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Breyer, Matthew D., and Richard M. Breyer. Prostaglandin E
receptors and the kidney. Am J Physiol Renal Physiol 279: F12–F23,
2000.— Prostaglandin E2 is a major renal cyclooxygenase metabolite of
arachidonate and interacts with four G protein-coupled E-prostanoid
receptors designated EP1, EP2, EP3, and EP4. Through these receptors,
PGE2 modulates renal hemodynamics and salt and water excretion. The
intrarenal distribution and function of EP receptors have been partially
characterized, and each receptor has a distinct role. EP1 expression
predominates in the collecting duct where it inhibits Na1 absorption,
contributing to natriuresis. The EP2 receptor regulates vascular reactiv-
ity, and EP2 receptor-knockout mice have salt-sensitive hypertension.
The EP3 receptor is also expressed in vessels as well as in the thick
ascending limb and collecting duct, where it antagonizes vasopressin-
stimulated salt and water transport. EP4 mRNA is expressed in the
glomerulus and collecting duct and may regulate glomerular tone and
renal renin release. The capacity of PGE2 to bidirectionally modulate
vascular tone and epithelial transport via constrictor EP1 and EP3
receptors vs. dilator EP2 and EP4 receptors allows PGE2 to serve as a
buffer, preventing excessive responses to physiological perturbations.
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PROSTAGLANDINS COMPRISE a diverse family of autacoids
derived from cyclooxygenase-mediated metabolism of
arachidonic acid to PGG/H2, generating five primary
bioactive prostanoids: PGE2, PGF2a, PGD2, PGI2, and
thromboxane A2 (TXA2) (20, 116). Each of these pros-
tanoids interacts with a unique G protein-coupled re-
ceptor (GPCR), designated EP (for E-prostanoid), FP,
DP, IP, and TP receptors, respectively, for the other
prostanoids (31, 132). The importance of these auta-
coids to systemic blood pressure and volume control is
perhaps best highlighted by the deleterious side effects
of cyclooxygenase inhibitors [nonsteroidal anti-inflam-
matory drugs (NSAIDs)], which may induce hyperten-
sion (51), Na1 retention, and edema (91, 110), suggest-
ing an antihypertensive role for endogenous
prostaglandins. Conversely, NSAIDs reduce blood
pressure in patients with hyperreninemic renovascular
hypertension, suggesting that under these circum-

stances endogenous prostaglandins increase blood
pressure (65, 70). These complex effects of NSAIDs on
blood pressure are evidence for competing hypotensive
and hypertensive effects of prostanoids including
PGE2, PGI2, and TXA2 (88), and underscores the gen-
eral principal that prostaglandins have the capacity to
buffer physiological processes in either positive or neg-
ative directions. Although important intrarenal effects
of all these prostanoids have been described, the
present review will focus on the mechanisms by which
intrarenal EP receptors mediate the effects of PGE2.

INTRARENAL PGE2, SALT BALANCE,
AND BLOOD PRESSURE

PGE2 is a major product of cyclooxygenase-initiated
arachidonic acid metabolism in the kidney and is syn-
thesized at high rates along the nephron (20). The
maintenance of normal renal blood flow and function
during physiological stress is especially dependent on
endogenous prostaglandin synthesis (142). In this set-
ting, the vasoconstrictor effects of angiotensin II, cat-
echolamines, and vasopressin in the kidney are more
effectively buffered by prostaglandins than in other
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vascular beds, preserving normal renal blood flow, glo-
merular filtration rate (GFR), and salt excretion. PGE2
not only dilates the glomerular microcirculation and
vasa rectae, supplying the renal medulla (17, 115) but
also modulates salt and water transport in the distal
tubule (21), as discussed below. Administration of cy-
clooxygenase-inhibiting NSAIDs in the setting of vol-
ume depletion interferes with these dilator effects and
may result in a catastrophic decline in GFR, resulting
in overt renal failure (110).

Other evidence points to constrictor and prohyper-
tensive effects of endogenous prostaglandins. Curi-
ously, PGE2 may initiate the production of renin and
the subsequent increase in angiotensin II, the constric-
tor effect of which PGE2 attenuates in certain vascular
beds (61, 71). PGE2 directly stimulates renin produc-
tion in isolated juxtaglomerular apparatus (JGA) cells
(69, 71), and, in conscious dogs, chronic intrarenal
PGE2 infusion increases renal renin secretion, result-
ing in hypertension (61). Treatment of salt-depleted
rats with indomethacin not only decreases plasma re-
nin activity but also causes blood pressure to fall,
suggesting prostaglandins support blood pressure dur-
ing salt depletion, via their capacity to increase renin
(40, 119). Other studies suggest direct vasoconstrictor
effects of PGE2 on renal vasculature (66, 76). It is
conceivable these latter effects might predominate in
circumstances that expose the kidney to excessively
high perfusion pressure. Thus, depending on the set-
ting, the primary effect of PGE2 may be to either
increase or decrease vascular tone.

PGE2 AND EPITHELIAL SOLUTE
AND WATER TRANSPORT

In a manner analogous to its dual vascular effects,
evidence suggests PGE2 may either stimulate or in-
hibit epithelial solute and water transport along the
nephron (4). Numerous studies have demonstrated
PGE2 directly inhibits solute absorption in in vitro
microperfused thick ascending limbs (TAL), as well as
water and solute absorption in the collecting duct (34,
45, 47, 58, 59, 122, 124). These findings provide a
cellular basis for the well-described natriuresis and
diuresis after acute intrarenal PGE2 infusions in intact
animals (61, 72, 103). Tubule microperfusion studies
also demonstrate a more complex picture, because
PGE2 can either increase or decrease water absorption
and cAMP generation in the collecting duct (47, 58,
117). When added to vasopressin-prestimulated col-
lecting ducts, PGE2 potently inhibits water absorption
(60), consistent with the aforementioned in vivo di-
uretic effects of PGE2 infusion (47, 72). However, when
administered in the absence of vasopressin, basolateral
PGE2 actually increases osmotic water absorption (60,
72, 107). PGE2 also simultaneously inhibits collecting
duct Na1 absorption. Thus at least three distinct ef-
fects of basolateral PGE2 on transport have been de-
scribed: stimulation of basal water absorption; inhibi-
tion of vasopressin-stimulated water absorption; and
inhibition of Na1 absorption.

In vivo studies supporting a role for endogenous
PGE2 to increase renal salt reabsorption are less
widely described; however, one study shows a natri-
uretic effect of NSAIDs supporting this possibility (78).
Taken together, these considerations support dual, op-
posing effects of PGE2 on several processes, including
maintenance of vascular tone, water absorption, and
Na1 absorption. The self-opposing effects of PGE2 on
both epithelial transport and vascular tone appear to
be mediated by distinct EP receptors, which are the
subject of the remainder of this review (31, 134).

MULTIPLE PGE2 RECEPTORS

The vasodilator effect of PGE2 on both arterial and
venous vascular beds was one of the first recognized
(29, 35, 81, 86). This is mediated, in part, by a direct
relaxant effect of PGE2 on smooth muscle that is now
thought to be coupled to increased cAMP generation
(81, 86). However, PGE2 does not uniformly relax
smooth muscle and has been shown to constrict tra-
chea, gastric fundus, and ileum (30). Importantly, se-
lected structural analogs of PGE2 that reproduce the
dilator effects of PGE2, are completely inactive in tis-
sues where PGE2 is a constrictor. Conversely, analogs
that reproduce the constrictor effects of PGE2, fail to
affect tissues in which PGE2 is a dilator (30). These
differential effects of PGE2 analogs provided important
initial evidence for the existence of multiple PGE2 (EP)
receptors (31).

In screening compounds for antagonist activity, SC-
19220 was found to be a selective EP antagonist, only
at those receptors where PGE2 was a smooth muscle
constrictor (30). These receptors were originally desig-
nated as EP1, whereas SC-19220-insensitive dilator
effects were ascribed to distinct receptors, designated
EP2. There are now at least four pharmacologically
classified EP receptors. Dilator receptors are desig-
nated EP2 and EP4, whereas EP1 and EP3 receptors are
constrictor receptors. Similarly, four EP receptor sub-
types have been cloned and extensively studied. Some
studies suggest the existence of additional EP receptor
subtypes; however, molecular correlates for other sub-
types have not been identified (109).

The EP receptors are members of the G protein-
coupled family of receptors, possessing seven hydro-
phobic, membrane-spanning stretches of amino acids
(134). The pharmacological and molecular character-
ization of the four different EP receptors have now
been completed, and the affinity of multiple prostanoid
analogs for each cloned receptor protein have been
determined (Table 1, Fig. 1, and see Refs. 19 and 77).
Although these four receptors uniformly bind PGE2
with a higher affinity than other endogenous prosta-
noids, on the basis of amino acid homology, they are not
as closely related to each other as to other prostanoid
receptors. Thus the relaxant/cAMP-coupled EP2 recep-
tor is more closely related to other relaxant prostanoid
receptors such as the IP and DP receptors, whereas the
constrictor/Ca21-coupled EP1 receptor is more closely
related to the other Ca21-coupled prostanoid receptors
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such as the TP and FP receptors (134). Sequence align-
ment of the prostanoid receptors has demonstrated
that the overall homology is limited, ranging from 20 to
30%, with the highest degree of conservation lying
within the seven transmembrane regions where there
are 28 residues conserved across this family (9). In
addition, there is a cluster of six conserved amino acid
residues in the second extracellular loop. It is now
evident that the GPCR superfamily contains receptor
subgroups possessing distinct motifs for receptor-li-
gand interactions. Recent mutagenic (120, 121) and
phylogenetic analyses (79) suggest prostaglandin re-
ceptors may represent a unique subfamily of receptors:
although they bind small ligands these receptors share
structural requirements in the extracellular se-
quences, similar to peptidergic GPCRs, where the ex-
tracellular loop regions play a critical role in ligand
binding (121). This information will undoubtedly prove
useful in designing receptor-selective prostaglandin
analogs for use as pharmacological tools and therapeu-
tic agents. The intrarenal distribution of EP receptor
mRNA has also been mapped to different nephron
segments, suggesting distinct functional consequences
of activating each receptor subtype (22, 24, 25, 125,
127, 132).

EP1 Receptors

The EP1 receptor was originally described as a
smooth muscle constrictor. The human EP1 receptor
cDNA encodes a 402-amino acid polypeptide with a
predicted molecular mass of 41,858 kDa (42). This
receptor signals via increased cell Ca21, which is ac-
companied by modest increases in IP3 generation (15,
42, 137). One report suggests a COOH-terminal splice
variant of the rat EP1 receptor is present in both
kidney and uterus. The existence of an EP1 splice
variant has not been confirmed for other species, but it
is of interest because it does not appear to signal via
Ca21 and may also suppress EP4 receptor signaling
(99). Another recent report suggests EP1 receptors are
also in the nuclear envelope where they may affect

nuclear Ca21 entry, thereby contributing to effects of
endogenous PGE2 on gene expression (18). EP1 recep-
tor mRNA predominates in the kidney . gastric mus-
cularis mucosae . adrenal gland (1, 50, 99, 137). In-
terpretation of EP1 mRNA expression by Northern
analysis is complicated by the presence of several size
mRNA species, including ;7.0, 5, 4.4, and ;3 kb. Some
of these transcripts appear to derive not from EP1
mRNA but rather from protein kinase N (PKN) mRNA,
an apparently unrelated gene that is actively tran-
scribed from the antiparallel DNA strand, possessing a
sequence complementary to the EP1 receptor (16, 19).
For this reason cDNA probes, which will recognize both
EP1 and PKN transcripts, may be inadequate to quan-
tify EP1 mRNA. Nuclease protection or strand-specific
RT-PCR may be required for specific detection of EP1
mRNA.

Studies of EP1 receptors may utilize one of several
relatively selective antagonists that block their activa-
tion, including AH-6809, SC-19220, or SC-53122 (Ta-
ble 1) (54, 55, 80). A significant impetus behind the
development of clinically active EP1 receptor antago-
nists derives from evidence that the EP1 receptor plays
an important role in prostaglandin-mediated pain (87)
and that EP1 receptor antagonists have analgesic prop-
erties (54, 55). These antagonists may provide a useful
approach to studying the role of the EP1 receptor in
regulating renal salt and water balance in vivo. Unfor-
tunately, not all of these antagonists are absolutely
selective, and they may also variably block other re-
ceptors at higher doses.

Within the kidney, EP1 mRNA has been mapped by
in situ hybridization and is primarily in the collecting
duct, increasing from the cortex to the papillae (15, 50,
127). In the collecting duct, activation of the EP1 re-
ceptor inhibits Na1 and water reabsorption absorption
via a Ca21-coupled mechanism (50, 59, 60). The Ca21

increase in the collecting duct is potently mimicked by
17-phenyl-trinor PGE2 but not by an EP3-selective
agonist, MB-28767. Furthermore, both the PGE2-stim-
ulated Ca21 increase and its capacity to inhibit collect-

Table 1. EP receptor pharmacology

Subtype PGE2, IC50/Kd Agonists Antagonists Functional Assay Signaling Tissue mRNA Expression

EP1* 1–20 nM 17-Phenyl-trinor PGE2,
iloprost, sulprostone

SC-19220
SC-51322
SC-51089
AH-6809

Contracts guinea pig
ileum, gastric fundus,
trachea

IP3/DAG/PKC Collecting duct,
muscularis, mucosae,
hypothalamus

EP2 20 nM Butaprost, AH-13205,
11-deoxy PGE1

Relaxes rabbit ear, artery
guinea pig ileum
trachea

Increases cAMP Uterus, arterial

EP3* 0.3–2 nM MB-28767, sulprostone,
SC-46275, 11-deoxy
PGE1

Contracts chick ileum.
Inhibits gastric acid
secretion

Decreases
cAMP/Gi, rho,
and other
pathways

Stomach, epithelium
kidney collecting
duct, thick limb

EP4 2–11 nM PGE1-OH, 11-deoxy
PGE1, misoprostol

AH-23848
(weak)

Relaxes saphenous vein,
jugular vein, ductus
arteriosus

Increases cAMP Ureter/bladder, kidney,
thymus, intestinal,
epithelia

Agonists are only relatively selective and may activate other EP receptors at higher concentrations. Kd, dissociation constant; EP,
E-prostanoid; IP3, inositol 1,4,5-trisphosphate; DAG, diacylglycerol; PKC, protein kinase C. *Splice variants exist that may have alternate
signaling and functional effects.
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ing duct Na1 absorption can be blocked by using EP1
receptor antagonists AH-6809 and SC-19220 (10 mM)
(50). Taken together, these results suggest that renal
EP1 receptor activation contributes to PGE2-dependent
natriuresis by inhibiting Na1 transport in the collect-
ing duct. A preliminary report also suggests EP1 recep-
tor mRNA is present in glomeruli, where it could play
a role as a vasoconstrictor; however, this has not been
confirmed (68).

The net contribution of EP1 receptor activation to
regulation of renal salt and water excretion in vivo

remains uncertain. Given the above considerations
suggesting that the renal EP1 receptor contributes to
natriuresis, EP1 receptor antagonists might be ex-
pected to reduce the renal capacity to excrete Na1 and
thereby increase total body salt content and possibly
blood pressure. As will be discussed below, in the
absence of potent and specific receptor antagonists,
important information regarding the physiological
roles of prostanoid receptors has been obtained by
using transgenic mice with targeted disruption of these
genes (76, 90, 96, 114, 128, 135). Unfortunately, the

Fig. 1. Signaling mechanisms activated by 4 G
protein-coupled E-prostanoid (EP) receptors. A:
renal epithelial cell. IP3, inositol 1,4,5-trisphos-
phate; PKC, protein kinase C; PIP2, phosphati-
dylinositol 4,5,-bisphosphate; DAG, diacylglyc-
erol. B: smooth muscle cell. AC, adenlyl cyclate.
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utility of standard gene targeting approaches for the
EP1 receptor is complicated by the presence of tran-
scription PKN from the antiparallel DNA strand (16).
It has been argued that standard techniques to disrupt
the EP1 locus, which alter the 39-untranslated region of
the PKN gene in turn may affect PKN expression,
thereby introducing additional physiological changes
(16, 19). Thus studies utilizing knockout mice gener-
ated by standard targeted disruption of the EP1 gene
must be interpreted with this caveat in mind (135).

EP2 Receptors

The literature is somewhat confusing regarding the
EP2 receptor’s nomenclature, because before 1995,
when the human EP2 receptor was cloned, the cloned
EP4 receptor was misclassified as the EP2 receptor
(97). Authentic EP2 receptors have now also been
cloned for mice, rats, rabbits, and cows (48, 74, 95,
105). The human EP2 receptor cDNA encodes a 358-
amino acid polypeptide, which signals through in-
creased cAMP (14, 105). Mutagenesis studies have
demonstrated that the extracellular loop regions of the
EP2 receptor are critical determinants of receptor func-
tion. Introduction of point mutations (120) or creation
of receptor chimeras with the EP4 receptor (121) in
certain extracellular regions results in a loss of recep-
tor binding and signal transduction. EP2 receptors are
selectively activated by butaprost (19, 77). The EP2
receptor may also be distinguished from the EP4 recep-
tor, the other major relaxant EP receptor, by its rela-
tive insensitivity to the EP4 agonist PGE1-OH and
insensitivity to the weak EP4 antagonist AH-23848
(29, 105). Interestingly, a single point mutation in the
seventh transmembrane domain of the EP2 receptor
resulted in a selective gain of function of the receptor
for prostacyclin analogs (75). Taken together, these
data suggest that both the extracellular sequences and
the transmembrane regions are important for receptor-
ligand interactions.

The precise tissue distribution of the EP2 receptor
has been only partially characterized, using Northern
blot analysis of mRNA distribution. This reveals a
major mRNA species of ;3.1 kb that is most abundant
in the uterus, lung, and spleen, exhibiting only low
levels of expression in the kidney (19, 74, 95, 105). The
mRNA is expressed at much lower levels than EP4
mRNA (74). Functional studies suggest the EP2 recep-
tor plays a role in uterine implantation (82) and a
relaxant role in trachea and vasculature (30, 31). In
addition, recent studies demonstrate targeted disrup-
tion of the EP2 receptor interferes with fertility and
results in salt-sensitive hypertension (76, 133). This
latter finding supports an important role for the EP2
receptor in protecting systemic blood pressure, perhaps
via its vasodilator effect and effects on renal salt han-
dling (see below).

EP3 Receptors

The EP3 receptor generally acts as a constrictor of
smooth muscle (31). As with the EP2 receptor, muta-

tions critical for ligand binding and signal transduction
have been described in both the transmembrane and
extracellular regions of the receptor (8, 9, 63, 94). This
receptor is unique in that at least six alternatively
spliced variants defined by unique COOH-terminal cy-
toplasmic tails exist in humans alone, and over 22
unique variants have been observed in rats, rabbits,
mice, cows, and humans (2, 26, 67, 93, 104, 111). These
splice variants encode proteins of a predicted molecu-
lar mass between 40 and 45 kDa (1, 26, 104). All the
EP3 splice variants bind PGE2, and the EP3 agonists
MB-28767, and sulprostone, with similar affinity. Al-
though these variants uniformly and potently inhibit
cAMP generation via a pertussis toxin-sensitive Gi-
coupled mechanism, additional signaling mechanisms
(Fig. 1) appear to be differentially activated by these
different COOH-terminal tails (7, 11, 93). One recent
study suggests signaling through the small G protein
rho (7). Each of the rabbit splice variants of this Gi-
coupled receptor also appears to activate cAMP-re-
sponsive binding protein/cAMP-responsive element-
mediated gene expression, under some conditions,
suggesting that these receptors participate in long-
term regulation of cellular events (11). Finally, differ-
ences in agonist-independent activity have been ob-
served for several of the splice variants, suggesting
that they may play a role in tonic regulation of intra-
cellular metabolism (57). The physiological significance
of the different COOH-terminal splice variants re-
mains uncertain. Nuclease protection and Northern
analysis demonstrate relatively high levels of EP3 re-
ceptor expression in several tissues including kidney,
uterus, adrenal gland, and stomach, with Northern
analysis showing major mRNA species at ;2.4 and
;7.0 kb (1, 26, 104, 111, 141).

The significance of EP3 receptor activation to sys-
temic physiology has been significantly advanced by
the availability of mice with targeted disruption of this
gene (38, 135). Mice with targeted deletion of the EP3
receptor exhibit an impaired febrile response to PGE2,
suggesting the EP3 receptor antagonists could be effec-
tive antipyretic agents. In contrast, despite relatively
high levels of EP3 receptor in kidney (24, 26, 126, 127),
mice with targeted disruption of this receptor only
display a subtle alteration in the effect of NSAIDs on
urinary-concentrating ability, as described in greater
detail below (38). These finding raise the possibility
that some of the renal action of PGE2 normally medi-
ated by the EP3 receptor has been co-opted by other
receptors.

The EP4 Receptor

Like the EP2 receptor, the EP4 signals through in-
creased cAMP (14, 105). The human EP4 receptor
cDNA encodes a 488-amino acid polypeptide with a
predicted molecular mass of ;53 kDa (14). Again, care
must be taken in reviewing the literature before 1995,
when this receptor was generally referred to as the EP2
receptor (97). In addition to the human receptor, EP4
receptors for mouse, rat, rabbit, and cow have been
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cloned (3, 14, 19, 25, 62, 97). EP4 receptors may be
pharmacologically distinguished from the EP1 and EP3
receptors by their insensitivity to sulprostone and from
EP2 receptors by its insensitivity to butaprost (19, 77)
and relatively selective activation by PGE1-OH (19,
77). Furthermore, [3H]PGE2 binds to the EP4 receptor
with at least 10-fold higher affinity than the EP2 re-
ceptor. Structurally, the EP4 receptor has a much
longer COOH-terminal sequence than the EP2 receptor
and has been shown to undergo short-term agonist-
induced desensitization, which is absent in the EP2
receptor (13, 98).

EP4 receptor mRNA is relatively highly expressed
compared with the EP2 receptor and widely distrib-
uted, with a major species of ;3.8 kb detected by
Northern analysis in thymus, ileum, lung, spleen, ad-
renal gland, and kidney (14, 25, 62, 108). Roles for EP4
receptors in immune cell activation and osteoblast
function have been reported (73, 89, 100, 138). Impor-
tant vasodilator effects of EP4 receptor activation in
venous and arterial beds have been described (29, 31).
A particular role for the EP4 receptor in regulating
closure of the pulmonary ductus arteriosus has also
been suggested by the recent studies in mice with
targeted disruption of the EP4 receptor gene (96, 114).
EP42/2 mice on a 129 background had close to 100%
perinatal mortality due to persistent patent ductus
arteriosus (96). Interestingly, when bred on a mixed
genetic background, as many as 21% of EP42/2 mice
had closure of the ductus and survived. Preliminary
studies in these survivors support an important role for
the EP4 receptor as a systemic vasodepressor (10, 29,
31); however, their heterogeneous genetic background
complicates the interpretation of these results, because
survival may select for modifier genes that not only
allow ductus closure but also alter hemodynamics.
Other roles for the EP4 receptor in controlling blood
pressure have been suggested, including the ability to
stimulate aldosterone release from zona glomerulosa
cells (32). In the kidney, EP4 receptor mRNA expres-
sion is primarily in the glomerulus, where its precise
function is uncharacterized (22, 25, 127) but might
contribute to regulation of the renal microcirculation
as well as renin release.

ROLE OF EP RECEPTOR SUBTYPES IN REGULATING
RENAL FUNCTION

Glomerular Microcirculation

Prostaglandins play an important role regulating
the renal cortical microcirculation. Both glomerular
constrictor and dilator effects of prostaglandins have
been reported (17, 66, 112). In the setting of volume
depletion, endogenous PGE2 helps maintain GFR pos-
sibly by dilating the afferent arteriole (17, 37, 110).
Recent studies showing cyclooxygenase 2 is localized to
the macula densa (49, 56) also suggest a particular role
for prostaglandins in regulating the glomerular micro-
circulation. Control of GFR by the macula densa via
tubuloglomerular feedback (TGF) suggests both dilator
and constrictor effects of prostanoids (12, 17, 112). One

recent study suggests that cyclooxygenase 2-mediated
synthesis is predominantly responsible for dilator pros-
tanoids (64). The array of prostanoids produced by the
macula densa remains uncharacterized, but PGE2 is
the primary product synthesized by microdissected cor-
tical TAL (20). Nor have the prostanoid receptors me-
diating the downstream vasoconstrictor and vasodila-
tor effects of prostaglandins on the glomerular
microcirculation or their location been determined.
Some data suggest roles for EP and IP receptors cou-
pled to increased cAMP generation as mediating these
vasodilator effects in the preglomerular circulation (28,
112, 113). Edwards (37) found PGE2 exerted a dilator
effect on the afferent arteriole but not the efferent
arteriole of rabbit glomeruli, consistent with the pres-
ence of an EP2 or EP4 receptor in the preglomerular
microcirculation. In contrast, constrictor effects of
PGE2 in the afferent arteriole of rat have been re-
ported, suggesting an EP1 or EP3 receptor (66). The
presence of at least two EP receptor subtypes, constric-
tor and dilator, in the preglomerular microcirculation
seems likely. Thus the net effect of PGE2 on the glo-
merular microcirculation will depend not only on the
resting tone of these vessels but also on which EP
receptor functionally predominates.

Renal Medullary Microcirculation

In the setting of systemic hypertension, the normal
response of the kidney is to increase salt excretion,
thereby mitigating the increase in blood pressure. This
so-called “pressure natriuresis” plays a key role in the
ability of the kidney to protect against hypertension
(52, 53). Increased blood pressure is accompanied by
increased renal perfusion pressure, which is associated
with enhanced PGE2 excretion (27). Inhibition of pros-
taglandin synthesis markedly blunts (although it does
not eliminate) pressure natriuresis (106). The mecha-
nism by which PGE2 contributes to pressure natriure-
sis may involve changes in resistance of the renal
medullary microcirculation (102, 106). PGE2 directly
dilates descending vasa recta, and increased medullary
blood flow may contribute to increased interstitial
pressure observed as renal perfusion pressure in-
creases, leading to enhanced salt excretion (115). The
identity of the dilator PGE2 receptor controlling the
contractile properties of the descending vasa recta re-
mains uncertain, but dilator EP2 or EP4 receptors seem
likely candidates (31). Recent studies demonstrating
salt-sensitive hypertension in mice with targeted dis-
ruption of the EP2 receptor (76) suggest the EP2 recep-
tor facilitates the ability of the kidney to increase
sodium excretion, thereby protecting systemic blood
pressure from a high-salt diet. Although EP2-mediated
effects on renal epithelial transport cannot be ex-
cluded, cAMP-coupled effects of PGE2 on transport in
the collecting duct are not mimicked by butaprost and
appear more likely to be related to activation of the EP4
receptor (107). Furthermore, EP2 receptor mRNA has
not been detected along the nephron (22). Given its
defined role in vascular smooth muscle (76), these
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effects of the EP2 receptor disruption seem more likely
to relate to its effects on renal vascular tone. In partic-
ular, loss of a vasodilator effect in the renal medulla
might modify pressure natriuresis and could contrib-
ute to hypertension in EP2-knockout mice. Nonethe-
less, a defined role for this receptor in regulating renal
medullary blood flow remains to be established.

EP Receptors and Renin Release

Soon after the introduction of cyclooxygenase inhib-
itors, it was recognized that endogenous prostaglan-
dins play an important role in stimulating renin re-
lease (43, 112). Treatment of salt-depleted rats with
indomethacin not only decreases plasma renin activity
but also causes blood pressure to fall, suggesting pros-
taglandins support blood pressure during salt deple-
tion, via their capacity to increase renin (40, 119).
Prostanoids also play a central role in the pathogenesis
of renal-vascular hypertension, and administration of
NSAIDs lowers blood pressure in both animals and
humans with renal artery stenosis (65, 70, 83). PGE2
appears to be an important prostanoid, which, like
PGI2, stimulates renin release. In conscious dogs,
chronic intrarenal PGE2 infusion increases renal renin
secretion, resulting in hypertension (61). PGE2 induces
renin release in isolated preglomerular JGA cells (71).
Like the effect of b-adrenergic agents, this effect ap-
pears to be through a cAMP-coupled response, support-
ing a role for an EP4 or EP2 receptor (71). PGE2 also
stimulates cAMP generation in freshly isolated preglo-
merular rabbit renal arterioles (28). Although localiza-
tion of EP2 or EP4 receptors to the juxtaglomerular
apparatus has not been demonstrated, EP4 receptor
mRNA is relatively abundant in the glomerulus (22,
25, 127), supporting the possibility that renal EP4
receptor activation contributes to enhanced renin re-
lease. In contrast, regulation of plasma renin activity
and intrarenal renin mRNA does not appear to be
different in wild-type and EP2-knockout mice, (133),
arguing against a major role for the EP2 receptor in
regulating renin release. These considerations are
tempered by the fact that the precise mechanism by
which prostaglandins contribute to renin release re-
mains elusive, and molecular identification of EP re-
ceptors in renin-secreting JGA cells is lacking. Rather,
one report demonstrates EP3 receptor mRNA is local-
ized to the macula densa, suggesting this cAMP-inhib-
iting receptor may also contribute to the control of
renin release (127). In conclusion, direct vasomotor
effects of EP2 and EP4 receptors, as well as effects on
renin release, may play critical roles in regulating
systemic blood pressure and renal hemodynamics.

Urinary Concentration and Dilution

The EP3 receptor was the first E-prostanoid receptor
cloned, but an important role for a Gi-coupled prosta-
glandin E receptor in regulating water and salt trans-
port along the nephron was defined well before its
molecular identification. PGE2 directly inhibits salt
and water absorption in both the in vitro microper-

fused TAL and collecting duct (46, 59, 60, 122). PGE2
directly inhibits Cl2 absorption in the mouse or rabbit
medullary TAL from either the luminal or basolateral
surfaces (33, 122). It was subsequently demonstrated
that PGE2 also inhibits hormone-stimulated cAMP
generation in TALs (92, 129). Because cAMP stimu-
lates TAL transport, inhibition of cAMP generation
through a Gi-coupled PGE2 receptor likely contributes
to the inhibitory effects of PGE2 on TAL transport
(140). The mRNA for the Gi-coupled EP3 receptor is
localized in discrete segments of the nephron and is
most highly expressed in the TAL and collecting duct
(22, 24, 127, 130). Good and colleagues (45, 46) demon-
strated that PGE2 modulates ion transport in the rat
TAL by a pertussis toxin-sensitive mechanism (45, 46).
Interestingly, these effects also appear to involve pro-
tein kinase C activation, possibly reflecting activation
of a novel EP3 receptor-signaling pathway, correspond-
ing to pathways of recognized cultured cells (11, 93).
Taken together, these data support a role for the EP3
receptor in regulating transport in the TAL.

In the collecting duct, PGE2 inhibits both vasopres-
sin-stimulated osmotic water absorption and cAMP
generation (58, 117, 118). Furthermore, PGE2 inhibi-
tion of both water absorption and cAMP generation is
blocked by pertussis toxin, suggesting effects mediated
by the inhibitory G protein Gi (23, 60, 117, 118). These
functional data fit well with in situ hybridization stud-
ies, which demonstrate high mRNA expression of the
Gi-coupled EP3 in human and rabbit collecting duct
(22, 24). This distribution has been confirmed by RT-
PCR in microdissected rat and mouse collecting ducts
(130, 132). It is likely that PGE2-mediated antagonism
of vasopressin-stimulated salt absorption in the TAL
and water absorption in the collecting duct contributes
to its diuretic effect (72). Furthermore, blockade of
endogenous PGE2 synthesis likely contributes to en-
hanced urinary concentration in the setting of NSAID
use (5).

On the basis of the preceding functional consider-
ations, one would expect EP3

2/2 mice to exhibit inap-
propriately enhanced urinary concentration. Surpris-
ingly, EP3

2/2 mice exhibited a comparable urinary
concentration after dDAVP, similar 24-h water intake,
and similar maximal minimal urinary osmolality (38).
The only clear difference was that, in mice allowed free
access to water, indomethacin increased urinary osmo-
lality in normal mice but not in the knockout mice.
These findings suggest compensatory mechanisms are
in place that allow normal renal water excretion in
EP3

2/2 mice. The investigators hypothesized that the
remaining EP1 receptor might take over the function of
the EP3 receptor, thereby obscuring this phenotype.
This remains to be formally tested. Other studies sug-
gest the EP3 receptor may play an important role as a
vasoconstrictor receptor (103); however, no difference
was seen in either GFR or renal plasma flow between
anesthetized wild-type vs. EP3 receptor-knockout mice.
Further studies examining the potential role of the EP3
receptor as systemic vasoconstrictor should yield im-
portant information.
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Renal Sodium and Potassium Excretion

Administration of cyclooxygenase inhibitors is com-
monly associated with Na1 retention, edema, hyperten-
sion, and/or hyperkalemia resulting from loss of intrare-
nal prostaglandin synthesis (91, 110). Intrarenal infusion
of PGE2 is natriuretic, and although its effects on intra-
renal hemodynamics undoubtedly play an important
role, direct effects of PGE2 on epithelial transport are
equally important. Despite a few reports suggesting ef-
fects of PGE2 on transport in the proximal tubule (36, 39),
its effects on the distal nephron including the thick limb
and collecting duct are more clearly established. The
inhibitory effects of PGE2 on NaCl absorption in the thick
ascending limb have already been discussed above and
undoubtedly contribute to its natriuretic effects (46, 122).
PGE2 also inhibits Na1 transport in microperfused col-
lecting ducts by ;50% (59, 60). In contrast to PGE2-
mediated inhibition of vasopressin-stimulated water ab-
sorption, its capacity to inhibit Na1 absorption is
insensitive to pertussis toxin (59). Instead, PGE2 inhibits
convoluted collecting duct Na1 absorption via a Ca21-
dependent mechanism (58, 59, 84). Primarily on the basis
of the lack of effect of MB-28767, a potent EP3 agonist, on
collecting duct calcium, Guan et al. (50) suggested that
this effect primarily involves an EP1 receptor rather than
an EP3 splice variant. Nonetheless, the possibility that
EP3 receptor activation also influences electrogenic ion

transport in the collecting duct via pertussis-insensitive
mechanisms has not been completely excluded (7, 11, 93).

As in the case with the vasculature, there is also
evidence that PGE2 can interact with a receptor that
stimulates ion absorption. The capacity of PGE2 to in-
crease Na1 absorption in toad bladder has been known
for more than 25 years (85), so a similar capacity in renal
epithelia would not be surprising. Recently, a separate
effect of luminal PGE2 has been reported in the collecting
duct (6, 107). Luminal PGE2 stimulates basal water ab-
sorption and also transiently stimulates an amiloride-
sensitive current, suggesting urinary PGE2 may also
regulate salt and water excretion (107). Although
NSAIDs typically reduce Na1 excretion in anesthetized
animals, one intriguing study showed meclofenamate or
carprofen, when administered to conscious dogs undergo-
ing a water diuresis (78), markedly increased urine Na1

excretion without any change in urine volume or renal
hemodynamics. These studies suggest, under particular
circumstances, endogenous prostaglandins can enhance
Na1 absorption along the nephron. It is of note in this
regard that PGE2 is thought to enter the urine in the loop
of Henle and thus have access to cAMP-stimulating lu-
minal EP receptor distal nephron segments (41, 139). The
possibility that enhanced distal Na1 absorption contrib-
utes to certain forms of prostaglandin-dependent hyper-
tension (65) remains unsubstantiated.

Fig. 2. Intrarenal localization and consequences of EP receptor activation along the nephron. PGE2 stimulates
renin release by juxtaglomerular apparatus (JGA) cells through a receptor coupled to cAMP generation. Dilator
and constrictor PGE2 receptors also modulate glomerular vascular tone as well as tone constrictor tone of the vasa
rectae. PGE2 also directly inhibits NaCl absorption by the thick ascending limb (TAL) and collecting duct via
effects on EP1 and EP3 receptors. COX-2, cyclooxygenase-2; ACE, angiotensin-converting enzyme; PCT, proximal
convoluted tubule; PST, proximal straight tubule; cTAL and mTAL, cortical and medullary TAL, respectively;
CCD, cortical collecting duct; MCD, medullary collecting duct.
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Effects of prostaglandins on renal K1 transport have
also been described; however, NSAID-associated hy-
perkalemia appears to be primarily secondary to ef-
fects on aldosterone rather than epithelial effects.
Prostaglandin E may stimulate aldosterone secretion
by both direct effects on zona glomerulosa cells (25, 32)
and effects on renal renin release (61, 71). The effects
on adrenal aldosterone secretion appear to be mediated
by a cAMP-coupled EP2 or EP4 receptor (32). NSAID
administration suppresses these effects, leading to hy-
poreninemic hypoaldosteronism (44, 101, 131). Dimin-
ished aldosterone release inhibits distal K1 secretion,
leading to hyperkalemia. In contrast, PGE2 itself ap-
pears to directly inhibit K1 secretion in the collecting
duct (123, 136); thus loss of this inhibitory action would
promote K1 secretion, mitigating rather than exacer-
bating hyperkalemia. Additional studies of effects of
prostanoids on K1 handling in other nephron segments
are required for a full understanding of the role of
prostaglandins in K1 handling.

In summary, EP1, EP3, and EP4, receptors appear to
exist in vascular glomeruli and individual nephron
segments including the TAL and collecting duct (Fig.
2). EP1 and EP3 receptors may contribute to the natri-
uretic and diuretic action of PGE2. In contrast, intra-
renal EP4 receptors may affect glomerular function as
well as activate cAMP-stimulated salt and water ab-
sorption along the nephron. Finally, EP receptors also
appear to play an important role in regulating renin
release. Together with the other prostanoid receptors
including TP, IP, and FP receptors, the EP receptors
provide novel targets for modulating renal salt and
water excretion as well as systemic blood pressure. It
seems likely the present limited clinical utility of pros-
taglandin analogs will be transformed by the availabil-
ity of truly selective receptor antagonists.
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