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ARTICLE

ProTargetMiner as a proteome signature library of
anticancer molecules for functional discovery
Amir Ata Saei 1, Christian Michel Beusch 1,7, Alexey Chernobrovkin 1,2,7, Pierre Sabatier 1,7,

Bo Zhang 1,3,7, Ülkü Güler Tokat1,4, Eleni Stergiou 1, Massimiliano Gaetani 1,5, Ákos Végvári 1 &

Roman A. Zubarev1,5,6*

Deconvolution of targets and action mechanisms of anticancer compounds is fundamental in

drug development. Here, we report on ProTargetMiner as a publicly available expandable

proteome signature library of anticancer molecules in cancer cell lines. Based on 287 A549

adenocarcinoma proteomes affected by 56 compounds, the main dataset contains 7,328

proteins and 1,307,859 refined protein-drug pairs. These proteomic signatures cluster by

compound targets and action mechanisms. The targets and mechanistic proteins are

deconvoluted by partial least square modeling, provided through the website http://

protargetminer.genexplain.com. For 9 molecules representing the most diverse mechanisms

and the common cancer cell lines MCF-7, RKO and A549, deep proteome datasets are

obtained. Combining data from the three cell lines highlights common drug targets and cell-

specific differences. The database can be easily extended and merged with new compound

signatures. ProTargetMiner serves as a chemical proteomics resource for the cancer research

community, and can become a valuable tool in drug discovery.
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D
eciphering the targets, mechanism of action (MOA) and
cellular effects for compounds, especially for those
derived from phenotypic screenings, are all indispensable

and challenging tasks in drug discovery1. These tasks can be
addressed by connecting the affected cellular phenotypes to small
molecules by connectivity maps2–7. Such approaches explore the
similarity of the cell response signature produced by a compound
of interest with signatures of other compounds in the database.
However, majority of connectivity map studies are based on gene
expression profiles. Since proteins are the targets of most drugs,
proteome responses can be more specific to drug action. Only one
recent effort has reported a connectivity map based on phos-
phoproteomic and chromatin signatures, measuring 100 phos-
phopeptides and 59 histone modifications for treatments with 90
drugs8, but such focused signatures might not be relevant for all
compounds. In principle, protein abundances should serve a good
basis for connectivity maps; after all, biological systems are
defined by their proteome state. Also, abundances of proteins are
as much determined by their degradation as by expression9,10,
both reflected uniquely in proteomics data. Indeed, in several
studies, no strong correlation between mRNA levels and protein
concentrations exists even at the steady state11. In dynamic
situations where degradation processes play an important role,
such as programmed cell death12, the relationship between the
transcriptome and proteome may become even less direct.

Here we use chemical proteomics to study the relationship
between the anticancer drug molecules and the dying cell phe-
notypes induced by these molecules13. Chemical proteomics has
traditionally been defined as the use of small molecules (which
are considered known entities) in studying the unknown func-
tions of proteins14. Recently, chemical proteomics began to des-
ignate also the opposite approach, in which proteome analysis is
applied to studying functions of small molecules13,15–18.

We have previously shown that when sensitive cell lines are
treated with a toxic compound, its targets and mechanistic pro-
teins are consistently found among the most regulated ones;
mapping these proteins on known networks can reflect the
compound MOA. This observation served as a basis for the
chemical proteomics method called Functional Identification of
Target by Expression Proteomics (FITExP)19. In many cases, the
affected target and other mechanism-related proteins are found
up-regulated. This can be explained by a feedback effect when
inhibition of certain proteins activates their (over)production20.
The alternative effect, involving target protein down-regulation,
can be caused by, e.g., protein proteolysis21. Such feedback
phenomena have also been documented in more primitive
organisms22,23.

The classic FITExP experiment increases the specificity for a
given compound by adding a panel of other molecules. The
specificity parameter in FITExP reflects the protein regulation for
a given compound compared to regulation by other molecules.
Therefore, proteins specifically responding to a compound of
interest can be identified. Using the specificity parameter, FITExP
could successfully identify the targets of several chemother-
apeutics19, probe the targets and MOA of metallodrugs24 and
even toxic nanoparticles25. We have also shown that combining
the proteomics data from treated matrix-attached and matrix-
detached cells can improve the deconvolution of drug targets and
MOAs17. Achieving a high level of specificity in analysis usually
requires the use of several compounds and cell lines. We hypo-
thesized that the equivalent increase in specificity can be obtained
in a single-cell line with a multitude of contrasting compounds.

Here, we profile 56 compounds at LC50 concentrations and
show that contrasting the proteome signature of a single com-
pound against others highlights a given compound’s target and
mechanistic proteins on the top positions in most cases.

Furthermore, we show that the contrasting panel for a single-cell
line can be reduced to 8 compounds. With this miniaturization
opportunity, using 9 molecules representing orthogonal MOAs,
deep proteome datasets are obtained for 3 major cancer cell lines:
MCF-7, RKO, and A549. When the data from the three cell lines
are combined, common targets and MOAs are revealed, while
investigation of the differences highlights important cell-specific
mechanisms. The ProTargetMiner database is expandable using
the provided user interface that, in turn, is modifiable as it is
written in R Shiny. The input is the fold changes of proteins in
a number of replicates for a given compound in the desired cell
line(s), and the output is an interactive PLS-DA model with
extractable rankings, providing the likely drug target and
MOA. ProTargetMiner is also directly available through http://
protargetminer.genexplain.com.

Results
Overview. Here we present the ProTargetMiner concept. The
overview of the project’s objectives is given in Fig. 1a. Employing
the specificity concept (Fig. 1b), orthogonal partial least square-
discriminant analysis (OPLS-DA) modeling (Fig. 1c) contrasts
the proteome signature of a given compound against those of the
rest of the compounds, which reveals the compound targets,
MOA, effects on protein complexes and potential resistance
factors. The workflow is given in Fig. 1d.

We selected A549 human lung adenocarcinoma cell line as a
model system, because it is well covered in literature, and
showed the highest sensitivity to selected compounds among the
tested cell lines (MCF-7 and RKO). Viability measurements
were performed for 118 clinical anticancer molecules selected
from Selleckchem FDA-approved drug library together with
several experimental anticancer compounds with unknown
targets. A collection of 56 compounds with LC50 below 50 µM
was chosen to treat the cells (at LC50 concentrations) for 48 h in
three replicates. With the biological effect (cell death) being of
the same magnitude, the differences in the proteome states
could be attributable to the differences in targets and MOAs.
This is in contrast to other databases, where fixed concentra-
tions were used. The selected compounds belong to 19 different
classes with versatile targets and MOAs, spanning 112 known
targets curated from DrugBank (https://www.drugbank.ca/) in
November 2019. These compounds and their known targets are
listed in Supplementary Table 1. As standard drugs used for
quality control, methotrexate, paclitaxel, and camptothecin were
chosen and included in each TMT10 multiplexed proteomics
experiment (labeling information is given in Supplementary
Table 2).

For the main dataset, 287 proteomes were analyzed (10
conditions (compounds+controls) in 5 replicates in the first
experiment+79 conditions in 3 replicates). Overall, to obtain the
main dataset, 229 LC-MS/MS analyses were performed after
multiplexing and fractionation. In total, 144,075 peptides were
quantified, being attributed to 7,328 proteins with at least 2
unique peptides per protein. After selecting only proteins
quantified with no missing values for 50 drugs, the list was
reduced to 4,557 proteins (Supplementary Data 1) that were used
in all subsequent analyses.

In each of the 9 multiplexed experiment for the original
dataset, the compounds methotrexate, camptothecin and pacli-
taxel were included as controls, so that they can be used for data
quality check. The Pearson correlation coefficient r for the
average normalized intensities for the above drugs in different
experiments was between 0.859 and 0.995 (only proteins with no
missing values were used in this analysis), attesting to the quality
of the proteomics data (Supplementary Fig. 1).
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Due to the nature of random sampling of peptides in shotgun
proteomics, the missing values cumulatively increase by merging
several datasets, as not all proteins are quantified in all 9
experiments. The comparison of number of proteins, number of
peptides, average sequence coverage and the number of missing
values for the 9 experiments as well as for the merged original
dataset is given in Supplementary Fig. 2.

Compound clusters, protein clusters, and their interactions. To
reduce the number of dimensions and visualize the proteomic
space, we employed a nonlinear dimension reduction method t-
SNE that is widely used for projection of multidimensional
molecular signatures26. On the resultant 2D Death map, where
the drug-induced proteome signatures are mapped as points

(Supplementary Fig. 3), we used the proximity of these points to
evaluate the similarity of the drug-induced signatures. As
expected, drugs with similar MOAs (e.g., tubulin inhibitors
paclitaxel, docetaxel, vincristine, and 2-methodyestradiol; pro-
teasome inhibitors b-AP15 and bortezomib27; pyrimidine analogs
5-fluorouracil, floxuridine and carmofur; thioredoxin reductase 1
(TXNRD1) inhibitors auranofin, TRi-1 and TRi-228; and DNA
topoisomerase 1 (TOP1) inhibitors camptothecin, topotecan and
irinotecan) were proximate on the t-SNE plot, confirming that the
Death map can be used for evaluating the MOA similarities.

We found tomatine to be a gross outlier in principal
component analysis (PCA) (Supplementary Fig. 4a). For
tomatine, the total number of differentially regulated proteins
with 1.5 and 2 fold cutoffs (vs. control) compared to the average
of all other drugs was 9.4 and 14.6 fold higher, respectively. In
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Supplementary Fig. 4b, the number of differentially regulated
proteins (fold change vs. control >2 and <0.5) for tomatine vs.
other compounds is shown. Tomatine is likely to act via
proteasome inhibition29, along with unspecific membrane
damage30; these effects may explain the extraordinary changes
induced by tomatine in the cell proteome. Therefore, we excluded
tomatine from subsequent analyses.

PCA revealed 14 orthogonal dimensions contributing at least
1% to separation of proteome signatures (excluding tomatine)
(Supplementary Fig. 5). The first 3 components are shown in
Supplementary Fig. 6.

We next employed a conventional correlation-based hierarch-
ical clustering analysis, in which the compounds aggregated in
clusters mostly based on common targets/MOA (Fig. 2a). There
are two super-clusters separating the compounds: one composed
of the compounds that directly or indirectly lead to DNA damage,
such as pyrimidine analogs, as well as TOP1 and TOP2 inhibitors,
and the second super-cluster containing all the other molecules.
The second super-cluster is in turn divided into proteasome
inhibitors and the rest of molecules. This can be explained by
dramatic accumulation of misfolded proteins or proteotoxicity of
proteasome inhibitors31,32, which is not the case with any other
compound class. For example, for bortezomib the number of up-
regulated proteins was much higher than down-regulated
proteins (up/down ratio of 17.8 for bortezomib (vs. control)
compared to the average of 2.9 for all other drugs at a minimum
regulation of 1.5 fold). The ranking of drugs by the overall
deviation of their molecular signatures from the untreated state is
shown in Supplementary Fig. 7.

It must be noted that the a priori annotation of compounds is
solely based on anticipated targets and disregards the off-targets
effects, while proteome-based clustering is based on the overall
change of the proteome. For example, auranofin clusters with b-
AP15, consistent with its recently identified deubiquitinase
inhibitor activity33,34. Note that kinase inhibitors, although
seemingly diverse in their cellular effects, also showed a fair
degree of clustering.

We also performed clustering of proteins and identified 15
clusters (vertical axis in Fig. 2a), subjecting each cluster to Gene
Ontology analysis (Supplementary Data 2 and Fig. 2b). Some of
these clusters represent high density protein networks: e.g., cluster
13 maps to ribosome.

A quick look at the heat map in Fig. 2a reveals protein clusters
due to which the compounds are placed in specific clusters. For
example, the compounds in super-cluster 1 are separated from
super-cluster 2 mostly due to the differences in protein clusters 6
and 15, which represent chromosome condensation and
p53 signaling pathways, respectively. The DNA damaging agents
lead to induction of p53 signaling pathway resulting in cell cycle
arrest35. As another example, pyrimidine analogs 5-fluorouracil,
floxuridine and carmofur form a mini-cluster because they down-
regulate ribosomal proteins in the protein cluster 1336.

Radar charts on Fig. 2c–i visualize the engagement of
compound groups in different protein clusters. For example,
proteasome inhibitors (and also everolimus) strongly induce
cluster 12 related to protein folding (Fig. 2c), and so does
auranofin, unlike other TXNRD1 inhibitors (Fig. 2d). Unexpect-
edly, some kinase inhibitors including lapatinib, bosutinib,
sunitinib, and gefitinib up-regulate the (chole)sterol synthesis
pathways, represented by cluster 14 in Fig. 2e. We later verify that
these kinase inhibitors indeed enhance cellular cholesterol levels.
TOP1 and TOP2A inhibitors down-regulate cluster 6 related to
chromatin condensation (Fig. 2f, g). Also down-regulated are the
ribosomal proteins (cluster 13) by pyrimidine analogs as well as
oxaliplatin37 (Fig. 2h) and mitochondrial pathways (cluster 2) by
a group of mitochondria-targeting compounds (Fig. 2i).

Functional discovery at the protein level. Protein regulation is
usually defined as a ratio of the protein abundances in the cells
incubated with a drug and a vehicle (control). However, many
proteins are involved in generic, drug-unspecific cell responses
(e.g., detoxification, death, or survival pathways). To reveal the
protein responses characteristic to a particular drug, FITExP
introduced specificity as a ratio of the protein regulation in
response to a particular drug to the median regulation in response
to all other drugs, and used it for deconvolution of drug target/
MOA19. Here, we merge the regulation and specificity into one
parameter by employing OPLS-DA38, contrasting a given com-
pound against all other molecules (Fig. 3a).

OPLS-DA is a multivariate data analysis tool and a supervised
modeling approach that is useful for highlighting what makes two
groups or systems different38. In ProTargetMiner, OPLS-DA is
used for discriminant analysis. OPLS-DA would thus discover
variables (here proteins) with the largest discriminatory power.
The two-group comparison models are easiest to interpret,
because there will be only one predictive component. This
predictive component is rendered in the x axis in the loading or
score scatter plot. Therefore, the horizontal axis in the score
scatter plot will demonstrate the variation between the groups,
while the vertical dimension and any higher orthogonal
components will capture variation within the groups (the latter
is quite unimportant in this study).

In thus obtained OPLS-DA models, where each protein is
represented by a dot on a loading plot, the proteins specifically
up- or down-regulated in response to a given treatment are found
on the opposite sides of the plot on the x axis (Fig. 3b). The
proximity of a protein to the endpoint on either side of the x-axis
reflects the magnitude and specificity of regulation of that protein
in response to a given drug, taking into account the variation
among the replicates. Since the y-axis coordinate reflects the
contribution of the orthogonal components, the most specific
target candidates are located near the x-axis.

Each OPSL-DA model is characterized by R2 value represent-
ing the goodness of the model fit. To avoid overfitting of the data
in multivariate analysis, SIMCA employs leave-one-out cross-
validation strategy. The result is the Q2 value, which is a measure
of model predictive power. Q2 is also called the cross-validated
R2 and should obviously have a smaller value. Therefore, a model
with R2 of 1 perfectly describes the data, and the Q2 value of 1
indicates perfect predictivity of the model. In brief, for cross
validation, the whole data-set is divided into seven groups and
seven subsequent models are developed based on 6/7 of the data,
leaving a new group aside each time39. The deleted data are then
used as a verification set, and the differences are calculated
between the actual and predicted values. These differences
are normalized and subtracted from unity, which provides
the Q2 value. For more detailed explanation, see Umetrics
documentation [39].

As representative examples of drug target deconvolution,
OPLS-DA models for several drugs are shown in Fig. 4. R2 and
Q2 values are given on each plot. The methotrexate target
dihydrofolate reductase (DHFR) is convincingly identified as an
obvious up-regulated outlier (p vs. control= 2E-5, two-sided
Student’s t-test) (Fig. 4a). In SIMCA software, variable influence
on projection (VIP) values can also be extracted from the model
loading40, which show the total contribution of x variables to the
OPLS-DA model. These VIP values are summed over all
components and weighted with regards to the Y variation
explained by each component. Therefore, VIP values can be used
for ranking of target proteins. As an example, the VIP values
indicate that DHFR is the second most contributing protein to
methotrexate treatment (Fig. 4b). Network analysis of the
specifically regulated proteins on the either side of the model
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reflects compounds’ MOA. As an example, processes enriched for
30 top specifically up-regulated proteins in methotrexate treat-
ment are deoxyribonucleoside monophosphate biosynthetic
process (p < 1E-6) and tetrahydrofolate metabolic process (p <
7E-6) and the enriched function is folic acid binding (p < 5E-5), in
line with the known drug mechanism.

Tubulins are found to be the most specifically up-regulated
proteins for paclitaxel and down-regulated for vincristine,
consistent with these two drugs affecting tubulin depolymeriza-
tion41 and polymerization42, respectively (Fig. 4c, d).

If mechanistic proteins are engaged in large complexes, whole
complexes can be specifically regulated. For example, the
proteasome inhibitor bortezomib demonstrates specific up-
regulation of the proteasome subunits (Fig. 4e). The sorafenib
model shows specific down-regulation of NADH dehydrogenases
and mitochondrial ribosomal proteins (Fig. 4f). This latter finding
is in line with an earlier report for human neuroblastoma cells43

and shows that ProTargetMiner results can be cautiously
generalized to other cell lines. However, due to the lower depth
of the original dataset and the low abundance of kinases, among
the known sorafenib targets, only RAF1 data was available in the
dataset and this protein was not among the top proteins in OPLS-
DA model. We later discuss why ProTargetMiner may not be the
tool of choice for target deconvolution of kinase inhibitors.

The OPLS-DA derived x coordinates (specificity values)
of each protein to each of the 55 tested compound are provided
in Supplementary Data 3, and can serve as a reference resource in
other studies, along with the expression data already presented
in Supplementary Data 1.

The expression levels of the top proteins for different
compounds are shown in Fig. 4g–j. For example, Fig. 4g shows
the higher expression of tubulins identified through OPLS-DA in
paclitaxel treatment vs. the average expression for all other drugs.

To further demonstrate the validity of the approach and to
show what happens when no true signal is present, we removed
the compounds-related columns in Fig. 4 from the dataset one by

one (3 cases) and built OPLS-DA models with three randomly
chosen (irrelevant) columns instead. The protein targets high-
lighted in Fig. 4 disappeared from the top ranking list, indicating
that random selection of columns does not support meaningful
findings (Supplementary Fig. 8).

Functional discovery on kinase inhibitors. As shown in Fig. 2,
lapatinib, gefitinib, and other kinase inhibitors such as bosutinib,
sunitinib, crizotinib, and cabozantinib affect cholesterol metabo-
lism and/or lipid synthesis (representative OPLS-DA models and
up-regulated proteins in Supplementary Fig. 9a, b, respectively).
Literature seems to support these results. Lapatinib and crizotinib
can induce cholesterol accumulation in human cardiomyocytes44.
Lapatinib can also induce the accumulation of cholesterol in late
endosomes in breast cancer cells45. Increased cholesterol levels is
a common side effect of cabozantinib in clinical trials. Further-
more, new-onset hyperlipidemia has been noted in patients tak-
ing sunitinib46 and in mice in vivo47.

To experimentally verify the effect of kinase inhibitors on
cellular cholesterol levels, lapatinib, bosutinib, sunitinib, and
gefitinib were tested, while sorafenib that did not induce up-
regulation of lipid synthesis and/or cholesterol metabolism
proteins, was used as a negative control. To avoid excessive
cytotoxicity, we used a shorter incubation time of 20 h and a sub-
LC50 concentration (4 µM) for all the compounds. A549, RKO,
and human foreskin fibroblast (HFF-1) cells were used for the
analysis. While all compounds increased the cellular total
cholesterol levels by ~20–50% in A549 cells, in RKO cells, only
lapatinib, gefitinib, and bosutinib had a similar effect, and in
HFF-1 cells, only lapatinib and bosutinib enhanced the
cholesterol levels. In short, the prediction made by ProTargetMi-
ner was confirmed (Supplementary Fig. 9c). The potential
contribution of this effect on the cytotoxicity of kinase inhibitors
can be a subject for future studies.

Biochemical pathways affected by compounds are related not
only to death pathways but also to cell survival17. Therefore, the
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specifically regulated proteins could be potentially linked to drug
resistance. For example, EGFR that was specifically up-regulated
in the sorafenib model (Supplementary Fig. 10a) is known to be
involved in resistance to this drug48. Another kinase specifically
up-regulated in response to sorafenib (and regorafenib) was AXL
(Supplementary Fig. 10a). AXL is a receptor tyrosine kinase

regulating many aspects of cell proliferation and survival, and its
overexpression induces resistance to EGFR targeted therapies49.
When we combined sorafenib and regorafenib (at LC50) with the
specific AXL inhibitor TP0903 in non-cytotoxic concentrations
(<100 nM), the combination treatment significantly increased cell
death in A549 cells at 24 h and 48 h compared to pure sorafenib
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and regorafenib (Supplementary Fig. 10b), validating the
ProTargetMiner prediction, that AXL might induce resistance
to these drugs.

On the minimum size of ProTargetMiner. Since compound-
induced effects can be cell-specific, detailed characterization of
drug action is desirable in the most relevant biological setting.
Thus in the drug development process it would be advantageous
to build a ProTargetMiner dataset with a customized drug panel
and cell type. Creating a ProTargetMiner de novo, however, could
be time-consuming and expensive. Miniaturization of the
experiment requires determination of the minimal compound
panel size for deducing the target and MOA. To address this
issue, PLS-DA models were built for different numbers of con-
trasting compounds (n= 1–54, 50 molecule combinations ran-
domized for each n). The mean rankings of the known targets for
representative compounds camptothecin, methotrexate, OSW-1
and paclitaxel were determined for each number of contrasting
drugs n. As expected, higher n gave better ranking for drug targets
but not for random proteins (Fig. 5). Encouragingly, already 8–10
contrasting molecules in the drug panel were in most cases
enough for target rankings reaching a value below 10. This would
present an opportunity to miniaturize ProTargetMiner for spe-
cialized applications, as well as reducing the labor and cost of the
analyses.

ProTargetMiner size vs. proteome depth. A miniaturized Pro-
TargetMiner dataset could offer a deeper proteome coverage with
less missing values. We obtained deeper proteomic datasets for
A549, MCF-7, and RKO cells representing major cancer types
(lung, breast, and colon cancers, respectively) (Supplementary
Data 4–6). As a drug panel, 9 molecules were chosen representing
most diverse MOAs according to drug clustering in Fig. 2a as well
as different orthogonal dimensions in the factor analysis of that
dataset: 8-azaguanine (target: PNP), raltitrexed (target: TYMS),
topotecan (target: TOP1), floxuridine (target: TYMS), nutlin (tar-
get: MDM2), dasatinib (target: multiple kinase targets), gefitinib

(target: EGFR), vincristine (target: tubulin), and bortezomib
(PSMB5 and PSMB1). While in the original dataset, samples were
analyzed in 8 fractions, for obtaining deep datasets samples were
fractionated into 16 (A549), 23 (MCF-7), or 24 (RKO), and the
resulting fractions were analyzed using the Q Exactive HF mass
spectrometer. The depths of the proteome profiles are 7398, 8735,
and 8551 proteins, respectively, with no missing values in all three
replicates. The comparison of number of proteins, number of
peptides, average sequence coverage, and the number of missing
values is given in Supplementary Fig. 11.

To showcase the applicability of the new deep datasets in target
deconvolution, OPLS-DA models were built for the kinase
inhibitor dasatinib vs. eight other treatments in each cell line
(Fig. 6a). Comparison of the models revealed both similarities and
cell-specific differences. As an example, the known target
MAPK14 and the previously unknown target candidate PARG
(Poly(ADP-ribose) glycohydrolase) were among the top target
candidates in all three cell lines, while the other known kinase
targets only appeared in certain cell lines (Fig. 6a). Dasatinib
potently inhibits several tyrosine kinases, of which only 4 kinases
including SRC, YES1, CSK, and LYN were among the top
proteins in different cell lines. This is while the OPLS-DA model
highlights other previously unknown kinases as potential targets.
Interestingly, CYP1A1 which is involved in dasatinib metabo-
lism50, was the top up-regulated protein in MCF-7 cells (this
protein was not quantified in A549 or RKO cells) (Fig. 6a).
Similarly, the known targets for bortezomib dipeptidyl peptidase
2 (DPP7) and DPP351 were among the top proteins in MCF-7
cells (ranking 1 and 5 as down-regulated proteins) (Fig. 6b), but
not in the other two cell lines. These datasets could provide a
platform for merging user data.

Merging deep datasets to obtain common drug targets and
MOA. In a previous study we have shown that a merged OPLS-
DA model built for the proteomes of three cell lines perturbed by
different drugs possesses an interesting property – it is rigid,
meaning that such models created for a subset encompassing
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≥500 most abundant proteins are very similar to the models
encompassing ≈100 most drug-specific proteins52. This is in a
sharp contrast to single-cell models that do not possess such a
property, and thus are loose. Model rigidity is a desired property
allowing one to deduce a common drug target53. To obtain a rigid
ProTargetMiner model, we performed OPLS-DA modeling for
the merged three cell line dataset.

The combined deep-proteome dataset has a total depth of
11,293 proteins quantified with at least two peptides, of which
6496 proteins were common in all cell lines and without missing
values (Supplementary Data 7). Compared to individual cell
datasets, the merged model built for these proteins possesses
higher specificity. For instance, for dasatinib, the known targets
become more significant outliers (Fig. 6c).

On the other hand, some well-known targets faded in ranking,
likely due to the cell-specific mechanistic differences. This
phenomenon was noted for some kinases for dasatinib (Fig. 6c)
and for DPP7 and DPP3 proteins for bortezomib (Fig. 6d). As an
example, the expression of DPP3 in MCF-7 cells has been shown
in Fig. 6e. Similarly, tubulins which had high rankings in MCF-7
and A549 cells in response to vincristine (3 tubulins were among
the top 10 specifically down-regulated proteins in both cell lines),

were not among the top proteins in RKO cells. As a result, top
proteins for vincristine in the merged dataset had only two
tubulins. On the other hand, the top 30 specifically down-
regulated proteins for vincristine in the merged dataset, mapped
very well to rRNA processing (p < 4E-5) GO process and to the
nucleolus (p < 9E-6) component, in agreement with the known
vincristine effect on RNA synthesis54. Thus, the merged dataset
presents two diverse MOAs of vincristine.

Making an expandable public platform. The ProTargetMiner
datasets can be easily extended with new data on other com-
pounds. In order to make the resource available to the commu-
nity, a Shiny package was written in R, providing a user interface
for data integration and PLS-DA modeling for either a selected
cell line or all cell lines (Fig. 7a). In short, the user obtains the
proteome signature of the desired compound at LC50 con-
centration (48 h treatment) in any, or all, of the above cell lines in
form of the gene names and fold changes in preferably three
replicates (only 6 proteomics analyses per cell line), and uploads
this information (as an own dataset) through a user interface
according to the step-by-step procedure given in Fig. 7b. A
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Fig. 6 Deeper ProTargetMiner dataset with 8 contrasting compounds is successful in target/MOA deconvolution. a OPLS-DA enabled deconvolution of
multiple kinases as targets for dasatinib in three cell lines (drug targets shown in red circles). b deconvolution of DPP7 and DPP3 in MCF-7 and DPP3 in
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MCF-7 cells. Data are represented as mean ± s.d. (n= 3 biologically independent experiments). Supplementary Data 4–7 were used for making panels a–e.
Source data are provided as a Source Data file.
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template for the input.CSV file is shown in Fig. 7c. The package
output will be the loading values of top specifically regulated
proteins extracted from a PLS-DA model contrasting the given
compound against the 9 diverse proteome signatures in that cell
line (or all cell lines).

Discussion
We generated an installment of a proteome signature library for
anticancer molecules at LC50 concentrations, and proposed a
modeling scheme implemented in an R Shiny package for
deconvolution of drug targets, drug metabolizing enzymes, MOA,
resistance factors and overall cellular effects for new compounds.
We consider ProTargetMiner as a complement to preceding drug
target deconvolution databases, such as connectivity maps3,4,6.
The advantage of ProTargetMiner is that the response to antic-
ancer molecules can be analyzed in detail on the protein level.
Furthermore, the biological endpoint in this study is normalized,
which makes the comparison of compound signatures more
meaningful. The OPLS-DA modeling used in ProTargetMiner can
be hypothetically applied to transcriptomics data or to non-anti-
cancer treatments, as long as the biological endpoints for all used
compounds are similar. We limited our discussion to the cases in
which a single drug is contrasted against others, but the same
approach can also be applied to characterize features shared
among a selected class of compounds, or between any combina-
tions of drugs. Such a methodology can also be applied to a panel
of cell lines, e.g., inquiring which proteins specifically respond to a
compound in a given cell line but not in other cell types.

Although the cytotoxicity of anticancer compounds was nor-
malized in this study, it should still be noted that specific drugs
might be imperfectly represented by proteomics profiles. For
example, in the absence of expression of the primary targets in the
cell system under study, off-target effects might dominate in the
proteomic signature. Finding a single-cell system where all
compounds can be tested in a specific way is very difficult if not
impossible.

ProTargetMiner provided information on various aspects of
different kinase inhibitors. One of the main challenges with
kinase inhibitors is the high number of missing values in shotgun
proteomics, especially when a large number of datasets are
combined. Kinases are not among the most abundant cellular
proteins. In the deep datasets we have tried to overcome this
issue. While other types of enzymes can be hypothetically regu-
lated by expression, the redundancy of function in most kinases
results in insensitivity to differential regulation. It is yet to be seen
what fraction of kinase inhibitor targets can be deconvoluted
using ProTargetMiner.

The block-by-block and open source nature of this resource
allow for expansion in various dimensions, e.g., by incorporating
more perturbations, time points, and profiling more cell lines.
Although expansion of the compound library seems desirable,
one must consider that for a comprehensive database, enough
perturbations must be done to saturate all possible cellular states.
Ideally, highly specific inhibitors of every cellular protein are
required. But given the astronomical number of potential per-
turbants, building a truly comprehensive library is a formidable
project. While precision medicine targets specific cell types with
defined mutations, building a comprehensive proteome response
database for every such cell type seems impossible. Fortunately, as
we have shown, ProTargetMiner approach can be easily custo-
mized and miniaturized. With top-of-the-line proteomics
instruments reaching the depth of ≥10,000 proteins55, a triplicate
analysis of 9 perturbations requires less than a week of instru-
mental time. We hope that ProTargetMiner will be used by broad
community of cancer researchers.

Methods
Compounds. The library was cherry picked for cancer indication from a larger
Selleckchem collection. The AXL inhibitor TP-0903 was from Selleckchem
(Cat#S7846) and auranofin was from Sigma (Cat#A6733).

Cell culture. Human A549 cells (RRID:CVCL_0023; Cat#ATCC CCL-185; estab-
lished from lung carcinomatous tissue from a 58-year-old Caucasian male), MCF-7
(RRID:CVCL_0031; Cat#ATCC HTB-22; established from breast adenocarcinoma
from a 69-year-old Caucasian female), and RKO (RRID:CVCL_0504; Cat#ATCC
CRL-2577; colon carcinoma cell line) (all obtained from ATCC, USA), were grown
in DMEM medium (Fisher Scientific; Cat#11625200) supplemented with 10% FBS
(Fisher Scientific; Cat#11560636), 2 mM L-glutamine (Fisher Scientific; Cat#BE17-
605E) and 100 units per mL of penicillin/streptomycin (Thermo Fisher;
Cat#15140122) and incubated at 37 °C in 5% CO2. HFF-1 cells (RRID:CVCL_3285;
Cat#ATCC SCRC-1041) were cultured under the exact same conditions in IMDM
(Biowest). Cells were routinely tested for mycoplasma by MycoAlert Mycoplasma
Detection Kit (#Cat: 11650261, Thermo Fisher Scientific). No authentication was
performed, since passage number 2 cells were thawed and used from the ATCC
source in all the experiments. In LC50 determination, cells were seeded at a density
of 4000 per well in 96-well plates and after a day of growth, treated with the
molecules for 48 h. Thereafter cell viability was measured using CellTiter-Blue®
Cell Viability Assay (Promega; Cat#G8081) according to the manufacturer
protocol.

Proteomics. For proteomics analysis, the cells were seeded at a density of 250,000
per well and allowed to grow for 24 h in biological triplicates. Next, cells were either
treated with vehicle (DMSO) or compounds at LC50 concentrations. Each 10
experiments included one vehicle-treated control, 3 control drugs, and 6 library
compounds. After treatment, cells were collected, washed twice with PBS (Fisher
Scientific; Cat#11629980) and then lysed using 8M urea (Sigma; Cat#U5378), 1%
SDS, and 50mM Tris at pH 8.5 with protease inhibitors (Sigma; Cat#05892791001).
The cell lysates were subjected to 1min sonication on ice using Branson probe
sonicator and 3 s on/off pulses with a 30% amplitude. Protein concentration was
then measured for each sample using a BCA Protein Assay Kit (Thermo;
Cat#23227). 50 µg of each sample was reduced with DTT (final concentration
10 mM) (Sigma; Cat#D0632) for 1 h at room temperature. Afterwards, iodoaceta-
mide (IAA) (Sigma; Cat#I6125) was added to a final concentration of 50mM. The
samples were incubated in room temperature for 1 h in the dark, with the reaction
being stopped by addition of 10mM DTT. After precipitation of proteins using
methanol/chloroform, the semi-dry protein pellet was dissolved in 25 µL of 8M
urea in 20mM EPPS (pH 8.5) (Sigma; Cat#E9502) and was then diluted with EPPS
buffer to reduce urea concentration to 4M. Lysyl endopeptidase (LysC) (Wako;
Cat#125-05061) was added at a 1: 100 w/w ratio to protein and incubated at room
temperature overnight. After diluting urea to 1M, trypsin (Promega; Cat#V5111)
was added at the ratio of 1: 100 w/w and the samples were incubated for 6 h at room
temperature. Acetonitrile (Fisher Scientific; Cat#1079-9704) was added to a final
concentration of 20% v/v.

TMT10 reagents (Thermo; Cat#90110) were added 4x by weight to each sample,
followed by incubation for 2 h at room temperature. The reaction was quenched by
addition of 0.5% hydroxylamine (Thermo Fisher; Cat#90115). Samples were
combined, acidified by trifluoroacetic acid (TFA; Sigma; Cat#302031-M), cleaned
using Sep-Pak (Waters; Cat#WAT054960) and dried using a DNA 120 SpeedVac™
concentrator (Thermo).

Samples were then resuspended in 0.1% TFA, and separated into 8 fractions
using High pH Reversed-Phase Peptide Fractionation Kit (Thermo; Cat#84868).
After resuspension in 0.1% FA (Fisher Scientific), each fraction was analyzed with a
90-min gradient in randomized order.

The deep proteomics samples (tags assigned in Supplementary Table 2) were
prepared according to the above protocol until the multiplexing, cleaning, and
drying steps, after which the samples were resuspended in 20 mM ammonium
hydroxide and separated into 96 fractions on an XBrigde BEH C18 2.1 × 150 mm
column (Waters; Cat#186003023), using a Dionex Ultimate 3000 2DLC system
(Thermo Scientific) over a 48 min gradient of 1–63%B (B= 20 mM ammonium
hydroxide in acetonitrile) in three steps (1–23.5%B in 42 min, 23.5–54%B in 4 min
and then 54–63%B in 2 min) at 200 µL min−1 flow. Fractions were then
concatenated into 16 samples in sequential order for A549 cells (e.g. 1, 17, 33, 49,
65, 81) and in 23 and 24 fractions for MCF-7 and RKO (e.g. 1, 25, 49, 73). After
drying and resuspension in 0.1% formic acid (FA) (Fisher Scientific), each fraction
was analyzed with a 90 min gradient (total method time= 110 min) in
random order.

LC-MS analysis. Samples were loaded with buffer A (0.1% FA in water) onto a
50 cm EASY-Spray column (75 µm internal diameter, packed with PepMap C18,
2 µm beads, 100 Å pore size; Cat#ES803) connected to the EASY-nLC 1000
(Thermo; Cat#LC120) and eluted with a buffer B (98% ACN, 0.1% FA, 2% H2O)
gradient from 2 to 35% of at a flow rate of 250 nL min−1. Mass spectra were
acquired with an Orbitrap Q Exactive Plus mass spectrometer (Thermo; Cat#
IQLAAEGAAPFALGMBDK) in the data-dependent mode with MS1 scan at
70,000 resolution, and MS2 at 35,000, in the m/z range from 375 to 1400. Peptide
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fragmentation was performed via higher-energy collision dissociation (HCD) with
energy set at 35 NCE.

For deep proteomics sets, samples were loaded with buffer A (0.1% FA in water)
onto a 50 cm EASY-Spray column (75 µm internal diameter, packed with PepMap
C18, 2 µm beads, 100 Å pore size) connected to a nanoflow Dionex UltiMate 3000
UPLC system (Thermo) and eluted in an increasing organic solvent gradient from
2 to 26% (B: 98% ACN, 0.1% FA, 2% H2O) at a flow rate of 300 nL min−1. Mass
spectra were acquired with a Q Exactive HF mass spectrometer (Thermo;
Cat#IQLAAEGAAPFALGMBFZ) in the data-dependent mode with MS1 scan at
120,000 resolution, and MS2 at 60,000 (@200m/z), in the mass range from 350 to
1500m/z. Peptide fragmentation was performed via higher-energy collision
dissociation (HCD) with energy set at 33 NCE.

Protein identification and quantification. The raw data from LC-MS were ana-
lyzed by MaxQuant, version 1.5.6.5 (RRID:SCR_014485)56. The Andromeda
engine57 searched MS/MS data against Uniprot complete proteome database
(human, version UP000005640_9606, 92957 entries). Cysteine carbamidomethyla-
tion was used as a fixed modification, while methionine oxidation and protein N-
terminal acetylation were selected as a variable modification. Trypsin/P was selected
as enzyme specificity. No more than two missed cleavages were allowed. A 1% false
discovery rate was used as a filter at both protein and peptide levels. First search
tolerance was 20 ppm (default) and main search tolerance was 4.5 ppm (default),
and the minimum peptide length was 7 residues. Match between runs was activated
with a match time window of 0.7 min and alignment time window of 20min.

Statistics. After removing all the contaminants, only proteins with at least two
peptides were included in the final dataset. Protein abundances were normalized by
the total protein abundance in each sample in deep datasets. In the original dataset,
protein intensities in every experiment (sample set) were normalized to ensure
same median intensity across all channels in all replicates. Then for each protein
log2-transformed fold-changes were calculated as a log2-ratio of the intensity to the
mean of all control replicates. As the last step, log2-ratio were normalized across
the whole dataset to ensure close to zero median log-fold change. The latter nor-
malization does not affect the number of differentially regulated proteins; it
accounts for experimental variations and is preferred for high-dimensional mass
spectrometry data58. The data distribution before and after median normalization,
and before and after log2 median fold change normalization are shown in Sup-
plementary Fig. 12a–d, respectively, demonstrating the stabilization of the median
fold change for replicates. To show that the same normalization would work for a
subset of the dataset, we randomly took the data from experiment 4 and repeated
the same procedure. A comparison of the data distribution in this subset from the
original dataset and the individually normalized data is shown in Supplementary
Fig. 13, demonstrating very similar results.

Data were processed by Excel, R, Python, and SIMCA (Version 15, UMetrics,
Sweden; RRID:SCR_014688). All reported p values are from two-sided Student’s
t-test (for cholesterol and AXL results).

Network mapping. GO pathway enrichment analysis for the top proteins derived
from the OPLS-DA models was performed using the Gene Ontology enRIchment
anaLysis and visuaLizAtion (GORILLA, http://cbl-gorilla.cs.technion.ac.il/) tool59.
All the proteins quantified in each experiment were used as the background.

Cholesterol quantitation. Cellular total cholesterol was measured using choles-
terol quantitation kit from Sigma (Cat#MAK043-1KT). In brief, 300k A549, RKO
and HFF-1 cells were cultured in 6-well plates and treated with compounds for 20 h
at 4 µM. Cholesterol was extracted by adding 200 µL of chloroform:isopropanol:
IGEPAL CA-630 (7:11:0.1) and sonicated for 1 min on ice using Branson probe
sonicator and 3 s on/off pulses with a 30% amplitude. The samples were cen-
trifuged at 13,000 × g for 10 min to remove the insoluble material. The organic
phase was transferred to a new Eppendorf and dried. The lipids were then dissolved
in assay buffer. The reaction mix consisting of assay buffer, cholesterol probe,
enzyme mix, and cholesterol esterase was added to the samples in 96-well flat-
bottom plates. The reactions were incubated for 60 min at 37 °C in the dark and the
absorbance was measured at 570 nm.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The LC-MS/MS raw data files and extracted peptides and protein abundances are
deposited in the jPOST repository of the ProteomeXchange Consortium60 under the
dataset identifier PXD009775 (original ProTargetMiner data), PXD009644 (deep
proteomics set for A549 cells) and PXD013134 (deep proteomics set for MCF-7 and
RKO cells) with no restrictions. The extracted protein abundances data and relevant
outputs of data analysis are provided in Supplementary Data 1–7. The source data
underlying Figs. 2b-i, 4b, g–j, and 6e, and Supplementary Figs. 1, 2a–h, 4b, 5, 6a, b, 9c,
10b, and 11a–h are provided as a Source Data file. All other data are available from the
corresponding author on reasonable request.

Code availability
The ProTargetMiner R Shiny package is available in GitHub (https://github.com/RZlab/
ProTargetMiner) with no access restrictions. ProTargetMiner is also directly available on
this domain: http://protargetminer.genexplain.com
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