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Protamines are the major nuclear sperm proteins. The human sperm nucleus contains two types of protamine: pro-
tamine 1 (P1) encoded by a single-copy gene and the family of protamine 2 (P2) proteins (P2, P3 and P4), all also
encoded by a single gene that is transcribed and translated into a precursor protein. The protamines were discovered
more than a century ago, but their function is not yet fully understood. In fact, different hypotheses have been pro-
posed: condensation of the sperm nucleus into a compact hydrodynamic shape, protection of the genetic message
delivered by the spermatozoa, involvement in the processes maintaining the integrity and repair of DNA during or
after the nucleohistone–nucleoprotamine transition and involvement in the epigenetic imprinting of the spermatozoa.
Protamines are also one of the most variable proteins found in nature, with data supporting a positive Darwinian
selection. Changes in the expression of P1 and P2 protamines have been found to be associated with infertility in man.
Mutations in the protamine genes have also been found in some infertile patients. Transgenic mice defective in the
expression of protamines also present several structural defects in the sperm nucleus and have variable degrees of
infertility. There is also evidence that altered levels of protamines may result in an increased susceptibility to injury
in the spermatozoan DNA causing infertility or poor outcomes in assisted reproduction. The present work reviews
the articles published to date on the relationship between protamines and infertility.
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Introduction

Protamines and DNA were isolated and discovered from the
sperm more than a century ago by Friedrich Miescher (Miescher,
1874; Kossel, 1928; Felix, 1960; Dixon and Smith, 1968; Dahm,
2005). They are the most abundant sperm nuclear proteins in many
species and act by packaging the paternal genome (Bloch, 1969;
Ando et al., 1973; Calvin, 1976; Mezquita and Teng, 1977, 1978;
Subirana, 1983; Oliva and Dixon, 1991a; Aoki and Carrell, 2003;
Lewis et al., 2003a). They are proteins with a high content of pos-
itively charged amino acids, particularly arginine (48% in human
protamines; Figure 1).

In mammals, two types of protamines are known: the P1 pro-
tamine and the family of P2 proteins. The P1 protamine is present
in all species of vertebrates studied (McKay et al., 1985, 1986;
Gusse et al., 1986; Balhorn et al., 1987; Bellvé et al., 1988; Oliva
and Dixon, 1991a; Chauvière et al., 1992; Yoshii et al., 2005).
Protamine P2 is formed by the P2, P3 and P4 components, and it is
only present in some mammalian species including human and

mouse (Balhorn et al., 1977, 1987; McKay et al., 1985, 1986;
Gusse et al., 1986; Bélaïche et al., 1987; Bower et al., 1987;
Bellvé et al., 1988; Oliva and Dixon, 1991a; Yoshii et al., 2005).

Several functions have been proposed for the protamines
(reviewed by Oliva and Dixon, 1991a). The most obvious would be:

(i) Generation of a condensed paternal genome with a more
compact and hydrodynamic nucleus. The spermatozoa with the
most hydrodynamic nucleus would move faster, being able to fer-
tilize the oocyte first. Therefore, the most condensed and hydrody-
namic sperm would transmit the advantageous trait to future
generations through a marked Darwinian selection.

(ii) Protecting the paternal genetic message delivered by the
spermatozoa through making it inaccessible to nucleases or
mutagens potentially present in the internal or in the external
media. This hypothesis could be supported by recent observa-
tions in assisted reproduction linking defects in protamination
with injured spermatozoal DNA, compatible with fertilization of
the oocyte but precluding subsequent embryo development.
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However, of relevance to the understanding of the mechanisms
leading to infertility, the presence of protamines may also recruit
and/or potentiate the effect of certain toxins or heavy metals in
the testis or spermatozoa.
(iii) Competition and removal of transcription factors and other

proteins from the spermatid resulting in a blank paternal genetic
message, devoid of epigenetic information, therefore allowing its
reprogramming by the oocyte.

(iv) Involvement in the imprinting of the paternal genome dur-
ing spermatogenesis. Also protamines themselves could confer an
epigenetic mark on some regions of the sperm genome, affecting
its reactivation upon fertilization.

In addition to the above potential functions, it has also been pro-
posed that (v) protamines could be part of a checkpoint during
spermiogenesis and (vi) they could have a role in the fertilized ova.

The present review focuses on the available evidence between pro-
tamines and male infertility. Thus, it complements and updates more
extensive previous reviews on the nucleohistone–nucleoprotamine
transition (Mezquita, 1985; Poccia, 1986; Ward and Coffey, 1991;
Oliva and Dixon, 1991a; Dadoune, 1995, 2003; Wouters-Tyrou et al.,
1998; Raukas and Mikelsaar, 1999; Braun, 2001; Aoki and Carrell,
2003; Meistrich et al., 2003; Kierszenbaum and Tres, 2004; Hogarth
et al., 2005). The role of histones (His), histone modifications, remod-
elling factors and epigenetic changes during spermatogenesis have

also been elegantly reviewed by different groups (Sassone-Corsi,
2002; Lewis et al., 2003b; Govin et al., 2004; Caron et al., 2005;
Horsthemke and Ludwig, 2005; Kimmins and Sassone-Corsi, 2005;
Morgan et al., 2005; Rousseaux et al., 2005). To cover the subject of
the DNA-repair mechanisms, oxidative stress and sperm DNA integ-
rity and male infertility, the reader is referred to recent articles and
reviews (McPherson and Longo, 1993; Aitken and Krausz, 2001;
Baarends et al., 2001; Kierszenbaum, 2001; Oehninger et al., 2003;
Sakkas et al., 2003; O’Brien and Zini, 2005; Seli and Sakkas, 2005;
Silva and Gadella, 2005; Erenpreiss et al., 2006; Muratori et al.,
2006).

The following section of this review has been included to provide
a brief synthetic summary of the protamine genes, their evolution,
expression and involvement in the nucleohistone–nucleoprotamine
transition. This initial section is not comprehensive but has been
included to focus the subject and to facilitate reading of the rest of
the review. In contrast, the rest of the review is intended to be com-
prehensive, for all articles published to date concerning protamines
and infertility in man. The articles considered for inclusion were
selected from the results of Medline and Journal Citation Report
(ISI Web of Knowledge) searches with the keyword ‘protamine’
alone or combined with other keywords (‘infertility’, ‘human’ +
‘sperm’ and ‘human’ + ‘testis’).

Summary of protamine structure and function

Evolution of the protamines

Protamines are proteins that have increased the number of posi-
tively charged residues in evolution allowing the formation of a
highly condensed complex with the paternal genomic DNA, which
has a strong negative charge (Oliva and Dixon, 1990, 1991a;
Retief et al., 1993; Oliva, 1995; Queralt et al., 1995; Lewis et al.,
2003a). In addition, protamines of different species incorporate
cysteines (Cys) in their sequence allowing the formation of disul-
phide bonds between adjacent protamine molecules, therefore
strongly stabilizing the nucleoprotamine complex (Saowaros and
Panyim, 1979; Balhorn et al., 1992; Lewis et al., 2003a; Vilfan
et al., 2004). Evidence already exists that protamines may have
evolved from histone H1 ancestors (Ausió, 1999; Lewis et al.,
2004; Eirin-Lopez et al., 2006). Another characteristic of the pro-
tamines is that they are among those proteins with one of the high-
est rates of evolutionary variation (Oliva and Dixon, 1991a; Oliva,
1995; Lewis et al., 2003a). It has been proposed that one cause of
this rapid evolution rate could be a positive Darwinian selection
(Rooney and Zhang, 1999; Clark and Civetta, 2000; Wyckoff
et al., 2000). This proposal is supported by the observation, when
comparing the sequence of protamines from different species, that
the ratio of non-synonymous substitutions (the nucleotide changes
resulting in a change of amino acid) per residue to synonymous
substitutions is greater than 1 and also that the protamine exons
evolve faster than the protamine intron (Rooney and Zhang, 1999;
Wyckoff et al., 2000). However, a closer examination revealed an
unusual form of purifying selection, where the overall number of
arginine residues is maintained at about 50% in mammals, but the
total number of amino acids and the positions of the arginine resi-
dues have changed considerably (Rooney et al., 2000). It has been
proposed that the driving forces for this arginine-rich selection
could be (i) the DNA-binding function of the protamine P1 resulting

Figure 1. Transcription of the protamine genes and translation and processing
of human protamines. (A) Schematic representation of the genomic structure
of protamine genes (PRM1 and PRM2) and the transcription, translation and
processing involved in the synthesis of mature protamine. Protamine 1 (P1) is
synthesized as a mature precursor, whereas the protamine 2 (P2) family is gen-
erated by partial processing of a single P2 precursor (see text for further
details). TNP2, gene-encoding transition protein 2. (B) Amino acid sequences
for human P1 and for the main components (P2, P3 and P4) of the protamine
2 family. It should be noted that P2 is the most abundant component, while P3
and P4 are minor components of the P2 family. The arginine, histidine and
lysine residues are shown in bold. Cysteines are underlined.
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in a more compact sperm nucleus and (ii) the interaction and
strong activation of oocyte creatine kinase II by protamine (Ohtsuki
et al., 1996; Rooney and Zhang, 1999). While the evolution of pro-
tamines is providing important clues towards the understanding of
their function, this aspect is not covered further here, so the reader
is referred to other reviews and articles for a more in-depth ana-
lysis of this topic (Oliva and Dixon, 1991a; Ausió, 1999; Clark
and Civetta, 2000; Wyckoff et al., 2000; Torgerson et al., 2002;
Lewis et al., 2003a; Eirin-Lopez et al., 2005).

Genomic organization and transcription of the protamine genes

Humans have one copy of the protamine 1 gene (PRM1) and one
copy of the protamine 2 gene (PRM2) per haploid genome, located
on chromosome 16 (Figure 1; Krawetz et al., 1989; Reeves et al.,
1989; Domenjoud et al., 1990; Oliva and Dixon, 1990, 1991a;
Engel et al., 1992; Nelson and Krawetz, 1993, 1994; Queralt et al.,
1993; Schlüter et al., 1996). Both genes contain a single intron
(Figure 1). The genomic sequences of the PRM1 and PRM2 genes
are organized in the form of a loop domain together with the tran-
sition protein 2 gene (TNP2) and a sequence called gene4 (Figure 1;
Engel et al., 1992; Choudhary et al., 1995; Schlüter and Engel,
1995; Schlüter et al., 1996; Kramer and Krawetz, 1998; Wykes
and Krawetz, 2003; Martins et al., 2004). This spatial organization
may allow a co-ordinated expression of these genes during sper-
miogenesis. However, while the protamine (PRM1 and PRM2)
and transition protein (TNP2) genes are expressed at high levels
and their function has been extensively studied, the potential role
of gene4 is more controversial and is expressed at very low levels,
if at all, in humans (Schlüter and Engel, 1995; Schlüter et al.,
1996; Kramer and Krawetz, 1998). Further studies should clarify
whether or not gene4 is a pseudogene in humans. The gene4
sequence has also been called protamine 3 (Prm3; or gene4/
Prm3), based on some evidence that it may have originated by
duplication of the PRM1 gene (Schlüter et al., 1996; Kramer and
Krawetz, 1998). However, the name Prm3 is misleading since its
predicted amino-acid sequence is not at all related to protamines,
as it lacks arginine clusters and, instead, is rich in glutamic acid.
Therefore, gene4/Prm3 is not likely to bind DNA and should not
be called protamine.

The positioning of nucleosomes in the protamine 1 gene has
been assessed in vivo and in vitro using the rat as a model (Adroer
and Oliva, 1998). The identification of regulatory elements and
the expression of the protamine genes have been studied using a
variety of approaches including homology comparisons, trans-
genic or knockout mice and different in vivo and in vitro
approaches (Tamura et al., 1992; Queralt and Oliva, 1993, 1995;
Zambrowicz et al., 1993; Nelson and Krawetz, 1994; Choi et al.,
1997; Stewart et al., 1999; Giorgini et al., 2001; Hummelke and
Cooney, 2004; Aleem et al., 2005). For further information on this
subject, the reader is referred to excellent reviews and articles on
the transcriptional, molecular and cellular mechanisms in sperma-
togenesis (Iatrou and Dixon, 1978; Mezquita, 1985; Hecht, 1988,
1993; Perreault, 1992; Braun et al., 1995; Dadoune, 1995, 2003;
Kramer and Krawetz, 1997; Siffroi et al., 1999; Steger, 1999,
2001; Steger et al., 2000, 2002; Grootegoed et al., 2000; Aoki and
Carrell, 2003; Hebbar and Archer, 2003; Kleene, 2003; Dadoune
et al., 2004; Kierszenbaum and Tres, 2004; Kimmins et al., 2004;
Rockett et al., 2004; Krawetz, 2005; Miller et al., 2005; Tanaka

and Baba, 2005). Despite substantial knowledge available on the
fundamental aspects of the transcriptional mechanisms, so far
there have been relatively few studies assessing the potential
involvement of changes in protamine gene transcription factors in
human male infertility (Sassone-Corsi, 2002; Blocher et al., 2003;
Kimmins et al., 2004; Krausz and Sassone-Corsi, 2005). Because
of the extensive evidence for deregulation of protamine expression
in male infertility, this issue would deserve further attention in the
future.

Synthesis of protamines

The protamine P1 is synthesized as a mature protein, whereas the
components of the P2 family are generated by proteolysis from a
precursor encoded by a single gene (Figure 1A and B; Mckay et al.,
1986; Yelick et al. 1987; Sautière et al., 1988; Chauvière et al.,
1992; Green et al., 1994; Queralt et al., 1995; Wouters-Tyrou
et al., 1998). Members of the P2 family differ only by the N-terminal
extension of 1–4 residues, although the P2 component is the most
abundant (Figure 2; Gusse et al., 1986; McKay et al., 1986;
Sautière et al., 1988; Martinage et al., 1990; Arkhis et al., 1991;
Oliva and Dixon, 1991a; Bianchi et al., 1992; Alimi et al., 1993;
Yoshii et al., 2005). The content of protamine P1 in the human
sperm nucleus is similar to the content of protamine P2 (P1/P2
ratio of approximately 1; Balhorn et al., 1988; de Yebra et al.,
1993; Bench et al., 1996; Corzett et al., 2002; Mengual et al.,
2003a; Aoki et al., 2005a). However, despite this, their functions
may differ. Arguments in favour of the hypothesis of a different
function for P1 and P2 protamines could be that (i) unlike P1 pro-
tamine, P2 protamines are zinc-finger proteins with one Cys2–
His2 motif (Bianchi et al., 1992), (ii) P2 proteins are expressed
only in some mammals whereas P1 is invariably present in all
mammals, indicating a more basic and conserved function for P1
and an accessory function for P2 protamines in some species and
(iii) alterations of P1 or P2 protamines in infertile patients impact
differently on the integrity of the DNA and in the assisted repro-
duction outcome (Aoki et al., 2005b).

Both protamines will undergo post-transcriptional modifica-
tions before binding to the DNA and generating the highly com-
pact nucleoprotamine complex.

The nucleohistone–nucleoprotamine transition

In the final stage of spermatogenesis, the nucleosomal structure is
progressively disassembled, then replaced by TNPs and finally by
protamines (Figure 2; reviewed by Mezquita, 1985; Poccia, 1986;
Oliva and Dixon, 1991a; Hecht, 1993; Green et al., 1994;
Dadoune, 1995; Grootegoed et al., 2000; Meistrich et al., 2003;
Kierszenbaum and Tres, 2004; Rousseaux et al., 2005). This tran-
sition is preceded by extremely marked changes in many chroma-
tin activities (Puwaravutipanich and Panyim, 1975; Oliva et al.,
1982; Mezquita, 1985; Oliva and Dixon, 1991a; Dadoune, 1995,
2003; Wouters-Tyrou et al., 1998; Fuentes-Mascorro et al., 2000;
Braun, 2001; Govin et al., 2004; Kierszenbaum and Tres, 2004).
One of the initial chromatin changes is the incorporation of his-
tone variants (Prigent et al., 1996, 1998; reviewed by Churikov
et al., 2004; Govin et al., 2004; Loppin et al., 2005; Tanaka et al.,
2005). Another important early event is histone hyperacetylation
that occurs during spermiogenesis before the nucleosome disas-
sembly in vivo (Candido and Dixon, 1972; Oliva and Mezquita,
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Figure 2. Schematic representation of the major chromatin changes occurring during the nucleohistone–nucleoprotamine transition in spermiogenesis and the sub-
sequent nucleoprotamine unpacking and nucleohistone structure reconstitution at fertilization. The round spermatid (top left) has a chromatin structure similar to
that present in all somatic cells, with the DNA organized in nucleosomes and many genes being actively transcribed. During the initial stages of spermiogenesis,
histones are hyperacetylated and undergo other modifications, nucleosomes are disassembled, topoisomerase II unwinds superhelicity of the DNA, transcription
ceases and transition proteins (TNPs) bind the DNA. At the final stage of spermiogenesis, TNPs are removed and protamines progressively bind the DNA. During
sperm maturation in the epididymis, the formation of disulphide bonds in protamines further stabilizes the nucleoprotamine complex. At fertilization, the highly
compact nucleoprotamine structure must be unpacked and reorganized into a nucleosomal structure. Histones are represented in red and DNA is represented by blue
lines. The presence of hyperacetylation in the N-terminal histone tails is indicated by ‘Ac’. Transition proteins are represented as orange elongated ovals.
Protamines are represented as red elongated ovals.
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1982; Grimes and Henderson, 1984; Meistrich et al., 1992;
Hazzouri et al., 2000; Marcon and Boissonneault, 2004). It was
postulated that histone hyperacetylation and rapid turnover of
acetyl groups could rapidly and reversibly expose binding sites in
chromatin for subsequent binding of chromosomal proteins (Oliva
and Mezquita, 1982). More recently, it was also shown in vitro
that histone hyperacetylation facilitated nucleosome disassembly
and histone displacement by protamines (Oliva and Mezquita,
1986; Oliva et al., 1987). Also, hyperacetylated nucleosomes were
shown to appear in a more relaxed structure upon binding to elec-
tron microscopy grids (Oliva et al., 1990). It has been shown that
the testis-specific bromodomain-containing protein (BRDT) binds
to hyperacetylated histone 4 (H4) triggering a reorganization of
the chromatin (Pivot-Pajot et al., 2003). Impaired H4 hyper-
acetylation has been detected in infertile patients (Sonnack et al.,
2002; Faure et al., 2003).

Concomitant with nucleosome disassembly, the sperm DNA is
extensively complexed with TNPs (Figure 2; Kierszenbaum,
2001; Meistrich et al., 2003). Transition proteins are then finally
replaced by protamines to form a highly compact nucleoprotamine
complex (Figure 2). It is known that protamines are phosphorylated
before binding to DNA and that a substantial dephosphorylation
takes place concomitant with nucleoprotamine maturation (Ingles
and Dixon, 1967; Marushige and Marushige, 1978; Oliva and
Dixon, 1991a; Papoutsopoulou et al., 1999). The dynamics of pro-
tamine binding to DNA have also been studied (Prieto et al., 1997;
Brewer et al., 1999, 2003). After binding to the DNA, the forma-
tion of disulphide bonds between protamines further stabilizes the
nucleoprotamine complex (Balhorn et al., 1992). Different models
for the structure of the nucleoprotamine have been proposed
(Balhorn, 1982; Allen et al., 1993, 1997; Hud et al., 1993; Raukas
and Mikelsaar, 1999; Vilfan et al., 2004; Biegeleisen, 2006).
However, despite the substantial amount of information available,
our understanding of the molecular mechanisms governing the
nucleohistone–nucleoprotamine transition is still in its infancy.
For example, little information is available on what other proteins
or structures interact with protamines and what their function is
(Kierszenbaum and Tres, 2004; Mylonis et al., 2004).

Organization of DNA in the sperm nucleus

It is important to note that not all of the DNA in the sperm nucleus
is organized into a nucleoprotamine structure, but some regions
retain a nucleosomal structure (Figure 2). It has been shown that
approximately 85% of the DNA in the sperm nucleus is associated
with protamines and that 15% remains associated with histones or
other proteins (Figure 2; Tanphaichitr et al., 1978; Ammer et al.,
1986; Gusse et al., 1986; Gatewood et al., 1987, 1990; de Yebra
et al., 1993; Zalensky et al., 2002). In addition, human sperm
DNA has a heterogeneous structure with some regions and genes
remaining associated with histones or with other proteins (Zalensky
et al., 1995, 2002; Gardiner-Garden et al., 1998; Kramer et al.,
2000; Zalenskaya et al., 2000; Zalenskaya and Zalensky, 2002;
Wykes and Krawetz, 2003). It will be interesting to determine how
these heterogeneous structures in the sperm nucleus relate to the
establishment of epigenetic information in the male gamete and
how they may affect subsequent embryo development (Rousseaux
et al., 2005). The spatial architecture of chromosomal DNA has
also been studied with data, supporting that the centromeres are

organized in a chromocentre, positioned well inside the nucleus,
whereas the telomeres forming dimers are positioned in the nuclear
periphery (Zalensky et al., 1995; Solov’eva et al., 2004). For fur-
ther information on the nucleohistone–nucleoprotamine transition,
the reader is referred to different reviews (Ward and Coffey, 1991;
Oliva and Dixon, 1991a; Dadoune, 1995, 2003; Wouters-Tyrou et al.,
1998; Raukas and Mikelsaar, 1999; Braun, 2001; Aoki and
Carrell, 2003; Meistrich et al., 2003; Kierszenbaum and Tres,
2004; Rousseaux et al., 2005). The extent to which the structural
organization of the sperm DNA is altered in infertile patients
remains relatively unexplored.

After fertilization, the highly packaged nucleoprotamine sperm
genome must be decondensed (Figure 2). One of the first steps
must be reduction of the protamine disulphide bonds to allow pro-
tamine removal and subsequent organization of the DNA in a
nucleosomal structure (Figure 2). The chromatin changes and
unpacking after fertilization potentially relevant to the function of
protamines are reviewed elsewhere (Griveau et al., 1992;
Perreault, 1992; Poccia and Collas, 1996; Colleu et al., 1997;
Shimada et al., 2000, 2002; Braun, 2001; Esterhuizen et al., 2002;
Nakazawa et al., 2002; Schultz, 2002; Lefievre et al., 2003;
McLay and Clarke, 2003; Mudrak et al., 2005; Romanato et al.,
2005). It is possible that differential marking of different sperm
genomic DNA regions with P1 or P2 protamines or with histones,
histone variants or with other proteins could contribute, after ferti-
lization, to establish the order of paternal gene reactivation or even
could be involved in setting up the appropriate imprinting of dif-
ferent paternal genes.

Transgenes and knockout models

A great deal of information relevant to the function and involve-
ment of protamines in male infertility has been obtained from
transgenes and knockout models for protamines and TNPs. The
first transgenic model for a protamine corresponded to the homol-
ogous mouse protamine 1 gene (Peschon et al., 1987). The result-
ing mice correctly expressed the protamine construction in round
spermatids, indicating the good recognition of the regulatory ele-
ments in the transgene (Peschon et al., 1987; Zambrowicz et al.,
1993). In addition, the mice were fertile indicating that small vari-
ations in the levels of expression of the protamine 1 were compati-
ble with an apparently normal function of the spermatozoa
(Peschon et al., 1987). Lines of transgenes, generated using the
promoter of the mouse protamine 2 gene coupled to a reporter
gene, also supported the idea that the regulatory elements were
correctly recognized by the endogenous factors resulting in the
correct expression at round spermatid stage (Stewart et al., 1988).
Subsequent models designed to express the protamine 1 gene pre-
maturely or in excess resulted in premature condensation of the
nuclear chromatin, anomalies in the morphology of the sperm
head and incomplete processing of protamine P2 (Peschon et al.,
1989; Lee et al., 1995). The first heterologous expression of a pro-
tamine corresponded to over-expression of the chicken protamine
gene in transgenic mice, which resulted in a disruption of the chro-
matin in spermatozoa (Oliva and Dixon, 1989; Rhim et al., 1995).
Unexpectedly, however, these mice turned out to be fertile, sug-
gesting that a very precise packaging of the DNA in the germinal
cell line was not essential for decondensation and pronuclear
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formation in the fertilized oocytes (Rhim et al., 1995). Subsequent
studies characterized in detail the presence of different anomalies
in the spermatozoa of these transgenic mice, also confirming their
relative fertility (Maleszewski et al., 1998). In a different type of
experiment, over-expression of the human protamine cluster in
transgenic mice demonstrated a conservation of the temporal
expression pattern, indicating that the human regulatory elements
were recognized by the mouse transcription factors (Stewart et al.,
1999). Also, transgenic mice containing the complete human pro-
tamine domain flanked by different configurations of nuclear
matrix attachment regions (MARs) demonstrated the importance
of the overall chromatin structure for correct expression and func-
tion of the domain (Martins et al., 2004).

Of importance, it was found that knockout mice for only one of
the P1 or P2 alleles were sufficient to result in infertility (Braun
et al., 1989; Oliva and Dixon, 1991a; Cho et al., 2001). Since pro-
tamines are expressed in the haploid phases of spermatogenesis
(Hecht, 1988; Oliva et al., 1988; Choudhary et al., 1995; Steger
1999, 2001; Dadoune et al., 2004), it could be thought that the dis-
ruption of only one allele should not affect the expression of the
protamine gene in the other half of cells having the normal gene.
But it is also known that cytokinesis is incomplete in the sperma-
togenic cells, which are connected by cytoplasmic bridges that can
allow spermatids to share mRNA (Braun et al., 1989; Oliva and
Dixon, 1991b). A few years later, the presence of damaged DNA
in sperm cells of these knockout infertile mice was detected (Cho
et al., 2003). Of relevance, these authors also observed that, if
ICSI was used, it was possible to activate the oocytes but that few
could progress to the blastocyst stage (Cho et al., 2003). It is also
important to note that a similar phenomenon has been described in
many infertile patients, with injured DNA under ICSI treatment
(Tesarik et al., 2004; Greco et al., 2005).

Another extensively studied model is the knockout mouse for
TNP1 or TNP2 (Yu et al., 2000; Adham et al., 2001; Zhao et al.,
2001, 2004a,b; Meistrich et al., 2003; Shirley et al., 2004; Suganuma
et al., 2005). In the double-knockout mice (for both TNPs), the
remodelling of nuclear morphology, the repression of transcrip-
tion, the disappearance of histones and the deposition of pro-
tamines were relatively normal. However, it was observed that
condensation of the chromatin was irregular, that protamine P2
was not processed and that many of the elongated spermatids had
DNA breaks (Zhao et al., 2004a). Interestingly, it has been found
that there is an increase in structural anomalies in these mice, as
revealed by acridine orange (AO) staining, during epididymal
passage and that fertility declines, as revealed by ICSI (Suganuma
et al., 2005).

Alterations in protamine content of spermatozoa in 
infertile patients

Direct determination of protamines by electrophoresis

The first evidence of anomalies in the protamine content of sper-
matozoa was described in a study, which did not detect pro-
tamines, but did detect histones, in the spermatozoon of diverse
infertile patients (Table I; Silvestroni et al., 1976). Subsequently,
an independent group described an anomalous protein pattern in
different patients, which was characterized by the presence of
additional proteins (Chevaillier et al., 1987). However, in this

work no reference was made to the protamines. One of the first
complete studies that analysed the protamines in a series of fertile
controls (n = 17) and compared the data with that of patients (n = 7)
detected an increased P1/P2 ratio in six of the seven patients stud-
ied (Balhorn et al., 1988). A more heterogeneous protamine frac-
tion was also observed in patients with altered seminal parameters
as compared with samples with normal parameters (Lescoat et al.,
1988). Subsequently, it was found that the percentage of pro-
tamines in fertile men was the same as that in infertile patients
with normal seminal parameters, but that it varied in the patients
with abnormal seminal parameters (Bach et al., 1990). Another
independent group found that in patients with morphologic anom-
alies in the spermatozoa, characterized by the presence of a round
head, the spermatozoa contained less protamines and more his-
tones than normal spermatozoa (Blanchard et al., 1990).

The decrease in protamine P2 level and the increased P1/P2
ratio were confirmed a few years later (Belokopytova et al., 1993).
But it was not until a report of the first extended series of patients
(n = 116) that it was recognized that an important proportion of the
patients (3.4%; n = 4) had a marked reduction in protamine P2 (de
Yebra et al., 1993; de Yebra and Oliva, 1993), whereas the rest of
the patients had a normal P1/P2 ratio (22.4%) or a slightly altered
ratio (74.1%). In addition, it was noticed that a large proportion of
the samples with an altered P1/P2 ratio also had increased levels
of proteins with a mobility similar to histones and to intermediate
proteins (de Yebra et al., 1993). More recently, an increase in his-
tone H2B in infertile patients has been confirmed using immuno-
cytochemistry (Zhang et al., 2006).

All these observations raised the question of the origin of the
reduction of protamine P2 levels relative to those of protamine P1
in some of the patients. The detection of increased protamine P2
precursors in patients with an increased P1/P2 ratio narrowed the
possible origin to an abnormal processing of the protamine P2 pre-
cursor (de Yebra et al., 1998). It should be noted that detectable
levels of P2 precursors are also present in the mature sperm
nucleus in the mouse and rat (Stanker et al., 1992; Debarle et al.,
1995). This reduction in protamine content in patients was consist-
ent with results of the analysis of the phosphorus and sulphur con-
tents in individual spermatozoa by particle-induced X-ray
emission (PIXE; Bench et al., 1998). In addition, the protamine
P1/P2 ratio varied in samples taken from the same patients at dif-
ferent times (Bench et al., 1998). Another explanation for the
altered P1/P2 ratio detected in different infertile patients is that it
could be the consequence of a general failure in the replacement of
histones by protamines during spermiogenesis. The detection of
increased amounts of histones and intermediate proteins in
patients with decreased protamines or altered P1/P2 ratio would
support this hypothesis (Blanchard et al., 1990; de Yebra et al.,
1993; Zhang et al., 2006).

All these initial works were carried out by analysing the semen
samples without fractionation. It is well known that, even in a nor-
mal human ejaculate, populations of abnormal spermatozoa coex-
ist with morphologically normal spermatozoa. Therefore, it was
considered if the anomalies detected in the P1/P2 ratio affected all
the cells in the sample or, instead, reflected a mixture of a normal
population plus a population with an altered P1/P2 ratio. Percoll
gradient centrifugation allowed separation of spermatozoa accord-
ing to morphology and mobility, and fractions with a higher den-
sity were shown to be enriched in less-intermediate proteins and
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contain more mature protamine 2 (Colleu et al., 1996). However,
the separation of cells in individual ejaculates from infertile
patients and controls using a Percoll gradient, and the subsequent
determination of the P1/P2 ratio in each of the fractions, detected
only small differences in P1/P2 ratio between fractions despite the
presence of marked differences in the morphology and mobility
(Mengual et al., 2003a). Nevertheless, marked differences in the
P1/P2 ratio were detected when comparing oligozoospermic and
asthenozoospermic patients to controls (Mengual et al., 2003a). It
will be interesting to test other separation methods, such as swim-
up (Colleu et al., 1996; Sakkas et al., 2000), electrophoresis
(Ainsworth et al., 2005) or cell sorting (Ziyyat et al., 1999), and
the use of immunocytochemical methods (Zhang et al., 2006) to

test whether levels of the protamines and other proteins do indeed
vary among the different cells of an ejaculate and may correlate
with DNA integrity or assisted reproduction outcomes.

Radical differences in protamine content in two siblings associ-
ated with different ICSI outcomes were also reported (Carrell et al.,
1999). A recent article reporting the analysis of 272 infertile patients
and 87 donors described a new type of anomaly in some patients,
characterized by the presence of a decreased P1/P2 ratio (Aoki et
al., 2005a). A summary of all articles measuring protamines
directly after extraction and electrophoresis is given in Table I.

In addition to the above studies in infertile patients, the expres-
sion of protamines has also been determined in response to ther-
mal stress in normal testicles (Love and Kenney, 1999; Evenson

Table I. Studies in infertile patients where protamines were detected directly after extraction from sperm samples and separated by polyacrylamide gel 
electrophoresis

FI, fertilization index; P1, protamine 1; P2, protamine 2; H2B, histone 2B.

Reference Main findings

Silvestroni et al., 1976 Protamines not detected in the spermatozoon of infertile patients
Chevaillier et al., 1987 Proteins additional to the normal ones were found in infertile patients
Balhorn et al., 1988 P1/P2 ratio = 0.98 ± 0.12 in normal samples (n = 17)

P1/P2 ratio = 1.58 ± 0.24 in infertile patients (n = 7)
Increased P1/P2 ratio in six of the seven patients studied

Lescoat et al., 1988 Heterogeneous protamine fraction observed in patients with altered seminal parameters (n = 11) compared with samples with 
normal parameters (n = 11)

Bach et al., 1990 Percentage of protamines is different in the patients with abnormal seminal parameters compared to patients with normal 
parameters

Blanchard et al., 1990 Round-headed spermatozoa from patients (n = 2) contain less protamines and more histones and intermediate proteins than the 
normal spermatozoa (n = 2)
Expression of P2 proteins is lower in round-headed sperm

Belokopytova et al., 1993 P1/P2 ratio = 0.99 ± 0.06 in normal samples (n = 20)
P1/P2 ratio = 1.50 ± 0.05 in infertile patients (n = 10)

de Yebra and Oliva, 1993 Description of an optimized method to extract and analyse protamines by gel electrophoresis to allow easier and faster clinical 
application

de Yebra et al., 1993 P1/P2 ratio = 1.10 ± 0.08 (normal) in 22.4% of infertile patients (n = 26)
P1/P2 ratio = 3.00 ± 2.84 (abnormal) in 74.1% of infertile patients (n = 86)
Absence of detectable P2 in 3.4% of the patients (n = 4)

Colleu et al., 1996 The densest Percoll gradient fractions were enriched in less-intermediate proteins and more P2 in patient samples with normal 
count and motility (n = 12)

Khara et al., 1997 P1/P2 ratio = between 0.55 and 1.29 in patients with FI ≥50% (n = 18)
P1/P2 ratio = outside the 0.55–1.29 range in patients with FI <50% (n = 3)

de Yebra et al., 1998 Detection of increased protamine P2 precursors by western analysis in patients with an increased P1/P2 ratio
Bench et al., 1998 P1/P2 ratio varied in patients’ samples obtained at different times
Carrell et al., 1999 Differences in protamine content and sperm ultrastructure found in two siblings associated with different ICSI outcomes
Evenson et al., 2000 Appearance of protamine P2 precursors detected by electrophoresis between 33 and 39 days post-hyperthermia in one patient
Carrell and Liu, 2001 12 of 13 patients without detectable P2 had a reduction in the sperm penetration assay in comparison with the patients with P2

P2 precursor bands associated with reduction in the penetration capacity
Mengual et al., 2003a P1/P2 ratio = 1.01 ± 0.15 in control fertile men (n = 10)

P1/P2 ratio = 1.51 ± 0.48 in oligozoospermic patients (n = 12)
P1/P2 ratio = 1.23 ± 0.65 in asthenozoospermic patients (n = 13)
Little heterogeneity between Percoll fractions from individual samples and marked differences between patients and controls

Nasr-Esfahani et al., 2004b Negative significant correlation of fertilization rate with protamine deficiency and P1/P2 ratio
Chen et al., 2005 Altered levels of protamines present in infertile patients are shown to improve upon patient treatment
Aoki et al., 2005a P1/P2 ratio = 1.06 ± 0.01 in fertile donors (n = 87)

P1/P2 ratio < 0.8 in 13.6% of the patients (n = 37)
P1/P2 ratio = between 0.8 and 1.2 in 46.7% of the patients (n = 127)
P1/P2 ratio > 1.2 in 39.7% of the patients (n = 108)
P1/P2 ratio correlates with sperm penetration score and fertilization rate

Aoki et al., 2005b DNA fragmentation raised in low P1/P2 samples versus normal/high P1/P2 ratio
Aoki et al., 2006 Correlations between P1 and P2 proteins and mRNA detected by real-time PCR
Zhang et al., 2006 Increased proportion of H2B to protamine in infertile men
Torregrosa et al., 2006 P2 precursors related to protamine content and DNA integrity
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et al., 2000). Thermal stress in stallion testicle is associated with
decreased formation of disulphide bridges in protamines (Love and
Kenney, 1999). This aspect has also been studied in humans by
Evenson et al. (2000), who measured protamine levels in a patient
just after an episode of hyperthermia, induced by the influenza, and
reported the appearance of protamine P2 precursors, detected by
electrophoresis, between 33 and 39 days post-hyperthermia. These
authors also showed that the P1/P2 ratio remained within the normal
range, whereas the ratio between histones and protamines increased
slightly between 33 and 39 days post-hyperthermia. Expression of
the gene-encoding protamine P2 was also altered concomitant to
induced thermal stress in the mouse testicle (Iuchi et al., 2003).

Indirect assessment of sperm chromatin structure by histochemical 
procedures

In all of the above studies, the protamine content was measured
directly through protamine extraction and polyacrylamide gel
electrophoresis (PAGE). Indirect methods of assessing the amount
of protamines or measuring chromatin structure based on different
staining procedures or fluorochromes have also been used
(Bianchi et al., 1996; Lolis et al., 1996; Bizzaro et al., 1998;
Sakkas et al., 1998; Franken et al., 1999; Esterhuizen et al., 2002;
Zubkova et al., 2005). For example, in situ competition between
protamine and chromomycin A3 (CMA3) indicated that CMA3
staining inversely correlated with the protamination state of sper-
matozoa (Bizzaro et al., 1998). Interestingly, CMA3 staining has
been shown to be increased in the sperm cells of infertile
patients (Lolis et al., 1996; Franken et al., 1999; Razavi et al.,
2003; Nasr-Esfahani et al., 2004a,b, 2005). Correlations between
CMA3 staining in sperm and assisted reproduction outcome have
also been found (Nasr-Esfahani et al., 2004a, 2005). However,
CMA3 staining cannot distinguish whether the potential pro-
tamine deficiency is due to a lack of P1, P2 or a combination of
both. Another very popular test has been the sperm chromatin
structure assay (SCSA) based on the AO red–green shift to differ-
entiate double- versus single-stranded DNA (Evenson et al., 1980;
Virro et al., 2004; Evenson and Wixon, 2005). A large amount of
information correlating results from this indirect test, mainly
intended to infer the presence of DNA breaks, with infertility or
assisted reproduction outcome has accumulated over the years
(Virro et al., 2004; Evenson and Wixon, 2005).

Another indirect approach has been the use of aniline blue
staining to detect the presence of histones and therefore indi-
rectly infer the presence of lower amounts of protamines in the
sperm nucleus (Chevaillier et al., 1987; Colleu et al., 1988). An
increase in the percentage of aniline blue cells was found in
asthenozoospermic as compared with normozoospermic samples
(Colleu et al., 1988). Acidic aniline blue was also correlated with
differences in sperm nuclear morphology in sperm donors and in
infertile patients (Auger et al., 1990). A decreased resistance to
chromatin decondensation by treatment with sodium dodecyl
sulphate (SDS) and dithiothreitol (DTT) in abnormal sperm
compared with normal sperm has also been taken as evidence for
lower protamine S–S stability and chromatin packaging (Bustos-
Obregón and Leiva, 1983; Le Lannou et al., 1986; Jager, 1990).
The accessibility of the fluorescent dye ethidium bromide to
DNA has also been correlated to IVF outcomes (Filatov et al.,
1999).

Other new sperm chromatin structure tests based on sperm
chromatin dispersion are also being proposed (Silvestroni et al.,
2004; Evenson and Wixon, 2005; Fernández et al., 2005; Schlegel
and Paduch, 2005). The interpretation of the results of all these
indirect tests is difficult since they depend on the sperm chromatin
composition, structure, accessibility and integrity of the DNA
(Schlegel and Paduch, 2005; Erenpreiss et al., 2006). Thus,
changes in the overall amount of protamines, degree of protamine
cross-linking, P1/P2 ratio, presence of P2 precursors, proportion
of histones and other proteins, protein modifications, topological
state of the DNA and double- or single-DNA breaks may all result
in measurable changes. So, at present, direct protamine extraction
and electrophoresis are still the gold standard to directly quantify
protamines (Balhorn et al., 1988; de Yebra et al., 1993; de Yebra
and Oliva, 1993; Mengual et al., 2003a; Aoki et al. 2005a). How-
ever this direct approach was more complex and time consuming
that indirect staining procedures (Mckay et al., 1986; Yelick et al.,
1987; Sautière et al., 1988). A systematic assessment of the fac-
tors involved in protamine recovery led to drastic reduction in the
time involved and complexity of the methods used, so that routine
clinical application is now easier (de Yebra et al., 1993; de Yebra
and Oliva, 1993; Mengual et al., 2003a).

The use of antibodies to P1, P2 or to the protamine P2 precursor
increases the sensitivity but should be further elaborated to allow
fast routine clinical use (Stanker et al., 1992, 1993; Le Lannic et al.,
1993; de Yebra et al., 1998). Also, because of the clinical use of
protamines as drugs, there is pharmaceutical interest in developing
more sensitive protamine detection methods (Lochmann et al.,
2004; Shvarev and Bakker, 2005) and new proteomic approaches
based on liquid fractionation mass spectrometry or new fluidic
devices that have the potential to make protamine quantification
even easier and faster in the near future.

Anomalies in protamine content and IVF potential

The first evidence that an altered expression of protamines could
be related to IVF capacity came from a comparison of the P1/P2
ratio in two groups of infertile patients classified on the basis of
their fertilization index (FI), either above or below 50% (Khara
et al., 1997; Table I). Specifically, these authors found a P1/P2
ratio between 0.55 and 1.29 in the group with a FI ≥50%, whereas
three of the infertile patients who had a FI below 50% had a ratio
outside this range (Khara et al., 1997). However, these authors did
not support the idea that the altered P1/P2 ratio detected was the
primary cause of the reduction in FI.

A few years later in a larger series of patients, 12 of the
13 patients without detectable protamine P2 were found to have a
significant reduction in the sperm penetration assay compared with
the patients with protamine P2 (Carrell and Liu, 2001). In this work,
an unusually high proportion of patients without detectable P2 was
considered (17%; 13 of 75), in contrast with articles published by
other groups (de Yebra et al., 1993; Mengual et al., 2003a) or in
recent studies published by the same group (Aoki et al., 2005a,b). In
this initial work, the detection of bands corresponding to protamine
precursors was also associated with a reduction in the penetration
capacity (Carrell and Liu, 2001). This fact was consistent with the
previous observation that patients with an increased P1/P2 ratio also
have increased levels of protamine 2 precursors (de Yebra et al.,
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1998). However, Carrell and Liu (2001) did not find any significant
difference in the results of the treatment by ICSI when comparing
the groups of patients with and without detectable P2.

More recently, it has been shown that spermatozoa staining with
CMA3, which indirectly indicates a possible deficiency in pro-
tamines, has an IVF percentage of 36.8%, which is below the
index reached (64.6%) with the negative spermatozoa after using
this dye (Nasr-Esfahani et al., 2004a). Subsequent work using this
approach demonstrated the presence of increased DNA fragmentation
in, presumably, protamine-deficient spermatozoa (Nasr-Esfahani
et al., 2005). This group also measured the protamines P1 and P2
directly by gel electrophoresis and found a significant negative
correlation of the fertilization rate with the protamine deficiency
and the P1/P2 ratio (Nasr-Esfahani et al., 2004b).

The expression of the gene-encoding protamines 1 and 2 in testic-
ular spermatids of azoospermic patients biopsied during ICSI has
also been studied (Steger et al., 2003; Mitchell et al., 2005), and a
lower expression of protamine P1 mRNA in couples that did not
achieve a pregnancy was found compared with the couples that did.

In a recent and an extensive work, it has been reported that the
reduction in P1/P2 ratio results in a marked reduction of the IVF
index in comparison with the patients with a normal or an
increased P1/P2 ratio (Aoki et al., 2005a). Of relevance, this group
has also reported that altered levels of protamines are correlated
with a decreased integrity of the DNA (Aoki et al., 2005b). Thus,
many independent laboratories confirmed that altered protamine
ratios are related to infertility. Also, protamine-deficient animal
models indicate that integrity of the DNA decreases upon sperma-
tozoan passage from the epididymis, affecting subsequent embryo
development (Suganuma et al., 2005).

It is also interesting to note that variation over time of protein
and DNA contents in sperm from an infertile human male possess-
ing protamine defects has been described (Bench et al., 1998).
Moreover, altered levels of protamines in infertile patients have
been shown to improve upon patient treatment (Chen et al., 2005).
Thus, another potential aspect of the protamines in clinical practice
could be their use as a marker to follow-up infertility treatments.

Part of the explanation of the correlation between low IVF rates
and protamine deficiency could come from a series of IVF experi-
ments using spermatozoa damaged with DTT, to break the disul-
phide bridges that normally stabilize the nucleoprotamine
structure (Ahmadi and Ng, 1999a). These authors found that the
damaged spermatozoa had a normal IVF rate, but there was a
reduction in post-implantation development (Ahmadi and Ng,
1999a). The same authors also described that in spermatozoa
treated with DTT, the binding and penetration of the oocyte in the
hamster assay are markedly reduced. However, if ICSI is used, the
DTT-damaged spermatozoa reach an even higher rate of pronu-
clear formation and decondensation of the sperm head in compari-
son with the controls (Ahmadi and Ng, 1999b). However, the
subsequent development of the embryos was not studied. Of
course, these experiments must be interpreted with caution as DTT
may affect, in addition to protamines, many additional sperm pro-
teins and structures involved in sperm function.

Variations in protamine transcripts and infertility

It is generally well justified to consider altered mRNA levels as a
potential origin of altered protein levels. This point could be even

more important in this model because the protamine genes must be
transcribed and stored in spermatocytes and round spermatids for
later translation in elongating spermatids when transcription is no
longer active (Mezquita, 1985; Oliva and Dixon, 1991a,b; Hecht,
1993; Steger, 2001; Kleene, 2003; Tanaka and Baba, 2005). In one
of the first studies measuring the expression of protamines in tes-
ticular cells isolated by flow cytometry, a complete absence of the
expression of the P2 gene in round spermatids was reported (Ziyyat
et al., 1999). A reduction in the protamines 1 and 2 mRNA levels
was also found in round spermatids of infertile patients using tes-
ticular biopsies and in situ hybridisation (Steger et al., 2001). Also
a correlation between the protamine 1 to protamine 2 mRNA ratio
in round spermatids was found to be related to successful fertiliza-
tion (Steger et al., 2001). The same group produced similar results
using real-time PCR (Steger et al., 2003). Furthermore, ISH also
showed a significant reduction in expression of P1, which could
be associated with the outcome of assisted reproduction (Mitchell
et al., 2005). Another independent group also identified anomalies
in the expression of protamines in biopsies of azoospermic
patients (Friel et al., 2002). Analysis of the expression of P2
mRNA in patients with non-obstructive azoospermia by RT–PCR
found increased expression in the biopsies, where testicular sperm
were present (Qiu et al., 2005).

The presence of mRNAs corresponding to the protamine genes
can be detected not only in the mature testicle but also in the
mature spermatozoa, either by microarray techniques (Miller et al.,
1999; Dadoune et al., 2004; Ostermeier et al., 2004; Miller et al.,
2005) or by RT–PCR (Lambard et al., 2004). An interesting find-
ing is that differences in the expression of the P1 gene were
detected in fractions from spermatozoa with different mobility and
density obtained from normozoospermic donors (Lambard et al.,
2004). This fact is consistent with previous data indicating that,
even within a normal ejaculate, there are differences in the expres-
sion of protamines in the different cells (Colleu et al., 1996;
Mengual et al., 2003a). Of importance, a potential mechanism for
protamine expression deregulation has been highlighted by the
detection of abnormal protamine transcript retention in infertile
human males with sperm protamine deficiency (Aoki et al., 2006).

Protamines and integrity of the DNA in sperm cells

One of the hypotheses for the function of protamines is that they
could be involved in the protection of the genetic message deliv-
ered by the spermatozoa (Oliva and Dixon, 1991a; Mengual et al.,
2003a). Incomplete protamination could render the spermatozoa
more vulnerable to attack by endogenous or exogenous agents,
such as nucleases (Szczygiel and Ward, 2002; Sotolongo et al.,
2003), free radicals (Irvine et al., 2000; Alvarez et al., 2002) or
mutagens. However, it is also important to keep in mind that other
potential reasons for decreased DNA integrity could be the pres-
ence of altered recombination, abortive apoptosis, abnormal action
of topoisomerases and abnormal DNA repair during spermatogenesis
(Roca and Mezquita, 1989; McPherson and Longo, 1993; Baarends
et al., 2001; Sakkas et al., 2003; Laberge and Boissonneault,
2005; Erenpreiss et al., 2006; Muratori et al., 2006). The potential
relation between protamination defects and decreased DNA integ-
rity has been assessed by different groups using a variety of direct
or indirect approaches. A lot of evidence links high-DNA
fragmentation indexes obtained with the SCSA with lower
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ICSI or IVF rates (Evenson et al., 1980; Evenson and Wixon,
2005). Of importance, a negative significant correlation between
fertilization rate and CMA3 staining or P1/P2 ratio measured
directly by electrophoresis has been reported (Nasr-Esfahani et al.,
2004b). Subsequently, this group also demonstrated using  single
cell gel electrophoresis (the comet assay)  that the results correlated
with embryo cleavage score and with CMA3 staining, suggesting
that DNA fragmentation is more frequent in protamine-deficient
spermatozoa (Nasr-Esfahani et al., 2005). A quite good direct
proof that DNA integrity is compromised in protamine-deficient
human sperm has been obtained by direct measurement of pro-
tamines by electrophoresis (Aoki et al., 2005b). Consistent with
this observation we have found that the proportion of protamine 2
precursors also correlates with decreased DNA integrity (Torregrosa
et al., (2006), submitted for publication).

The correlation between protamines and DNA integrity in sperm
cells is also supported by animal models. By using transgenic
knockout mice for TNPs, it has been demonstrated that the sperm
genomic integrity deteriorates and that fertility declines during
epididymal passage, as revealed by ICSI. AO fluorescence also
suggests incomplete disulphide bond formation (Suganuma et al.,
2005). This loss of genomic integrity during passage from the
caput to the cauda epididymis in these mice has been related to
abnormalities in the protection of DNA by protamine, since only
11% of the protamine 2 is processed to the mature form, potentially
reducing intermolecular disulphide bond formation (Yelick et al.,
1987; Shirley et al., 2004; Suganuma et al., 2005). Furthermore, in
these mice, the developmental defects appeared at implantation, as
has been described in clinical reports from infertile patients with
decreased DNA integrity (Tesarik et al., 2004; Suganuma et al.,
2005; Lewis and Aitken, 2005).

The use of ICSI with testicular sperm has been demonstrated to
improve pregnancy rates in patients with poor pregnancy rates and
decreased DNA integrity of ejaculated spermatozoa (Greco et al.,
2005). Thus, a reasonable explanation could be that incomplete or
abnormal protamination, as observed in many studies (Table I),
could lead to incomplete disulphide bond formation and incom-
plete DNA protection during epididymal passage in these patients.

Polymorphisms and mutations in the protamine genes

As soon as marked differences in the protamine content were iden-
tified in the sperm cells of some infertile patients, it was postulated
that potential mutations in the corresponding genes could be
present (Belokopytova et al., 1993; de Yebra et al., 1993). This
idea was additionally supported by the fact that the lack of pro-
tamine P2 in the sperm nucleus of some mammals, such as the pig
or the bull, was due to mutations in the corresponding genes (Maier
et al., 1990). However, preliminary mutation analysis of the pro-
tamine 2 gene did not identify the presence of pathogenic muta-
tions in any of the four patients with a markedly altered P1/P2 ratio
(de Yebra et al., 1993), although this approach did lead to the iden-
tification of several polymorphisms in the protamines genes (Quer-
alt et al., 1993; Schnulle et al., 1994). Subsequent complete
mutation analyses in 36 infertile patients with evidence of anoma-
lies of the sperm chromatin did not detect any pathogenic mutation
in the gene-encoding protamines P1, P2 or the TNP1 (Schlicker
et al., 1994). In another study, a role for a candidate mutation in a
region of contact in the nuclear MAR close to the protamine genes

was presented in two of five individuals with reduced sperm counts
and abnormally low protamine levels (Kramer et al., 1997). Subse-
quently, transgenic mice with the human PRM1–PRM2–TNP2
domain with different configurations of MARs demonstrated that
these attachment regions may convey a selective reproductive
advantage for transgene passage (Martins et al., 2004).

More recently, mutations in the protamine P1 (PRM1) and P2
(PRM2) genes have been studied in Japan in 226 sterile patients
and in 270 males with proven fertility (Tanaka et al., 2003). In this
case, four synonymous single-nucleotide polymorphisms (SNPs)
were found in the coding region of the P1 gene, and one SNP
(c248t) in the P2 gene, causing the appearance of a stop codon.
These authors proposed that premature termination of the pro-
tamine P2 mRNA would cause the infertility in the patient with
the c248t change in the P2 gene (Tanaka et al., 2003). Also in this
work, one SNP in the 3′ region of the P1 gene and 2 SNPs in the
intron of the gene P2 were identified.

All the above mutational studies suggested that protamine gene
mutations were a rare cause of infertility in man (Schlicker et al.,
1994; Tanaka et al., 2003). However, recently one SNP (G197T)
resulting in an arginine to a serine change in the protamine 1 gene
has been detected in 3 out of 30 unrelated infertile patients (Iguchi
et al., 2005). It is interesting to note that these patients were
selected based on a spermatozoan phenotype similar to that
present in protamine P1 or P2 knockout mice (Cho et al., 2001,
2003; Iguchi et al., 2005). The change detected in the three
patients would destroy one of the arginine clusters and create a
new phosphorylation site in protamine 1 (Iguchi et al., 2005). So,
in the light of this latest report, protamine gene mutations causing
infertility are infrequent but not so rare as previously thought.

Several amino acid substitutions of the TNP1 gene and a dele-
tion in the promoter region of the TNP2 gene have been identified
in several infertile patients (Miyagawa et al., 2005). Mouse mod-
els have already demonstrated that alteration in TNPs results in
altered protamine structure and decreased integrity in the DNA
(Shirley et al., 2004; Suganuma et al., 2005). Thus, it will be inter-
esting to determine how these mutations in the TNPs of infertile
patients alter their sperm chromatin and protamine content.

Disulphide bonds in protamines

The nucleoprotamine structure is strongly stabilized in the sperm
nucleus through the formation of intermolecular disulphide bonds
between cysteine residues (Saowaros and Panyim, 1979). In addi-
tion, intramolecular disulphide bonds stabilize the folding of
different protamine domains (Vilfan et al., 2004), and glutathione
peroxidase activity could be involved in disulphide cross-linking
in protamines (Pfeifer et al., 2001; Conrad et al., 2005). A model
for the bull protamine has been recently proposed, which provides
an explanation for the positions of cysteine residues that form the
intermolecular disulphide bonds (Vilfan et al., 2004).

There are many data indicating that the sperm protein thiols are
oxidized upon passage from caput to the cauda epididymis
(Shalgi et al., 1989; Rufas et al., 1991; Seligman and Shalgi,
1991). When comparing thiol labelling patterns, oligospermic or
infertile samples were found to have a higher SH content (fewer
disulphide bonds) compared with normozoospermic samples
(Rufas et al., 1991; Lewis et al., 1997; Zini et al., 2001). The
level of sperm SH groups also correlated positively with DNA
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denaturation (Zini et al., 2001). The sperm thiol status has been
found to correlate with tyrosine phosphorylation of sperm pro-
teins (Seligman et al., 2004).

Animal models also support a correlation between disulphide
bond formation and integrity of the DNA (Bennetts and Aitken,
2005). Mice with a targeted deletion of glutathione peroxidase
exhibited abnormal toluidine blue and AO staining, abnormal
sperm heads and altered thiol status (Conrad et al., 2005).

A significant increase in thiol quantity was found in spermatozoa
from older rats as compared with young controls, which correlated
with increased susceptibility to oxidative damage (Zubkova et al.,
2005). Recent results obtained in the clinical setting or with animal
models suggest that decreased DNA integrity associated with the
epididymal passage could be related to the disulphide content
(Shirley et al., 2004; Greco et al., 2005; Suganuma et al., 2005; Aoki
et al., 2005b). It will be interesting to look at the protamine content
and thiol status in vasectomized men undergoing ICSI who have
decreased pregnancy rates (McVicar et al., 2005; Steger et al., 2005).

Phosphorylation of protamines

Protamine phosphorylation was first described during trout sperma-
togenesis (Ingles and Dixon, 1967; Marushige et al., 1969; Sanders
and Dixon, 1972; Louie and Dixon, 1973) and subsequently in
mammals (Marushige and Marushige, 1978). Protamines are phos-
phorylated as soon as they are synthesized and phosphorylation may
be required for the proper binding to DNA (reviewed in Oliva and
Dixon, 1991a). Recently, it has been found that protamine phospho-
rylation is required for protamine binding to laminin B receptor,
suggesting that docking of the protamine to the nuclear envelope
could be an important intermediate step (Mylonis et al., 2004).
Kinases involved in protamines 1 and 2 phosphorylation have been
described (Pirhonen et al., 1994b; Papoutsopoulou et al., 1999; Wu
et al., 2000). Also, mice lacking Camk4, which phosphorylates
protamine 2 in vitro, are infertile with impaired spermiogenesis,
specific loss of protamine 2 and retention of TNP2 (Wu et al.,
2000). After binding of the protamine to DNA, a substantial de-
phosphorylation occurs before the spermatozoa enter the epidi-
dymis. In humans, it has been shown that phosphorylated pro-
tamines are still present in mature spermatozoa and the
corresponding phosphorylation sites of P1 and P2 have been deter-
mined (Gusse et al., 1986; Pruslin et al., 1987; Bellvé et al., 1988;
Arkhis et al., 1991; Chirat et al., 1993; Pirhonen et al., 1994a;
Papoutsopoulou et al., 1999). It has been shown in mice that pesti-
cides may alter chromatin structure by phosphorylating protamines
(Piña-Guzman et al., 2005). Given the importance of phosphoryla-
tion in regulating protein function, the possibility that altered
protamine phosphorylation could also be associated with infertility
or assisted reproduction outcomes deserves to be evaluated.

Interaction of protamines with metals and effect on 
reproductive function

Due to their nature, protamines not only form electrostatic interac-
tions with the DNA but also have the potential to bind metals or
other agents, either as part of the normal physiology or involved in
potential alterations of the chromatin. One of the first observations
that stimulated the study of possible associations between protamines
and metals was the observation that zinc is very abundant in the

sperm nucleus (Morisawa and Mori, 1972). Subsequent studies
corroborated these observations, proposing that zinc in the spermato-
zoa could stabilize the chromatin through its binding to thiol groups
not participating in the formation of disulphide bridges. The observa-
tion that P2 protamines could be zinc-finger proteins with one Cys2/
His2 motif opened new perspectives in understanding their function
(Bianchi et al., 1992, 1994a,b; Bal et al., 2001). The quantification
by PIXE of zinc levels in the spermatozoa of different species dem-
onstrated that the content of zinc is proportional to the amount of P2
protamine indicating that this metal would bind to it stoichiometri-
cally in a 1:1 ratio (Bench et al., 2000). The interaction between zinc
and the P2 protamine would therefore have a role in the normal func-
tion of the spermatozoon, and a deficiency of zinc, or its excess,
could cause alterations (Bedwal and Bahuguna, 1994; El-Tawil,
2003; Matsuda and Watanabe, 2003; Piao et al., 2003). A reduction
in zinc content concomitant to the increase in disulphide bonding of
protamines, which occurs during maturation of the spermatozoa in
the epididymis, has also been reported (Dias et al., 2006).

However, in addition to the physiological presence of zinc in
the spermatozoon, there is also clear evidence for the presence of
toxic heavy metals, such as the lead, copper or nickel (Johansson
and Pellicciari, 1988; Bal et al., 1997; Liang et al., 1999; Quintanilla-
Vega et al., 2000; Massanyi et al., 2004; Hernandez-Ochoa et al.,
2005). The toxicity in these cases could either be direct or medi-
ated through an interaction with the P2 protamine. The association
between the presence of these heavy metals and infertility in man
is clear, and the mechanisms involved in their toxicity are being
investigated very actively.

Other contaminants, such as pesticides, also have the potential
to alter the structure of the sperm chromatin. In the case of the
organophosphate pesticide Diazinon, it has been found that the
toxic mechanism could be mediated through alteration of the
phosphorylation of protamines (Sánchez-Peña et al., 2004). It has
also been reported that acrylamide-induced genetic damage in
spermatogenic cells could be mediated by protamine alkylation
(Sega et al., 1989; Sega, 1991; Xie et al., 2006).

Antibodies to protamines

Protamine sulphate from salmon sperm (salmine) has been widely
used in clinical practice as a heparin antagonist (Portmann and
Holden, 1949; Carr and Silverman, 1999; Liang et al., 2005).
Also, protamine-containing insulin preparations have become very
popular (Raap et al., 2005). More recently, protamines or pro-
tamine-like polypeptides are being used as carriers to deliver gene
therapy constructs (Lanuti et al., 1999; Arangoa et al., 2003; Park
et al., 2003). Adverse reactions concomitant to the use of pro-
tamine in clinical practice were described early and included
allergy, the generation of antibodies to protamine or the formation
of strong interactions with other proteins or factors (Weiler et al.,
1985; Porsche and Brenner, 1999; Park, 2004; Raap et al., 2005).
While the potential for life-threatening acute and allergic reactions
is the highest concern in these patients, the potential effects on
reproduction also deserve to be investigated.

A completely different issue is the generation of autoantibodies
to protamines in subjects not exposed to protamine-containing
drugs. Autoantibodies to human sperm protamines 1 and 2 have
been detected in infertile and vasectomized men (Samuel, 1977;
Hellema et al., 1979; Naz et al., 1989; Rousseaux-Prevost et al., 1992).
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Protamine-reactive natural immunoglobulin M (IgM) antibodies
are present in human sera of normal fertile male and female indi-
viduals (Rodman et al., 1988). There has been a case report of a
vasectomized man who reacted with shock to i.v. protamine
(Adourian et al., 1993). Antibodies present in infertile human sera
reduced fertility in female rabbits (Naz, 1990). The chromatin sta-
tus in infertile patients with immunological male infertility has
been studied (Molina et al., 2001). It could be expected that, since
protamine is a nuclear protein, antibodies to it should not attach to
the sperm surface and interfere with sperm function (Naz et al.,
1989, 1992). However, sensitization against protamine could
reduce fertility through induction of cell-mediated immune factors
resulting in spermicidal effects (Naz and Mehta, 1989).

Future perspectives

Research in the field of the relationship between protamines and
infertility is now at an exciting point, but many questions still remain
to be solved. From the fundamental perspective, it still must be clari-
fied what the mechanism and the proteins involved in the nucleohis-
tone–nucleoprotamine transition are and what other proteins, in
addition to protamines and histones, remain in the sperm nucleus and
why. There is also a relative lack of data to better understand the func-
tion of protamines. From the applied perspective, it will be necessary
to clarify the mechanism by which alterations of protamines in infer-
tile patients may lead to decreased integrity of the DNA and whether
they relate to other factors affecting sperm fertility and assisted repro-
duction outcomes. From the etiological perspective, it will be import-
ant to find out what causes altered levels of protamines to appear. As
part of these questions, it will also be necessary to explain what the
relationship is between the presence of DNA breaks, alterations in
protamines, epigenetic changes in the spermatozoa and infertility.
This aspect is especially important because of the potential transmis-
sion of a damaged or altered genome to future generations.

Also, it will be necessary to clarify the potential role of the muta-
tions and polymorphisms in the protamine genes, TNPs and MARs,
found in some patients and whether these alter the protamine ratio
and level. It will also be interesting to determine to what extent the
presence of genetic mutations or genetic risk factors in other genes
associated to infertility alters the expression of protamines (Oliva
et al., 1998; Egozcue et al., 2000; Huynh et al., 2002; Mengual
et al., 2003b; de Llanos et al., 2005; Vogt, 2005). In this review, it
has also been mentioned how environmental or exogenous factors,
such as the presence of polluting agents or thermal stress, can affect
sperm chromatin structure in a process involving the protamines.
Therefore, it seems logical to also study the interrelation between
genetic and environmental factors in the determination of the
molecular maturity and normality of the spermatozoon nucleus. It is
likely that the present genomic, transcriptomic and proteomic tools
will contribute to the detection of proteins and factors involved in
the normal remodelling of the sperm nucleus and in the identifica-
tion of the pathogenic mechanisms involved in infertility.
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