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Abstract Although many studies have demonstrated that
components of the hemostatic system may be involved in
signaling leading to cancer progression, the potential mecha-
nisms by which they contribute to cancer dissemination are
not yet precisely understood. Among known coagulant fac-
tors, tissue factor (TF) and thrombin play a pivotal role in
cancer invasion. They may be generated in the tumor micro-
environment independently of blood coagulation and can in-
duce cell signaling through activation of protease-activated
receptors (PARs). PARs are transmembrane G-protein-
coupled receptors (GPCRs) that are activated by a unique
proteolytic mechanism. They play important roles in vascular
physiology, neural tube closure, hemostasis, and inflamma-
tion. All of these agents (TF, thrombin, PARs—mainly PAR-
1 and PAR-2) are thought to promote cancer invasion and
metastasis at least in part by facilitating tumor cell migration,
angiogenesis, and interactions with host vascular cells, includ-
ing platelets, fibroblasts, and endothelial cells lining blood
vessels. Here, we discuss the role of PARs and their activators

in cancer progression, focusing on TF- and thrombin-
mediated actions. Therapeutic options tailored specifically to
inhibit PAR-induced signaling in cancer patients are presented
as well.
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1 Introduction

The association between blood coagulation, with respect to
venous thrombosis and cancer development was first de-
scribed in the nineteenth century by Drs. Trousseau and
Bouillaud [1]. Trousseau’s syndrome is a prominent example
of cancer-related thromboembolism. The additional proof that
coagulation factors actively participate in cancer invasion is
the fact that anticoagulants improve cancer patients’ survival
[2–4]. The dissemination of cancer from the primary tumor is
the main cause of cancer-related death and an enormous clin-
ical challenge [5]. Therefore, the contribution of the coagula-
tion factors to the mechanisms of metastasis has been the
subject of intensive study. According to existing data, recip-
rocal interactions between cancer cells, extracellular matrix
proteins, as well as endothelial cells (ECs) and blood cells,
play a pivotal role in tumor invasiveness and metastasis [4–6].
The complex system of enzymes, bioactive lipids, cytokines,
and receptors is indispensable for efficient intracellular com-
munication on local and distant ground. It appears that coag-
ulants, serine proteases, and matrix metalloproteases (MMPs)
facilitate tumor cell metastasis by modulating a number of
host vascular cell responses as well as by acting directly on
tumor cells themselves. Since the 1960–1970s, hormone-like
effects of proteases in target tissues have been recognized,
e.g., insulin-like effects of pepsin or chymotrypsin as well as
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mitogenic actions of thrombin and trypsin at the cell mem-
brane [7, 8]. Tissue factor (TF) and thrombin are present in
both the tumor microenvironment and malignant cells [9–11].
Tissue factor in a complex with coagulation factor VIIa
(FVIIa) initiates blood coagulation leading to thrombin gen-
eration. In addition to cleaving fibrinogen, thrombin activates
cells through a unique proteolytic mechanism [12]. Thrombin
opens its receptor active site by cleavage of a key extracellular
domain (residues LDPR/S). This hinge-like mechanism led to
the receptor being referred to as the tethered ligand thrombin
receptor (TLTR) [13]. Collectively, the thrombin-activated re-
ceptors have come to be referred to as protease-activated re-
ceptors (PARs). In the late twentieth century, pioneering work
identified the presence of the G-protein-coupled thrombin re-
ceptor at the surface of cancer cells in solid tumors [14]. The
predominant activators of PARs in cancer cells are thrombin,
MMPs, trypsin, TF, FVIIa, FXa, and their ternary complex
TF/FVIIa/FXa [5, 15, 16]. The expression of PARs (mainly
PAR-1 and PAR-2) is implicated in the development of sev-
eral types of human malignant cancers and correlates directly
with the degree of invasiveness exhibited by both primary and
metastatic tumors [17, 18]. As a growing number of studies
have documented the role of PARs in cancer cell proliferation
and tumor growth, considerable effort has been devoted to
development of both protease inhibitors (functional) and re-
ceptor active site inhibitors (pharmacological PAR antago-
nists) [16, 19–22].

Here, we provide a comprehensive review of the contribu-
tion of PARs to cancer invasiveness and dissemination by
focusing on actions elicited by TF and thrombin in tumors,
ECs, and blood cells. We also present potential therapeutic
strategies targeted to interactions induced via PAR-
associated signaling.

2 Protease-activated receptors

2.1 Discovery, localization, and activators

PARs are transmembrane G-protein-coupled receptors
(GPCRs) [23, 24]. Each of four PARs—PAR-1, PAR-2,
PAR-3, and PAR-4—are encoded by distinct genes. PAR-1,
the first receptor to be discovered, was identified in 1991 by
two independent laboratories in search of the GPCR that me-
diated thrombin signaling in human and hamster cells.
Microinjection into Xenopus oocytes of RNA transcribed
in vitro from the cDNA of a novel putative receptor led to
the expression of a functional thrombin receptor [25, 26].

PAR-2, which is activated by trypsin, was identified by
screening a mouse genomic library for GPCRs with oligos
based on conserved transmembrane regions of the bovine sub-
stance K receptor [27]. Subsequently, PAR-3 and PAR-4 were
cloned by mRNA screening of rat platelets and by

investigating a human expressed sequence tag database, re-
spectively [28, reviewed in 29].

PARs are expressed on nearly all cell types in the
blood vessel wall (ECs, fibroblasts, myocytes) and blood
(platelets, neutrophils, macrophages, leukemic white cells)
with exception of red blood cells [15]. Thrombin-activated
PAR-1, PAR-3, and PAR-4 are also expressed in epitheli-
um, neurons, astrocytes, and immune cells [15, 23,
29–31]. PAR-2, which is activated by trypsin-like serine
proteases, is found in human vascular, intestinal, neuronal,
and airway cells. Its expression increases in injured tissues
or after stimulation by inflammatory mediators [29, 30,
32]. Most cells express multiple PARs that are fully func-
tioning with respect to signal capacity. However, many
form heterodimers where they reciprocally function as co-
factors to potentiate protease activity, thereby leading to
transactivation of one receptor by another to give a cellu-
lar response [30, 33]. For example, thrombin binds and
cleaves PAR-3 in murine platelets without eliciting further
cellular signaling from PAR3, but this facilitates activation
of the low-affinity thrombin receptor, PAR-4 [30, 34]. This
exceptional mechanism of transactivation exists between
PAR-1 and PAR-2, or PAR-1 and PAR-4 in human endo-
thelial cells or platelets, respectively. Tethered ligand of
one receptor, generated by thrombin-mediated proteolysis,
can directly stimulate the active site of another PAR and
effectively induce intracellular signaling [33, 35, 36]. It
seems that PARs form physical heterodimers, especially
after stimulation by cytokines during inflammation [33].
Response activation by heterodimers, e.g., PAR-1/PAR-2
is distinct from that elicited by homodimers, as evidenced
by early, barrier-disruptive (PAR-1 dominant), and late,
barrier-protective (PAR-1/PAR-2 dominant) stages of sepsis
[33]. There are many other activators of PARs in addition
to thrombin and trypsin (Table 1).

Table 1 Proteases leading to protease-activated receptor (PAR)
activation

PAR-1 PAR-2 PAR-3 PAR-4

Proteases Thrombin
Factor Xa
TF-VIIa-Xa
APC
Plasmin
Granzyme A
Gingipains-R
Trypsin
MMP-1, MMP-9,

MMP-2, MMP-13,
MMP-14

Trypsin
Tryptase
Factor VIIa
Factor Xa
TF-VIIa-Xa
TF-VIIa
MT-SP1
Proteinases-3
Gingipains-R
Kallikrein 14

Thrombin
APC

Thrombin
Plasmin
Cathepsin G
Trypsin
Factor Xa
Gingipains-R
Kallikrein 14

Source: [15, 29, 32, 37–40]

APC activated protein C, MT-SP1 membrane-type serine protease 1,
MMPs matrix metalloproteinases
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Soon after the discovery of the thrombin receptor on nor-
mal human tissues, biologically functional receptor was also
demonstrated in human cancer cells [14, 41, 42]. Additional
studies then discovered PAR-1 (Table 2) and PAR-2 (Table 3)
expression on several cancer cell lines, including epithelial
carcinomas, melanoma, glioblastoma (GBM), and sarcoma
[16, 31, 37, 43–73]. Importantly, PAR-1 expression was also
described in cancer-associated fibroblasts (in contrast to be-
nign lesions, where such expression was not observed), ECs,
myocytes of vessels, mast cells, and macrophages in the ma-
lignant tumor microenvironment [32, 74], where PAR-1 and
PAR-2 stimulate macrophages to synthesize and secrete
thrombin as well as other growth factors [74].

In vitro experiments revealed that overexpression of PARs
in cancer cells was the result of increased transcriptional ac-
tivity, and not gene amplification [75]. PAR-1 expression in
epithelial tumors is elevated by the transcription factor Egr-1,
but inhibited by the tumor suppressor p53 [75]. In melanoma,
the PAR-1 gene is differentially regulated by activator protein-
2α that binds to the PAR-1 promoter in low- and nonmetastatic
melanoma cell lines, and SP-1 transcription factors that are
active in metastatic melanoma cell lines [76, 77]. There are
also known polymorphisms of the PAR-1 gene that are asso-
ciated with worse prognosis in lung cancer (PAR-1 -14 Ivs

A/A), in pancreatic cancer (PAR-1 -506 Ins/Del) and in gastric
cancer (PAR-1-505 Ins/Del) [17, 78, 79].

2.2 Mechanism of activation

2.2.1 Canonical (standard) activation of PARs

PARs are composed of seven transmembrane α-helices, a cy-
toplasmic domain for G-protein coupling, and an extracellular
N-terminus sequence (Fig. 1). The mechanism of PAR activa-
tion was most thoroughly investigated for PAR-1 [30, 80].
The predominant activator of PAR-1, thrombin, binds to the
receptor N-terminus LDPR41−S42 sequence and cleaves the
R41−S42 peptide bond [12]. The new, unmasked sequence gen-
erated this way acts as a tethered ligand that binds in an intra-
molecular fashion to residues 42SFLLRN47 in the conserved
region of the second loop of the receptor to induce transmem-
brane signaling (Fig. 1) [29]. The sequence of the tethered
ligand is distinct and characteristic for each of the PARs.

The affinity of thrombin for PAR-1 is sufficient to induce
transmembrane signaling in the absence of any cofactors.
However, for activated protein C (APC) protease to cleave
the N-terminus of PAR-1 in cancer cells, the endothelial pro-
tein C receptor (EPCR) is required as a cofactor [81].

Table 2 Protease-activated
receptor 1 (PAR-1) expression
and activation in cancer settings

Cancer cell line/xenograft Activator Cellular effect

Nasopharyngeal

CNE1-LMP1 [43]

Thrombin

SFLLRN

Invasion, tumor growth

Gastric

MKN45/PAR1

MKN74 cells [44]

Thrombin EMT

Increased Snail, fibronectin expression

Decreased E-cadherin expression

Gastric

MKN45/PAR1

[45, 46]

Thrombin NF-κB activation

Increased EGFR, cytoskeletal protein
expression

Increased cell proliferation, motility Matrigel
barrier invasion

Breast xenograft [47] Thrombin EGFR and ErbB signaling, transactivation
Invasion

Tumor growth

Melanoma murine model B16F10 [48] Thrombin Pulmonary metastasis

Chondrosarcoma [49] Thrombin Increased expression of MMPs Cell migration

Melanoma [50] Thrombin Cell motility, migration

Medulloblastoma [51] Thrombin Increased IL1β, chondromodulin 1 (LECT1)
expression

Glioblastoma [31]

U178MG

TFLLR-NH2 Increased Ca2+ levels

Breast MDA-MB-231 [16] MMP1 Activation of Akt survival pathway

Peritoneal ovarian cancer xenograft [39] MMPs Angiogenesis, metastases formation

Breast xenograft [52] MMP1 Invasion, migration

MMP matrix metalloproteinase, EMT epithelial–mesenchymal transition, SFLLRN PAR-1 activating peptide,
EGFR epidermal growth factor receptor
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Therefore, the need for cofactors is dependent on context and
which protease is acting on the PAR in question.

Cleavage of PAR-1 and PAR-3 is facilitated by interactions
between the thrombin exosite I and a hirudin-like acidic ele-
ment located in the C-terminus of the tethered PAR sequence.
Mutational analysis of the thrombin cleavage site identified
the P4-L38 and P2-P40 residues as critical for proper cleavage
of PAR-1 [15]. These highly acidic regions increase thrombin

affinity so that lower concentration of protease is needed for
PAR-1 activation compared to PAR-4, which does not have
such a domain and so requires either higher levels of throm-
bin, or support of its co-receptors, PAR-1 or PAR-3, which in
turn then facilitate PAR-4 association with thrombin at low
concentration [30, 36]. In addition, PAR-4 also contains an
anionic cluster (D57D59E62D65) in its exodomain that slows
the dissociation rate of PAR-4 from the cationic thrombin

Table 3 Protease-activated
receptor 2 (PAR-2) expression
and activation in cancer settings

Cancer cell line/xenograft Activator Cellular effect

Pancreas

SW 1990 [53]

Trypsin SLIGKV Proliferation, invasion, migration

Increased mRNA expression of MMP-2

Pancreas

SW1990, Capan-2, Panc-1

Xenografts [54]

Trypsin

SLIGKV

Increased MAPK activity

Proliferation

Tumor growth

Pancreas

MIA PaCa-2 [55]

Trypsin SLIGRL Ca2+ immobilization, increase in inositol
(1,4,5) triphosphate level, protein kinase
activation, decrease in DNA synthesis

Esophageal

EC109 [56]

Trypsin Invasion, metastasis

Hepatoma

HepG2 cells [57]

Trypsin SLIGKV Proliferation

Hepatocellular [58] Trypsin Invasion through Matrigel barrier

Cholangiocarcinoma [59] Trypsin Invasion through collagen membrane barrier

Colorectal [60] Trypsin Invasion, metastasis

Colon DLD-1 [61, 62] Trypsin SLIGKV Proliferation

Cervical

UISO-SQC-1, HeLa, SiHa,
CasKi and C-33 A [63]

Trypsin Proliferation

Oral squamous

ZK-1 [64]

SLIGRL Proliferation

Meningioma [65] Trypsin SLIGRL Ca2+ immobilization,

Breast

MDA-MB-436, ZR-75-1 [66]

Trypsin SLIGRL Migration in a chemokinesis mechanism

Breast

Adr-MCF-7 [67]

TF/VIIa/Xa Migration

Breast

MDA-MB-231 [68]

TF/FVIIa/ FXa Migration, invasion

Breast

MDA-MB-231 [38]

FVIIa Transcription of 39 genes: cytokines,
chemokines, growth factors involved
in tumor development, metastasis and
angiogenesis

Breast

MDA-MB-231 [69]

TF/FVIIa Increased IL-8 expression

Breast MCF-7

[70]

TF Increased MMP-9 expression

Lung A549 cells [71] MMP-1 Increased MCP-1 expression

Glioma cell

U87-MG and HOG [72]

AP Increased IL-8, VEGF expression

GBM cell lines

A172 and U87-MG [73]

AP Increased VEGF expression

AP agonist peptide,MMP matrix metalloproteinase,MAPKmitogen-activated protein kinase, SLIGKV, SLIGRL
PAR-2 activating peptides, TF tissue factor, aFVII active factor VII, aFX active factor X
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[15]. Proteolysis of the R47-G48 peptide bond of PAR-4 by
thrombin then generates the appropriate ligand [82].

PAR-2 is activated by trypsin-like serine proteases or co-
agulation factors (Table 1) [83]. Proteolysis of the R34−S35

peptide bond in the PAR-2 N-terminus induces further signal-
ing [27]. In contrast to PAR-1 and PAR-3, PAR-2 lacks the
exosite recognition sequence [84]. Instead, glycosylation of
residues located in the N-terminus (for FVIIa: Q40, D72,
Q143, and T151–S2’ subsite) as well as other cofactors serve
as key regulators of interactions between proteases and PAR-
2. FVIIa recognizes PAR-2 predominantly by catalytic cleft
interactions, while the S2’ pocket accommodates the side
chain of PAR-2 L38, P2’ [84]. Activation of PAR-2 by the
TF/FVIIa binary complex involves cellular pools of TF with
low affinity for FVIIa, whereas high affinity cell surface TF
mediates coagulation activation and the associated cell signal-
ing of the ternary complex of TF/FVIIa/FXa [84]. In the latter
complex, FXa is the primary activator of PAR-2. In some
breast cancer cell lines, FXa may solely activate PAR-2 [68].

PAR-induced cellular signaling may be activated through
G-protein interaction or arrestin association and depends on
the type of receptor. PAR-1 conformational changes mediated
by thrombin result in receptor coupling to Gα protein (Gαq,
Gαi, and Gα12/13) and Gβγ. Heterotrimers composed of PAR-
1 and Gαq lead to activation of mitogen-activated protein
(MAP) kinase and increased Ca2+concentration, while com-
plexes of PAR1 with Gα12/13 activate the small G-proteins,
Rho and Rac [23, 85]. PAR activation also induces signaling
cascades associated with protein kinase C and tyrosine kinases.
Heterotrimers with Gβγ promote phosphatidylinositol 3-
kinase (PI3-K) activation while complex with Gαi inhibits
adenylyl cyclase (AC) (Fig. 2). PAR-4 and PAR-2 also interact
with G-proteins, in contrast to PAR-3, which does not [75].
PAR-2 may also interact with β-arrestin (a multifunctional
adaptor protein), which binds complex TF/FVIIa to mediate
PAR-2 activation [40]. The intracellular second messengers
that are activated by this interaction are ERK-1 and ERK-2
(extracellular signal-regulated kinase-1/2) [33, 86].

Finally, the activation of PARs increases transcription of
cytokines, chemokines, and growth factors and production
of bioactive lipids to regulate cell proliferation, apoptosis, ad-
hesion, and migration, which results in tumor growth, inva-
sion, and metastasis (Fig. 2). Activation of distinct subtypes of
PARs is cancer-specific, for example, gene regulation elicited
by TF/FVIIa through PAR-2 in MDA-MB-231 cells may oc-
cur in glioblastoma cell lines through thrombin-mediated ac-
tivation of PAR-1 [38]. These findings show how specific
protein-protein interactions contribute to PAR activity and ex-
plain the diversity of cellular responses in cancer.

2.2.2 Noncanonical activation of PARs

Cleavage of the extracellular portion of the PAR-1 receptor by
thrombin occurs at a canonical R41-S42 site, while MMP-1
cleaves PAR-1 at a novel site (D39-P40) resulting in a tethered
ligand that is two amino acids longer (PR-SFLLRN) than that
generated by thrombin. The noncanonical tethered ligand
preferentially activates G12/13, Rho-GTP, and MAPK path-
ways, leading to changes in shape and motility of platelets
[15, 87]. MMP-specific signaling patterns exhibited by
PAR-1 are known as biased agonism and produce distinct
functional output by the cell. Furthermore, studies with breast
cancer cell lines have shown that activation of secondary sig-
naling in the canonical and noncanonical models is operation-
al at different times. Peak Akt signaling occurs after 5 min in
thrombin-triggered activation, while MMP-1-triggered Akt
activation occurs after 1 h [16]. Similar kinetic differences
for MAP kinase activation were observed during differential
cleavage by these two enzymes [15]. Recently, another model
of PAR functional selectivity based on canonical versus non-
canonical activation has been discovered [88]. In this study, it
was determined that noncanonical PAR3 activation by FXa
led to tunica intima endothelial receptor tyrosine kinase 2
(Tie2) activation that was also dependent on endothelial pro-
tein C receptor (EPCR), and ultimately vascular protection by
upregulation of zona occludens 1 (ZO-1) to stabilize cell-cell

Fig. 1 Structure and mechanism
of protease-activated receptor
(PAR) activation
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junctions. This protective effect by noncanonical activation is
in direct contrast to canonical activation of PAR3 by thrombin,
which leads to vascular barrier permeability.

2.3 Regulation of PARs activity

The activation of PARs is irreversible. Therefore, precise reg-
ulation of PARs is of paramount importance. Inactive
(uncleaved pro-form) PAR circulates constitutively between
the plasma membrane and intracellular compartment provid-
ing a steady pool of PAR at the cell surface. PAR-1 internal-
ization requires previous ubiquitination as well as binding to
the clathrin/AP2 (adapter protein 2) complex and dynamin
[89]. Trafficking of PAR-1 to lysosomes occurs after recogni-
tion by the sorting protein sorting nexin-1 (SNX1) [90].

Two major mechanisms regulate activated (cleaved) PAR,
namely desensitization or receptor trafficking [32].
Phosphorylation of PAR-1 through G-protein-coupled recep-
tor kinases (GPCRKs, GRKs) and arrestin binding ensures G-
protein uncoupling and PAR-1 desensitization within seconds
(rapid mechanism). However, arrestin is unnecessary for in-
ternalization. PAR-1 is then internalized/mobilized from the
cell membrane to the endosomes and subsequently degraded
in lysosomes [91, 92]. Slower degradation of PAR-4 com-
pared to PAR-1 and lack of its rapid phosphorylation lead to
longer PAR-4 activity, which is pivotal for thrombin-mediated
platelet aggregation [91]. PAR-3 deactivation is also phos-
phorylation-dependent. The regulation of PAR-2 activity also
occurs by arrestin-mediated uncoupling followed by receptor
internalization. The extent to which phosphorylation plays a

role in this case in unclear. An additional mechanism has been
reported whereby MMP-1 may desensitize PARs by cleaving
the N-terminal exodomain with part of the tethered ligand
sequence [93].

In contrast to regulation of PARs in normal tissues, there is
constitutive PAR activation in cancer cells resulting in
sustained stimulation of second messenger signaling (e.g.,
Erk1/2-dependent) [94]. In metastatic breast carcinoma cells,
it was demonstrated that proteolytically activated PAR-1 was
not sorted to lysosomes and degraded, which resulted in per-
sistent signaling that promoted breast cancer invasion [94].

PARs activity is indirectly regulated by inhibition of their
activators. In this manner tissue factor pathway inhibitor (TFPI)
disables PARs cleavage by forming a complex with TF/FVIIa/
FXa that leads to its internalization and blockade of thrombin
generation [95, 96]. Tissue factor pathway inhibitor-2 (TFPI-2)
not only blocks TF/VIIa complex but also plasmin and trypsin
(PARs activators) and thereby indirectly affects the conversion
of pro-MMP-1 into its active form (also PARs activator) [95].
Collectively, these data suggest that TFPI may impede PARs
activity and may provide therapeutic value.

3 PARs and proteases—cooperation in cancer
progression

3.1 Tissue factor

TF is a membrane glycoprotein present on subendothelial
cells that initiates blood coagulation. The disruption of

Fig. 2 Protease-activated
receptor 1 (PAR-1) activation and
signaling. Protein RhoGEFs,
Rho, Rac. MAP kinase mitogen-
activated protein kinase, DAG
diacylglycerol, PI3 inositol
(1,4,5)-trisphosphate, GRKs G-
protein-coupled receptor kinases
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endothelium exposes TF to coagulation factors present in the
bloodstream. TF binds to FVII and causes its activation
(FVIIa). The TF/FVIIa complex may further activate FX
(FXa), which together with its cofactor FVa, generates throm-
bin (FIIa) from prothrombin by proteolytic conversion.
Thrombin initiates coagulation by platelet activation and fi-
brin conversion from fibrinogen, resulting in effective blood
clotting [83].

TF is also the most prominent procoagulant of cancer cells
and is a determinant of tumor progression [97]. TF has been
discovered on the surface of distinct malignant cells, tumor
vasculature, and tumor microenvironment: stem cells, macro-
phages, ECs, and myofibroblasts [9, 10, 40, reviewed in 98,
99]. It is also widely recognized that TF expression correlates
with greater invasiveness and higher clinical stage of the ma-
lignant disease and is associated with poor overall prognosis
[reviewed in 40, 97]. Tumor cells endogenously express TF
constitutively, or they induce production of TF in their sur-
roundings by producing soluble substances capable of trigger-
ing monocytes and ECs to express it [98]. TF expression is
associated with carcinogenic events during oncogenic trans-
formation, as there exists mounting evidence that mutations of
proto-oncogenes and tumor suppressor genes influence its ex-
pression [40]. In colorectal cancer, the K-ras and p53 muta-
tions eliciting the MAPK and PI3-mediated signaling path-
ways result in enhanced expression of TF [100]. In lung can-
cer, similar observations were made for PTEN and p53 muta-
tions [101]. TF expression has also been shown to be modu-
lated in other cancers by constitutively active mutant forms of
epidermal growth factor receptor (EGFRvIII) in glioma and
vulva cells, as well as Src family kinases, TGF-β production,
and hypoxia [40].

There are numerous mechanisms by which TF impacts
cancer biology. First, upon activation by factors VII and X
and creating complexes with them (TF/VIIa, TF/Xa, TF/
VIIa/Xa), TF promotes PAR-1- and PAR-2-mediated signal-
ing responsible for the proliferative response of cancer cells
[38, 97, 102]. In addition, TF may directly signal via its cyto-
plasmic tail through Rac1 and p38 and cytoskeletal remodel-
ing [103]. Furthermore, an alternatively spliced isoform of TF
(asTF) also affects tumor growth independently of VIIa and
PARs cleavage, through the activation of integrins α6β1 and
αVβ3 on ECs to promote angiogenesis [97, 104]. Human
asTF promoted tumor growth and angiogenesis in pancreatic
cancer [105] but was inactive in the coagulant-dependent
mechanism of metastasis in a breast cancer model [106].

In experimental and clinical models, cancer cells express-
ing TF had greater tendency to metastasize compared to TF-
deficient cells [106]. TF effects on metastasis may be mediat-
ed via mechanisms that are either dependent on or indepen-
dent of coagulation activation, i.e., through TF signaling func-
tion. Tissue factor likely promotes proliferative and infiltrative
potential rather than adhesive properties of metastatic cells

[30, 68, 107]. There is also evidence that TF plays a role in
tumor cell intravasation, which is the first step in dissemina-
tion of malignant cells [108].

Although TF may promote both PAR-1 and PAR-2 activa-
tion, it seems that TF or TF/FVIIa complex typically triggers
PAR-2 but not PAR-1 signaling in cancer cells [38, 67–69, 99,
102, 109, 110]. In breast cancer experimental models, inhibi-
tion of tumor growth and angiogenesis was observed after
blocking the signaling function of TF but not its coagulation
activity, and after inhibition of PAR-2, but not PAR-1 activity
[109, 110]. A similar phenotype was observed in glioblastoma
(GBM), which is the most aggressive primary brain tumor
characterized by intense neovascularization, EC hyperplasia
and hypercoagulation [73]. Experiments with GBM cell lines
determined that there was expression of PAR-1 and PAR-2 in
these cells as well as in vascular vessel walls within the inva-
sive area of brain tumors [31, 72, 73]. However, only stimu-
lation of the PAR-2 pathway led to increased secretion of
VEGF and IL-8 suggesting that PAR-2/MAPK/ERK1/2, but
not PAR-1/PI3K/Akt, signaling regulates angiogenesis in
GBM. It is noteworthy that in GBM cells there is a correlation
between TF and PAR-2 expression [72]. There is also evi-
dence that hypoxia upregulates PAR-2 expression in brain
tumors. There is an approximately 2.5-fold increase in PAR-
2 expression in hypoxic vs. normoxic microvascular ECs of
GBM, resulting in HB-EGF upregulation and a proangiogenic
phenotype [111]. Poole et al. have recently demonstrated that
PAR-2, which is a central factor in neurogenic inflammation
and pain, sustains inflammation through a novel TRP channel-
coupling mechanism. By generating bioactive lipids such as
5′,6′-EET and 12(S)-HETE, the proinflammatory effects of
PAR-2 are sustained through TRPV4-dependent Ca2+ signals
[112]. This may prove extremely relevant in this context as
TRPV4 has been shown to impact angiogenesis at multiple
levels [113, 114]. Finally, EGFR-induced signaling in glioma
cells stimulates expression of TF, FVII, and PAR-2, thereby
increasing TF/VIIa-mediated PAR-2 activation in cancer cells
[115], and cancer cells may secrete aFVII that can act alone to
activate PAR-2 [116].

TF/VIIa-mediated PAR-2 activation results in a transient
increase in Ca2+ levels and triggers intracellular signaling that
is dependent on the MAPK family (p44/42, p38, JNK), PI3,
Src-like kinases, Jak/STAT, Rho GTPases, Rac1, and Cdc42
pathways [40, 80, 102]. In addition, elevated levels of
proangiogenic proteins, such as VEGF, Cyr61, VEGF-C,
CTGF, CXCL1, IL8, and immune modulators, such as GM-
CSF (or CSF2) and M-CSF (or CSF1), have been observed
[38, 68, 73, 97]. The efficacy of TF/VIIa/PAR-2-mediated
activation of angiogenic mediators is greater than that induced
by PAR-1 signaling [38]. TF-triggered PAR-2 signaling also
results in increased MMP-9 expression, which positively cor-
relates with the invasiveness of MCF-7 breast tumor cells [70]
and may be linked to MMP-9 response to arachidonic acid
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metabolism [117]. It was reported that TF/FVIIa/PAR-2 inter-
actions are critical for MDA-MB-231 breast cancer cell mi-
gration and invasion toward NIH-3T3 fibroblast-conditioned
medium [68]. Therefore, TF/VIIa-induced PAR-2 activation
facilitates proliferation and survival as well as metastatic po-
tential of cancer cells [50, 68, 70].

In breast cancer cells, PAR-2 activation may also be in-
duced by FXa as well as by TF/FXa or TF/FVIIa/FXa com-
plexes. Subsequent MAPK phosphorylation or Erk1/2 activa-
tion then stimulates cancer cell migration and invasion [67,
68].

In tumors with high levels of TF (prothrombotic state), the
predominant metastatic mechanism results from the coagula-
tion activity of TF instead of its inherent signaling capacity
[109]. The procoagulant activity of TF leads to thrombin gen-
eration, platelet activation, and platelet-dependent protection
from natural killer cells as well as fibrin formation and
monocyte/macrophage recruitment, all of which influence an-
giogenic and metastatic properties of the tumor [6, 97, 106,
118]. Studies of Yokota et al. [106] provided new insight into
thrombin-mediated TF-dependent metastasis based on a
hyperthrombotic mouse model with thrombomodulin defi-
ciency (TMPro mice). TF-dependent, but contact-pathway-in-
dependent, breast cancer metastases were associated with hy-
peractivity of platelets and formation of platelet-leukocyte ag-
gregates. Genetic deletion of platelet glycoprotein Ibα
(GPIbα) and leukocyte CD11b excluded these receptors from
platelet-dependent metastases. In addition, blockade of both
host and tumor PAR-1 significantly decreased tumor cell met-
astatic potential. Similar results were obtained in melanoma
models, thus confirming the contribution PAR-1 to melanoma
and breast metastases [97].

3.2 Thrombin

Generation of thrombin (IIa) is the central step in blood coag-
ulation. As mentioned above, thrombin cleaves fibrinogen to
yield fibrin and activates blood platelets resulting in the for-
mation of an effective blood plug after vessel injury. However,
enzymatically active thrombin is also detected in various types
of surgically removed malignant tumors (e.g., small cell lung
cancer, renal, ovarian, laryngeal, pancreatic, and gastric can-
cer, as well as melanoma) [11, 98, 119, 120].

The presence of TF on tumor cells contributes to thrombin
generation in the tumor microenvironment independently of
blood coagulation. Multiple thrombin targets (e.g., blood
platelets and EC activation, fibrin generation) contribute to
cancer progression by providing matrix for new vessels and
metastatic tumor cell colonies [118, 121, 122]. The first re-
ports of a novel role for thrombin in tumor cell metastases
were published in the early 1990s [123–128].When incubated
with W256 carcinoma cells, α-thrombin produced a 50–
300 % increase in adhesion to rat aortic endothelial cells and

fibronectin [123–127]. Thrombin precursors and analogues
including prothrombin, prothrombin-1, mesyl-thrombin,
exo-site-thrombin, DFP-thrombin, and nitro-thrombin imitat-
ed the effect of α-thrombin [123–127]. Interestingly, α-
thrombin coupled with its inhibitors, namely hirudin or anti-
thrombin III-heparin complex, was not as effective at enhanc-
ing tumor cell adhesion as the native form of the enzyme
[123–127]. The data indicate a new mechanism of thrombin
interaction in tumor cell metastasis that is nonproteolytic.
Moreover, mice transplanted with human ovarian cancer cells
(SKOV3) demonstrated elevated tumor size and decreased
survival rate when treated with thrombin [122]. Whether
thrombin signaling works synergistically with the
arachidonate metabolizing pathways that stimulate ovarian
cancer growth remains to be determined [129]. In addition to
its pivotal role in the coagulation pathway, thrombin is
regarded as the main PAR-1 and PAR-4 activator. Thus, many
cellular responses, including the ones observed in cancer cells
such as cytoskeletal rearrangement [130], are thrombin-de-
pendent. The evidence for a crucial role of TF-dependent
thrombin generation and thrombin-mediated platelet PAR-4
activation in cancer progression and metastasis comes from
studies performed on genetically modified mice. Stromal and
tumor cells are involved in multiple steps of tumorigenesis,
including proliferation, angiogenesis, invasion, and survival.
Those animals depleted of platelets, PAR-4, or fibrinogen
were protected from metastasis [118, 121, 122]. Treatment
of melanoma B16a cells with α-thrombin resulted in a signif-
icantly increased number of metastatic lung colonies
[123–127]. Prothrombin, -thrombin, and mouse thrombin,
but not nitro-thrombin, were able to mimic the α-thrombin
effect of enhancing lung colonization potential of tumor cells
[123–127]. Administering thrombin intravenously with colon
cancer cells (CT26) and melanoma cells (B16a) increased
murine pulmonary metastases 4- to 413-fold [131]. The met-
astatic potential was diminished by hirudin, a specific inhibi-
tor of thrombin [4, 122, 132].

3.3 Thrombin/PAR-1 in fibroblasts

During the coagulation process the conversion of prothrombin
to thrombin and its subsequent activity leads to cleavage of
fibrinogen to form fibrin. Fibrin deposits in the tumor micro-
environment are the store of thrombin that is released upon
degradation of fibrin by plasmin [133]. The in vitro experi-
ments provided evidence that stromal cells of malignant tu-
mors, such as fibroblasts express elevated PAR-1 and PAR-2
compared to benign lesions or normal tissues where such ex-
pression is not observed [74]. Chronic PAR-1 mediated sig-
naling in NIH-3T3 fibroblasts can cause growth transforma-
tion [85]. Reportedly, PAR-1 expression in the microenviron-
ment drives progression and induces chemoresistance of
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pancreatic cancer [134] by regulating monocyte migration and
fibroblast-dependent chemokine production.

3.4 Thrombin/PAR-1 in endothelial cells

Endothelial cells are another target of thrombin/PARs interac-
tions. Thrombin-mediated PAR-1 activation regulates inflam-
matory pathways that are also implicated in cancer progres-
sion. Increased lipid production and expression of PAF, IL-1,
IL-6, IL-8, TNF-α and adhesive molecules (E-selectin, P-
selectin, intracellular adhesion molecule-1 and vascular cell
adhesion molecule-1, integrins) promotes EC proliferation,
platelet recruitment, and malignant cell attachment [4, 5,
128, 135–138]. Inhibition of PAR-1 activity inhibits EC
growth by increasing the sub-G0/G1 fraction, thereby reduc-
ing the percentage of cells in S-phase [139]. Moreover,
thrombin/PAR-1 activation regulates barrier function between
ECs by modulating adherens junctions (AJ) [140]. The in-
crease in endothelial barrier permeability in response to
thrombin/PAR-associated actions results from VE-cadherin,
p120, and β-catenin modification via protein kinase C-
dependent signaling [138, 140]. The dysfunction in the endo-
thelial barrier generates a temporary proangiogenic matrix that
is the basis for the activation of the thrombin/PAR/IP3/Ca2+/
MAPK cascade and subsequent cellular responses [98].
Upregulation of angiogenic factors such as VEGF,
VEGFR2, and angiopoietin-2 via the thrombin/PAR-
dependent pathway together with enhanced barrier permeabil-
ity of ECs results in the induction of angiogenesis and cancer
dissemination [4, 141].

The integrin αvβ3 is found mainly on blood vessel cells
and plays an essential role in angiogenesis. Localization of
αvβ3 is altered in response to proinflammatory eicosanoid
metabolites such as 12(S)-HETE leading to EC retraction
and disruption in barrier function [142–144]. The expression
of integrin αvβ3 is regulated by thrombin-mediated PAR-1
activity. Thrombin activation of PARs also leads to increased
expression of gelatinases that degrade collagen IV and in-
crease vessel permeability to promote endothelial and cancer
cell migration and invasion [120].

In ECs, thrombin can directly cleave PAR-1, which is
thought to lead to a proinflammatory phenotype, or it can do
so indirectly after it activates an intermediate protease called
protein C (activated protein C (APC)) that then acts on PAR-1.
However, when the GLA-domain of APC is in complex with
its cognate receptor, EPCR, and thrombomodulin (TM), the
signaling specificity of PAR-1 is altered to an anti-
inflammatory or protective phenotype. Thus, in ECs, modula-
tion of coagulation protease signaling specificity through
PAR-1 depends on whether thrombin is acting directly on
PAR-1, or indirectly, through APC, and whether APC is
bound to EPCR [145]. In ECs, PAR-1 can be acted on by both
thrombin and activated protein C (APC) to affect opposite

outcomes, but this is thought to depend on whether the latter
protease is in complex with EPCR.

The APC/EPCR/PAR-1 pathway induces motility, prolifer-
ation of ECs, and angiogenesis via vascular-protective signal-
ing and tube formation to promote cancer cell dissemination
[146, 147]. Moreover, the EC-associated modulator of hemo-
stasis, TM, also strongly influences metastatic potential asso-
ciated with thrombin procoagulant function [148].

Recent reports have linked PAR-2 and TRPV4 activation,
where TRPV4 is known to enhance EC proliferation and ara-
chidonic acid-mediated tumor EC migration [112, 113].

3.5 Thrombin/PARs in platelets

Human platelets express two types of thrombin-triggered
PARs, namely the high-affinity PAR-1 and low-affinity
PAR-4. Both receptors activate pleiotropic cellular effects
via coupling to protein Gαq and Gα13, which leads to the
ac t iva t ion of phospho l ipase Cβ , hyd ro lys i s o f
phosphoinositides, and increased cytoplasmic calcium con-
centration, resulting in activation of integrin αIIbβ3, and plate-
let aggregation [5, 6, 91, 149]. Initial reports describing the
dual PARs system in human platelets explained this phenom-
enon by the fact that PAR-1 and PAR-4 interact with different
concentrations of activator and thus may tune to thrombin
signaling more efficiently [30]. Additional studies revealed
that PAR-4 functions differently than PAR-1, in that
thrombin-induced cleavage of PAR-4 results in much longer
activation of Gαq. This leads to a sustained Ca2+ response,
which prolongs secondary signaling, compared to PAR-1,
which is crucial for the late phase of platelet aggregation
[150]. At low thrombin concentrations, PAR-1 may act as a
cofactor of PAR-4. There is also thrombin-mediated mitogen-
ic PAR activity derived from platelets as well as for ECs and
myocytes of vessels [97, 120]. Platelets coated with thrombin
survive longer, which gives cancer cells opportunity to adhere
and invade further [4, 120, 151]. Moreover, tumor cells coated
by platelets are protected from natural killer cell-mediated
elimination [152].

The aggregation of platelets and resultant fibrin generation
is accompanied by increased expression of adhesive proteins
(glycoprotein GPIIb/IIIa, von Willebrand factor, P-selectin,
fibronectin) in platelets that have undergone thrombin stimu-
lation [4]. These adhesive proteins enable malignant cells to
form complexes with fibrin thrombus and blood platelets in
vascular spaces in melanoma and epithelial cancers [reviewed
in 4]. These complexes enhance cancer cell survival and met-
astatic potential. Thrombin treatment of platelets promoted
melanoma cell adhesion to platelets, which increased lung
metastasis [129].

In addition to platelet aggregation, thrombin-mediated
PAR-1 and PAR-4 cleavage induces selective release of plate-
let proangiogenic and mitogenic regulators (PDGF, VEGF,
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and angiopoietin-1) that facilitate migration of endothelial
progenitor cells and new capillary net formation, which is a
pivotal step to metastases [153]. Compared to healthy sub-
jects, platelets from breast cancer patients produce much
higher levels of VEGF in response to thrombin stimulation
[151]. Thrombin induced this effect through PAR-1 activa-
tion, while PAR-4 stimulation resulted in secretion of
endostatin, an antiangiogenic factor [151].

3.6 Thrombin/PAR-1 in cancer cells

Thrombin can elicit a signaling response via direct interaction
with PAR-1 present on tumor cells [4, 14, 41, 48]. In vitro
studies with various cancer cell lines showed correlation be-
tween overexpression of PAR-1 in cancer cells and greater
invasiveness and development of distant metastases [14, 17,
18, 41–44, 52, 94, 154]. Moreover, in patients with lung,
gastric, or breast cancer, PAR-1 expression was an indepen-
dent, unfavorable prognostic factor in terms of overall surviv-
al, while in prostate cancer patients, it turned out to be a prog-
nostic factor for local recurrence [17, 18, reviewed in 155].
Decreased expression of PAR-1 was associated with reduced
invasiveness of cancer cells [68].

PAR-1 expression has been confirmed in melanoma,
breast, lung, esophageal, gastric, colon, prostate, pancreatic,
liver, ovarian, endometrial, and head and neck cancers
(Table 1) [17, 38, 43–45, 78, 79, reviewed in 155–157].
Intriguingly, although PAR-1 is expressed in normal hemato-
poietic stem cells, its expression is markedly diminished in
acute myeloid leukemia [158]. The cellular effect induced
by PAR-1 depends on the concentration of agonist such that
low concentration of thrombin (less than 3 nM) stimulates
cancer cell proliferation and tumor growth, while high throm-
bin levels lead to apoptosis [159]. Most cellular effects are
triggered via long-lasting activation of second messengers
ERK1/2. However, multiple intracellular signaling pathways
may be implicated in thrombin/PAR-1 activation (described
below) [118, 160].

3.6.1 Apoptosis, proliferation, migration, and invasion

In murine models of benign tumors, PAR-1 activation results
in tumor growth and invasion by silencing proapoptotic genes
[154]. However, in epithelial cancers and melanoma cells
thrombin-mediated PAR-1 activation triggers prosurvival
pathways [5, 50, 75, 77, 154, 161]. Overexpression and acti-
vation of PAR-1 in nonmetastatic melanoma cell lines stimu-
lates the Akt/PKB signaling pathway, leading to a decrease in
Bim and Bax expression, as well as cleaved caspase-3 and
caspase-9 levels. Inhibition of PAR-1 activity decreased tumor
growth during in vivo experiments, confirming apoptosis-
related effects elicited by this receptor [5].

In numerous cancers, the response to thrombin-induced
PAR-1 activation increases cell proliferation, as well as motil-
ity and migration inMatrigel barrier assays [45, 46, 50, 77]. In
Hep3B liver carcinoma cells, PAR-1 and PAR-4 activate com-
mon promigratory signaling pathways via activation of the
receptor tyrosine kinases Met, PDGFR, and ROS kinase, as
well as the inactivation of the protein tyrosine phosphatase,
PTP1B [162]. In nasopharyngeal cancer, thrombin-induced
PAR-1 activation leads to increased expression of MMP-2
and MMP-9, which are closely associated with tumor metas-
tasis as they can degrade the extracellular matrix and disrupt
the basement membrane [43, 60].

3.6.2 Increased expression of integrins

Integrins are transmembrane proteins that mediate the interac-
tions between ECs and extracellular matrix that are vital for
successful angiogenesis [41, 42, 120]. There is substantial
evidence that enhanced expression of adhesion proteins due
to thrombin-mediated PAR activity results in increased meta-
static potential of cancer cells [4, 41–43]. PAR-1 increases the
invasive properties of tumor cells primarily by promoting ad-
hesion to extracellular matrix components. Several cancer cell
lines (e.g., lung and melanoma) exhibit increased adhesion to
platelets as well as aortic and capillary ECs after thrombin/
PAR-1 stimulation [4, 14, 41, 42, 130]. PAR-1-driven adhe-
sion to extracellular matrix components occurs via three
mechanisms: (1) phosphorylation of focal adhesion kinase
and paxillin, and induction of focal contact complexes, (2)
mobilization of integrins on the cell surface without altering
their level of expression, and (3) specific recruitment of
integrinαvβ5 to focal contact sites [163]. Interaction of cancer
cells with integrin αvβ5 and cytoskeletal reorganization facil-
itates cell migration, invasion, and metastatic development in
lung cancer and melanoma [43, 163, 164]. Moreover, the ap-
plication of anti-αvβ5 antibodies specifically attenuates this
PAR-1-induced invasion [163]. Expression of integrin αIIbβ3

and P-selectin in response to PAR-1 may lead to attachment of
melanoma cells to ECs and platelets and in this way also
increase metastatic potential of cancer cells [14, 41, 42,
120]. Increased expression of αIIbβ3 protein was reported in
several malignant tumors [4, 14, 41, 42, 165, 166].

3.6.3 Angiogenesis

The development of new blood vessels, angiogenesis
(angio—vessel, genesis—creation) is the pivotal process for
tumor growth and progression [167, 168]. Small blood vessels
provide cancer cells with oxygen and nutrients and remove
metabolic waste products. It is assumed that malignant tumors
cannot grow above 2–3mm3without vasculature [168].Murine
embryogenesis and cancer studies demonstrated that PAR-1
expression is necessary for angiogenesis as half the animal
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embryos deprived of PAR-1 died due to insufficient vasculature
development, while activation of PAR-1 signaling prevented
cancer cell death [169]. In melanoma and breast cancer cells
PAR-1 expression correlates with increased VEGF levels, and
stimulation of angiogenesis and tumor growth [161]. There is
also correlation between thrombin and VEGF expression in
glioma cells suggestive of a possible autocrine mechanism of
regulation of angiogenesis in brain tumors.

Thrombin-mediated cleavage of PARs in cancer, blood
cells, and vessel wall cells results in activation of transcription
of many proangiogenic genes such as VEGF and its receptor
(VEGFR), TF, MMP-2, angiopoetin-2 (Ang-2), basic fibro-
blast growth factor (bFGF), MAP, and PI3 kinases [120,
142, 170–173]. Based on in vitro studies, VEGF stemming
from platelets and cancer cells may be secreted within minutes
of activation [170]. Moreover, thrombin-mediated PAR acti-
vation induces production of reactive oxygen species (ROS)
via increased expression of hypoxia induced factor-1 (HIF-1)
[116]. HIF-1 activates VEGF gene transcription, and its ex-
pression is responsive to arachidonic acid metabolites [174].

PAR-1 and PAR-4 signaling after platelet activation leads
to synthesis and release of thromboxane (TXA2) and 12-
hydroxyeicosatetraenoic acid (12(S)-HETE) [6, 142, 143,
175–181]. These are metabolic end products of cyclooxygen-
ase (COX-1) and lipoxygenase (12-LOX) activity on arachi-
donic acid and are important mediators of thrombus forma-
tion, vascular tone, and angiogenesis through their action on
specific receptors (TPα, GPR31) and transcriptional regula-
tion of factors such as VEGF and HIF1α [144, 174–186].
Arachidonic acid is released as a substrate for these enzymes
from the cell membrane by cytosolic phospholipase A2
(cPLA2a) that responds to signaling from PAR-1 and PAR-4
differentially depending on whether it is coupled to the COX-
1 pathway or the 12-LOX pathway [187]. Thrombin activa-
tion of PAR-1 and PAR-4 also leads to the formation of ester-
ified eicosanoids at the same rate as the release of free acids.
However, HETE esterified to phosphatidylethanolamine after
this reaction gets presented to the cell exterior instead of
recycling in the interior substrate pool and has unique func-
tions in that context [188].

3.6.4 Epithelial–mesenchymal transition

Another potentially important phenomenon in cancer metas-
tasis, at least in part regulated by thrombin, is epithelial–mes-
enchymal transition (EMT) [44]. The mechanism, with its
reverse process, a mesenchymal–epithelial transition (MET),
enhances the ability of solid cancers to disseminate and colo-
nize distant sites [189]. Malignant tumors composed of mod-
erately differentiated cells can also contain regions of poor
differentiation. These cells may detach from the tumor mass
and invade the adjacent stroma after undergoing an EMT-like
event. They lose expression of epithelial differentiation

markers and gain the capacity to express mesenchymal and
Bstemness^ markers. These cells also contribute to migrating
circulating stem cells (CSCs) that disseminate and give rise to
metastases. During EMT, some characteristics of differentiat-
ed epithelium (e.g., apico-basal polarity and cell–cell adhe-
sions) are replaced with mesenchymal traits—rear to-front
polarity, capacity for individual cell migration, and invasion
of basal lamina and blood vessels [189]. To effectively colo-
nize new sites, such cells must also be capable of undergoing
the reverse MET process to re-differentiate and re-establish
the organization of cells [189].

Experimental studies on gastric cancer cell lines revealed
that thrombin-mediated PAR-1 activation leads to
reprogramming of gene expression by stimulation of tran-
scription factors like SNAIL1 that is known to drive EMT in
the embryo [44]. Moreover, in epithelial cancers (e.g., gastric
and breast), the thrombin/PAR-1 complex leads to alteration in
basement membrane components (increased expression of fi-
bronectin, Wnt and β-catenin, decreased expression of E-
cadherin) as well as cytoskeletal proteins (myosin IIA and
filamin B), which collectively regulate EMT involved in ma-
lignant tumor progression [45, 46, 75, 77, 94, 189].

3.7 MMPs

MMPs are zinc-dependent proteases secreted by both tumor
and host cells. It is widely recognized that MMPs are involved
in cancer progression and metastasis by facilitating tumor cell
invasion through the basement membrane and stromal tissue
[39, 157, 190]. Coexpression of MMPs and PARs is associat-
ed with high invasiveness (deeper infiltration of tumor,
lymphovascular invasion, more frequent occurrence of lymph
node metastases, more advanced clinical stage of the disease)
and poor survival in several malignant tumors, e.g., breast,
gastric, esophageal, gallbladder, hepatocellular, lung, and
ovarian cancers [18, reviewed in 39, 157, 189].

In addition, studies with breast, gallbladder and ovarian
cancer cell lines have shown that MMPs (MMP-1, MMP-9,
MMP-13, MMP-14) may activate PARs signaling, especially
by cleavage of PAR-1 (majority of tumors) or PAR-2 (lung
cancer) [15, 39, 52, 71]. Moreover, it was determined that
senescent fibroblasts enhance early skin carcinogenic events
via MMP-1-mediated PAR-1 activation [191]. Of the MMPs
tested, MMP-1 presents the strongest positive correlation with
cell migration and invasiveness. The blockade of MMP-1-
mediated PAR-1 activity in xenograft models of advanced
peritoneal ovarian cancer results in the inhibition of angiogen-
esis and metastasis [39].

Activation of platelet PAR-1 by MMP-1 can also lead to
Rho-GTP as well asMAPK signal activation, thereby promot-
ing platelet aggregation as well as increasing platelet motility
and cell proliferation [87]. The ProMMP-1 zymogen is con-
verted to MMP-1 on the platelet surface after contact with
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collagen fibrils. Blockade of MMP-1/PAR-1 signaling greatly
inhibits thrombosis in animals, demonstrating that the colla-
gen/MMP-1/PAR-1 pathway is an activator of platelet signal-
ing events independent of thrombin. As PARs stimulate the
expression and release of 12(S)-HETE that upregulates
MMP9 [117], there appears to be a precedent for bi-
directional regulation of MMPs and PARs signaling.

3.8 Trypsin

Trypsin is another serine protease that activates PAR-2 in can-
cer cells. The concentration of trypsin is increased in patients
with gastric, colon, pancreatic, and ovarian cancer [54, 155,
192]. Increased expression of PAR-2 and its influence on can-
cer cell proliferation was defined in gastric, esophageal, colo-
rectal, pancreatic, oral squamous, liver, cholangiocarcinoma,
lung, breast, and ovarian cancers, as well as in melanoma and
brain tumors (Table 3) [53, 54, 56, 57, 60, 61, 64, 65, 71, 155,
193–195]. PAR-2 may be highly expressed in stroma-rich
tumor regions also. Studies by Shi et al. have demonstrated
intriguing dual roles for stromal PAR-2 in pancreatic cancer
development, namely that PAR-2 potentiated primary tumor
growth but diminished lymphangiogenesis and subsequent
lymph node metastasis [194]. The findings defined PAR-2
as a negative regulator of lymphangiogenesis in pancreatic
cancer. In contrast, the expression of PAR-2 correlated with
the depth of wall invasion, liver metastasis, as well as lym-
phatic and venous infiltration in gastric cancer patients [193].
Patients with PAR-2-positive tumors had significantly poorer
prognosis than those with expression-negative tumors.

In vitro studies with epithelial cancers have shown that
PAR-2, like PAR-1, exerts mitogenic activity [46, 53, 54,
56–61, 64, 71, 155, 193–195]. Trypsin and PAR-2 activating
peptide, SLIGKV, significantly increased gelatinolytic activi-
ty of MMP-2, as well as ERK/AP-1, MEK1/2, and MAPK
signaling to promote cancer cell proliferation, migration, and
metastasis [53, 57, 58, 60–62, 195]. The increased activity of
MMP-2 suggests that PAR-2 may be implicated in cancer
invasion by the MMP/EGFR/MAPK/ERK1/2 pathway [60].
PAR-2 may also activate Ca2+ channels to promote prosta-
glandin E2 release resulting in EGFR-stimulated cell prolifer-
ation [53]. Employing a migration assay through Matrigel
barrier, it was determined that theMet receptor tyrosine kinase
transactivation by PAR-2 is involved in hepatocellular and
cholangiocarcinoma cell invasion [58].

The influence of inflammation in cancer is undeniable.
There are interesting connections between the nervous system
and regulation of inflammation, where the vagus nerve partic-
ipates in a systemic feedback loop that also involves PARs
[reviewed in 196]. Recent studies determined that the PAR-1
isoform on vagal C-fibers in mouse lungs could evoke an
action potential in response to thrombin, trypsin, or the
PAR-1-activating peptide TFLLR-NH(2) [197]. The TRPV

channels that induce pain and inflammation are also regulated
by the PARs and their downstream proinflammatory bioactive
lipid mediators such as 12(S)-HETE [198–204]. While we
mostly associate neurogenic inflammation with nociception,
it should be noted that tumor cells can migrate via a perineural
route, which may speak to the proinflammatory PARs-
bioactive lipid gradients along the nerves serving asmetastasis
beacons [205–207]. Similarly, neurogenic mechanisms have
been described that relate PARs activation to extravasation of
plasma and that depend on bioactive lipid mediators [112,
208]. Biopsies around the Bartholin gland of women with
vestibulodynia reveal more intraepithelial nerve endings than
healthy individuals and increased release of inflammatory me-
diators that lead to C-nerve fiber sensitization and increased
proliferation [209]. Because of this neurogenic inflammation,
these patients typically experience recalcitrant yeast infections
that can lead to epithelial hyperplasia and cancer [210].

3.9 Microbiome, PARs, cancer

PARs have been implicated in many host–microbe interac-
tions that in time may prove relevant to deciphering the role
of microbiome in cancer onset and progression as well as
other diseases with roots in infectious inflammatory processes
[211–217]. Microbial insult by Streptococcus pneumoniae is
known to stimulate host-derived proteases so as to activate
PARs [218]. Porphyromonas gingivalis can activate PARs
on oral epithelial cells to upregulate IL-6 [219], and the bac-
terium was recently demonstrated to stimulate PAR-2
resulting in MMP9 expression and promotion of oral squa-
mous cell carcinoma [220]. Both Streptococcus pyogenes
and Staphylococcus aureus on the skin produce proteases that
fuel the activation of PARs on keratinocytes leading to inflam-
mation [221]. Microbes themselves produce numerous pro-
teases that aid in microbial dissemination by overcoming
some of the same logistical processes that metastasizing
cancer cells must circumvent to spread [222–225]. The
interplay between microbiome and host to affect changes
in tissue and hematologic microenvironment are actively
being investigated [226, 227]. Bacterial proteases can
cleave PARs to modulate inflammation and have been
studied for their potential to compromise host barrier func-
tion [228]. To that end, it is conceivable that circulating or
metastasizing cells from tumors or stem niches could take
advantage of such changes. Recently, there is also evidence
for microbial protease activation of a novel TLR in a mech-
anism similar to PAR activation [229].

As food for thought, the gut microbiome has received a lot
of attention in relation to disease and well-being [230–233].
Therefore, it is noteworthy in the climate of genetically mod-
ified foods that are either bred or engineered that bountiful
yields of certain grains in the crop industry rely on serpin
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expression [233, 234], which may have implications for PAR
regulation in the gut [235–239].

3.10 Clinical implication

Results of theoretical studies presented above suggest that
PARs and PARs-associated signaling may be used as a possi-
ble therapeutic target, either alone or in combination with
other modalities, such as chemotherapy, antiangiogenic
agents, and proapoptotic drugs. A PAR-directed approach is
appealing since it targets both the tumor and its microenviron-
ment. In vitro and in vivo studies provide evidence that inhi-
bition of PAR-associated signaling results in reduced tumor
growth, invasiveness, and metastasis [5, 41, 42, 240]. There
are functional (inhibitors of proteases) and pharmacological
(inhibitors of tethered ligand or cleavage site of PAR) PAR-
associated signaling antagonists [19, 20]. Clinical benefit may
be provided by direct blockade of PAR-1 or PAR-2 on tumor
cells, inhibition of PAR-1 on platelets, fibroblasts, and ECs
(ATAP2, WEDE15, SCH530348, SCH79797, vorapaxar), as
well as administering inhibitors of thrombin (hirudin,
argatroban), TF (TFPI, mAb-10H10), MMPs, and other serine
protease inhbitors (serpins) [4, 5, 16, 22, 24, 87, 95, 96, 241,
242]. Although experimental trypsin inhibition is feasible, it
seems that trypsin as a target for clinical therapy is unlikely to
be successful due to its universal distribution [60]. The block-
ade of proteins expressed in response to PAR-elicited signal-
ing, e.g., anti-αvβ5 antibodies, EGFR, Erb, Erk, MEK inhib-
itors, as well as agents interfering with PAR RNA (short hair-
pin RNA (shRNA)), also have therapeutic potential [24, 61].

The inhibition of related activities that are not associated
directly with cancer-promoting effects of PARs may also ben-
efit cancer patients. There are intriguing findings from an an-
imal model that thrombin-mediated PAR-1 and PAR-2 activa-
tion plays a role in the pathogenesis of acute side effects of
radiotherapy, e.g., enteritis, where PAR-mediated signaling
activates inflammatory, mitogenic, and proliferative processes
in cells of the gut after radiotherapy. PAR-1 inhibitors de-
creased intensity of acute, immediate-early side effects (enter-
itis), but did not affect late-onset side effects [243–245]. The
pathogenesis of late adverse effects is presumed to be PAR-
independent. Moreover, PAR-2 antagonists potentiate analge-
sic effects of systemic morphine in a rat model of bone cancer
pain [246].

Although results from experimental models are promising,
inhibition of PAR activity on both normal and tumor cells may
cause side effects, such as hemorrhage, so that PAR-tailored
drug discovery is a great challenge. Clinical trials are still
limited and so far directed to patients with diseases other than
cancer. PAR-1 antagonists, such as vorapaxar and atopaxar,
have been assessed in clinical trials in patients with acute
coronary syndrome, cerebral infarction, and atherosclerosis
[24, 247].

However, insight into the molecular basis of breast cancer
and melanoma provides new potential targets for anticancer
drug discovery tailored to PAR-dependent signaling.

3.11 Breast cancer

There is growing evidence that PARs, mainly PAR-1 and
PAR-2, are strong mediators of cell invasion in epithelial can-
cers [68, 77]. Breast cancer cells may express both PAR-1 and
PAR-2 [66, 68, 77], and their role in breast carcinoma is the
most widely studied. PAR-1 is not expressed in normal breast
epithelium, dysplasia, or adenoma but is upregulated in carci-
noma in situ (low expression) and is highly expressed in in-
vasive breast carcinoma cell lines [47, 77, 154]. Experimental
studies on breast cancer have shown that PAR-1 is activated
by thrombin, MMPs and TF, while PAR-2 is activated by
coagulation factors VIIa, Xa, or their complexes with TF
[16, 52, 66, 68, 77]. There are also observations that PAR-1
and PAR-2 act as a functional unit in this tumor type [248].
Silencing PAR-2 by shRNA attenuates thrombin-mediated
PAR-1 activation, leading to reduced colony formation and
decreased cell invasion [248].

PAR activity mediates breast cancer cell migration through
Matrigel (a reconstituted basement membrane), facilitates cell
chemokinesis through the Gαi/c-Src/JNK/paxillin signaling
pathway, activates Akt-dependent survival pathways, and cor-
relates with the level of invasiveness and metastatic potential
of numerous cancer cell lines [66, 77, 154, 163]. PARs also
regulate EMT processes in breast cancer tumors, which facil-
itates cell proliferation (in situ carcinoma), encroachment of
basement membrane, matrix degradation, and local infiltration
(invasive cancer). Furthermore, PAR interactions with
integrins, formation of focal contact complexes, and cytoskel-
eton reorganization enable distant dissemination via
intravasation and extravasation (via lymphatic or blood ves-
sels). Finally, the MET process, and interactions with blood
and ECs, facilitates metastases formation (disseminated can-
cer) [77]. Inhibition of PAR activation in highly metastatic
MDA-435 breast cancer cells reduced cell invasion [77].
Administering an MMP-1 inhibitor and P1pal-7 (inhibitor of
cell viability mediated by Akt signaling) attenuates Akt activ-
ity, significantly promoting apoptosis in breast tumor xeno-
grafts and inhibiting metastasis to the lungs by up to 88 %
[16].

There is evidence from in vivo studies for PAR-mediated
breast cancer progression [32]. PAR-1 expression was essen-
tial for tumor growth and invasion in mammary xenografts via
thrombin-mediated interaction with EGFR- and ErbB or by
the fibroblast-derived MMP-1-mediated Ca2+ pathway [32,
52]. Persistent transactivation of EGFR and ErbB2/Her2 by
the thrombin-cleaved PAR-1 pathway has been demonstrated
in invasive breast carcinoma, but not in normal mammary
epithelial cells [32, 94]. There is evidence that Gαi/o,
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metalloprotease activity and release of HB-EGF (heparin-
binding EGF) ligand are critical for transactivation of
EGFR. Finally, EGFR and ErbB2/Her2 signaling triggered
by PARs results in prolonged Erk-1/2 activation leading to
breast carcinoma cell invasion. These results indicate potential
therapeutic benefit of inhibitors of thrombin, EGFR, ErbB and
Erk kinases in metastatic breast cancer patients.

3.12 Melanoma

In epithelial cancers, the predominant mechanism leading to
metastatic dissemination is EMT. In melanoma, the transition
of a lesion from the noninvasive radial growth phase (RGP) to
the invasive and metastasis-competent vertical growth phase
(VGP) is a major step in tumor progression, and PAR expres-
sion is implicated in the RGP-VGP transition process [249].
Melanoma cells express both PAR-1 and PAR-2 [50, 250].
The PAR-2 role in melanoma metastasis was not previously
appreciated, but the newest findings have shown its dual role
in melanoma [187, 194]. In a murine model of spontaneous
metastatic B16melanoma, PAR-2 contributed to the limitation
of local cancer progression in one area, while enhancing dis-
tant metastatic spread. Numerous reports document the role of
PAR-1 signaling in the prometastatic phenotype of melanoma
cells [4, 5, 21]. Experimental studies on melanoma cell lines
demonstrated that PAR-1-elicited signaling activates adhe-
sive, invasive, antiapoptotic, and angiogenic factors to pro-
mote melanoma metastasis [4, 5, 21, 251]. Additional proof
for the role of PAR-1 in melanoma dissemination is the fact
that it is highly expressed both in metastatic melanoma cell
lines and in metastatic lesions in comparison to primary nevi
and normal skin [21, 250]. Moreover, melanoma cells isolated
from lesions giving rise to metastases in patients had higher
PAR-1 mRNA and protein expression, as compared to those
obtained from lesions that did not develop metastatic disease
[252]. Motility and migration of melanoma cells is also regu-
lated by thrombin-mediated PAR-1 activation [50, 252].
Thrombin, whose generation is TF-dependent (procoagulant
expressed in melanoma cells), is the predominant PAR-1 ac-
tivator [21, 107]. However, there is also evidence that MMP-
1-mediated PARs activation exists in melanoma cells [5, 249].
Both MMP-1 and PAR-1 are highly expressed by VGP mel-
anomas.MMP-1 is thought to facilitate melanoma invasion by
degrading type I collagen within the skin, while PAR-1 acti-
vation leads to increased activation of growth factors: FGFR-2
and IGF-1 [5, 249].

Experiments with the B16F10 murine metastasis model of
melanoma demonstrated that cells transfected with PAR-1 ex-
hibited substantially higher pulmonary metastasis potential
than those deprived of PAR-1 signaling [4, 48]. PAR-1 pro-
moted metastatic melanoma by regulating the tumor suppres-
sor Maspin and the gap junction protein Connexin 43. Villares

et al. [253] determined that Connexin 43 facilitates interaction
between malignant cells and ECs, and maspin expression is
decreased in metastatic melanoma cells, where there is an
inverse correlation between PAR-1 and Maspin expression
[254]. PAR-1 also promotes expression of melanoma cell ad-
hesion molecule MCAM/MUC18 (MUC18), which is a key
marker of melanoma metastasis. It is of interest that PAR-1
activity increases expression of platelet-activating factor re-
ceptor (PAFR) and its ligand, and so not only promotes plate-
let aggregation but also enhances MUC18 levels. This is ex-
tremely relevant to the metastatic process as it was demon-
strated that the PAR1/PAFR/MUC18 pathway mediates mel-
anoma cell adhesion to microvascular ECs, transendothelial
migration and metastatic retention in the lungs [251].

PAR-1 silencing and thrombin inhibition affects the ability
of metastatic melanoma cell lines to disseminate [21, 22, 251].
Inhibition of PAR activity by 80 % through the use of
lentiviral shRNA decreases lung metastatic potential of
PAR-1 overexpressing melanoma cell lines [21]. PAR-1 si-
lencing also inhibits expression of the adhesive protein
MUC18, which attenuates the metastatic phenotype of mela-
noma cells [251].

To reduce the toxic immune responses of viral therapy,
PAR-1 small interfering RNA (siRNA) incorporated into neu-
tral liposomes (1,2-dioleoyl-sn-glycero-3-phosphatidylcho-
line, DOPC) was used in experiments on melanoma models.
There was a significant decline in tumor growth, weight, and
formation of metastatic lung colonies in mice treated with the
PAR-1 siRNA-DOPC [21]. siRNA delivery also resulted in a
decline in VEGF, IL-8, and MMP-2 expression levels, and
decreased blood vessel density. In another study, the reduction
of PAR-1 expression by siRNA and the inhibition of PAR-1
function by the specific antagonist SCH79797 significantly
decreased melanoma cell motility and invasiveness to the ex-
tent of the non-metastatic and low PAR-1 expressing cells
[252]. A specific thrombin inhibitor, argatroban, also de-
creases migration and bone metastatic potential of B16BL6
melanoma cells [22].

These findings suggest that PAR-1-dependent stimula-
tion of tumor growth and metastasis is regulated by inva-
sive, adhesive and proangiogenic factors and that PAR-1
could be a potential therapeutic target for metastatic mel-
anoma patients.

3.13 Summary

Tumor cell invasion and metastasis involves complex interac-
tions between mesenchymal cells and extracellular matrix as
well as blood components and ECs. The coagulation prote-
ases, matrix metalloproteases and serine proteases interact
with PARs, thus promoting multiple activities leading to
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cancer progression. Further studies are necessary to convert
theoretical knowledge into practical value.
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