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Abstract

Prostaglandin F2a (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has

demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells

(HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium.

It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and

oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-

stimulated expression of CX43. The inhibitors of ERK, P38 and NFkB also blocked the effect of PGF2A on CX43 expression, whereas PI3K

and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2

and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFkB signalling

were not involved. In addition, PGF2A activated NFAT, PI3K, NFkB, ERK and P38 signalling pathways. Our data suggest that PGF2A

stimulates CX43, PTGS2 and OTR through divergent signalling pathways.
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Introduction

During pregnancy, human myometrium undergoes
structural and functional changes from a relatively
quiescent state during most of gestation to contractile
state at end of pregnancy. Such changes are associated
with the expression of a group of proteins known as
the uterine activation proteins (UAPs) which includes
(GJA1) connexin 43 (CX43), prostaglandin endoperoxide
synthase 2 (PTGS2), ion channels and the receptors of
uterotonic agonists such as oxytocin receptor (OTR) and
prostaglandin F2a (PGF2A) receptor (PTGFR) (Fuchs
et al. 1995, Challis et al. 2000, Kamel 2010). Thus,
understanding the mechanisms responsible for control-
ling the expression of these proteins during pregnancy
would gain deep insights into the mechanisms under-
lying the onset of human parturition.

PGs, which are produced within the intrauterine
tissues of pregnancy, play important roles in all the
physiological processes of parturition, but the most
studied is myometrial contraction (Caldwell et al. 1973,
Challis et al. 2000, Olson 2003). Elevated uterine PGs or
enhanced sensitivity of the myometrium to PGs leads
to contractions and labour (Romero et al. 1996, Challis
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et al. 2000). Among the family of PGs, PGF2A increases
the intracellular calcium concentration by stimulating
the release of stored calcium, which produces a phasic
contraction that permits blood flow to the foetus
between contractions and optimises the ability of the
uterus to expel the foetus (Luckas et al. 1999). It has been
demonstrated that the level of PGF2A in maternal
plasma remains higher before the onset of labour
compared with the first stage of labour, and it is not
significantly changed around parturition (Kinoshita et al.
1977). A number of studies demonstrate that PGF2A is
involved in many events during pregnancy (Christiaens
et al. 2008, Sykes et al. 2014). Our previous study has
shown that PGF2A upregulates CX43, PTGS2 and OTR
whereas downregulates PTGFR expression in human
pregnant myometrium (Xu et al. 2013), suggesting that
PGF2A is involved in uterus activation for labour.

PTGFR, a member of G protein-coupled receptor
superfamily, mainly couples to GQ protein and sub-
sequently activates phospholipase C (PLC) b, leading to
an increase in intracellular Ca2C level and activation
of protein kinase C (PKC), phosphatidylinositol-3-kinase
(PI3K) and ERK1/2 (Luckas et al. 1999, Sales et al. 2009,
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Wallace et al. 2011, Kondo et al. 2012). So far, there is
no study regarding intracellular signalling pathways
of PGF2A modulating various UAPs in pregnant myo-
metrium. Thus, we used cultured pregnant human
myometrial smooth muscle cells (HMSMCs) as a model
to explore the possible signalling pathways responsi-
ble for PGF2A modulation of CX43, PTGS2 and OTR
expression.
Materials and methods

Culture of HMSMCs

HMSMCs were isolated from lower segment myometrial
biopsies which were obtained from pregnant women who
underwent elective cesarean at term. This study was approved
by the specialty committee on ethics of biomedicine research,
Second Military Medical University, Shanghai, China, and
informed consent was obtained from all the patients who
participated in this study. HMSMCs were cultured as described
previously (Xu et al. 2011). Briefly, myometrial pieces were
incubated with phenol-red-free DMEM, containing 1 mg/ml
collagenase type II (Invitrogen), and 1 mg/ml deoxyribonu-
clease I (Invitrogen) at 37 8C for 45 min. Following filtration,
the cell suspension was centrifuged at 600 g for 10 min, and
the cell pellet was resuspended in DMEM, containing 10%
FCS, penicillin (100 U/ml) and streptomycin (100 mg/ml). The
cells were then plated into 25-cm2 flasks and kept at 37 8C in
5% CO2–95% air humidified atmosphere until confluent
(w2 weeks). The purity of myocyte cultures was assessed by
immunocytochemistry using smooth muscle a-actin MAB
(Sigma–Aldrich). All experiments were performed with these
cells at passage 2. The cells were placed in six-well plates with
DMEM containing 10% FCS. Following growth to w80%
confluence, some of the cells were changed to DMEM without
FCS but containing various concentration of PGF2A (Sigma–
Aldrich) in the presence or absence of the inhibitors of
various kinases including U73122, chelerythrine, PD98059,
LY294002, CsA, Inca-6, trans-retinoic acid (RA), SB202190
and pyrrolidine dithiocarbamate (PDTC) and then incubated
for 24 h. The vehicle control was treated with the same volume
of solvent (ethanol, %0.1% v/v). All the above inhibitors were
purchased from Sigma–Aldrich.

For studying the activated signalling pathways, HMSMCs
were incubated in DMEM without FCS for 24 h at 37 8C in 5%
CO2–95% air humidified atmosphere and then treated with
PGF2A for 10 min. The cells were then harvested for western
blotting analysis.
Western blotting analysis

The cells were harvested in the presence of M-Per lysis buffer
(PierceBiotechnology, Rockford, IL,USA).Approximately,100 mg
protein were denatured and separated by SDS (10%)–PAGE and
subsequently transferred to nitrocellulose membranes. The
membranes were incubated with specific antibodies including
OTR (Santa Cruz Biotechnology, Santa Cruz, CA, USA), CX43
(Santa Cruz, California, USA), PTGS2 (Santa Cruz), p-65 (Abcom
Inc., Cambridge, MA, USA), phospho-p65 (ser-529) (Epitomics
Reproduction (2015) 149 139–146
Inc., Burlingame, CA, USA), ERK1/2 (Cell Signaling, Danvers, MA,
USA), phospho-ERK1/2 (Cell Signaling), NFATC1 (Santa Cruz),
p38 (Cell Signaling) and phospho-p38 (Cell Signaling), PI3K
(Abcom) and phospho-PI3K (Tyr508) (Santa Cruz) overnight
at 4 8C. The membranes were then incubated with a secondary
HRP-conjugated antibody and immunoreactive proteins
visualised using enhanced chemiluminescence (Santa Cruz). The
intensities of light-emitting bands were detected and quantified
using Sygene Bio Image system (Synoptics Ltd, Cambridgeshire,
UK). To control sampling errors, the ratio of band intensities
to b-actin was obtained to quantify the relative protein expression
level for OTR, CX43, OTR and NFATC1. The levels of phospho-
PI3K, phospho-p65, phospho-ERK1/2 and phospho-p38 were
normalised to the unphosphorylated type of these proteins.
Statistical analysis

The results for all protein determinations are presented as the
meanGS.E.M. Individual comparisons were then made by two-
way ANOVA followed by the Student–Newman–Keuls multiple
comparison method. Significance was achieved at P%0.05.
Results

The signalling pathways involved in PGF2A modulation
of CX43 expression

As mentioned, PTGFR mainly couples with GQ protein
and subsequently activates the effector PLCb which
catalyses the hydrolysis of membrane phosphoinositol
lipids, leading to the release of inositol-1,4,5-tripho-
sphate (IP3) and diacylglycerol (DAG). IP3 binding to IP3
receptors (IP3R) can trigger the release of Ca2C from
endoplasmic reticulum (ER), while DAG can activate
PKC signalling pathway. At first, we examined the effect
of PLC inhibitor on PGF2A modulation of CX43
expression. As shown in Fig. 1A, as expected, PGF2A
at 10K6 M upregulated CX43 expression. U73122, an
inhibitor of PLC, at 10K5 M totally reversed PGF2A
upregulation of CX43 expression. Application of PKC
inhibitor chelerythrine (10K5 M) could totally reverse
PGF2A-induced CX43 expression.

PGF2A can activate PI3K, ERK1/2 and P38 signalling
pathways via PLC-dependent and independent pathway.
LY294002, an inhibitor of PI3K, at 10K5 M did not block
PGF2A-induced CX43 expression. PD 98056, an
inhibitor of ERK, at 10K5 M could totally reverse
PGF2A-induced CX43 expression. SB 202190, an
inhibitor of P38, at 10K5 M also blocked the effect of
PGF2A on CX43 expression (Fig. 1B).

It is known that PKC, PI3K and ERK signalling can
activate NFkB signalling (Hazeki et al. 2007). We
therefore examined whether NFkB signalling pathway
is involved in PGF2A-induced CX43 expression. The
NFkB inhibitor PDTC (10K5 M) could totally block the
effect of PGF2A on CX43 (Fig. 1B).

GQ/PLC signalling that causes Ca2C release from
intracellular calcium store, subsequently activates
www.reproduction-online.org
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Figure 1 The effects of PLC, PKC, PI3K, ERK, P38 and NFkB inhibitors
on PGF2A modulation of CX43 expression. HMSMCs were cultured
and followed with the treatment of PLC inhibitor (U73122), PKC
inhibitor (chelerythrine), PI3K inhibitor (LY294002), P38 inhibitor
(SB202190), ERK inhibitor (PD98059) or NFkB inhibitor (PDTC) in
presence or absence of PGF2A (10K6 M). The cells were harvested and
the protein expression of CX43 was determined by western blotting
analysis. (A) The effects of U73122 (10K5 M) and chelerythrine
(10K5 M). (B) The effects of PDTC (10K5 M), LY294002 (10K5 M),
PD98059 (10K5 M) and SB202190 (10K5 M). Representative protein
bands were presented on the top of histogram. Values are presented as
meanGS.E.M. nZ6 (from six patients). *P!0.05 compared with vehicle
control. #P!0.05 compared with PGF2A.
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calcineurin/nuclear factor of activated T-cells (NFAT)
pathway (Sales et al. 2009). We then applied the series
of inhibitors to explore the role of calcineurin/NFAT
pathway in PGF2A regulation of CX43 expression. As
shown in Fig. 2, PGF2A stimulation of CX43 expression
was not reversed by administration of calcineurin
inhibitor CsA (10K5 M). The blocker of calcineurin
and NFAT interaction Inca-6 (10K5 M) and the inhibitor
of NFAT-AP1 complex RA (10K5 M) did not affect
PGF2A-induced CX43 expression. Notably, treatment
of cells with RA alone could increase CX43 expression.
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Figure 2 The effects of calcineurin/NFAT pathway inhibitors on
PGF2A-induced CX43 expression. HMSMCs were treated with
calcineurin inhibitor (CsA), the blocker of calcineurin and NFAT
interaction (InCA-6), NFAT–AP1 complex inhibitor (RA) in presence or
absence of PGF2A (10K6 M) for 24 h. The protein expression of CX43
in the cells was determined by western blotting analysis. Representative
protein bands were presented on the top of histogram. Data are
presented as meanGS.E.M. nZ6 (from six patients). *P!0.05,
**P!0.01 compared with vehicle control.
The signalling pathways responsible for PGF2A
modulation of PTGS2 and OTR expression

Our previous study has shown that PGF2A robustly
stimulates PTGS2 and OTR expression in cultured
HMSMCs which were isolated from lower segment
(Xu et al. 2011). In the present study, it was also shown
that PGF2A at 10K6 M significantly enhanced PTGS2
and OTR expression in HMSMCs. PLC inhibitor
U73122 (10K5 M) could totally reverse PGF2A stimu-
lation of PTGS2 and OTR expression (Fig. 3). PKC
inhibitor chelerythrine (10K5 M) did not reverse PGF2A
stimulation of OTR expression. Treatment of cells
with chelerythrine alone increased PTGS2 expression.
There was no significant difference in PTGS2 expres-
sion among the cells with chelerythrine (10K5 M)
www.reproduction-online.org
treatment, PGF2A (10K6 M) treatment and PGF2A plus
chelerythrine treatment.

LY294002 (10K5 M) could totally block PGF2A
upregulation of PTGS2 and OTR expression. SB
202190 at 10K5 M also blocked the effect of PGF2A
on PTGS2 and OTR. PD98056 (10K5 M) could totally
reverse PGF2A-induced PTGS2 expression but not OTR
expression (Fig. 4). PDTC at 10K5 M did not block
the effect of PGF2A on PTGS2 and OTR. Treatment
of cells with PDTC alone enhanced PTGS2 expression
but did not affect OTR expression.

The role of calcineurin/NFAT pathway in PGF2A
regulation of PTGS2 and OTR expression was then
studied. With the administration of calcineurin inhibitor
CsA, the robust stimulation of PTGS2 and OTR
expression by PGF2A was reversed. The similar
trend was confirmed by the application of Inca-6 and
RA (Figs 5 and 6).
PGF2A activates NFAT, NFKB, ERK, P38 and PI3K
signalling pathways

We then confirmed whether PGF2A activates NFAT,
NFkB, ERK and P38 signalling pathways. Five members
of the NFAT family of transcription factors have been
isolated: NFATC2 (NF-AT1/p), NFATC1 (NF-AT2),
NFATC4 (NF-AT3), NFATC3 (NF-AT4/x), and NFAT5
Reproduction (2015) 149 139–146
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Figure 3 The effects of PLC and PKC inhibitors on PGF2A regulation of
PTGS2 and OTR expression. HMSMCs were cultured and followed
with the treatment of PLC inhibitor (U73122) or PKC inhibitor
(chelerythrine) in the presence or absence of PGF2A (10K6 M). The
cells were harvested and the protein expression of PTGS2 (A) and OTR
(B) was determined by western blotting analysis. Representative protein
bands were presented on the top of histogram. Data are presented as
meanGS.E.M. nZ5 (from five patients). *P!0.05, **P!0.01 compared
with vehicle control. #P!0.05 compared with PGF2A.
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(TonEBP) (Rao et al. 1997). NFATC1–4 signalling is
mediated by the Ca2C/calmodulin-dependent phospha-
tase calcineurin, whereas NFAT5 activity is activated by
osmotic stress (Rao et al. 1997). Normally, Ca2C induces
the activation of calcineurin, which leads to NFAT
dephosphorylation. In human myometrium, NFATC1 has
been shown to be activated by Ca2C signalling (Pont
et al. 2012). Thus, we examined whether NFATC1 is
activated by PGF2A. For NFkB activation, the level of
phospho-p65 was measured. As shown in Fig. 7,
treatment of cells with PGF2A (10K6 M) significantly
increased the level of NFATC1. The levels of phospho-
p65, phospho-ERK1/2, phospho-PI3K and phospho-p38
were also significantly increased by PGF2A.
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Figure 4 The effects of PLC, PKC, PI3K, ERK, P38 and NFkB inhibitors
on PGF2A modulation of PTGS2 and OTR expression. HMSMCs from
LS were cultured and followed with the treatment of PI3K inhibitor
(LY294002), P38 inhibitor (SB202190), ERK inhibitor (PD98059) or
NFkB inhibitor (PDTC) in the presence or absence of PGF2A (10K6 M).
The cells were harvested and the protein expression of PTGS2 (A) and
OTR (B) was determined by western blotting analysis. Representative
protein bands were presented on the top of histogram. Data are
presented as meanGS.E.M. nZ5 (from five patients). *P!0.05,
**P!0.01 compared with vehicle control. #P!0.05 compared with
PGF2A.
Discussion

CX43, PTGS2 and OTR are the key indicators for the
activation of uterus and can serve as proxies for uterine
activation (Challis et al. 2000). CX43, the major
myometrial gap junction protein, is responsible for
establishing a low-resistance electrical pathway between
cells (Kumar & Gilula 1996, Miyoshi et al. 1998). PGs are
mainly produced within uterus during pregnancy, while
PTGS2 is the key limit enzyme for PG synthesis (Caldwell
et al. 1973, Lundin-Schiller & Mitchell 1990, Olson
2003). Oxytocin is a well-known neurohypophysial
hormone that facilitates parturition and is commonly
used as an uterotonic drug in clinical practice for the
treatment of primary postpartum haemorrhage. Many
studies have demonstrated that OTR level in myometrium
Reproduction (2015) 149 139–146
is much higher at the end of pregnancy, which is critical
for the onset of labour (Fuchs et al. 1995, Kimura et al.
1996, Challis et al. 2000) although a few studies reported
that OTR expression is not increased with labour (Phaneuf
et al. 2000, Havelock et al. 2005). This study confirmed
the previous findings that PGF2A upregulates the
expression of these proteins in human pregnant
myometrium, suggesting that PGF2A is involved in the
processes of uterus activation for labour.

As mentioned before, PTGFR mainly couples with GQ
protein and subsequently activates PLCb which causes
the release of IP3 and DAG. IP3 then leads to
intracellular Ca2C flux, which subsequently activates
calcineurin/NFAT pathway (Luckas et al. 1999, Sales
et al. 2009, Wallace et al. 2011). Moreover, PTGFR can
activate multiple signalling pathways including PI3K,
ERK1/2 and P38 signalling pathways (Jabbour et al.
2005, Wallace et al. 2011, Kondo et al. 2012). This study
showed that PLC inhibitor U73122 could reverse the
effects of PGF2A on CX43, PTGS2 and OTR expression,
suggesting that robust stimulation of CX43, PTGS2 and
OTR by PGF2A requires PLC activation. However,
divergent downstream signalling pathways are
responsible for PGF2A regulation of CX43, PTGS2 and
OTR. For CX43, the inhibitors of PKC, P38 and ERK
could totally reverse PGF2A action, whereas the
inhibitors of PI3K and calcineurin/NFAT signalling
pathways did not reverse PGF2A action on CX43,
which suggests that PGF2A regulation of CX43
expression is through PLC/PKC, P38 and ERK pathways.
Interestingly, it has been shown that PKC activation
leads to an increase in CX43 level in myometrium
www.reproduction-online.org
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Figure 5 The effects of calcineurin/NFAT pathway inhibitors on PGF2A-
induced PTGS2 expression. HMSMCs were treated with calcineurin
inhibitor (CsA), the blocker of calcineurin and NFAT interaction
(InCA-6), NFAT–AP1 complex inhibitor (RA) in the presence or absence
of PGF2A (10K6 M) for 24 h. The protein expression of PTGS2 in the
cells was determined by western blotting analysis. Representative
protein bands were presented on the top of histogram. Data are
presented as meanGS.E.M. nZ7 (from seven patients). *P!0.05,
**P!0.01 compared with vehicle control. #P!0.05, ##P!0.01
compared with PGF2A.
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(Geimonen et al. 1996), while P38 and ERK signalling
pathways are involved in CX43 expression in vascular
smooth muscle cells (Jia et al. 2007). In addition, our
results indicate that the signalling pathways responsible
for PGF2A upregulation of PTGS2 and OTR are similar.
The inhibitors of P38, PI3K and calcineurin/NFAT
blocked the effect of PGF2A on PTGS2 and OTR,
suggesting that PLC/Ca2C/calcineurin/NFAT, P38 and
PI3K signalling pathways contribute to PGF2A stimu-
lation of PTGS2 and OTR expression. A number of
studies have demonstrated that multiple signalling
pathways are involved in PTGS2 and OTR expression
in various tissues. For instance, Sales et al. (2009)
demonstrated that PGF2A upregulation of PTGS2
expression is dependent on PLC and ERK1/2 but not
PKC signalling pathways in endometrial adenocarci-
noma cells. Some studies reported that ERK and P38
MAPK activation induces PTGS2 expression in HMSMCs
(Bartlett et al. 1999, Sooranna et al. 2005), and
calcineurin/NFAT signalling pathway is involved in
PTGS2 expression in human myomentrium (Pont et al.
2012) and endometrial stromal cells (Abraham et al.
2012). For OTR, Sooranna et al. (2007) have demon-
strated that activation of P38 signalling leads to an
increase in OTR expression in human myometrial cells.
www.reproduction-online.org
However, there might be a controversy regarding PKC
and AP1 modulation of OTR expression. In the promoter
region of OTR gene, there are a number of AP1 binding
sites (Ball et al. 2006). Some studies reported that
phorbol 12-myristate 13-acetate (PMA) increases OTR
expression in breast cancer cells and neuroblastoma
cells (Bale & Dorsa 1998). In contrast, Ball et al. (2006)
have demonstrated that PKC and AP1 are not involved in
OTR expression in an immortalised human myometrial
cell line. As mentioned, this study showed that PKC
signalling was not involved in PGF2A stimulation of
OTR expression, whereas calcineurin/NFAT signalling
was involved in PGF2A stimulation of OTR expression.
It would suggest that signalling pathways responsible
for OTR expression are differed in different cell types.

Notably, this study showed that treatment of the cells
with RA alone increased CX43 expression. RA is known
to disturb the formation of AP1–NFAT complex and
induce dissociation of AP1 complex (Sales et al. 2009). It
is therefore used to inhibit calcineurin/NFAT signalling
pathways. It has been demonstrated that the promoter of
CX43 gene contains a couple of AP1 sites and activation of
AP1 induces CX43 expression (Geimonen et al. 1996).
Apparently, the stimulatory effect of RA on CX43
Reproduction (2015) 149 139–146
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Figure 7 The effects of PGF2A on the levels of NFATC1, phospho-p65, phospho-ERK1/2, phosphor-PI3K and phospho-p38 in myometrium. HMSMCs
were treated with PGF2A (10K6 M) for 10 min. The cells were then harvested for determining the levels of NFATC1(NF-AT2), p65, phospho-p65,
ERK1/2, phospho-ERK1/2, p38, phospho-p38, PI3K and phospho-PI3K by western blotting analysis. (A) NFATC1 (NF-AT2) level, (B) p65 level,
(C) ERK1/2 level, (D) p38 level, (E) PI3K level. Representative protein bands were presented on the top of histogram. Data are presented as
meanGS.E.M. nZ3 (from three patients). *P!0.05 compared with vehicle control. pp65, phospho-p65; pERK1/2, phospho-ERK1/2; pp38,
phospho-p38; pPI3K, phospho-PI3K.
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expression is not through its effect on AP1–NFAT complex.
Given that RA can also interact with retinoic acid
receptors (Li et al. 2014), whether retinoic acid receptors
are involved in CX43 expression is required to be
elucidated. In addition, it was also found that treatment
of HMSMCs with PKC inhibitor chelerythrine alone
increased PTGS2 expression. As mentioned, PKC
signalling pathways might not be involved in PTGS2
expression in some cell types (Sales et al. 2009). To our
knowledge, there is no study which reports that PKC
signalling inhibits PTGS2 expression. There are at least
11 isoforms of PKC, which can induce different functions
(Mochly-Rosen et al. 2012). As chelerythrine is a
non-selective inhibitor of PKC (Sheng et al. 2008), the
isoforms of PKC responsible for inhibition of PTGS2
expression in myometrium remains to be elucidated. In
this study, we also found that chelerythrine did not
further increase PTGS2 expression in the presence of
PGF2A. If different isoforms of PKC have different effects
on PTGS2 expression and one of PKC isoforms is
involved in PGF2A action, chelerythrine and PGF2A
would not have additive effect on PTGS2 expression.
Nevertheless, the mechanisms underlying chelerythrine
stimulation of PTGS2 expression in myometrium remain
to be elucidated in our future experiments.

A number of studies proposed that PGF2A can directly
and indirectly activate NFkB signalling in some tissues
(Aten et al. 1998, Taniguchi et al. 2010). The promoter
region of CX43 contains NFkB binding sites, suggesting
that NFkB activation can stimulate CX43 expression
(Echetebu et al. 1999). In this study, we found that NFkB
signalling was involved in CX43 expression. Although a
number of studies have demonstrated that NFkB
activation can stimulate PTGS2 expression in myome-
trium (Duggan et al. 2007), few studies provide the direct
evidence that PGF2A upregulates PTGS2 expression via
NFkB signalling in myometrial cells. Taniguchi et al.
(2010) have shown that PGF2A stimulates PTGS2
expression via NFkB in corpus luteum. However, in this
study, NFkB signalling was not involved in PGF2A
Reproduction (2015) 149 139–146
stimulation of PTGS2 expression. Taken together, it
would let us suggest that PGF2A stimulates PTGS2
through different signalling pathways in different types
of cells. Some studies have demonstrated that NFkB
activation induces OTR expression in myometrium
(Khanjani et al. 2011). Herein, we found that NFkB was
not involved in PGF2A stimulation of OTR in myometrial
cells. Currently, it is hard to explain why NFkB is involved
in PGF2A-induced CX43 expression but not in PGF2A-
induced PTGS2 and OTR expression in myometrial cells.
www.reproduction-online.org
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In this study, it was found that PDTC treatment could
increase PTGS2 expression. Our previous study has
shown that PDTC can inhibit corticotropin-releasing
hormone activation of NFkB in HMSMCs (You et al.
2014). However, PDTC has also been shown to induce
P38 activation in various cells, such as vascular smooth
muscle cells, hepatocytes and thymocytes (Moon et al.
2004). Further experiments are required to investigate
whether P38 signalling mediates PDTC stimulation of
PTGS2 expression in myometrium.

In conclusion, this study has demonstrated that PGF2A
stimulates CX43, PTGS2 and OTR in human pregnant
myometrium. Divergent signalling pathways are
involved in PGF2A modulation of CX43, PTGS2 and
OTR in myometrium (Fig. 8).
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