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Abstract
Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men in the Western world and the
second leading cause of cancer-related deaths among men worldwide. Although most cancers have the potential to
metastasize under appropriate conditions, PCa favors the skeleton as a primary site of metastasis, suggesting that
the bone microenvironment is conducive to its growth. PCa metastasis proceeds through a complex series of mo-
lecular events that include angiogenesis at the site of the original tumor, local migration within the primary site,
intravasation into the blood stream, survival within the circulation, extravasation of the tumor cells to the target
organ and colonization of those cells within the new site. In turn, each one of these steps involves a complicated
chain of events that utilize multiple protein^protein interactions, protein signaling cascades and transcriptional
changes. Despite the urgent need to improve current biomarkers for diagnosis, prognosis and drug resistance, ad-
vances have been slow. Global gene expression methods such as gene microarrays and RNA sequencing enable the
study of thousands of genes simultaneously and allow scientists to examine molecular pathways of cancer pathogen-
esis. In this review, we summarize the current literature that explored high-throughput transcriptome analysis
toward the advancement of biomarker discovery for PCa.Novel biomarkers are strongly needed to enable more ac-
curate detection of PCa, improve prediction of tumor aggressiveness and facilitate the discovery of new therapeutic
targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include
HPN, CLU1,WT1,WNT5A, AURKA and SPARC.
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INTRODUCTION TO PROSTATE
CANCER ANDGENOMIC SURVEY
OF GENE EXPRESSION
Prostate cancer (PCa) is the second most commonly

diagnosed form of cancer and the second leading

cause of cancer-related deaths among men world-

wide [1]. Most PCa-related deaths result from me-

tastasis, which is defined as the spread of cancer cells

from the original site to a new site [2]. The location

of the secondary tumor is not random; PCa tends to

spread to particular organs or tissues at a rate that is

higher than would be expected based on chance.

PCa metastasizes almost exclusively to bone and typ-

ically forms osteoblastic lesions that are defined by an

increase in bone growth [3–5]. Most current treat-

ments for individuals with bone metastases have only

palliative effects, with no consequence on long-term

survival [3, 6]. Identifying the mechanisms of PCa

metastasis is essential for developing new and effect-

ive treatments for ameliorating the deadly conse-

quences of the disease and increasing quality of life.

Cancer metastasis is a complex cascade that in-

cludes multiple major events: local migration

within the primary site and intravasation into the
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blood stream, survival within the circulation, ex-

travasation of the tumor cells to the target organ

and colonization of those cells within the new site.

Each step of metastatic cancer physiology involves a

complicated chain of events that utilize multiple

protein–protein interactions, protein signaling cas-

cades and transcriptional changes [4, 7] (Figure 1).

Each one of these steps, in turn, involves a myriad of

cascade events for their function as well.

Comprehensively, metastasis is a very complex set

of events that hijack multiple molecular components

of the body’s normal physiological functions for its

own altruistic purposes. This review presents a gen-

eral overview of the identification of genes and pro-

teins potentially involved in PCa at each stage of

metastasis and their possible uses as biomarkers

and/or therapeutic agents/targets.

Considering that PCa metastasis is a multistep

event that is likely controlled by many different mo-

lecular pathways, the use of high-throughput gen-

omic approaches focused on transcriptional profiling

has the potential to unveil key molecular contribu-

tors such as biomarkers and therapeutic candidates.

Two major experimental methods employed to

survey global gene expression in PCa are micro-

array-based (analog) gene expression profiling

technology (microarray) and next-generation

sequencing-based gene expression profiling (RNA-

Seq) [8]. These methods permit the simultaneous

analysis of expression levels for tens of thousands of

genes, and, in turn, provide an opportunity to iden-

tify differentially expressed genes as a function of

cancer progression. In addition, genomics allows

for the identification of differential gene expression

profiles during multiple experimental designs such as

identifying the effectiveness of anti-cancer agents on

cancer-related genes in tumor tissue, circulating

metastatic cancer in the blood and even what the

changes are in PCa cells when exposed to a second-

ary tumor site, such as the bone. This technology has

contributed to the more accurate development of

therapeutic strategies and has helped to determine

the molecular mechanism(s) of action of metastatic

cancer cells. Although microarrays have dominated

the past decade of the ‘omics’ era, RNA-Seq is likely

to replace this analog technology completely in the

near future. Regardless, these techniques are cur-

rently being used to elucidate the genomic alter-

ations in both the cancer tumor/cell itself and of

the surrounding tissue affected by the cancer

during metastasis. To date, many genes/proteins

have been identified as key regulators of PCa metas-

tasis using microarray analysis. These findings are

summarized below.

Proliferation and intravasation from the
primary tumor
The initial stages of metastasis involve the prolifer-

ation of the primary tumor, detachment and migra-

tion of malignant cells and their entry into the

nearby blood or lymphatic vessels. In the normal

prostate gland, epithelial cells have restricted migra-

tory capability due to their relatively strong adher-

ence to each other as well as to the extracellular

matrix (ECM). During the process of malignant

transformation, however, the adhesiveness of epithe-

lial cells decreases and change from being epithelial

in nature to mesenchymal (EMT) [9, 10], thus allow-

ing the cells to have increased migratory properties.

In addition to local adhesion and migration, PCa

cells degrade the ECM, thus allowing for intravasa-

tion into the surrounding tissue and blood

circulation.

In an attempt to understand the alterations in

gene expression that may signal the initial stages of

metastasis, many investigators have studied gene ex-

pression correlations that compare the genomic pro-

files of neoplastic versus non-neoplastic prostate

tissue. These tissues can be obtained in a variety of

ways including gross dissection, needle biopsies and

laser-capture microdissection (LCM) from metastatic

PCa patients [11–27].

Macrodissection of prostate tissue
The majority of research looking at the genomic

profile of PCa has investigated alterations in large

sections of surgically removed tissue. For example,

Lapointe etal. [15] published a well-designed study in

which the authors compared primary prostate tumors

with matched normal prostate tissue and unmatched

pelvic lymph node metastases. Analysis identified a

subset of genes deregulated in high-grade PCa sam-

ples as compared with low-grade and normal pros-

tate tissue, including several genes involved in

cellular invasion and/or angiogenesis, such as coagu-

lation factor II (thrombin) receptor (F2R) [28, 29],

mucin 1 cell surface associated (MUC1) [30–32],

neuropilin-1 [33, 34], lipooxygenase (LOX)

[35, 36], angiopoetin 2 (ANGPT2) [37, 38] and

plexin domain-containing 1 (TEM7) [39, 40]. Of

note, MUC1 has been examined in detail over the

past decade and has been shown to increase the
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metastatic potential of cancer cells by reducing

E-cadherin and integrin-mediated cell adhesion

[41, 42]. MUC1 has been shown to be involved in

EMT [43] and has been described as a promising

tumor-associated antigen for future PCa therapy

[44]. In support, ANGPT2, an important gene

involved in angiogenic signaling, was also found to

be upregulated in a concurrent paper comparing

metastatic PCa derived from bone versus PCa that

had metastasized to the liver and lymph [45, 46].

Therefore, the genes identified in this article repeat-

edly have been shown to be involved in PCa metas-

tasis, validating their results and indicating the

importance of microarray data in distinguishing

PCa-associated factors.

A more recent paper profiled gene expression of

normal prostate versus tissue from high-grade

(Gleason Score 7) PCa tissue [47]. The authors iden-

tified 378 upregulated and 741 downregulated genes

between the two groups. Deregulated genes

included those that have been found to be involved

in cellular invasion, survival and proliferation. Of

note, caveolin 1 (CAV1), a scaffold protein involved

in T-cell activity and b-catenin recruitment in the

WNT signaling pathway [48], was upregulated,

whereas B-cell CLL/lymphoma 2 (BCL2), a pro-

apoptotic gene [49] and multiple fibulin genes

(FBLN1, FBLN4 and FBLN5), ECM proteins

involved in cell adhesion and migration [50], were

all found to be downregulated. The alteration of

Dissemina�ng Tumor 
Cells/Intravasa�on:

HPN, ERG, 
AMACR, MUC1, 
ANGPT2, WT1, 
SPARC, CAV1, 
TMPRSS2-ERG

Survival in the 
circula�on

CRTAM, CXCR3, 
FCRL3, KLF12, 
GSK3β, WNT5A, 
EGFR, MMP9, IGF1R, 
FOXA2, TCF3, SPP1, 
FOLH1

Adherence/
Extravasa�on

TGFβ, SMAD9, CSF1, 
CSF1R, ITGA1, ITGA2,
CTSK, MMP2, MMP9, 
PLAU, MTA1, RAF1,
PLAU, IL1B, COX2, IL2, 
SPARC 

Figure 1: Process of PCa bone metastasis and genes altered during each step as identified by genomic profiling.
Cancer cells proliferate, invade into surrounding tissues and escape from primary site through the regulation of
oncogenes, epithelial to mesenchymal transition, angiogenesis and other factors. Cancer cells enter into the circula-
tion (intravasation), survive and migrate toward bone via upregulation of chemokines and bone-derived factors.
Cancer cells then invade through blood vessels (extravasation) and into the bone target. It adheres with bone
matrix by integrins and cadherin and breakdown the matrix via MMPs and urokinase-type plasminogen activator
(PLAU).Then cancer cells can survive, proliferate and differentiate through molecular interactions with bone micro-
environment, which ultimately lead to the establishment of bone metastases.
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these genes, and many others, was further validated

by real time polymerase chain reaction (rtPCR).

Needle biopsies
Microarray-based studies that use tissues acquired

from radical prostatectomy specimens and organ

donors, such as the studies summarized above, have

a number of disadvantages. For instance, surgical ma-

nipulation of the malignant tissue often results in

altered gene expression of molecules associated

with ischemia and hypoxia following devasculariza-

tion [51] and can therefore introduce tumor-irrele-

vant changes in transcript levels. Transrectal,

ultrasound-guided needle biopsies avoid this particu-

lar problem by microdissecting neoplastic prostate

epithelium directly from the malignant cancer. The

biopsies are frozen immediately after extraction, thus

avoiding artifacts due to hypoxia. The first paper

published on this technique, Qian etal. [25], reported

954 differentially transcribed genes in PCa samples,

none of which were found to be associated with

ischemic or surgical manipulation of the prostate

gland. Among the cancer-related genes identified

in this study were hepsin, v-ets erythroblastosis

virus E26 oncogene homolog (avian) (ERG) and

�-methylacyl coenzyme A racemase (AMACR); all

found to be significantly upregulated, whereas gluta-

thione S-transferase p (GSTP1) expression was

found to be downregulated. All these genes were

previously found to be altered in independent studies

of gross dissections of prostate biopsies [23, 52–54]

and have also repeatedly been found to be involved

in cancer cell growth and invasion [55–60].

Laser-capture microdissection
It is extremely important to note that tumors consist

of a highly heterogeneous population of cells and

genomic events within the tumor likely vary dramat-

ically depending on the composition of the tissue

that is measured during analysis; whole tissue hom-

ogenization may not permit the identification of

changes critical to metastasis that may occur in a

smaller subset of cells potentially more critical in

tumor aggressiveness [61]. LCM, first established

for gene validation by Shukla et al. [62], allows the

separation of benign and malignant epithelial struc-

tures from the healthy stromal elements so that they

may be examined Individually. This process not only

reduces contamination of the desired sample by

other cellular elements but also maps the identified

changes to specific tissue regions. This technique

therefore allows the identification of gene changes

in an underrepresented number of cells that would

otherwise be diluted out within the whole tissue. For

instance, since the prostate gland is composed of

epithelia and the stroma, each with distinct physio-

logical roles, Gregg et al. [63] investigated transcrip-

tional changes between these two tissues in paired

tumor and normal prostate tissues. Although the au-

thors identified 3452 genes differentially expressed in

the cancer tissue relative to normal, only 583 of these

genes were unique to the PCa epithelial cells and

thus comprised unique gene expression patterns

found only within the cancer tissue itself and not

its surrounding healthy tissue.

Wilms tumor 1 (WT1), a transcription factor

involved in E-cadherin expression, was found to be

highly upregulated in the neoplastic prostate tissue.

WT1 has previously been identified as being upre-

gulated in PCa tissue [64, 65] and in a PCa cell line

[65]. In addition, WT1 expression has been shown

to be elevated in diverse cancer types, including leu-

kemia [66, 67], breast [64, 67, 68], ovarian [69],

mesothelioma and pulmonary adenocarcinomas

[70]. A recent paper by Brett et al. [71] showed con-

vincingly that WT1 levels were significantly

increased in highly invasive PCa cell lines, that

WT1 was sufficient to dampen E-cadherin transcript

level and that WT1 can significantly enhance the

migration of a non-invasive PCa cell line, LNCaP.

It is also important to note that the microarray ana-

lysis in the Gregg et al. paper [63] showed that the

gene profiles from their microdissected tumor epi-

thelial samples differed from previously published

data. For example, SPARC expression had been

shown to be upregulated in homogenized PCa

biopsy samples [72, 73]. However, in Gregg et al.
[63], SPARC was only upregulated in the surround-

ing stromal tissue. Similarly, CAV1 was also only

upregulated in the surrounding stromal tissue, in

contrast to the Balacescu et al. paper described pre-

viously. These results strongly suggest that some of

the tumor genes reported in the literature may be

derived from the stromal cell compartment and not

the neoplastic epithelial tissue [47].

RNA-seq
The advent of next-generation RNA-seq allows for

a more detailed window into the transcriptome,

including novel transcripts such as noncoding

RNAs not measured by conventional analyses

[74–76]. With the goal of identifying novel genomic

rearrangements, Maher et al. [77] reported using
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RNA-seq to interrogate the whole cellular transcrip-

tome of breast cancer cell lines and a small number of

PCa cell lines and tumors. The study identified 11

novel PCa-specific gene fusions (6 in PCa cell lines

and 5 in primary patient samples). A subsequent

study by Pflueger et al. [78] confirmed the upregula-

tion of the TMPRSS2–ERG fusion protein and

identified an additional ETS fusion using RNA-seq

[androgen-inducible tumor suppressor-(NDRG1)]

ERG in human biopsies. A follow-up report by

Pflueger et al. [79] investigating non-ETS gene fu-

sions in human PCa reported the importance of

IKBKB (IKK-beta) as being significantly upregulated

transcript in metastatic tissue, a finding confirmed by

the therapeutic value of IKK inhibitors in various

malignancies [80]. Interestingly, recent studies have

identified a few mutations in key genes in ETS-

negative PCa such as serine peptidase inhibitor,

Kazal-type 1 [164] and speckle-type POZ protein

[165]. Mutations in these genes increase invasion

and suggest a functional role of these genes in me-

tastasis and the formation of a novel subtype of PCa.

More recently, Palanisamy et al. [81] published re-

arrangements for v-raf-1 murine leukemia viral

oncogene homolog 1 (RAF) genes in a small per-

centage of PCa samples, and Beltran et al. [82] found

gene amplification of aurora kinase A (AURKA) and

the v-myc myelocytomatosis viral-related oncogene,

neuroblastoma-derived (avian) (MYCN) in a cohort

of prostate adenocarcinoma tissue samples. These

oncogenes are critical for cell proliferation and

their aberrant expression has been correlated with

increased invasiveness of PCa [83–85].

The ability to study noncoding RNA makes RNA-

seq a powerful tool in the identification of potential

regulators of PCa. Of particular interest, Prensner etal.
[76] discovered the prostate-specific noncoding RNA

gene, PCAT-1, which was found to be overexpressed

in a large subset of metastatic PCa and may contribute

to cell proliferation in these tumors. Furthermore, the

authors also mention that PCAT-1 resides in the 8q24

‘gene desert’ locus, a region that has been noted for

having a high number of cancer risk single nucleotide

polymorphisms (SNPs) and is the location of the

c-MYC oncogene.

Cancer cells in the circulation
After departing the prostate and upon entering the

bloodstream, PCa cells quickly adapt to this new

environment by elevating the levels of pro-survival

genes and reducing the levels of apoptosis-inducing

genes. When a typical epithelial cell leaves its home

tissue, it undergoes a particular form of apoptosis

called anoikis. Resistance to anoikis and ectopic sur-

vival is a prerequisite for invasion and metastasis to

occur. Cancer-related factors involved in cell sur-

vival, along with the circulating tumor cells

(CTCs) themselves, can be identified in the blood

stream and can conceivably play an important role in

early detection of metastatic PCa in a clinical setting.

In a recent paper, Liong etal. [86] attempted to tackle

the daunting task of identifying blood-based markers

of metastatic cancer from patients with high-grade

[Gleason score 7 (4þ 3)� 10] PCa using gene

microarrays and discovered seven possible deregu-

lated serum biomarkers, which included cytotoxic

and regulatory T-cell molecule (CRTAM), chemo-

kine (C-X-C motif) receptor 3 (CXCR3), Fc recep-

tor-like 3 (FCRL3), KIAA1143, Kruppel-like factor

12 (KLF12), transmembrane protein 204

(TMEM204) and SAM domain, SH3 domain and

nuclear localization signals 1 (SAMSN1). These

genes are mainly involved in immune responses,

chemotaxis and transcriptional regulation in carcino-

genesis [87–89]. The Liong study found CRTAM to

be significantly underexpressed in blood taken from

patients with aggressive PCa, suggesting a possible

role for T-cell deficiency. Further support for their

conclusions arises from studies that showed altered

KLF expression in tumors and during tumor progres-

sion [90–93]. CXCR3 was also found to be highly

upregulated in human PCa biopsies both at the

mRNA and protein level [94]. Furthermore,

CXCR3 activation promoted cell motility and inva-

siveness through a Matrigel matrix barrier in an

in vitro model using DU-145 and PC3 PCa cell

lines via PLCb3 and �-calpain activation [94].

PCa cells that invade the blood stream are also

known as CTCs. There is an increasing body of evi-

dence showing that CTCs are often present in pa-

tients with high-grade PCa [95–98]. Several methods

have been developed to collect CTCs for study as

markers for disease or metastasis. One approach is to

capture the CTCs with a microfiltration system [99].

This system differentiates the PCa-specific CTCs

from other cell types based on the size selection of

the large epithelial-like cells combined with a lack of

the CD45 leukocyte marker. The trapped cells can

then be collected individually with a micromanipu-

lator device and further assessed for gene expression

profiles. Although this technique has been around for

over half a decade, it has only been sparingly applied
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to analyze the transcriptome of circulating breast

cancer [100–104] and ovarian cancer cells [105, 106].

Gene expression studies of CTCs collected from

PCa patients have been limited to a small subset of

genes. For example, a recent study analyzed only 84

EMT-related genes in a microfluidics-based micro-

array system following CTC isolation and collection

[107]. Although somewhat limited in scope, multiple

genes involved in PCa survival and invasion were

identified including GSK3b, WNT5A, EGFR,

MMP9, IGF1R, FOXA2, TCF3, SPP1, FOLH1,

PIM2 and ACP5. Increases in GSK3b are known

to be associated with pro-survival of PCa through

the mammalian target of rapamycin (MTOR) signal-

ing pathway [108]. GSK3b is also a regulator of cel-

lular proliferation by route of being a key member of

the canonical WNT signaling pathway and its down-

stream lypmphoid enhancer-binding factor/T-cell

specific transcription factors (LEF/TCF) [109].

Furthermore, GSK3b helps regulate the activation

of b-catenin. Alterations in Wnt-induced b-catenin

have been detected in 85% of all PCa patients with

skeletal metastases [110]. Wnt–b-catenin signaling

has also been shown to enhance tumorigenicity of

phosphatase and tensin homolog (PTEN)-mutated

PC3 cells by inducing Akt activity [111]. On a simi-

lar note, WNT5A has been shown to be involved in

PCa invasion [112, 113], although the mechanism is

still under debate and appears to differ greatly based

on the experimental model. Another gene identified

in the Chen et al. study is SPP1, which encodes for

osteopontin, a protein involved in the attachment of

osteoclasts to the mineralized bone matrix, via its

high-affinity binding to hydroxyapatite.

Osteopontin is found at significant levels throughout

the bone skeleton [114] and has been reported to

promote PCa invasion and to be associated with

poor survival [115]. Osteopontin’s role in bone cel-

lular adhesion makes it a particularly attractive can-

didate as a therapeutic target for blocking metastatic

PCa adhesion to the bone matrix.

Adherence and extravasation
Exit from the blood stream (extravasation) into the

microenvironment of the bone is the most poorly

understood step of PCa metastasis. Invasion of PCa

cells through the microvasculature is an active pro-

cess of navigation that requires multiple sequential

steps of adhesion, protease degradation of the sur-

rounding matrix and migration/invasion through

the surrounding tissue. Factors secreted by PCa

cells, such as those found to be altered in the osteo-

lytic PC3 cell line, desmin, I-plastin, laminin-5, in-

sulin-like growth factor-binding protein 4, myosin

light chani kinase 2 and clusterin [116], are thought

to alter bone homeostasis by disrupting the balance

between bone growth and bone resorption [117–

120]. Therefore, the interaction between PCa cells

and cells within the bone microenvironment is sus-

pected to play a critical role in secondary tumor for-

mation and progression since tumor cells need to

physically communicate with the local microenvir-

onment in order to properly adhere, invade and pro-

liferate in the metastatic site [121, 122].

One method for studying the communication be-

tween PCa cells and bone is through co-culturing

these two cell types. Wang et al. [123] investigated

bone marrow stromal cells isolated from the calvaria

of neonatal mice co-cultured with the highly inva-

sive, androgen-insensitive PC3 cells. The cells were

co-cultured for 48 h either in direct physical contact

or separated by a permeable membrane. Microarray

analysis showed that several gene families and signal

transduction pathways were affected by the inter-

action between PCa cells and bone cells including:

TGFb superfamily genes (TGFb receptor and a

downstream signal transduction molecule Smad9);

colony-stimulating factors (CSF-1 and its receptor,

CSF-1R); ECM protein and cell adhesion molecules

(collagen types III, IV, VIII and XII); other related

cell adhesion molecules (integrin �1 and integrin

�2); matrix proteases (cathepsinK, MMP-2, MMP-

9, and uPA) and MAPK signal transduction mol-

ecules (MKK4, mta-1 and raf-1). As anticipated,

the two co-culture conditions (physical versus

nonphysical contact) produced different results, al-

though there were several differentially expressed

genes shared by both comparisons. These results sug-

gest that some of the genes that regulate the invasive

potential of PCa cells may be regulated by factors

secreted by the microenvironment of the secondary

metastatic site [123].

A potential limitation to this experimental design

is that alterations in gene expression levels may be

derived from the cancer cells coming into contact

with any foreign cell type. Therefore, these changes

may not be specific to bone. To address this issue,

Zhang et al. [124] compared the gene expression of

PC3 cells co-cultured with bone cells to those cul-

tured with normal human prostate stroma. Only two

genes were identified as being specific to contact

with bone-derived cells: an ECM gene, Collagen
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III and urokinase-type plasminogen activator (uPA).

uPA has been shown to facilitate cell migration and

invasion not only of malignant cancer cells but

during normal, physiological events as well [125–

127]. Additionally, uPA overexpression has been

shown to be associated with the more aggressive

PCa cell lines [128, 129], is correlated with poor

patient prognosis [130] and is constitutively secreted

by bone-homing PCa cell lines, such as PC3 [125].

Even more convincingly, uPA was found to be ex-

pressed at a higher level in PCa metastasis from the

bone as compared with PCa metastases from the liver

and lymph nodes [45].

An additional co-culture experiment, investigat-

ing a less invasive PCa cell line, LNCaP, found al-

terations in the expression of many of the oncogenic

and survival-related genes following the co-culture

with bone derived, conditioned media [131]. For

instance, the oncogene survivin (BIRC5) was

found to be significantly upregulated, a result con-

firming a previous study in cancer tissue samples

[132]. This gene has formerly been found to increase

proliferation, motility and invasion of PCa cells

through a b-catenin-mediated process [133] and is

targeted by miR-203, a microRNA often silenced in

malignant PCa [134]. Furthermore, the authors

found that pro-survival genes, such as ESPL1, were

upregulated, whereas apoptosis mediators, CRADD

and BCAP29, were both downregulated, indicating

that the bone microenvironment may have the po-

tential to facilitate/promote the survival of PCa cells.

In a different report, Shiirevnyamba et al. [135]

compared gene expression of tumors that induce

bone loss (PC3) to those that promote bone

growth (MDA-PCa2b). This report did not identify

any significant differences in gene expression be-

tween PC3 cells cultured alone and those co-cul-

tured under bilayer conditions. Nor did they find a

significant difference in the gene expression of

MDA-PCa2b cells under any culture conditions,

whatsoever. Only under direct contact were any al-

terations in gene profiles found, with only nine genes

being significantly different. However, four of

these genes have previously been found to partici-

pate in osteoclastogenesis: Interleukin-1b (IL-1b),

Cyclooxygenase-2 (COX-2), IL-6 and C3.

Cyclooxygenase-2 is an inducible prostaglandin syn-

thesis enzyme that is upregulated in many cancers

and is associated with high mortality in PCa [136].

In addition, COX-2 is indirectly involved in bone

resorption and osteoclastogenesis through its

interactions with prostaglandin E2 (PGE2) [137]

and is known to increase the PCa invasive potential

[138]. Interleukin-6 is a mediator of PGE2-induced

suppression of the production of bone growth and is

thereby important in the breakdown of bone [139,

140]. It has also been found to be associated with

more aggressive PCa [141], is upregulated in the ma-

jority of PCa bone metastases and PCa soft tissue

metastases [142] and is thought to be involved in

growth differentiation factor-15 alterations in the in-

vasive potential of PCa [143]. One of the other four

upregulated genes not associated with osteoclasto-

genesis was secreted protein acidic and rich in cyst-

eine (SPARC; also known as osteonectin), a gene

that was previously identified as upregulated in

human PCa neoplastic tissue [72, 73]. SPARC has

been assumed to be important in human PCa bone

metastasis as a major bone-derived chemoattractant

for PCa cells [144] and has been found to be

involved in PCa cell proliferation and matrix inva-

sion [145]. SPARC’s apparent involvement in both

osteoclastogenesis at the level of the bone cell (via

stimulation of osteoprotegerin [146, 147]) and

within PCa tissue implicates this gene as having a

greater role in PCa metastasis than previously

reported.

THENEED FORDATAMINING
The recent explosion in high-throughput methods

that survey global gene expression has created a

major analytical bottleneck. In each of the aforemen-

tioned studies, the overwhelming amount of data

severely limit the authors’ ability to discuss every

differentially expressed gene and most manuscripts

selectively provide details based on the narrow con-

text of the paper and support from the published

literature. There are many genes that statistically fit

differential expression cut-offs in these experiments,

but are omitted in the discussion, therefore it would

be extremely important for future studies to revisit

some of these data sets and parallel some of the find-

ings from independently generated experiments to

highlight new likely participants in PCa metastasis.

Knowledge about these genes could greatly contrib-

ute to our interpretation of the molecular mechan-

isms involved in the progression of PCa and help

elucidate possible therapeutic venues for treating

metastasizing cancer.

The possibility of overlooked data in large-scale

genomic experiments has prompted a number of
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data-mining investigations aimed at searching a

decade of publically stored genomic databases

[148–150]. For example, Chen et al. [149] searched

public databases storing genomic data of urine col-

lected from PCa patients. They performed three

levels of data mining: microarray gene expression

data, gene ontology assignment and pathway enrich-

ment, to highlight 19 putative markers among 3964

transcripts found to be upregulated in PCa samples.

This list of 19 proteins present in PCa urine samples

was subsequently subjected to pathway enrichment

analysis producing 10 candidates that were identified

based on co-expression, shared protein domains, co-

localization and protein physical interaction relation-

ships, including: RBP4 (retinol binding protein 4,

plasma), CFH (complement factor H), ITIH4

(inter-alpha (globulin) inhibitor H4) and FTL (fer-

ritin, light polypeptide), (all linked due to co-local-

ization); and APOD (apolipo-protein D), RBP4 and

CRABP1 (cellular retinoic acid-binding protein 1)

(all found to share protein domains according to

Interpro and Pfam databases). In addition, CYP2B6

(cytochrome P450, family 2, subfamily B, polypep-

tide 6) was found to connect with four putative

markers because of co-localization; C6 (complement

component 6) was linked to RBP4 and ITIH4 by

co-localization and to CFH and RECK (reversion-

inducing cysteine-rich protein with kazal motifs) by

sharing the same protein domains; transthyretin was

found to physically interact with RBP4, CFH and

CLU (clusterin) genes; OSBPL1A (oxysterol-bind-

ing protein-like 1A) co-localized with APOD and

IGSF8 (immunoglobulin superfamily, member 8);

CD70 (CD70 molecule) connected with the candi-

date marker CD27 (CD27 molecule) by co-localiza-

tion and physical interaction; CD70 shared a protein

domain with C1QTNF3 (C1q and tumor necrosis

factor-related protein 3). Furthermore, they found

that 10 of the 19 urinary markers were closely asso-

ciated with tumor cell development, growth and

proliferation pathways [CLU, CD27, CFB (comple-

ment factor B), RBP4, ITIH4, PECAM1 (Platelet

endothelial cell adhesion molecule), RECK,

MGAT5 (hypothetical LOC151162), APOD and

LGALS3 (Lectin, galactoside-binding, soluble, 3)].

Of the genes listed above, only CLU, LGALS3,

MGAT5, RECK and SELENBP1 have been

previously involved in PCa invasion. Clusterin is a

stress-activated and apoptosis-associated molecular

chaperone that functions to protect cells from various

stressors and is highly expressed in many human

cancers including PCa with high Gleason scores

[151]. Clusterin confers therapeutic resistance when

overexpressed [152], is upregulated in PC3 cells

[116] and is currently being investigated in phase

trials as a potential cancer therapeutic [153].

Recently, Shiota et al. reported that CLU knock-

down dramatically inhibits PCa invasion and meta-

static potential of PC3 cells [154, 155] through a

TGF-beta/EMT-mediated process. N-acetylgluco-

saminyltransferase V (MGAT5) is a glycoprotein

that stabilizes matriptase and is highly expressed in

PC3 cells (highly invasive), but not in LNCap (non-

invasive). Upregulation of MGAT5 in LNCaP

significantly enhanced the cells’ invasive ability,

whereas knockdown of MGAT5 in PC3 cells atte-

nuated the metastatic potential of these cells [156].

Galectin-3 is a carbohydrate-binding protein whose

primary function is thought to be as a scaffold [157].

In human PCa, the levels of galectin-3 cleaved by

proteases increase with PCa progression. Further-

more, galectin-3 knockdown in PC3 cells resulted

in decreased cell migration, cell invasion and sup-

pressed MMP-2 and MMP-9 activity, at least par-

tially due to its role in stabilizing p21-induced

apoptosis [158]. A novel drug, Lac-L-Leu, which

binds and inhibits galectins, resulted in a dose-de-

pendent inhibition of PCa metastasis [159]. Rever-

sion-inducing cysteine-rich protein with Kazal

motifs (RECK) is a membrane-bound protein that

is thought to inhibit MMPs and angiogenesis. When

RECK levels are elevated in human tumors, there is

generally a reduction in local invasion, metastasis and

improved prognosis [160, 161]. Interestingly, in a

related study, overexpression of RECK was found

to cause a significant reduction in the invasion of

DU-145 cells and a decrease of pro-MMP-9 and

of pro-/active MMP-14 [162]. Why RECK was

found to be upregulated in the analyzed microarrays

is still under debate, but may be due to differences in

their sample populations and in their experimental

techniques.

A recent paper comparing RNA-seq data from

multiple studies from a reference database demon-

strates the value of identifying PCa-specific splicing

[163]. The authors compared RNA-seq data sets

generated by two independent groups and dis-

covered that the two data sets are extremely diver-

gent, suggesting either heterogeneity in the cancer

types or differences in sample preparation. Due to

the massive discrepancies, only two splice events

were found, from the genes protein phosphatase 3,
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catalytic subunit, alpha isozyme (PPP3CA) (upregu-

lated) and solute carrier family 20 (phosphate trans-

porter), member 2 (SLC20A2) (down-regulated) in a

tumor-specific fashion; both genes are purported to

be involved in calcium transport and calcium-de-

pendent cellular events, but have not been reported

to have a function in PCa metastasis until this article.

CONCLUSIONS
PCa is a complex disease that involves the activation

of many different transcripts and simultaneous inacti-

vation or repression of tumor suppressor genes. Some

of these activated genes are more specifically

involved in tumor growth at the primary site,

whereas other transcripts are activated and may fa-

cilitate events orchestrating intravasation, survival,

adhesion or extravasation into the bone microenvir-

onment (Figure 1 and Table 1). In this review, we

have summarized transcriptional changes identified

during various steps of PCa metastasis quantified

either by microarrays or RNA-Seq analysis; although

not covered in this review due to space limitations,

future reviews covering the alterations in

microRNA, epigenomics and proteomics during

each stage of metastasis would help make an even

more cohesive picture of the critical genes involved

in the metastatic potential of PCa. Given the simila-

rities in metastatic outcome of the studies summar-

ized above, one would have predicted that the

transcriptional changes identified from patient-

derived metastatic tissues would partly resemble

those from immortalized tumor cell lines explored

in animal models. However, this has not yet been

the case, and there continues to be a great discrep-

ancy between patient-derived information, in vitro
and in vivo animal models or xenografts.

Nonetheless, one common thread among all these

studies is the emergence of candidate genes that

share ontological similarities, suggesting that particu-

lar molecular pathways are mechanistically more

relevant during the process of PCa metastasis to

bone. In general, transcriptome analysis has greatly

expanded the repertoire of candidate promoter and

suppressor genes implicated in PCa invasion and me-

tastasis. Although genomic tools and applications

have greatly expedited the discovery of candidate

biomarkers or therapeutic targets, our ability to im-

prove diagnostics, prognosis or to overcome drug

resistance has been at a standstill. Future investments

need to focus on improving cell-based or animal

models that can be used to characterize the metastatic

potential of patient-derived primary tumor cells, and

the ability of combinatorial chemotherapies to

Table 1: List of genes altered during PCa growth and metastasis

Step in metastasis Tissue/technique Gene name References

Adhesion/intravasation Primary tumor/macrodissection F2R [28]
MUC1 [30^32]
NRP1 [33, 34]
LOX [35, 36]
ANGPT2 [37, 38]
TEM7 [39, 40]
CAV1, BCL2, FBLN1, FBLN4, FBLN5 [47]

Primary tumor/needle biopsy HPN, ERG, AMACR,GSTP1 [23, 25, 52^54]
Primary tumor/LCM WT1, SPARC, CAV1 [63]
Primary tumor/RNA-seq TMPRSS2-ERG, NDRG1-ERG [78]

IKBKB [79]
RAF [81]
AURKA, MYCN [82]
PCAT-1 [76]

Circulation/survival Blood/ serum collection CRTAM, CXCR3, FCRL3, KLF12, TMEM204, SAMSN1 [86]
Cancer cells/CTCs GSK3b,WNT5A, EGFR, MMP9, IGF1R, FOXA2,

TCF3, SPP1, FOLH1, PIM2, ACP5
[107]

Adherence/extravasation Cancer cells/co-culture with bone cells TGFb, SMAD9, CSF1, CSF1R, COL3A1, ITGA1, ITGA2,
CTSK, MMP2, MMP9, PLAU, MAP2K2, MTA1, RAF1

[123]

COL3A1, PLAU [124]
IL1B, COX2, IL2, C3, SPARC [135]

Cancer cells/co-culture with
conditioned media

BIRC5, ESPL1,CRADD, BCAP29 [131]

Bold indicates gene downregulation.
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remove all cancer cells without selecting for drug-

resistant clones. The challenge will be to synergize

genomic and functional studies in a useful way such

that therapeutic information can be derived timely to

save a patient’s life. Future studies and therapeutic

strategies need to take into account the dynamic mo-

lecular complexity of invasion and metastasis impli-

cating cancer cells, their tissue of origin and their

metastatic microenvironment.

Key points

� PCa is the second leading cause of cancer-related death inmen
� Early detection of PCa increases the survival of the patient
� Novel biomarkers are strongly needed to improve detection,

prediction and novel therapeutic targets for PCa treatment
� Global gene expression methods such as gene microarrays and

RNA-seq are the next step in the identification of genes altered
during themetastasis of PCa.
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