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The mechanisms involved in vascular homeostasis and disease are mostly dependent on 
the interactions between blood, vascular smooth muscle, and endothelial cells. There is 
an accumulation of evidence for the involvement of prostanoids, the arachidonic acid 
metabolites derived from the cyclooxygenase enzymatic pathway, in physiological and/or 
pathophysiological conditions. In humans, the prostanoids activate different receptors. 
The classical prostanoid receptors (DP, EP1–4, FP, IP, and TP) are localized at the cell 
plasma or nuclear membrane. In addition, CRTH2 and the nuclear PPAR receptors are 
two other targets for prostanoids, namely, prostacyclin (PGI2) or the natural derivatives 
of prostaglandin D2. While there is little information on the role of CRTH2, there are many 
reports on PPAR activation and the consecutive expression of genes involved in the 
human vascular system. The role of the classical prostanoid receptors stimulated by 
PGI2 and thromboxane in the control of the vascular tone has been largely documented, 
whereas the other receptor subtypes have been overlooked. There is now increasing 
evidence that suggests a role of PGE2 and the EP receptor subtypes in the control of the 
human vascular tone and remodeling of the vascular wall. These receptors are also 
present on leukocytes and platelets, and they are implicated in most of the inflammatory 
processes within the vascular wall. Consequently, the EP receptor subtypes or isoforms 
would provide a novel and specific cardiovascular therapeutic approach in the near 
future. 
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Prostanoids (prostaglandin [PG] and thromboxane [Tx]) are derived from membrane phospholipids and 

the metabolism of arachidonic acid via the rate-limiting enzyme prostaglandin H synthase more 

commonly known as cyclooxygenase (COX). After the initial synthesis of PGH2, the production of the 

other prostanoids will depend on the different respective prostanoid synthase, such as PGE-synthase 

(PGES) for PGE2. The synthesis of prostanoids implicated in vascular homeostasis is dependent on the 

presence or absence of each enzymatic activity in the different cells of the blood or the vascular wall.  
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The different effects of prostanoids are also dependent on the activation of specific receptors, namely, 

the eight classical prostanoid receptors (DP, EP1–4, FP, IP, and TP; Table 1), as well as the recently 

described chemoattractant receptor CRTH2 and nuclear receptors (PPARα,δ,γ). There is a considerable 

amount of information on the prostanoid receptors in mice and this will be treated in paper Matsuoka et 

al[162]. The present review will focus only on the human prostanoid receptors. In the nomenclature for 

the classical prostanoid receptors, the first letter indicates the prostanoid with the greatest affinity for this 

receptor. In addition, some isoforms derived from splice variants have been described in human tissues 

for the EP3 receptor (EP3-I, EP3-II, EP3-III, EP3-IV, EP3-V, EP3-VI, EP3-e, EP3-f)[1], the FP receptor (FP-A, FP-

B), and the TP receptor (TP-α, TP-β)[2]. These receptors, as well as the CRTH2, are found on the 

cytoplasmic membranes and they are seven transmembrane domain G-protein coupled receptors (Table 

1). Their activation leads to increased or decreased production of different intracellular second 

messengers (Table 1). This situation has been further complicated by the increasing evidence for the 

presence of the classical prostanoid receptors at the nuclear and/or perinuclear region[3]. The prostanoid 

receptor localized on the plasma membrane elicits immediate physiological actions, whereas the nuclear 

one conveys gene regulation. Finally, in order to characterize these different prostanoid receptors, specific 

pharmacological tools (Table 1) and primers for molecular biology have been described[4,5,6]. 

TABLE 1 
Types and Subtypes of Classical Prostanoid Receptors* 

Prostanoid 
Receptor 
(Swiss-Prot n°) 

Cloning 
Ref. 

G-Protein 
Coupled 

Second 
Messengers 

Synthetic Agonist Synthetic Antagonist 

DP (Q13258) [7] Gs cAMP ↑ BW245C; L644698 BWA848C; AH6809; 
ONO-AE3-237 

EP1 (P34995) [8] Unknown  Ca
2+ ↑ 17-Ph-PGE2; Iloprost; 

Sulprostone 
AH6809; SC-19220; 

SC-51322; ONO-
8713 

EP2 (P43116) [9] Gs cAMP ↑ Butaprost; AH13205; 
ONO-AE1-259; 
Misoprostol 

AH6809 

EP3 (P43115) [1] Gi (Gs, Gq) cAMP ↓ (cAMP ↑, 
IP3 ↑) 

ONO-AE248; SC-
46275; GR-63799; 
M&B-28767; 
Sulprostone; 
Misoprostol 

L826266 

EP4 (P35408) [10] Gs cAMP ↑ ONO-AE1-329; L-
902688; Cicaprost 

EP4A; AH23848; 
AH22921; 
GW627368X 

FP (P43088) [11] Gq IP3 ↑ Latanoprost; 
Fluprostenol; 
Cloprostenol 

 

IP (P43119) [12] Gs (Gq) cAMP ↑ (IP3 ↑) Cicaprost; Iloprost; 
Beraprost 

RO1138452 

TP (P21731) [13] Gq (Gi, Gs) IP3 ↑ (cAMP ↓ ↑) U46619; STA2 BAY u3405; 
GR32191; AH23848 

* Molecular and pharmacological characteristics of human prostanoid receptors derived from Swiss-Prot 

(http://www.expasy.org/sprot/) and IUPHAR (http://www.iuphar-db.org/iuphar-rd/index.html) web sites. 

The G-proteins and their respective second messengers are indicated in parenthesis when they are not the 
major one associated with this receptor[14,15]. 
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PROSTANOID PRODUCTION IN THE HUMAN VASCULAR WALL 

The cell or tissue production of prostanoids is dependent on physiological conditions. In normal 

physiological conditions, prostanoid synthesis is dependent on the COX-1 activity, the constitutive 

enzyme isoform. The synthesis and release occurs a few minutes after cell or tissue stimulation. In 

vascular preparations submitted to inflammatory conditions, hypoxia, shear stress, or mechanical 

perturbation (gravity, stretching) for several hours, the expression of COX-2 and other prostanoid 

synthase isoforms can be observed. 

In normal physiological conditions, the release of PGI2 quantified by the measurement of its stable 

metabolite (6-keto-PGF1α) has been largely described in human endothelial cells in culture after 

stimulation with thrombin, histamine, adenosine nucleotides (ADP, ATP), and bradykinin[16,17]. In fresh 

isolated vascular preparations, acetylcholine, serotonin, or leukotrienes induced endothelium-dependent 

relaxations[18,19,20,21]. These responses were partially inhibited by a nonselective COX inhibitor 

(indomethacin) and they are dependent on PGI2 release by the endothelium. In these vascular cells or 

tissue, the production of PGI2 was two- to eightfold greater in comparison with the other prostanoids 

synthesized[22,23]. These measurements are dependent on the initial COX-1 activity and not the COX-2 

activity, since immunohistochemistry experiments and/or western-blot analysis have shown a preferential 

presence of the COX-1 in the endothelium of ovarian, pulmonary, or aortic vessels [24,25,26,27]. 

In the human endothelial cells in culture submitted to hypergravity during a period of 24–48 h, the 

induced expression of COX-2 was observed in association with an increased production of PGI2[28]. 

Similar effects are observed with the human umbilical vein endothelial cells (HUVEC) under shear stress 

conditions[29]. Under hypoxia (2 h), the synthesis and the release of PGF2α are induced in human 

coronary endothelial cells, human microvascular endothelial cells (HMEC), and HUVEC in culture[30]. 

In addition, cytokines (interleukin [IL]-1α/β; tumor necrosis factor [TNF]-α), angiotensin II (Ang II), 

arginine-vasopressine (AVP), certain growth factors (epidermal growth factor [EGF], transforming 

growth factor [TGF]-α), and endothelin-1 (ET-1) induce the synthesis and release of PGI2 and PGE2 in 

the majority of the human endothelial cells in culture[31,32,33,34]. These productions are detectable after 

a few hours of stimulation, implying the induction of the COX-2 isoform in the majority of the 

cases[31,35,36]. Furthermore, one of the PGES isoforms, the microsomal PGES-1 (mPGES-1), has 

received much attention because this enzyme is inducible and functionally linked with COX-2 expression. 

The presence of the transcript coding for the mPGES-1 and the protein after 3 h of HUVEC stimulation 

with IL-1β has been detected[37]. However contradictory results were described[38]. 

After a few hours of incubation of human vascular smooth muscle cells (HVSMC) with cytokines 

(IL-1β, TNF-α) and bacterial lipopolysaccharides (LPS), an increased production of PGI2 and PGE2 was 

also observed in the culture medium[38,39]. Other authors showed that these effects were associated with 

an induction of the COX-2 isoform[40,41]. For example, the muscular cells of human pulmonary artery in 

culture (HPASMC) under conditions of hypoxia or in the presence of cytokines express COX-2[25]. 

HPASMC incubated for 3 h with cytokines and successively stimulated with bradykinin or thrombin for a 

few minutes have a striking enhanced production of PGI2[42,43]. In these previous studies, PGE2 was not 

measured. The human fibroblasts are also present in the vascular wall. These cells, after 20 h of CD40 

interaction with its ligand express COX-2 and the production of PGE2 by these cells, are increased by a 

factor 10[44]. In the HVSMC and the human fibroblasts in culture, PGES transcript is present and its 

expression is increased in the presence of cytokines[38].  

As an illustration of the previous experimental results on cell cultures, there is an increased presence 

of COX-2 and the inducible enzyme responsible for PGE2 synthesis (mPGES-1) detected by 

immunocytochemistry in the carotid atherosclerotic plaque of symptomatic patients vs. the asymptomatic 

ones[45]. In conclusion, in most vascular cells, PGI2 is the major biological active prostanoid produced 

under normal physiological conditions and when not the case, PGI2 and PGE2 are both equally produced 

as a consequence of the COX-2 induction. 
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CELLULAR LOCALISATION OF CLASSICAL PROSTANOID RECEPTORS 

The location of the prostanoid receptors are mainly described in the vascular smooth muscle layer. That is 

supported by the immunohistochemistry data[46], by the physiological responses of isolated smooth 

muscle cells[47,48], and by the contraction/relaxation of isolated vascular preparations without 

endothelium[49,50]. For example, the vasoconstriction of human mammary or pulmonary arteries 

induced by the TP agonist U46619 was not modified in absence of endothelium[51,52]. On the other 

hand, there is also some evidence that suggests the presence of prostanoid receptors in human 

endothelium. The involvement of the different TP isoforms has been described in differential control of 

HUVEC or renal HMEC migration, however, these results are dependent on the number of passages 

during cell culture[53,54,55]. In addition, the isolated human pulmonary veins show a greater sensitivity 

during the contraction induced by U46619 when the endothelium was removed[52]. In a similar way, the 

relaxation of human hand veins produced after PGE2 or PGF2α stimulation was reduced in the absence of 

endothelium, whereas those elicited by PGI2 or PGE1 were not modified[56]. These results suggest the 

presence of endothelial prostanoid receptors and the involvement of an endothelial relaxing factor in these 

veins. On the contrary, in the human radial artery, an endothelial contractile factor was suggested since a 

reduced sensitivity to U46619 is measured in absence of endothelium[51]. These endothelial factors could 

either be released after stimulation of an endothelial prostanoid receptor or by the endothelium in a 

mechanical way in response to the contraction of the underlying smooth muscle induced by the 

prostanoids.  

NUCLEAR AND CRTH2 RECEPTORS ACTIVATED BY PROSTANOIDS 

There are two kinds of vascular nuclear prostanoid receptors: the peroxisome proliferator activated 

receptor (PPAR) and the classical prostanoid receptors. The location and the role of these classical 

prostanoid receptors at the nuclear membrane or perinuclear level are a new area of research. Some 

studies provide evidence for EP1, EP4, and/or EP3-I receptors at the perinuclear region in endothelial cells 

of porcine cerebral microvessel and in human embryonic kidney cells (HEK293)[3,57]. These results have 

shown that the activation of the nuclear EP3-I receptor could modulate iNOS and eNOS gene 

transcription[57,58]. In addition, they are consistent with the nuclear localization of COX[59], providing 

a local production of PGE2, the preferential endogenous agonist for the EP receptors. The IP receptor may 

also be present at the nuclear level since PGI-synthase, the enzyme responsible for the conversion of 

PGH2 into PGI2, is also detected and colocalized at the perinuclear level with COX-1 in human 

endothelial cell line, ECV304[59]. 

PPARα, PPARβ (previously δ), and PPARγ are the second kind of nuclear receptor activated by 

prostanoids with numerous roles in vascular biology. The PPAR are activated by some natural derivatives 

of PGD2 (Δ12-PGJ2, 15d-PGJ2), in addition, PPARα and PPARβ may use prostacyclin as endogenous 

ligands[60]. However, there are many other endogenous PPAR activators, most of them are of lipidic 

origin and the predominant ligand remains to be determined for each PPAR subtype. Experiments of RT-

PCR and western-blot showed that the PPAR are present in the HVSMC and endothelial cells in 

culture[60,61,62]. They are responsible for many physiological events, for example, the activation of 

PPARα receptors expressed in human aortic smooth muscle cells promotes their proliferation[59]. PPARγ 
has been systematically explored particularly with the synthetic agonists of the thiazolidinediones (TZD) 

class[60]. The activation of PPARγ in vitro inhibits the expression of various genes implicated in the 

proliferation, migration, and inflammatory response of the vascular cells[63]. On the other hand, in 

histological sections of human blood vessels, the PPARγ receptor is present in the endothelial cells, but 

absent in the smooth muscle[64,65]. 

The implication of PPARγ in vascular disease has been largely studied in atherosclerosis. The 

activation of this nuclear receptor controls the transcription of many genes (Ang II and TxA2 receptors, 

Tx-synthase, ET-1, proteases, COX-2, and cytokines) having a role in vascular inflammation specifically 
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at the level of the atherosclerotic lesions[60,66]. Immunohistochemistry studies using human coronary 

arteries obtained from recipients of heart transplants have shown that PPARγ is strongly expressed by the 

macrophages present in early and intermediate atherosclerotic lesions[66]. In these cells under 

inflammatory conditions, PGJ2, Δ12-PGJ2, 15d-PGJ2, and TZD inhibit the expression of genes coding for 

proinflammatory cytokines (TNF-α, IL-1β, IL-6)[67] and for inducible enzymes (iNOS and COX-

2)[60,68]. In the same way, the transcription of the matrix metalloproteinase-9 (MMP-9) gene as well as 

the migration of the HVSMC is inhibited after activation of the PPARγ receptor[61]. 

The activation of PPARγ plays an essentially antiatherosclerotic role, thus in vivo, the activation of 

PPARγ by the TZD significantly reduces the evolution of the atherosclerosis in humans[69,70,71]. 

Rosiglitazone protects the vascular wall by reducing proinflammatory responses and the occurrence of 

coronary events in type-2 diabetic patients within 6 months after percutaneous coronary intervention. 

Similarly, PPARα ligands like the fibrates decrease the risk of coronary heart diseases and the progression 

of premature atherosclerosis in patients with type-2 diabetes[60]. In addition, some dual PPARα/γ ligands 

have recently been developed and show a combined efficacy in the treatment of global risk in patients 

with the metabolic syndrome or type-2 diabetes[60]. 

CRTH2 is another prostanoid receptor activated by PGD2 and its metabolites. This receptor has been 

recently described in human Th2 lymphocytes, Tc2 lymphocytes, eosinophil, and basophil[72]. On the 

other hand, neutrophils, platelets, Th1 lymphocytes, and B and T cells do not express the CRTH2 receptor 

on their surface[72,73,74]. CRTH2 receptor is activated selectively by DK-PGD2[74], a natural 

metabolite of PGD2[75], and also by the 11-dehydro-TXB2, one of the principal metabolites of TXA2[76]. 

In addition, 15d-PGJ2, can bind to CRTH2 receptor with an equivalent affinity in comparison with PGD2 

and DK-PGD2[74]. The eosinophil migration induced by the activation of CRTH2 receptor is blocked by 

the TP/CRTH2 antagonist BAY u3405 (ramatroban)[77]. Lastly, the activation of this receptor by PGD2 

decreases the intracellular production of cAMP, while an opposite effect is observed after activation of 

DP receptor, the preferential classical receptor for PGD2[78,79]. 

The first studies carried out on humans concerning CRTH2 primarily implicated this receptor with the 

inflammatory allergic response[80]. One of the principal biological functions induced by the activation of 

this receptor is chemotaxis. Thus PGD2 or DK-PGD2 causes the migration of eosinophil, basophil, and the 

Th2 lymphocytes[72]. These events concern the pulmonary vessels during allergic or asthmatic responses, 

however, the role of CRTH2 in cardiovascular diseases has not been studied. 

PROSTANOID RECEPTORS IN HUMAN BLOOD CELLS 

Blood cells and constitutive cells of the vascular wall permanently interact during healthy and 

pathological conditions. Two of these classical cell-cell interactions are the endothelial synthesis of PGI2 

from PGH2 released by platelets and the synthesis of TxA2 by platelets from PGH2 released by the 

endothelial cells. These events are associated with hemostasis including the activation of prostanoid 

receptors present both in platelets and in cells of the vascular wall. Similar communication between blood 

cells and the endothelium exists during the inflammatory processes, implicating blood cell extravasations 

in vascular diseases, such as atherosclerosis, aneurysm, or during allergy and edema. Leukocyte rolling, 

adhesion, and migration through the endothelial cells are dependent on prostanoid receptor activation. For 

example, PGE2 or PGE1 can block the leukocyte migration through human endothelial cells in 

culture[81,82]. The different prostanoid receptors described in human blood cells and involved in these 

different events are indicated in Table 2. 
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TABLE 2 
Prostanoid Receptors in Human Blood Cells* 

Cells Receptors Induced Effects (+ Activation, – Inhibition) Ref. 

DP, IP – Aggregation [83] Platelet 

TP, EP3 + Aggregation [83] 

TP + Membrane destabilization  [84] Erythrocyte 

IP + Insulin binding, membrane stabilization [84,85] 

EP4 – Production of LTC4  [86] Eosinophil 

DP – Apoptosis; adhesion [73,78] 

EP2, DP – LTB4 and superoxide anion release  [87] 

DP – Migration [88] 

Neutrophil 

FP + Migration [30] 

Basophil IP, DP + cAMP production [89] 

Mastocyte EP2 + Vascular endothelial growth factor (VEGF) production  [90] 

EP(2 or 4), IP – TNF-α production [91] 

EP2, EP4 + Maturation in monocyte derived dentritic cell [92] 

EP2, EP4 – Intercellular adhesion molecule-1 (ICAM-1; B7) expression [93] 

EP(2 or 4) + COX-2 expression  [94] 

EP4 – IL-12 production [95] 

EP3 + Migration [96] 

IP + VEGF production [97] 

Monocyte 

TP – Migration, cell adhesion [98] 

EP4 – Chemokine production [99] 

EP4 + IL-6 production [4] 

Macrophage 

EP(2 or 4) + Migration [100] 

B Lymphocyte EP4  EP4 mRNA expression [101] 

EP3 + Matrix metalloproteinase 9 (MMP-9) production [102] 

EP4 – IL-2 production [103] 

EP4 + IL-6 production  [104] 

T Lymphocyte 

EP2 – Apoptosis [105] 

* Prostanoid receptors described in human blood cells and the induced effects after their 
stimulation. (Receptors absent or not determined were not distinguished.) 

ANGIOGENESIS AND THE PROSTANOID RECEPTORS 

The proliferation of vascular smooth muscle cells (HVSMC) derived from the human pulmonary artery 

induced by fetal calf serum is inhibited by PGI2, PGE2, or cicaprost [41,48,106]. These results suggest 

activation of the IP receptor and probably that of an EP receptor during this effect. The activation of IP 

receptor by iloprost also reduces the migration induced by endothelial cell–conditioned medium as 

chemoattractant of the HVSMC derived from mammary artery[47]. A recent study based on 

microarray[107] confirmed the inhibitory role of IP receptors in the proliferation and the migration of the 

HVSMC. These authors showed that stimulation by iloprost modifies the expression of 83 genes in the 

HVSMC. Some of these genes (zinc finger transcription factor [hEZF], growth arrest specific gene 1 
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[gas1], VEGF, cysteine-rich angiogenic protein [Cyr61]) are known to be implicated in smooth muscle 

growth and cell migration[107,108]. 

The incubation of aorta HVSMC with PGE2 decreased the cellular proliferation and the DNA 

synthesis[109]. These authors suggested the involvement of the EP1 receptors since this inhibition was 

observed with PGE2 while PGE1 was ineffective. The pharmacological characterization of this receptor 

remains to be confirmed since another study showed that PGE1 and PGE2 inhibited the growth of these 

cells[110]. In addition, the agonists of the EP receptors can also control the migration of HVSMC. The 

migration of HVSMC derived from pulmonary artery induced by platelet-derived growth factor (PDGF) 

is inhibited by PGE2[111]. PGE2 elicited this effect with an efficacy associated with its ability to promote 

cAMP accumulation and PKA activation. This intracellular signaling suggests an inhibition of the 

migration mediated by an EP2/4 receptor. On the contrary, M&B28767, the selective agonist for EP3 

receptors, stimulates the migration of the HVSMC derived from the mammary artery[47]. Finally, similar 

control of the endothelial cell chemotaxis by PGE2 and thromboxane has been described; the HUVEC 

migration induced by IL-1β are partially blocked by EP4, or TP-selective antagonists[112].  

The COX-2 activity participates in angiogenesis observed in different models, such as rodent 

corneas[112,113], proliferation of human endothelial cell culture[114], or in pathophysiological 

conditions, such as diabetic and ischemic retinopathy[115]. Prostanoids derived from the COX-2 activity 

play a key role in oncogenesis since an increased expression of this enzyme has been detected in colon, 

breast, gastric, lung, and pancreatic cancers[116]. More specifically, the association of the COX-2 activity 

with angiogenesis in different forms of human cancer is well documented. An elevated COX-2 expression 

is detected with lymph node metastases and reduced survival in Barrett's cancer. This event appears to be 

related to the induction of angiogenesis and proliferation[117]. The COX-2 expression correlates with 

microvessel density and VEGF production in the angiogenesis of human non-small cell lung cancer[118]. 

Hepatocellular carcinoma is a highly malignant tumor characterized by active neovascularization; the 

VEGF production and venous invasion correlate with COX-2 activity[119]. The COX-2 inhibitors reduce 

tumor induced angiogenesis when xenografts of human colon cancer cells are planted in murine 

hosts[113]. However, the prostanoid receptors involved in human tumor angiogenesis are not known, 

while the EP3 subtype has been suggested in mice models of angiogenesis and tumor growth[120]. 

PROSTANOID RECEPTORS INVOLVED IN THE HUMAN VASCULAR TONE 

When the receptors are localized on the smooth muscle, the activation of IP, EP2, EP4, or DP receptors by 

prostanoids induces vasodilatation, while the activation of TP, EP1, EP3, or FP receptors is responsible for 

vasoconstrictions[121]. Most of the studies on vascular tone (Table 3) describe contractions produced by 

the TxA2 analog (U46619) and relaxations induced by the PGI2 analogs (iloprost or cicaprost). These 

results indicate that most human vascular smooth muscle expresses TP and IP receptors (Table 3). 

However, in these studies, the involvement of the IP receptor should be considered with caution since 

iloprost and, particularly, cicaprost have recently been described as potent agonists for the EP4 receptor 

subtype[122,123,124]. 

There are very few studies concerning the involvement of other prostanoid receptor subtypes (EP, FP, 

or DP; Table 3) in the control of the vascular tone, although there is increasing evidence for the presence 

and a role for the four EP receptor subtypes preferentially stimulated by PGE2[125,126,127,128,129,130]. 

In addition, a characterization of the EP receptors should be of interest since there is a striking increase in 

the quantities of the inducible mPGES-1 under inflammatory conditions and, in consequence, an 

increased concentration of PGE2 in the vascular wall or in the blood of atherosclerosis patients[131,132].  
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TABLE 3 
Prostanoid Receptors Involved in the Control (In Vivo or In Vitro) of Human Vascular  

Smooth Muscle Tone* 

Receptor Involved in Vascular 
Preparations 

Vasoconstriction Vasodilatation 

Ref. 

Basilar artery TP, EP? IP [133] 

Cerebral artery TP IP, EP4 [127] 

Pial artery TP IP [134,135] 

Retinal arteriole TP DP [136] 

Coronary artery TP IP [137,138,139] 

Mammary artery TP  [51] 

Thymic artery TP  [140] 

Pulmonary artery TP, EP3 IP [128,130,141,142,143] 

Pulmonary vein TP, EP1 IP, DP, EP? [129,130] 

Gastroepiploic artery TP  [49,51] 

Gastroepiploic vein TP  [49] 

Mesenteric artery  IP [138] 

Brachial artery  IP [144] 

Radial artery TP  [51] 

Hand artery  IP [145] 

Hand vein TP IP [145,146] 

Uterine artery TP IP, EP4 [126] 

Placental artery TP  [147] 

Placental vein TP  [148] 

Umbilical artery TP IP [147,149] 

Umbilical vein TP, FP  [147,148,150] 

Penile artery TP IP, EP? [125] 

Femoral artery TP  [151] 

Saphenous vein TP  [152] 

* In this table, only the prostanoid receptor subtypes described in the literature are 
indicated. EP? Indicates that a specific EP response to PGE2 was observed, 
however, the EP subtype has not been characterized. 

VASCULAR PATHOLOGIES AND THE CLASSICAL PROSTANOID RECEPTORS 

The IP agonists — the synthetic PGI2 (epoprostenol), PGE1 (alprostadil), or the PGI2 analogue iloprost — 

have been used for the last 20 years in the treatment of human pulmonary hypertension. These 

compounds decrease the pulmonary vascular resistance and may be administered by inhalation (iloprost) 

or continuous subcutaneous infusion, as in the case of treprostinil, the last PGI2 analogue 

synthesized[153]. Intravenous injection of PGE1 is also useful to maintain the patency of the ductus 

arteriosus in infants with certain cardiac malformations[5]. Similar to the treatment of these pathologies, 

in the near future, the prostanoid receptors will probably be new therapeutic targets for the treatment of 

other cardiovascular diseases. Changes in the density or appearance of new prostanoid receptor subtypes 

and isoforms in the vascular wall are associated with the development of cardiovascular pathologies. 
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This variation of receptorial expression is observed during atherosclerosis, for example, where the 

density of TP receptor is increased in the atherosclerotic coronary artery[46]. The EP4 receptor is detected 

by immunohistochemistry in human carotid atherosclerotic plaques, in macrophage-rich lesions, and in 

smooth muscle, while no staining was observed in the vascular wall of normal carotid artery[99]. The EP2 

receptor has also been detected in these atheroma plaques[154]. In addition, in this study on HVSMC 

derived from the media of human internal mammary arteries, the activation of EP2 and IP receptors 

induced an up-regulation of hyaluronic acid. This compound is a prominent constituent of the 

extracellular matrix in atherosclerotic vascular lesions in humans and is known to modulate the vascular 

smooth muscle phenotype. However, the transcription and expression of the EP4 receptor in the human 

carotid atherosclerotic plaques are largely predominant in comparison to the EP2 subtype[155]. In 

addition, a stronger expression and a greater detection was observed for the EP4 receptor in the carotid 

atherosclerotic plaque of symptomatic patients vs. the asymptomatic ones[155]. The EP4 receptor 

localized mainly in the macrophage-rich lesions, together with COX-2, mPGES-1, MMP-9, and MMP-2 

[45,99,155]. The activation of this receptor by PGE2 and the subsequent production of MMP probably 

contribute to the plaque destabilization.  

In the previous studies, the appearance of the prostanoid receptors in the atherosclerotic vascular wall 

may be due to the migration of macrophages expressing these receptors and/or an induction of their 

expression by the constitutive cells of the vascular wall. As in the case of the inducible enzymes (COX-2, 

mPGES-1), it is not excluded that the proinflammatory conditions found in atherosclerosis may also 

stimulate the transcription of prostanoid receptors in the vascular cells. This induction has been observed 

with the increased expression of EP2 and EP4 receptors in human nonvascular cells, as occurs in the 

experiments with the synovial and cervical fibroblasts treated with IL-1β[156,157]. 

PGE2 receptors in abdominal aortic aneurysm have been explored[4]. This study shows that the 

release of IL-6 by the aortic aneurysm wall is more specifically due to the activation of the EP4 receptor 

present in the macrophages instead of the smooth muscle cells. The production of this proinflammatory 

cytokine mediates aneurysmal degeneration. The level of IL-6 measured postsurgery in the blood of 

patients with ruptured abdominal aortic aneurysms was significantly increased in nonsurvivors vs. 

survivors[158]. 

Another PGE2 receptor, namely, the EP3 receptor subtype, is implicated in the development of 

vascular pathologies. The DeCODE Company has developed an EP3 antagonist (NG041) presently in 

phase IIa clinical trial. This compound is an example of the new drugs targeting the prostanoid receptors. 

Through their population genetic research in Iceland, this company has identified common versions of the 

gene encoding the EP3 receptor that confer increasing risk of atherosclerosis[159]. These epidemiological 

data are in accordance with the different proatherogenic roles of the EP3 receptor in human tissues, that is, 

vasoconstriction[128,160], migration of vascular smooth muscle cells[47], and platelet activation[83]. 

In a general way, the prostanoid receptor ligands used in cardiovascular therapeutics should at least 

stimulate the vasodilatation, block the vasoconstriction and inhibit the platelet aggregation. More 

specifically they should activate the IP- and DP- receptors and block the TP- and EP3- receptors since 

these receptors are also present on human platelet[83]. In addition, from the data previously described in 

atherosclerotic and aneurismal tissues, development of specific antagonists for the receptors involved in 

the inflammatory processes of the vascular wall, such as EP4, should be also useful. 

CONCLUSION 

After the cardiovascular risks encountered with the COX-2 inhibitors, new and more selective strategies 

have been developed to modulate the physiological effects mediated by prostanoids. The different 

prostanoid receptors, as well as the different enzymes of the cyclooxygenase pathway, such as the 

prostanoid synthases, will be future therapeutic targets for the treatment of cardiovascular pathologies. 

The PPARs have already become therapeutic targets through the use of the fibrate class and the insulin-

sensitizing thiazolidinediones. These compounds are used to reduce the cardiovascular risk in patients 
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with atherosclerosis, metabolic syndrome, and/or diabetes. Furthermore, the different physiological roles 

of the classical prostanoid receptor subtypes and isoforms, the nuclear receptors, and the CRTH2 in the 

human vascular wall are intensively explored. In addition to PGI2 and thromboxane, there is increasing 

evidence that suggests a key cardiovascular role for PGE2. The four EP receptor subtypes activated by 

PGE2 are present on the cells of the vascular wall, as well as in the blood cell during vascular 

inflammation. Their activation and, more specifically, the EP3 and EP4 receptor activation appears 

associated in most human physiological or pathophysiological responses of the vascular wall. For these 

reasons, these classical prostanoid receptors are also promising cardiovascular therapeutic targets. 
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