
PROST: A Programmable Structured Peer-to-peer Overlay Network

Marius Portmann*, Sebastien Ardon**, Patrick Senac***, Aruna Seneviratne**

*University of Queensland, Brisbane, Australia

**University of New South Wales, Sydney, Australia
***ENSICA, Toulouse, France

marius@ieee.org, ardon@unsw.edu.au, senac@ensica.fr, a.seneviratne@unsw.edu.au

Abstract

In this paper, we present the idea of a programmable
structured P2P architecture. Our proposed system allows
the key-based routing infrastructure, which is common to
all structured P2P overlays, to be shared by multiple
applications. Furthermore, our architecture allows the
dynamic and on-demand deployment of new applications
and services on top of the shared routing layer.

1. Introduction

A large number of structured peer-to-peer overlay

systems such as Chord [1] or Pastry [2] have been
proposed recently. Due to their scalability, robustness and
self-organizing nature, these systems provide a very
promising platform for a range of large-scale, distributed
applications, such as distributed file systems, event
notification, content distribution, just to name a few.

The main underlying functionality of structured P2P
systems is the mapping of data objects to nodes in an
overlay network. For this, objects as well as nodes are
assigned unique identifiers called keys. An object’s key is
dynamically mapped to a unique live node, called the
key’s root.

Data objects are located by routing lookup messages
towards a key’s root along the overlay links. Due to the
fact that the overlay topology of structured P2P systems
conforms to a specific graph structure, message routing
can be implemented very efficiently.

Even though all structured P2P systems share the
concept of key-based routing (KBR), all currently
proposed applications built on structured P2P systems
implement their own KBR layer, resulting in a significant
duplication of effort. It is also more inefficient to maintain
multiple parallel KBR infrastructures, rather than
amortizing the cost of single infrastructure among several
applications.

Finally, the deployment of new applications and
services based on structured P2P systems is currently
rather tedious, since it needs to be done manually.

To address these shortcomings, we propose PROST, a
programmable structured P2P overlay network. PROST
provides a single generic KBR infrastructure that can be
shared among multiple applications. PROST is
programmable in the sense that new applications and
services can be deployed dynamically and on-demand on
the PROST platform.

Our architecture builds on work presented in [3], where
an API for a generic KBR layer is defined. We go a step
further and use this standard KBR layer as a platform for
the dynamic deployment of applications and services.
Essentially, we are borrowing the idea of programmability
from Active Networking and apply it in the context of
structured P2P networks.

2. Architecture

PROST is a programmable infrastructure based on the

key-based routing layer of a structured P2P network.
Applications and services are deployed in PROST via
dynamically loading code modules onto nodes of the P2P
overlay. These code modules, which we call Peerlets,
implement the application-specific functionality, while
making use of the efficient lookup facilities of the shared
KBR layer. Figure 1 illustrates the architecture of a
programmable peer node in PROST.

Figure 1. Node Architecture

The key-based routing layer forms the basis of our

architecture, providing the main functionality of
efficiently mapping object identifiers to live nodes and

locating them in the P2P overlay. The KBR layer also
implements mechanisms that deal with the transient and
unreliable nature of individual peer nodes by maintaining
the routing topology of the P2P overlay in the case of
nodes failing, or nodes joining and leaving the network.
Reliability of applications based on structured P2P
systems is typically achieved by means of replication.
Even though replication is the responsibility of the
individual applications, the KBR layer provides a number
of supporting mechanisms, such as informing the
applications of changes in the underlying topology. We
refer to [3], for a detailed discussion of the KBR layer.

The Programmable Peer Layer sits on top of the key-
based routing layer. It provides the platform for the
dynamic deployment of application-specific functionality
and services in the form of Peerlets. The Peerlet
Execution Environment provides a safe environment in
which Peerlets can run, isolating potentially faulty or
malicious Peerlets from the host system and other
Peerlets. The Peerlet Manager is responsible for the
dynamic loading and installing of Peerlets. It also enforces
the node’s local security and access control policy by
controlling and limiting the Peerlets’ access to local
resources such as CPU, storage and the network.

The Application/Service layer comprises all the
application-specific functionality, implemented by
Peerlets. The functionality of Peerlets can range from
simple service abstractions such as a Distributed Hash
Table (DHT) [4], to arbitrarily complex applications.

3. Dynamic Application Deployment

To enable multiple applications to share a common
KBR layer in PROST, every message sent over the
overlay network contains an application identifier,
allowing the de-multiplexing of messages at the
destination node, and delivering them to the appropriate
application, i.e. Peerlet.

To deploy a new application in PROST, the
corresponding Peerlet code needs to be made available on
a code server, from which it can be downloaded by
PROST nodes.

Then, the application, i.e. the corresponding Peerlet
needs to be installed manually on at least one node in the
overlay. As a simple example, we assume that this new
application implements DHT functionality with a simple
put(value,key)/get(key) interface. After the initial
deployment of the application on one or more nodes,
deployment on additional nodes is automatic and is
performed on-demand. For example, if the application
invokes the put(value,key) method, the KBR layer sends a
message containing the application’s identifier to the
key’s root node. Upon arrival, the root node’s
Programmable Peer Layer forwards the message to the
Peerlet identified by the application identifier, which then

performs the required application-specific tasks. In the
case of a DHT, it simply stores the value for the given
key.

If the Peerlet for the given application identifier is not
available on the root node, the corresponding Peerlet code
is automatically downloaded from the code server and the
Peerlet is installed. Applications are therefore deployed
incrementally, according to their level of utilization.

To implement certain services, such as multicast
forwarding [5], application-specific functionality also
needs to be deployed on intermediary nodes in the routing
path, and not just the end nodes. PROST supports
dynamic deployment of Peerlets for this case, but due to
space limitations, we are unable to discuss the details
here.

The case where nodes refuse the installation of new
Peerlets due to resource constraints or other reasons, is
handled similarly to a node failure, and replication is used
to address the problem.

However, PROST does not provide absolute service
guarantees and applications need to be able to cope with
the best-effort service model of the underlying KBR layer.

4. Discussion

Our proposed architecture provides an ideal platform
for the rapid implementation and deployment of new
applications based on the structured P2P paradigm. We
therefore hope that our work can facilitate innovation in
this area of research. Our work is in its early stages, and a
number of key challenges, such as for example security
and resource management, still need to be addressed in
detail.

We are currently in the process of implementing a
prototype of PROST in Java, which we chose for its
support of mobile code and cross-platform capabilities.
Our implementation of the KBR layer is based on Chord.
However, any structured P2P protocol with which we can
implement the generic KBR interface defined in [3] could
be used.

References

[1] I. Stoica, et al., “Chord: A Scalable P2P Lookup Protocol

for Internet Applications”, SIGCOMM 2001, San Diego,
CA, August 2001.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems,” IFIP/ACM Middleware'01, November 2001.

[3] Dabek, F. et al, “Towards a common API for structured
P2P overlays”, IPTPS’03, Berkeley, CA, February 2003.

[4] F. Dabek, et al., ”Wide-area cooperative storage with CFS”,
SOSP, October 2001

[5] A. Rowstron et al., “Scribe: The design of a large-scale
event notification infrastructure”, NGC'01, Nov. 2001.

