
Preterm birth (birth before week 37 of gestation) occurs in
approximately 5–10% of all pregnancies. This value may be
higher in certain population groups and has not decreased
over the past 20–30 years. Although some preterm births
may be elective, approximately 30% occur in association
with an underlying infectious process, and about 50% are
idiopathic preterm births of unknown cause. Preterm birth is
associated with 70% of neonatal deaths, and up to 75% of
neonatal morbidity. Infants born preterm have an increased
incidence of blindness, deafness, cerebral palsy, neuro-
logical disorders and pulmonary disorders (Morrison, 1990;
Copper et al., 1993; Lopez-Bernal et al., 1993; Lumley,
1993; Stubblefield, 1993; Villar et al., 1994). All of these

risks are associated with increased health care costs
(estimated at around $8 billion annually in the USA) and
great emotional burdens for the family. Spontaneous
preterm labour affects both developed and underdeveloped
countries and its prevention is a major aim of modern
obstetrics (Creasy, 1991). Established risk factors for preterm
labour include previous low birth weight or preterm deliv-
ery, multiple second trimester abortions, multiple gesta-
tions, placental anomalies, cervical and uterine anomalies,
gestational bleeding, in vitro fertilization pregnancy,
hydramnios, infection, cigarette smoking, single marital
status, low socio-economic class and black race (Creasy
and Gummer, 1980; Mercer et al., 1996). At present, there
are no effective diagnostic indicators of preterm birth, and
there are no effective treatments for this condition. Thus, the
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Increased uterine contractility at term and preterm results first from activation and then
stimulation of the myometrium. Activation can be provoked by mechanical stretch of 
the uterus, and by an endocrine pathway resulting from increased activity of the fetal
hypothalamic–pituitary–adrenal axis. In sheep fetuses, increased cortisol output during
pregnancy regulates expression of prostaglandin synthase type 2 (PGHS-2) in the placenta
in an oestrogen-independent manner, resulting in increased concentrations of prostaglandin
E2 (PGE2) in the fetal circulation. Later increases in maternal uterine expression of PGHS-2
require increases in oestrogen and lead to increased concentrations of PGF2α in the
maternal circulation. Thus, regulation of PGHS-2 at term is differentially controlled in fetal
(trophoblast) and maternal (uterine epithelium) tissue. This difference may reflect expres-
sion of glucocorticoid receptor but not oestrogen receptor (ER) in placental trophoblast
cells. In women, cortisol also contributes to increased prostaglandin production in fetal
tissues through upregulation of PGHS-2 (amnion and chorion) and downregulation of 
15-OH prostaglandin dehydrogenase (PGDH; chorion trophoblasts). The effect of cortisol
on expression of PGDH in the chorion reverses a tonic stimulatory effect of progesterone,
potentially through a paracrine or autocrine action. In membranes, cortisol may be
derived from cortisone through activity of 11β-hydroxysteroid dehydrogenase (11β-HSD)
type 1, in addition to secretion from the maternal or fetal adrenal glands. In placenta, 
11β-HSD-2 oxidase activity predominates and expression of this enzyme is reduced with
hypoxaemia and in placentae from pre-eclamptic pregnancies. In these circumstances,
increased concentrations of maternal cortisol may cross into the fetal compartment, con-
tributing to growth restriction and programming later life disease.
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focus of current research is to understand the underlying
biochemistry of the birth process, and to use that under-
standing to develop better diagnostic indicators, and improve
methods of therapeutic management. This strategy would
minimize inappropriate use of maternal glucocorticoids in
women with threatened preterm labour.

Phases of parturition

Uterine contractility during pregnancy and parturition can
be divided into at least four distinct phases (Lye et al., 1998;
Challis et al., 2000) (Fig. 1). In phase 0 (pregnancy), the
uterus is maintained in a relatively quiescent state through
the separate or combined autocrine–paracrine actions of
inhibitors such as progesterone, prostacyclin (PGI2), relaxin,
parathyroid hormone-related peptide (PTHrP), calcitonin
gene-related peptide, adrenomedullin, vasoactive intestinal
peptide, nitric oxide, and corticotrophin-releasing hormone
(CRH), which may both inhibit and stimulate uterine con-
tractility (Challis et al., 2000). The diminished production of

one or more of these agents during late gestation may lead
to preterm or term uterine activity, whereas administration
of these compounds or their analogues may help maintain
uterine quiescence. These agents act in different ways but,
in general, result in increased intracellular concentrations of
cyclic adenosine monophosphate (cAMP) or cyclic guano-
sine monophosphate (cGMP). These nucleotides inhibit
intracellular calcium release and reduce the activity of
myosin light chain kinase (MLCK), which is required for
shortening of the myofilaments. Several current strategies
for managing preterm labour are directed at increasing
intracellular cAMP and reducing the availability of calcium.
Phase 1 of parturition is associated with activation of uterine
function, wherein mechanical stretch or uterotrophic
priming leads to upregulation of a cassette of genes required 
for contractions. These contraction-associated proteins
(CAPs) include connexin43 (Cx43, a key component of gap
junctions), agonist receptors (prostaglandins (PGs) and
oxytocin), and proteins encoding ion channels. In phase 2
of parturition, the uterus can then be stimulated by utero-
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Fig. 1. Phases of uterine activity. A listing of the various agents involved during quiescence (phase 0),
activation (phase 1), stimulation (phase 2) and involution (phase 3) of the uterus during pregnancy are
represented. PGI2: prostacyclin; PTHrP: parathyroid hormone related peptide; and CRH: corticotrophin-
releasing hormone. (Adapted from Challis and Gibb, 1996.)
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tonins including PGs, oxytocin, and CRH. Phase 3 of par-
turition includes uterine involution after delivery of the fetus
and placenta, and has been attributed primarily to the effects
of oxytocin. The initiation of parturition may be defined as
the transition from phase 0 (quiescence) to phase 1 (activa-
tion) during which there is a release from the mechanisms
maintaining uterine quiescence throughout pregnancy and
a recruitment of factors promoting uterine activity, includ-
ing biomechanical factors such as uterine stretch and
tension caused by the fully grown fetus.

It is clear that activation of myometrial function (phase 1)
is driven by the fetal genotype, and effected through two
separate but interdependent pathways (Lye et al., 1998).
One pathway involves activation of the fetal hypothalamic–
pituitary–adrenal (HPA) axis. The second pathway involves
mechanical distension of the uterus, leading to stretch-
related upregulation of CAP gene expression. 

Activation of fetal hypothalamic–pituitary–adrenal
axis

Maturation of fetal HPA function during late pregnancy
occurs in most mammals, including primates (Liggins and
Thorburn, 1994; Lye et al., 1998; Challis et al., 2000).
Extensive studies in sheep fetuses have shown increased
expression of CRH mRNA in parvocellular neurones of the
paraventricular nucleus of the hypothalamus and of pro-
opiomelanocortin (POMC) mRNA in the pars distalis of 
the fetal pituitary in late pregnancy. These changes correlate
with increased concentrations of adrenocorticotrophic
hormone (ACTH1–39) in the fetal circulation. ACTH acts on
the fetal adrenal gland to increase expression of key enzymes
required for cortisol production (especially P450C17), and to
upregulate ACTH receptors in the fetal adrenal cortex. This
mechanism allows enhanced binding and coupling to
adenylate cyclase, resulting in increased sensitivity of the
fetal adrenal gland to further stimulation by ACTH.

Activation of the fetal HPA axis occurs in the presence 
of an adverse intrauterine environment, for example with
compromised uteroplacental blood flow or conditions of
fetal hypoxaemia. Sheep fetuses made transiently hypox-
aemic had increased concentrations of hypothalamic CRH
mRNA and pituitary POMC mRNA (Lye et al., 1998). In late
gestation, hypoxaemia also led to increased concentrations
of fetal adrenal ACTH receptor mRNA, consistent with
increased overall responsiveness of the fetal HPA axis.
When fetuses at two-thirds of term gestation were subjected
to hypoxaemia by repeated umbilical cord occlusion over
several days, the adrenal cortisol response relative to 
the concentration of ACTH stimulation increased. Other
experimental models of sustained, but episodic, fetal hypox-
aemia produce similar fetal hormonal and cardiovascular
responses, and may result in shortened gestation.

Increases in fetal HPA function in animal species such as
sheep lead to changes in the placental output of progesterone
before birth. During pregnancy, progesterone is required for
uterine growth, but it simultaneously suppresses expression

of CAP genes (Lye et al., 1998). At term, in most animal
species, the influence of progesterone on the myometrium
declines, uterine stretch no longer stimulates uterine growth
and the increase in wall tension caused by continued fetal
growth becomes translated into increased expression of
CAP genes and myometrial activation. Mechanical stretch
probably contributes to the greater incidence of preterm
birth in pregnancies with multiple fetuses, and may account
for the higher incidence of preterm birth in pregnancies in
which the fetal size is large for gestational age. However, in
human parturition there does not appear to be a decline 
in circulating progesterone concentrations prepartum. We
suggest below that this represents a mechanism to maintain
relaxation of the lower uterine segment at the time of birth,
and that local antagonism of progesterone action in the
fundal region of the uterus facilitates development of
uterine contractions predominantly in the fundal region
(Lye et al., 1998; Challis et al., 2000).

Prostaglandins and parturition

There is compelling evidence that PGs, particularly those
produced within the intrauterine tissues, play a central role
in the initiation and progression of labour in most mam-
malian species studied (Novy and Liggins, 1980; Okazaki 
et al., 1981; Bleasdale and Johnston, 1984; Mitchell, 1984;
Challis and Lye, 1994; Challis et al., 2000). Specifically,
PGs have been shown to induce myometrial contractility
(Carraher et al., 1983; Wiqvist et al., 1983; Ritchie et al.,
1984; Bennett et al., 1987a) and to play a role in regulating
changes in extracellular matrix metabolism associated with
cervical ripening (Ellwood et al., 1980; Ulmsten et al.,
1982; Calder and Greer, 1991; Keirse, 1993) at the onset 
of labour. In addition, other roles have been postulated,
including fetal adaptation to the labour process (PGs inhibit
fetal movement and breathing to conserve energy)
(Kitterman, 1987; Thorburn, 1992), upregulation of the fetal
HPA axis (Challis et al., 2000), membrane rupture (So,
1993; Vadillo-Ortega et al., 1994), and maintenance of
uterine and placental blood flow (Rankin, 1976; Sastry et
al., 1997, 1999; Carter, 1998; Challis, 2001).

Studies in late pregnant sheep have helped clarify the
endocrine pathways leading to altered PG output prepar-
tum. In sheep, PGE2 concentrations increase progressively
in the fetal circulation over the last 15–20 days of gestation,
corresponding temporally to the prepartum increase in fetal
plasma cortisol, and consistent with the suggestion of stim-
ulatory effects of PGE2 on the fetal HPA axis, and of cortisol
on placental prostaglandin synthase type 2 (PGHS-2) gene
expression (Lye et al., 1998). PGF2α increases in the
maternal circulation, but only as a late event in pregnancy,
co-incident with the marked prepartum increase in mater-
nal free oestradiol concentration. Thus, the possibility was
raised that, in late gestation sheep, PGE2 and PGF2α were
derived from different tissues within the pregnant uterus,
and that their output was regulated by different control
mechanisms (Gyomorey et al., 2000). 

Prostaglandins and mechanisms of preterm growth 3

Downloaded from Bioscientifica.com at 08/25/2022 06:59:28PM
via free access



Previous studies had indicated that the prepartum
increase of cortisol increased placental P450C17 expression,
which resulted in increased placental oestrogen synthesis
from C21 steroids. In turn, oestrogen provoked increases in
PG output (Challis et al., 2000). However, placental PGHS-
2 mRNA and protein were detectable, and increased before
changes in placental P450C17, and intrafetal oestradiol
infusion had no stimulatory effect on placental PGHS-2.
Conversely, intrafetal cortisol infusion for about 80 h
resulted in increased placental PGHS-2 and fetal plasma
PGE2 concentrations, even in the presence of an aromatase
inhibitor. Therefore, this effect did not depend on the
prepartum increase in placental oestrogen output (Whittle
et al., 2000a). However, maternal uterine PGHS-2 expres-
sion and PGF2α output were attenuated by concurrent
aromatase inhibition during cortisol infusion. These studies
indicated that upregulation of PGHS-2 in placental tropho-
blasts could be stimulated directly by cortisol. We have
now substantiated this conclusion using cultures of ovine
placental trophoblasts treated with glucocorticoids in vitro.
Regulation of PGHS-2 in the maternal uterus required an
increase in oestrogen output, even during cortisol infusion.
This finding is consistent with observations in non-pregnant
sheep that oestradiol treatment increases uterine PG output.
In intact sheep at full term, the trophoblast cells express
glucocorticoid receptor (GR) but not oestrogen receptor
(ER). Similarly, immunoreactive GR and GRα are present in
the trophoblast cells, and the abundance of GRα is
increased by cortisol infusion, in the presence or absence of
aromatase inhibition. Therefore, it appears that the prepar-
tum increase in fetal plasma cortisol increases GRα activity
in the placenta, and directly augments placental PG synthase.
P450C17 concentrations were increased in animals treated
with cortisol, and with cortisol plus aromatase inhibition.
Therefore, P450C17 increases independently of the pre-
partum increase in oestrogen. These results are consistent
with the following sequence: cortisol upregulates placental
PGHS-2 and the product PGE2 stimulates placental
P450C17, as suggested for other tissues, including the
adrenal glands. Definitive studies to demonstrate this
relationship between PGE2 and P450C17 in the sheep
placenta are still required.

Prostaglandin synthesis and metabolism in human
pregnancy

In women, PG production and metabolism are discreetly
compartmentalized within the tissues of the pregnant uterus
(Challis et al., 2000). Human amnion, which consists of 
a single layer of epithelial cells and a subepithelial mes-
enchymal layer, is a major site of PG (predominantly PGE2)
synthesis (Duchesne et al., 1978; Challis and Olson, 1988;
Lundin-Schiller and Mitchell, 1990; Olson et al., 1991,
1995; Gibb and Sun, 1996). Both PGHS-1 and PGHS-2
mRNA and immunoreactive (IR) proteins have been iden-
tified in amnion (Rose et al., 1990; Teixeira et al., 1994;
Hirst et al., 1995a). There is very low or no PG catabolizing

enzyme, 15 hydroxyprostaglandin dehydrogenase (PGDH),
present in human amnion (Keirse and Turnbull, 1975;
Okazaki et al., 1981; Cheung et al., 1990). Interposed
between amnion and decidua is the chorion, where a very
high concentration of PGDH has been localized to the
trophoblast cells (Keirse and Turnbull, 1975; Keirse et al.,
1976, 1978, 1985; Okazaki et al., 1981; Cheung et al.,
1990; van Meir et al., 1997a). PGHS is also abundant within
chorion (Gibb and Sun, 1996). Thus, studies in vitro have
demonstrated that chorion forms predominantly 13,14-
dihydro-15-keto products from endogenous precursors or
from added PGE2 (Skinner and Challis, 1985; Cheung and
Challis, 1989). Human decidua, a well-vascularized mater-
nal tissue lying next to the myometrium, consists of a
mixture of decidualized stromal cells, bone marrow-derived
macrophages and other types of cell, and contains low
concentrations of both PGHS-1 and -2, and shows minimal
PGDH staining in decidual stromal cells (Liggins et al.,
1977; Okazaki et al., 1981; Casey and MacDonald, 1988;
Cheung et al., 1990; MacDonald et al., 1991; Teixeira et al.,
1994; Hirst et al., 1995b).

The fetus may contribute to the initiation of birth by
secreting an active agent(s) that acts on the fetal membranes
to stimulate PG production. PGHS activity and PGHS-2
mRNA concentrations are increased in amnion, in epithelial
and fibroblast cells at term (Keirse and Turnbull, 1976;
Mitchell et al., 1978; Okazaki et al., 1981; Bennett et al.,
1992; Economopoulos et al., 1996; Gibb and Sun, 1996)
and at preterm labour (Skinner and Challis, 1985; Teixeira
et al., 1993; Hirst et al., 1995a; Slater et al., 1995). The
predominant role that the amnion plays in PG output at
term is exemplified by the increase in PG content of the
amniotic fluid as labour progresses and the cervix dilates
(Mitchell, 1988; Keirse, 1990). PGHS-2 expression and
output of PGE2 increase at term and preterm labour within
amnion epithelium and mesenchyme (Skinner and Challis,
1985; Lopez-Bernal et al., 1987a; Strickland and Mitchell,
1987; Teixeira et al., 1994; Hirst et al., 1995a; Fuentes et
al., 1996; Gibb and Sun, 1996), although one early report
failed to detect the increase in PGHS and PG output with
labour in amnion (Satoh et al., 1981). PGHS-2 mRNA
expression also increases in chorion with the onset of
labour (Slater et al., 1995, 1998). Decidua may produce
more PGF before labour than during labour (Harper et al.,
1983), although most groups report that decidual PGHS-2
mRNA and protein do not change with labour (Harper et al.,
1983; Casey and MacDonald, 1988; Fuentes et al., 1996;
Gibb and Sun, 1996). In short, amnion, chorion and
decidua produce increasing amounts of PGs throughout
gestation but only amnion and chorion PG output and
PGHS-2 mRNA increase further at the onset of labour
(Olson et al., 1983; Skinner and Challis, 1985; Reddi et al.,
1990; Teixeira et al., 1994; Freed et al., 1995; Hirst et al.,
1995a; Slater et al., 1995; Fuentes et al., 1996).

Early studies indicated that PGDH protein and activity in
the fetal membranes did not change significantly during
spontaneous labour at full term (Skinner and Challis, 1985;
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Lopez-Bernal et al., 1987b; Casey et al., 1989; Cheung and
Challis, 1989; Germain et al., 1994). However, current evi-
dence indicates that mRNA expression and activity of
chorionic PGDH decrease in human labour, at term and
preterm (van Meir et al., 1996, 1997a,b; Sangha et al.,
1994). PGDH mRNA concentrations in chorion obtained
from patients at term during labour were lower than those
obtained at term who were not in labour (Sangha et al.,
1994). A role for altered expression of PGDH in preterm
labour has also been suggested. Fifteen to twenty per cent of
patients in idiopathic preterm labour, in the absence of
intrauterine infection, had decreased IR-PGDH protein in
chorion trophoblast cells, which was correlated with a
decrease in PGDH activity in these patients (Sangha et al.,
1994). In addition, there was low expression of IR-PGDH
and PGDH mRNA in chorion collected from preterm
deliveries associated with severe infection (van Meir et al.,
1996, 1997a) in which there was loss of trophoblast cells.
This finding indicates that, in some patients in preterm
labour without infection, a deficiency in chorion PGDH
allows passage of PGs, generated in amnion or chorion,
across the membranes, which may be involved in the initia-
tion of preterm labour. In all of these studies, changes in
PGDH activity in chorion correlated with changes in con-
centrations of PGDH mRNA in the tissue.

There may be a regional distribution of PGDH activity in
human fetal membranes. At labour, there is a marked reduc-
tion in PGDH activity in chorion collected from the region
over the internal os of the cervix compared with tissue taken
adjacent to the placental plate or from the middle region 
of the chorioamniotic sac (van Meir et al., 1996). This
decrease in PGDH of cervical chorion at the time of labour
is not associated with loss of trophoblast cells, indicating a
potential role for altered expression of PGDH in the proces-
ses of cervical effacement and ripening. The active PGDH
in decidua indicates that the PGs produced within this
tissue are rapidly inactivated; however, uneven distribution
of PGDH in decidua might allow areas of significant high
local concentration.

As stated earlier, there are several possible roles for PGs
derived from the fetal membranes. Amnion PGs may play a
role in fluid or ion balance as they are potent mediators of
transmembrane ion flow (Ramwell and Shaw, 1970; Frazier
and Yorio, 1992; Saunders-Kirkwood et al., 1993). A role
for amniotic PGs in cervical ripening, membrane rupture
through effects on matrix metalloproteinases and myo-
metrial contractility has also been postulated (Xu et al.,
2002). There are conflicting reports as to whether amnion-
derived PGs can transfer across fetal membranes and play 
a role in the initiation of labour. Several reports indicate 
that there is very limited transfer of unmetabolized PG from
amnion to decidua before and after labour at term
(McCoshen et al., 1987, 1990; Casey et al., 1989;
Roseblade et al., 1990; Sullivan et al., 1991, 1992, 1993;
Collins et al., 1992; Mitchell et al., 1993; Kredentser et al.,
1995). In contrast, three studies using in vitro techniques
have shown that small amounts of radioactive PGE2 can

cross the membranes from the amniotic side to the
decidual–myometrial side (Nakla et al., 1986; Bennett et al.,
1990; Johnston et al., 1996) and Nakla et al. (1986) noted
an increased rate of transfer or permeability of the mem-
branes after spontaneous labour and demonstrated that
arachidonic acid could also pass from amnion to decidua,
potentially contributing to the substrate source for PGHS
activity at that site. Similarly, Bennett et al. (1990) showed
that lipoxygenase products (5-HETE) could pass across the
membranes by diffusion through intercellular channels and
remain largely unmetabolized.

Thus, the chorion, interposed between amnion and
decidua, becomes an important PG metabolizing site and
has been described as a protective barrier preventing the
free transfer of primary PGs generated within amnion or
chorion from passing unmetabolized to the underlying
decidual tissue or myometrium (Nakla et al., 1986; Sullivan
et al., 1992, 1993) and stimulating the onset of preterm or
term delivery. Any reduction in the metabolizing capacity
of the chorion may enhance PG transfer. In the presence of
high PGDH activity in chorion during normal term labour, it
is likely that PGs that are stimulating myometrial activity 
are derived from decidua or, locally, from the myometrium
itself. However, in some circumstances of preterm labour,
the PGDH metabolic barrier may break down, allowing
PGs generated elsewhere within membranes to reach the
underlying myometrium, and provoke premature delivery.
Examination of the heterogeneous distribution of PGDH
within the chorion (Cheung and Challis, 1989) indicates
that protection of PG transfer across membranes by PGDH
may not be uniform, allowing PGs produced in the amnion
to pass through to the myometrium irrespective of changes
in PGDH within the chorion (Challis et al., 1990; Cheung 
et al., 1990). Although several studies have examined PG
transfer across the membranes at term and in the presence
and absence of labour, studies to examine amnion- or
chorion-derived PG transfer to the myometrium at preterm,
when there are changes in PGDH activity and mRNA
expression, and in correlation with concentrations of PGDH
protein and PGDH activity at various sites within the uterus,
have not been performed.

It is unclear whether there are changes in PGHS activity
in human myometrium at the time of labour. In rats, both
PGHS-1 and PGHS-2 were reported to increase with the
onset of labour (Dong et al., 1996; Tsuboi et al., 2000),
although other authors found increased mRNA expression
of PGHS-2 but not PGHS-1 (Lye et al., 1998). In women,
concentrations of PGHS in myometrium are higher during
the pregnant than during the non-pregnant state (Moonen 
et al., 1984). PGHS-1 and PGHS-2 mRNA and protein have
been reported to increase (Erkinheimo et al., 2000),
decrease (Zuo et al., 1994) or remain unchanged (Myatt and
Moore, 1994; Moore et al., 1999; Sparey et al., 1999) at the
onset of labour at term and preterm. Ongoing studies have
also failed to demonstrate changes in concentrations of
PGHS-2 with labour at term in human myometrium collected
from the lower uterine segment (Giannoulias et al., 2002),
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although PGDH protein was lower in samples collected
from women at term and preterm in labour.

Excitatory (FP, EP3, EP1) PG receptors, as well as the
relaxant EP2 receptor, have been localized to human non-
pregnant myometrial samples (Senior et al., 1991, 1992).
These receptor subtypes are also present in pregnant human
myometrium in late pregnancy (Hofmann et al., 1983;
Adelantado et al., 1988; Senior et al., 1993; Erkinheimo et
al., 2000). There is no evidence for increased FP receptor
density or increased coupling to phospholipase C (PLC)
during pregnancy or parturition (Word et al., 1992).

Regional controls of uterine contractility

Several studies in humans and other species have shown
that expression of the oxytocin receptor, CRH receptor type
1 (CRH-R1), and PG receptors within the uterus differ spatially
(Fuchs et al., 1984; Moonen et al., 1986; Adelantado et al.,
1988; Smith et al., 1996; Lye et al., 1998; Stevens et al.,
1998). Thus, it has been suggested that during labour the
myometrium exhibits a regionalization of function that
allows for the effective and forceful net expulsion of the
fetus from the uterus (Lye et al., 1998). The fundus increases
expression of CAP genes in a manner similar to that in other

species, whereas the lower segment expresses genes that
contribute to relaxation (thus facilitating descent of the fetus
during labour). In favour of this hypothesis, Wikland et al.
(1984) demonstrated in vitro that PGF2α stimulated the
fundal myometrium during labour, but not before labour,
whereas PGE2 was able to stimulate fundal myometrium
both before and during labour. In lower segment myome-
trium, PGF2α stimulated contractility before labour but had
no effect during labour, whereas PGE2 induced a biphasic
dose-dependent response (stimulation followed by inhibi-
tion) before labour but only inhibited contractility during
labour (Wikland et al., 1984; Senior et al., 1993). Consistent
with this finding, various groups have reported that EP2
expression in myometrium is higher preterm than at term
(Molnar and Hertelendy, 1990). In rats, parturition is asso-
ciated with downregulation of EP receptor subtypes and
with upregulation of myometrial FP receptors, effecting a
switch from inhibition to stimulation (Brodt-Eppley and
Myatt, 1998, 1999; Dong and Yallampalli, 2000; Ou et al.,
2000). 

These studies raise the possibility that PGHS and PGDH
may also be spatially regulated in the myometrium. Higher
concentrations of PGHS-1 and PGHS-2 were found in lower
compared with upper segments of the uterus (Moonen et al.,
1986; Sparey et al., 1999). Labour-associated decreases in
PGDH mRNA were found in the fundus compared with the
lower uterine segment in the myometrium of baboons (Wu
et al., 2000). However, the relative importance of autocrine
control of myometrial contractility, versus paracrine control
by PGs from amnion or chorion in relation to labour onset,
remains unclear at present.

Regulation of prostaglandin synthesis

Regulation of PGHS-1 and PGHS-2 expression is multi-
factorial (Wang et al., 1993; Goppelt-Struebe, 1995, 1997;
Schaefers and Goppelt-Struebe, 1996) (Fig. 2). PGHS-2 can
be increased rapidly up to 80-fold in response to cytokines
(Romero et al., 1989a,b,c, 1991), growth factors (EGF, PAF)
(Mitchell, 1988; Romero et al., 1989a,b,c), tumour pro-
moters (for example, phorbol esters), bacterial endotoxins
(Bennett et al., 1987b; Lamont et al., 1990), oxytocin
(Zeeman et al., 1997; Molnar et al., 1999; Soloff et al.,
2000), agents that increase intracellular cAMP concentra-
tions (Bleasdale and Johnston, 1984; Warrick et al., 1985;
Anteby et al., 1997; Grammatopoulos and Hillhouse,
1999a), such as CRH (Jones and Challis, 1990a,b), and a
variety of other factors, including, paradoxically in fetal
membranes, glucocorticoids (Novy and Walsh, 1983;
Mitchell et al., 1988; Potestio et al., 1988; Zakar and Olson,
1989; Gibb and Lavoie, 1990; Smieja et al., 1993;
Blumenstein et al., 2000; Whittle et al., 2000a). The PGHS-
2 promoter region possesses several potential regulatory
sequences including: TATA box, AP-2, SP1, nuclear factor
κB (NF-κB), CRE, nuclear factor-interleukin 6 (NF-IL6), ETS-
1 and glucocorticoid response element (GRE) sites (Tazawa
et al., 1994; Inoue et al., 1995).
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Fig. 2. Regulatory factors involved in the stimulation and
inhibition of PGHS-2 (prostaglandin H synthase) in human intra-
uterine tissues. 11β-HSD: 11β-hydroxysteroid dehydrogenase; 
IL-1β: interleukin 1β; TNF-α: tumour necrosis factor α; CRH:
corticotrophin-releasing hormone; PGDH: 15-OH prostaglandin
dehydrogenase; PGM: prostaglandin metabolite. (Adapted from
Challis et al., 2000.)
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The ability of pro-inflammatory cytokines, particularly
interleukin 1β (IL-1β), to upregulate PGI2 and PGE2 syn-
thesis in primary cultures of human myometrial cells has
been well established (Hertelendy et al., 1993; Gomez et
al., 1995). IL-1β rapidly induces PGHS-2 mRNA expression
and PGE2 production in primary human amnion cells,
chorion and decidua (Mitchell et al., 1993a,b, 1994; Tahara
et al., 1995; Trautman et al., 1996) and in an amnion-
derived cell line (WISH cells) (Xue et al., 1995).
Dexamethasone inhibited IL-1β-induced PGHS-2 mRNA
and protein expression, and activity (Xue et al., 1996).
Goodwin et al. (1998) reported that IL-1β and tumour
necrosis factor α (TNF-α), but not TGF-β, stimulate PGE2
production in cultured placental trophoblast cells. In
contrast, Pomini et al. (1999) found that, although IL-1β
stimulates PGHS-2 expression and PGE2 output by cultured
villous and chorion trophoblast, TNF-α had no effect. These
effects of IL-1β were reversed by co-incubation with the
anti-inflammatory cytokine, IL-10, in placenta and chorion,
although IL-10 alone produced a modest stimulation of
PGE2 output and PGHS-2 mRNA concentrations in chorion
explants. This finding is consistent with IL-10 stimulating
rather than inhibiting PG production in amnion explants
(Dudley et al., 1993; Mitchell et al., 1994). IL-1β appears to
increase not only the rate of transcription of the PGHS-2
gene (Mitchell et al., 1993b, 1994), but also the stability of
PGHS-2 mRNA (Ristimaki et al., 1994). p50 and p65, key
members of the NF-κB Rel family of proteins, are present in
trophoblast cells and probably serve as mediators of
cytokine-induced upregulation of PGHS-2 expression
(Kniss, 1999). It has been suggested that the stimulation of
PG synthesis caused by cytokines is greater than the
increase due to PGHS activity alone (Edwin et al., 1996),
implying that cytokines have multiple sites of action,
including effects on phospholipase, PG synthases and
PGDH, all of which contribute to the net stimulation of PG
output. Indeed, IL-1β has been shown to induce cPLA2
mRNA expression in WISH cells (Xue et al., 1996). IL-1β, 
IL-10 and TNF-α also downregulate PGDH activity and
expression (see below). Thus, in vivo, it appears that the
relative amounts of eicosanoids and cytokines produced
from an interactive cytokine–eicosanoid cascade are criti-
cal in regulating the final response of the tissue and the
amount of PG produced (Keelan et al., 1997). These results
also raise the possibility that anti-inflammatory cytokines
might be used therapeutically to modulate the action of
compounds such as IL-1. Regulation of enzymes in the PG
metabolic pathway by cytokines is likely in preterm patients
with infection; however, regulation of these enzymes in
term patients and in preterm patients without infection may
be related to a different set of regulators.

Normally, PGHS-2 is induced under conditions of
inflammation. Glucocorticoids inhibit PGHS-2 transcrip-
tion and reduce PGHS-2 mRNA stability (DeWitt and
Meade, 1993; Evett et al., 1993), representing one pathway
of anti-inflammatory action. However, several studies have
shown that PG production in cultured amnion and chorion

is stimulated by cortisol and the synthetic glucocorticoid
dexamethasone (Novy and Walsh, 1983; Mitchell et al.,
1988; Potestio et al., 1988; Zakar and Olson, 1989; Gibb
and Lavoie, 1990; Smieja et al., 1993; Economopoulos et
al., 1996; Patel et al., 1999; Blumenstein et al., 2000;
Whittle et al., 2000b). The amnion consists of a single layer
of epithelial cells and a subepithelial mesenchymal layer. At
term, the basal output of PG by amnion mesenchymal cells
exceeds that of amnion epithelial cells (Whittle et al.,
2000a). Glucocorticoids may have dual effects in different
types of cell within amnion. Glucocorticoids appear to
inhibit PGE2 output in amnion epithelial cells (Blumenstein
et al., 2000), whereas in mesenchymal fibroblast cells, they
upregulate PGHS-2 mRNA expression and increase PGE2
output (Potestio et al., 1988; Economopoulos et al., 1996).
However, Whittle et al. (2000a) reported that glucocorticoids
stimulate PG production in amnion epithelial cells but that
there was no significant change in the already increased
output of PG from mesenchymal fibroblast cells. Gluco-
cortocoid receptors have been localized to amnion epithe-
lium, amnion mesenchymal fibroblasts, chorion trophoblast
cells, and placenta in human pregnancy tissues at term and
preterm (Giannopoulos et al., 1983; Karalis et al., 1996; Sun
et al., 1996; Weisbart and Huntley, 1997). In mixed amnion
cell cultures, the action of glucocorticoids is dependent
upon interaction with GR and apparently requires activa-
tion of protein kinase C (PKC). Furthermore, the glucocorti-
coid regulation of PG output in amnion cells can be
inhibited by addition of a GR antagonist (Alvi et al., 1999),
and this finding is in agreement with a role for receptor
mediation.

Prostaglandin metabolism

Biologically active concentrations of PG appear to depend
not only on rates of synthesis, but also on the rates of
metabolism (Challis et al., 1999). Normally, high concentra-
tions of PGDH expressed in chorion trophoblasts would be
expected to metabolize effectively PG generated within
amnion or chorion. However, patients in preterm labour
with an underlying infective process have markedly
reduced numbers of trophoblasts in the chorion layer and
markedly reduced PGDH activity (Sangha et al., 1994). In
addition, approximately 15% of patients with idiopathic
preterm labour have diminished expression of PGDH but
normal numbers of trophoblasts. PGDH activity is reduced
modestly in chorion from patients at term, but is markedly
diminished in myometrium and cervix of patients present-
ing in preterm labour. Thus, reduced PG metabolism
appears to be an effective way of increasing PGs that may
then reach agonist PG receptors in a paracrine fashion.
Furthermore, concentrations of matrix metalloproteinase 9
(MMP-9) in chorion are increased with term and preterm
labour. Since this gelatinase enzyme contributes to the
controlled degradation of collagen within the fetal mem-
branes, and MMP-9 activity is increased by PGE2, this feed-
forward cascade may help explain the mechanism of
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preterm premature rupture of the membranes, with MMP-9
providing the predominant gelatinolytic activity.

Many factors, including drugs (Flower, 1974), protein-
modifying agents, zinc and copper metal ions (Sakuma 
et al., 1990, 1996), hyperoxia (Parkes and Eling, 1975;
Chaudhari et al., 1979; Vader et al., 1981; Pisarello et al.,
1997), fatty acids, cAMP (Lennon et al., 1999), calcium,
bacterial endotoxins (lipopolysaccharide) (Alam et al.,
1973; Nakano and Prancan, 1973; Blackwell et al., 1976;
Harper et al., 1980; Hahn et al., 1998), 1,25-dihydroxy-
vitamin D3 (Pichaud et al., 1997), vitamin E (Chan et al.,
1980), thyroid hormones (Tai et al., 1974; Moore and
Hoult, 1978), cytokines (Brown et al., 1998) and steroid
hormones, have been implicated in the regulation of PGDH
activity in a variety of species and types of cell (Nakano and
Prancan, 1973; Andersen and Ramwell, 1974; Lee and
Levine, 1975; Hansen, 1976; Tai and Hollander, 1976;
Pace-Asciak and Smith, 1983; Krook et al., 1992; Okita and
Okita, 1996). The 1.6 kb promoter region of the PGDH
gene contains two TATA boxes and a number of potential
regulatory elements, including Sp1, CRE, GRE, AP1, AP2,

NF-IL6, C-MYC and a putative oestrogen receptor binding
site (Matsuo et al., 1996, 1997).

The presence of an NF-IL6 regulatory element in the
promoter region of the PGDH gene indicates that PGDH
may be regulated by cytokines (Matsuo et al., 1997) (Fig. 3).
Indeed, cytokines such as IL-1β and, to a lesser extent, TNF-α,
have been reported to decrease PGDH mRNA and PGDH
activity in intact fetal membrane disks and in cultured
chorion and placental trophoblast cells (Brown et al., 1998;
Pomini et al., 1999; Mitchell et al., 2000). In accordance with
their effect on PGHS expression, anti-inflammatory cytokines
such as IL-10 reverse IL-1β and TNF-α inhibition of PGDH.

Studies directed towards understanding the mechanism
by which steroid hormones might regulate PGDH (Patel 
et al., 1999) (Fig. 3) have also revealed a mechanism for
local progesterone withdrawal within the human fetal mem-
branes. Human chorionic PGDH gene expression and
activity are inhibited by glucocorticoids (cortisol, beta-
methasone and dexamethasone) and maintained in a tonic
fashion by progesterone (Patel et al., 1999). Chorion tropho-
blasts express 3β-hydroxysteroid dehydrogenase (3β-HSD)
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Fig. 3. Schematic representation factors that regulate 15-OH prostaglandin dehydrogenase (PGDH)
activity and expression in human fetal membranes and placenta. Progestins (produced intracellularly from
pregnenolone conversion to progesterone by 3β-hydroxysteroid dehydrogenase (3β-HSD) or from the
maternal circulation) stimulate PGDH acting to maintain prostaglandin concentrations throughout preg-
nancy. Glucocorticoids, either from the maternal circulation or produced locally via 11β-HSD activity,
inhibit PGDH activity and expression. Pro-inflammatory cytokines such as interleukin 1β (IL-1β) and
tumour necrosis factor α (TNF-α) inhibit PGDH, whereas anti-inflammatory cytokines such as IL-10
stimulate PGDH activity and expression. A downregulation of PGDH would lead to a higher prosta-
glandin (PG) to prostaglandin metabolite (PGM) ratio at term, which may result in increased uterine
activity, cervical ripening or rupture of the fetal membranes. MPA: medroxyprogesterone acetate; PGHS:
prostaglandin H synthase. 
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and have the capacity to produce their own progesterone
from pregnenolone (Bloch, 1945; Gibb et al., 1978; Challis
and Vaughan, 1987; Mitchell and Challis, 1988; Riley et al.,
1992). Inhibition of endogenous 3β-HSD activity with the
drug trilostane inhibited progesterone output from chorion
trophoblast cells, and reduced PGDH mRNA. Replacement
of progesterone or a synthetic progestagen restored PGDH
activity. This effect could be blocked, in part, by a proges-
terone receptor antagonist. However, the action of proges-
terone to restore PGDH could also be blocked by a specific
GR antagonist. This observation implies that progesterone,
produced locally within chorion, acts throughout preg-
nancy to maintain chorionic PGDH activity through inter-
acting with GR. At term, increased availability of endogenous
cortisol would displace progesterone from GR, resulting in
loss of the stimulation to PGDH, and also a direct inhibitory
effect on PGDH expression. This interaction, whereby the
effects of progesterone are mediated through GR but can 
be opposed by increased output of glucocorticoid, may
provide a mechanism for producing local progesterone
withdrawal in the human uterus. This activity may be
greater in the fundal area, thereby contributing to regional-
ized changes in uterine contractions (Sparey et al., 1999;
Challis et al., 2000).

The biologically inactive corticosteroid, cortisone, was
almost as effective as cortisol in inhibiting PGDH in chorion
cells, but not in placental trophoblast cells (Challis et al.,
1999). In chorion, the action of cortisone could be blocked
by a GR antagonist, and was completely attenuated in the
presence of the drug carbonexolone. This drug, an active
ingredient of liquorice, inhibits the enzyme 11β-
hydroxysteroid dehydrogenase 1 (11β-HSD-1). 11β-HSD-1
is abundantly expressed in chorion trophoblasts, and pre-
dominantly converts cortisone to cortisol. Thus, chorion
trophoblasts have the potential to form cortisol locally from
cortisone, in addition to forming progesterone locally from
pregnenolone. In theory, therapeutic regulation of PGDH
could be accomplished by steroid hormones, or by drugs
that alter the concentration of 11β-HSD-1.

CRH and preterm labour

It is now well established that the concentrations of CRH in
maternal blood increase progressively during human
pregnancy (Linton et al., 1993; Petraglia et al., 1996). This
increase correlates with increased CRH mRNA and CRH
peptide in placental tissue (Frim et al., 1988). In the circula-
tion, CRH is largely associated with a high-affinity circula-
ting CRH-binding protein (CRH-BP) produced in the liver,
placenta and other sites including the brain. CRH-BP effec-
tively blocks the action of placental CRH on the maternal
pituitary and on the myometrium. Near term, and in asso-
ciation with preterm labour, CRH-BP concentrations
decrease, coincident with the increase in circulating CRH
(Linton et al., 1993). Thus, it has been suggested that the
substantial increase in free CRH concentrations in systemic
plasma is a component of the trigger to the labour process.

Regulation of placental CRH output is multifactorial, and
has been reviewed extensively (Petraglia et al., 1996). Para-
doxically, CRH gene expression and CRH output by
placental trophoblast cells are increased by glucocorti-
coids. CRH output from placenta and fetal membranes also
increases in response to PGs, cytokines and catecholamines,
and is decreased by nitric oxide and progesterone. Karalis 
et al. (1996) suggested that the inhibitory effect of proges-
terone is exerted through binding to GR in trophoblast cells.
At term, increased cortisol may displace progesterone
bound to GR and this is reflected as an increase in CRH
output. Thus, the mechanism of interaction between
progesterone and cortisol in the regulation of CRH is similar
to that proposed for the regulation of PGDH.

The action of CRH on the intrauterine tissues and
myometrium is effected through an extensive network of
high affinity CRH receptors with different specificities.
There are two main classes of CRH receptor, CRH-R1 and
CRH-R2. In myometrium, CRH acts by binding to CRH-R1,
which is coupled to Gαs, leading to stimulation of cAMP
output. Thus, the primary effect of CRH throughout preg-
nancy is likely to be one of uterine relaxation. The binding
affinity of the CRH receptor in human myometrium
increases during pregnancy, but then decreases before
parturition. Grammatopoulos et al. (1999b,c) suggested that
oxytocin effects this change by upregulating a PKC that
phosphorylates the CRH receptor protein, resulting in
desensitization and loss of the inhibitory influence of CRH
on myometrium. Therefore, the peptide CRH may act as an
inhibitor or stimulant to the myometrium, depending upon
the affinity and second messenger of the different receptor
species (Spaziani et al., 2000; Karteris et al., 2001).

The differential effects of CRH on the myometrium may
also contribute to the regionalization of myometrial activity
at term and in the preterm period. Stevens et al. (1998)
showed that the expression of CRH-R1 in myometrium
collected from the lower uterine segment was higher in
patients in labour compared with those not in labour.
Furthermore, expression of CRH-R1 was substantially
higher in lower segment compared with fundal myo-
metrium when paired samples of tissue from individual
patients were examined. Thus, during labour, CRH may
promote relaxation of the lower segment but stimulate
activity in the body of the uterus. This stimulatory action
could be direct or indirect, as CRH stimulates output of PGs
by upregulating PGHS-2 and downregulating PGDH in
human fetal membranes.

It is possible that increasing maternal plasma CRH con-
centration may be used to predict women destined to enter
preterm labour. McLean et al. (1995) demonstrated
increased maternal plasma concentrations of CRH as early
as weeks 14–16 of pregnancy in women who subsequently
delivered preterm, and lower concentrations of CRH in the
plasma of women who delivered post term. Korebrits et al.
(1998) found that maternal plasma CRH concentrations
were higher in patients at weeks 28–32 of pregnancy with
an initial diagnosis of threatened preterm labour, who
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delivered within 48 h. However, CRH concentrations were
within the normal range in patients with the same initial
diagnosis who proceeded to delivery at term. At present, it
seems unlikely that a single measurement of maternal
plasma CRH will provide an adequate means of predicting
the patient who is at risk of preterm labour. However, a
combination of biochemical tests including CRH and
salivary oestriol, combined with measurements of fibro-
nectin, may be of sufficient sensitivity and specificity to be
used clinically.

Birth – an integrated series of autocrine–paracrine
loops?

From the preceding discussion, it should be apparent that
birth, at term and preterm, results from processes leading to
increased PG output. Glucocorticoids have a central role in
those processes, stimulating CRH output within placenta
and fetal membranes. Similarly, CRH upregulates PGHS-2
and downregulates PGDH. The effects of CRH may be
modulated by the state of the CRH receptor. Oxytocin
appears to play a key role in changing the affinity of CRH
receptor interaction. Oxytocin may be derived from the
systemic circulation, and also locally from chorion or
decidua.

Increased concentrations of cortisol may be derived from
the maternal circulation, for example in association with a
maternal stress response, or from the fetus after precocious
activation of the fetal HPA axis. In addition, cortisol can be
formed locally within chorion trophoblast cells from the
inactive precursor cortisone. The expression of 11β-HSD-1,
which effects this conversion, increases in chorion tropho-
blasts progressively during human gestation. Alfaidy and
Challis (2000) have demonstrated that PGE2 and PGF2α act
to increase local cortisol concentrations in chorion (Fig. 4).
PGE2 and PGF2α increase 11β-HSD-1 activity in chorion 
via a Ca2+-dependent mechanism, which also results in
increased production of cortisol derived either from circu-

lating cortisone or from increased cortisone in the amniotic
fluid owing to a developing fetal HPA axis. Furthermore,
PGE2 and PGF2α decrease 11β-HSD-2 activity in placenta,
which also results in an increase in local cortisol concen-
trations. This cortisol can then act on PGDH, PGHS, and
CRH to further increase PG concentrations. These feed-
forward loops serve to increase both local cortisol and local
PG concentrations. The increase in intracellular cortisol at
term may facilitate withdrawal of progesterone effects at the
GR as a result of increased cortisol concentrations and a
higher affinity of cortisol for its own receptor. Where there is
infection, other agents such as cytokines can intercede in
this series of autocrine–paracrine loops by stimulating
PGHS-2 and downregulating PGDH expression. In the
presence of such complex intracellular feed-forward loops,
it is not surprising that the prevention of preterm labour has
eluded us. Current tocolytic therapies have been designed
to block one part of this complex pathway by treating a
symptom of labour such as uterine contractility rather than
the underlying cause, and clearly this approach has been
unsuccessful.

It is also apparent that the mechanisms that predispose to
preterm labour almost certainly vary at different stages of
gestation. The incidence of preterm birth in association with
chorioamnionitis is higher earlier in pregnancy. Later in
gestation, the fetal stress response may predominate. In this
situation, fetal HPA activation increases fetal cortisol output
which, in turn, upregulates placental CRH expression. This
contention is consistent with the higher concentrations of
CRH in the umbilical cord plasma of fetuses with intra-
uterine growth restriction (IUGR). Placental CRH also drives
fetal adrenal steroidogenesis, leading to increased produc-
tion of dehydroepiandrosterone (DHEA) from the fetal zone
of the fetal adrenal. DHEA, in turn, is aromatized in the
placenta to oestrogen, thereby contributing to myometrial
activation.

An additional concern is the excessive use of synthetic
glucocorticoids to promote fetal lung maturation in women
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Fig. 4. Cortisol and prostaglandin (PG) interactions in the human fetal membranes. 11β-HSD-1: 11β-
hydroxysteroid dehydrogenase 1. (Adapted from Challis et al., 2000.)
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who are at threat of preterm labour (Ballard and Ballard,
1995). Although there are many beneficial effects of endo-
genous glucocorticoids, such as maturation of fetal organ
systems required for extrauterine life (Liggins, 1977; Ballard
and Ballard, 1995), exogenous corticosteroids given to
pregnant women at risk of preterm labour (Elliott and Radin,
1995; Yeshaya et al., 1996) and to animals (Liggins, 1968;
Liggins et al., 1973), have been shown to increase uterine
activity. The effects of exogenous corticosteroids on labour
and delivery problems and neonatal outcomes in asthmatic
women have been well researched. Perlow et al. (1992)
showed that preterm delivery and premature rupture of
membranes are more common among asthmatic women
with data demonstrating a preterm delivery incidence of
54.8% for corticosteroid-dependent women and 14% for
non-corticosteroid-dependent women. Other groups have
also found that corticosteroid-dependent asthmatic women
have significantly higher risks of premature rupture of
membranes, preterm labour and delivery, Caesarean
delivery and other maternal complications (Perlow et al.,
1992; Doucette and Bracken, 1993; Demissie et al., 1998).
Furthermore, corticosteroid-dependent women had a
significantly higher incidence of low birth weight babies
(Schatz et al., 1990; Perlow et al., 1992; Jana et al., 1995;
Demissie et al., 1998).

Since the diagnosis of preterm labour cannot be made
with accuracy because of a lack of any clear quantifiable
marker, some patients may receive repeated corticosteroids
unnecessarily (Ballard and Ballard, 1995). Risks of steroid
exposure include adrenal insufficiency, growth retardation
and immune suppression (Reinisch et al., 1978; Uno et al.,
1990; Seckl and Meaney, 1993; Bakker et al., 1995;
Barbazanges et al., 1996; Ikegami et al., 1997; Seckl and
Miller, 1997) and the risks of repeated steroid exposure are
unknown. Exposure to corticosteroids in utero may program
the fetus for altered stress responses after birth that may
predispose to adult onset diseases such as diabetes mellitus,
hypertension and coronary heart disease (Seckl and Miller,
1997; Dodic et al., 1998). An additional risk of exogenous
corticosteroids may be to precipitate preterm labour.
Therefore, it is crucial that care is taken in the dose and
repetition of corticosteroids given to women who appear to
be threatened with preterm labour. The ability to predict or
diagnose the patient in preterm labour will be invaluable in
selecting those women for whom prenatal corticosteroids
should be administered.
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