with
media. Non-destructive 2D imaging of roots and shoots is performed

Mathieu et al. (2015)

X-ray CT Soil (greenhouse
and lab)

X-ray CT non-destructively measures the attenuating ionizing radiations for assessing the
root structure and constructing the 3D image of RSA

Metzner et al. (2015)

Ground penetrating radar Soil (field-based) It is mostly used for tree roots and uses electromagnetic pulse system for determining root
diameter, biomass, and other attributes

Garbout et al. (2012)

Positron emission
tomography

Liquid media (lab) It uses the functional and molecular imaging for tracing the radio tracer distribution in the
plant non-invasively

Garbout et al. (2012)

Magnetic resonance
imaging

Soil (greenhouse
and lab)

This study the magnetic moment of atomic particles using strong magnetic and radio
frequency

Pflugfelder et al. (2017)
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need to be screened (Metzner et al., 2015). In regard to the in-situ
root phenotyping in field conditions, there has been great interest
in utilizing ground penetrating radar (GPR) (Atkinson et al.,
2019). But similar to other techniques, there are limitations
associated with influence of soil type and condition on data
quality. Table 5 provides information about various other root
phenotyping techniques. Advancements in root phenotyping in
recent years shows the potential for improving below ground
traits in all the crop species by understanding traits better. Further
reading about the below-ground phenotyping can be found in
other review articles (Paez-Garcia et al., 2015; Wasaya et al.,
2018).

Developing crop varieties which remain productive on
marginal soils and under water deficit is the main aim of
several breeding programs, especially in Asia and Africa,
owing to climate change (Pattanashetti et al., 2020). Breeding
programs maintain yield by selecting combinations of traits like
increased harvest index, increased shoot biomass, resistance
against insects and pests, and altering the duration of the
growing season (Mathieu et al., 2015; Atieno et al., 2017).
However, these traits might be linked to root traits, but are
not explored to such an extent. This could be achieved using
several root phenotyping techniques under field, greenhouse, and
laboratory conditions (Iyer-Pascuzzi et al., 2010). Various QTLs
were identified controlling RSA for assistance in genomic assisted
breeding (Li et al., 2017; Zhao et al., 2019; Seck et al., 2020). QTLs
were identified controlling root branching, root length, root hair,
and other root traits in certain crops. Identification of QTLs or
genes controlling these traits requires accurate and reproducible
phenotyping information (Li et al., 2017; Seck et al., 2020).
Although several QTLs have been identified for these RSA
traits, information is still lacking, such as their mechanism,
effect under different genetic backgrounds, and role under
different environments and soil types. Most of the roots traits
identified so far are polygenic and demonstrate a tremendous
potential for utilization of GS for predicting RSA by building
reliable training sets for the crops (Li et al., 2017; Seck et al., 2020).

In a recent study, two hundred wheat lines were screened for
root dry matter, root diameter, seminal axis root length, root dry
matter, and branching pattern in seedling growth over the
hydroponic system for performing MTAs (Beyer et al., 2019).
From this study, 63 QTLs were identified to control these RSA
traits and have a minor effect on phenotypes, suggesting the
polygenic nature of these five traits in wheat (Beyer et al., 2019). A
root phenotyping study was conducted on 529 rice accessions
under controlled and drought conditions to identify MTAs for 21
traits. Researchers identified 264 QTLs controlling all 21 traits,
and most of them were already reported in previous studies in
rice, further validating the genetic architecture of root traits
(Courtois et al., 2013; Li et al., 2017). Similarly, in soybean,
GWAS has been performed in various studies to explore RSA
trait’s genetic architecture. A recent study using 137 soybean lines
grown under rhizoboxes and phenotyped with two-dimensional
imaging identified 10 QTLs controlling 15–20% variation for
primary root diameter and total root length (Seck et al., 2020). As
common bean is mainly grown under drought conditions, 196
QTLs were identified in 438 accessions for various root traits such

as root length/weight, lateral root length, taproot length, root
volume, root surface area, average root diameter, and lateral root
number under drought conditions (Wu et al., 2021). This study
provided the genetic basis for roots traits under drought
conditions, which will ultimately improve common bean (Wu
et al., 2021). There was no major finding related to the study of
genetic architecture for RSA traits for chickpea and groundnut,
providing opportunities for adoption of root phenotyping in the
coming years. We were also not able to find any study using GS
for predicting root traits. This will be an emerging research area in
coming decades due to rapid progress in root phenotyping that
will help understand the genetic architecture of root traits,
creating datasets for training GS models, and ultimately
helping the breeder select multiple traits simultaneously.

MERGING OF GENOMIC SELECTION,
PHENOMICS AND MACHINE LEARNING IN
BREEDING
As discussed previously, GS aids in predicting GEBVs and in
increasing genetic gain by reducing variety development time and
cost per cycle and increasing selection accuracy. Phenomics
allows generation of high-quality quantitative data and
effectively characterizes large breeding populations (Araus
et al., 2018). It has been seen that there is potential for
combining GS and phenomics for increasing efficiency and
precision while minimizing labor and lowering costs. This will
aid in increasing the selection intensity and accuracy within
breeding programs and subsequently the selection response
(Sun et al., 2017b; Sandhu et al., 2021c). Until now, data from
phenomics tools have been used as secondary traits for evaluating
disease and pest resistance, abiotic stresses, end-use quality traits,
and ultimately grain yield. Furthermore, phenomics datasets are
collected in a longitudinal framework that helps select individuals
with a specific spectral trajectory during a particular growing
stage and helps predict temporal breeding values for specific
periods (Moreira et al., 2020). Table 3 provides most of the
studies that have used phenomics datasets in multi-trait GS
models to predict grain yield in wheat and observed the
improvement in the prediction accuracy, either by using single
indices or multiple indices in the models.

Most of the GS studies conducted so far use a single trait
(univariate) statistical model to predict one trait at a time and do
not benefit from the genetic correlation among two or more traits
(Jia and Jannink, 2012; Galán et al., 2020). However, multi-trait
(multivariate) GS has demonstrated increased prediction
accuracy, reduced selection trait bias, high statistical power,
and increased parameter estimation accuracy (Sandhu et al.,
2021a). Multi-trait GS models have more advantages for traits
with low heritability values, like grain yield and end-use quality
traits, where secondary traits correlated with high heritability
values aid in increasing prediction accuracy (Crain et al., 2018;
Lozada and Carter, 2019; Sandhu et al., 2021c). Recently, several
studies from CIMMYT have demonstrated an increase in
prediction accuracy for grain yield in wheat when secondary
longitudinal data collected from phenomics is included as a
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covariate or in multi-trait GS models (Sun et al., 2019; Lozada
et al., 2020a). Furthermore, secondary traits extracted from
phenomics aid in selecting earlier in plant growth stages for
quantitative traits, allowing earlier program resource allocation to
the best individuals. In addition to increasing prediction
accuracy, selection response, and intensity, longitudinal
phenomics data can explain the various biological process
underlying plant growth, not limited to water status, biomass
accumulation, chlorophyll content, and photosynthetic
efficiency. Primarily SRI are extracted from these longitudinal
phenomics data which indirectly explain important physiological
processes and stresses in the plants and are mainly used in multi-
trait GS models.

Rutkoski et al. (2016) used SRI extracted from phenomics
datasets and included them into pedigree and GS models for
predicting grain yield in wheat. Doing this in earlier stages of the
breeding pipeline is advantageous to remove poorly performing
lines, but GS is sometimes not possible at this stage owing to
genotyping cost. They showed that pedigree information could
also be used with SRI for predicting grain yield earlier to enhance
genetic gain. Pedigree information removed the cost and effort of
genotyping a large number of plants, and their use also satisfies
Mendelian sampling. Rutkoski et al. (2016) observed a 56 and
70% improvement in prediction accuracy for grain yield for
within environment predictions using pedigree and genomic
relationship matrices when including SRI in the models. The
indices used in the study were canopy temperature and green
normalized difference vegetation index (GNDVI), which
provided information about canopy temperature and biomass
and were phenotypically and genetically correlated to grain yield
(Rutkoski et al., 2016). In another study, Sun et al. (2017a) used
NDVI and canopy temperature in a multi-trait, random
regression, and repeatability model for predicting grain yield
in wheat and observed a 70% increase in prediction accuracy
compared to the single trait GS model. Furthermore, the multi-
trait model’s average improvement in predictability was highest,
followed by random regression and repeatability model. Various
other studies obtained similar results by the inclusion of
secondary traits in wheat (Sun et al., 2017b; Crain et al., 2018).

Campbell et al. (2018) used longitudinal phenomics data for
fitting random regression models to predict shoot growth
trajectories in rice using pedigree and genomic relationships
by fitting a second-order Legendre polynomial. A random
regression model with longitudinal phenomics data
demonstrated improvement in prediction compared to a single
data point in traditional mixed linear models. They also showed
the future growth predictions could be performed with high
accuracy by using a genomic random regression model by
having a subset of early phenomics measurements (Campbell
et al., 2018). Similarly, another study in rice used random
regression models by fitting B-spline and second-order
Legendre polynomials to predict the projected shoot area
under water-limited and controlled conditions and
demonstrated that random regression models performed better
than the baseline multi-trait models (Campbell et al., 2019).
Furthermore, B-spline models fit a better curve compared to
Legendre polynomials (Campbell et al., 2019). Therefore, we have

seen that predominantly random regression models are used in
rice for fitting or predicting growth curves. In contrast, in the case
of wheat, multi-trait GS models have shown the advantage to
predict quantitative traits using longitudinal phenomics datasets,
which results in significant improvements compared to
traditional models. Additional studies suggest canopy cover
plays an important role in predicting the seed yield for
soybean. Jarquin et al. (2018) modeled the genetic covariance
between canopy cover collected by phenomics tools and seed
yield using various cross-validation schemes and molecular
markers to predict the seed yield. The prediction ability was
highest when both canopy cover and molecular markers were
included in the prediction models compared to only molecular
marker and canopy information (Jarquin et al., 2018).

Owing to the ability of phenomics to collect a large amount of
data due to its high spatial and temporal variation, it sometimes
creates the big data problem, where feature selection needs to be
performed, and complex machine and deep learning models are
needed to build the relationship between features and predictors.
Several machine and deep learning models, such as random
forests, ensemble-based methods, support vector machine,
multilayer perceptron, convolutional neural network, and
recurrent neural network, are often employed for analyzing
phenomics data and predicting traits with GS models. The
main interests for these models in plant breeding are useful
due to their powerful ability to learn the complex/hidden non-
linear relationship in the data to predict complex traits and
usually result in higher prediction accuracy than a mixed
linear GS model. Ma et al. (2018) and Sandhu et al. (2021e)
have shown the potential of deep learning models for predicting
grain yield in wheat and observed higher prediction accuracies
than the previous BLUP based models and open up a new class of
models that could be explored. Table 1 provides the various
machine and deep learning models, and their source code links,
which have been explored for GS so far. In the coming years, an
active area of research is merging machine and deep learning
models with phenomics datasets and molecular markers to
predict the breeding program’s complex traits.

CONCLUDING REMARKS

We explored six important self-pollinated crops consumed by
90% of the world population. Most of the advancements in
genomics and phenomics over the last decade have been
observed in wheat and rice. The genome sequencing of other
crops and the adoption of high throughput genotyping tools have
paved the way for understanding various underlying genetic
mechanisms. These crops can utilize phenomics in coming
years after seeing the progress and benefits achieved in wheat
and rice. Several GS models varying from traditional BLUP based
model to machine/deep learning models have been explored for
prediction. Furthermore, the inclusion of genotype by
environment interaction in these models has delivered good
prediction accuracy for predicting untested lines in new
environments. All the GS models discussed in this study,
including genotype and environment interaction, will assist the
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plant breeder in making improved selection decisions. Multi-trait
GS models also indicate their success for predicting low heritable
traits and will be explored in future years for prediction under
multi-environment scenarios, with the inclusion of phenomics
datasets, for understanding genotype by environment
interactions.

The yield trends of crops across different continents is very
diverse, and it is evident that in Asia and Africa, use of advanced
genomic and phenomic technologies can improve/enhance grain
yield. Furthermore, public breeding programs play a
predominant role in these crops. To translate the advantage of
GS and phenomics in their programs, low-cost genotyping and
phenotyping needs to be developed and used. In this context, easy
to handle, reliable, and affordable low throughput platforms pave
the way, and among such tools, RGB cameras make good
candidates. Below ground phenotyping is tedious for a plant
breeder and is being ignored by most programs. However, several
field and lab-based root phenotyping tools were launched in the
last decade and their potential is being realized. Further
refinement and throughput will pave a new way to better
understand root traits in field crops. This is extremely
important for continuously increasing drought, salinity,
aluminium, and heavy metal sensitivity to plants. As the total
number of studies for phenotyping the roots traits increase, this
will ultimately aid in predicting new genotypes using GS once
enough data are collected for each crop under the different
breeding programs.

This review highlights the advantages of combining genomics
and phenomics, especially in wheat and rice. There is a need to
merge and adopt these two disciplines at a fast pace in other crops

to increase their genetic gain. GS has been shown to increase
genetic gain by increasing selection accuracy and intensity with
reduction of cycle time, which can be further enhanced by using
phenomics, and machine/deep learning models in the breeding
programs due to big data sets. These tools could aid in screening
large number of lines with less phenotyping cost and efforts,
allowing better exploration of the genetic diversity of particular
crops for various traits. Phenomics is assisting plant breeders in
integrating physiological breeding in addition to using molecular
and genetic tools for selection. Thus, future studies in breeding
will focus on merging all these tools and domains to reach the
required rate of genetic gain for grain yield.
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