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Abstract

Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-

inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets,

protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic

inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic

activity by PARs.

PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack

of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic

cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands

that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated

receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the

transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors.

In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current

understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.

Introduction
The four mammalian members of the protease-activated

receptor (PAR) family PAR1, PAR2, PAR3, and PAR4 are

encoded by the genes F2R [1], F2RL1 [2], F2RL2 [3], and

F2RL3 [4], respectively. Human PAR1 was discovered in

1991 as a key thrombin receptor on platelets [5, 6]. Al-

though human and mouse PAR2 genes are homologous

to PAR1 genes, PAR2 is not responsive to thrombin [2,

7, 8]. Unexpected responses of platelets to thrombin in

PAR1 knockout mice lead to the discovery of the throm-

bin receptors PAR3 and PAR4 [4, 9, 10]. PAR regulation

varies between species and tissues, with differing expres-

sion levels, protease cleaving activities, dimerization with

other receptors, compartimentalization, trafficking,

posttranslational modifications, and co-localization with

co-receptors, as shown in Fig. 1.

Studies of PAR activation under physiological condi-

tions are crucial for the understanding of the patho-

physiological roles of PARs, such as those in

inflammatory disorders.

Cleavage and activation of PARs and signal
transduction
PARs are specifically cleaved and irreversibly activated

by various endogenous proteases, and by exogenous pro-

teases from bacteria, plants, fungi, and insects. Proteases,

soluble or cell membrane associated (bound to

co-receptors or specific membrane compartments),

cleave specific N-terminal peptides of PARs, resulting in

exposure of new N-terminal peptides that serve as teth-

ered activation ligands, which bind a conserved region

on extracellular loop 2 (ECL2) [5, 11]. This interaction

initiates conformational changes and alters affinity for
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intracellular G proteins [12]. Various N-terminal cleav-

age sites have been described, and these have various ac-

tive conformations with specific G protein preferences.

Multiple cleavage site-specific cellular responses are gen-

erally referred to as biased signaling, and the ensuing

models describe how distinct proteases with distinct

cleavage sites induce protease-specific responses via the

same PAR [13, 14].

In contrast with PAR-activating proteases, other prote-

ases cleave PARs at cleavage sites that are not related to

signaling. Under these conditions, shedding of the PAR1

terminus, which removes the thrombin activation site,

was first recognized as a mechanism for rendering plate-

lets irresponsive to thrombin [15]. These truncated PARs

can no longer be proteolyticaly activated, but remain ac-

tivated by ligands from adjacent PARs [16]. Alternatively,

truncated PARs bind soluble peptides with affinity for

ECL2 by mimicking the tethered ligand. Both mecha-

nisms result in receptor activation [17, 18]. Multiple

ECL2-binding agonist peptides have been described and

shown to induce signaling from truncated and uncleaved

PARs (see agonist peptides in Tables 5, 6, 7).

PAR activation by proteolytical cleavage

PAR-cleaving proteases are a focus of many current

studies. Whereas some PAR-cleaving proteases produce

N-terminal components with regulatory roles, others

render the receptors irresponsive to further protease ex-

posure as shown in Fig. 2 and summarized in Tables 1,

2, 3 and 4. Important proteases are discussed below.

Mammalian proteases

Serine proteases Thrombin, the key protease of coagu-

lation, is generated by proteolytic cleavage of zymogen

prothrombin. Although thrombin production predomin-

antly occurs on platelets and subendothelial vascular

walls, extravascular thrombin has been detected in syn-

ovial fluid [19] and around tumors [20]. Thrombin has

long been known to activate platelets, and the discovery

of PAR1 initiated research into the underlying molecular

mechanisms. PAR1 contains a hirudin-like domain,

which has a high affinity thrombin binding site and re-

cruits thrombin via exosite I. This interaction enables

thrombin to specifically and efficiently activate PAR1 [6].

Similarly, PAR3 contains a hirudin-like thrombin re-

cruitment site, which results in cleavage [9, 21]. In other

studies, mouse PAR3 maintained thrombin recruitment

activity but lost its receptor function, as discussed above

[22–24]. Thrombin also cleaves and activates PAR4,

which, in contrast with PAR1, lacks a hirudin-like do-

main. Thus, higher concentrations of thrombin activate

PAR4 and initiate intracellular signaling [10]. PAR2 is

considered the only PAR that resists cleavage or

Fig. 1 Mechanisms of PAR activation. PAR activation is regulated by a direct proteolytic cleavage at the N-terminus, b homo- or

heterodimerization with other PARs and transactivation through the cleaved tethered ligand, c compartmentalization on the cell surface, d

degradation or recycling by endosomal trafficking, e posttranslational modifications such as glycosylation, phosphorylation, and ubiquitination,

and f co-localization with other receptors and cofactors
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activation by thrombin [4, 25], although emerging evi-

dence suggests that at very high concentrations (100–

500 nM), thrombin may directly cleave and activate

PAR2 [26, 27].

In contrast with thrombin, the anticoagulant prote-

ase activated protein C (aPC) binds to the

co-receptor endothelial protein C receptor (EPCR) to

promote the cleavage and activation of co-localized

PAR1 [28, 29] and induce anti-apoptotic and protect-

ive effects on endothelial barrier permeability [29–33].

Compartmentalization of PAR1 and co-localization

with EPCR in calveolae is crucial for efficient cleavage

by aPC [13]. Moreover, aPC cleaves PAR3 in humans

and mice [21, 34, 35] and acts as a PAR3 shedding prote-

ase that prevents thrombin-induced barrier disruption

[21]. However, the dependency of aPC cleavage of PAR3

on EPCR remains controversial [21, 35]. Similar to aPC,

coagulation factor Xa binds EPCR and mediates proteo-

lytic activation of PAR1 and PAR3 [21, 28, 36–39]. In

addition, EPCR-bound factor Xa reportedly cleaves PAR2

and initiates inflammatory signaling [40]. PAR2 was also

shown to be activated by tissue factor (TF)-bound coagu-

lation factor VIIa [40–42]. Yet recent studies suggest that

the TF-VIIa complex does not directly activate PAR2, and

rather activates matriptase, which cleaves and activates

PAR2 [42–44]. Anti-inflammatory signaling was also pre-

viously related to PAR1 cleavage by EPCR-bound VIIa [45,

46]. Taken together, these studies indicate that TF-Xa–

VIIa complexes activate PAR1 and PAR2 [47].

Trypsins are PAR-activating proteases with roles as major

digestive enzymes in the duodenum [48]. Trypsin is also se-

creted by epithelial cells, nervous system cells [49], and

tumor cells [50, 51]. Trypsins may also be involved in cell

growth and coagulation, as suggested by secretion from

human vascular endothelial cells [52]. Trypsin cleaves

human PAR1 and PAR4 at putative protease cleavage

sites, and thereby prevents thrombin signaling in

endothelial cells and platelets [4, 53]. Trypsin is the

major PAR2 cleaving protease that initiates inflamma-

tory signaling [2, 7].

Fig. 2 Proteolytic PAR cleavage. a N-terminal sequences of human PARs (PAR1–4) containing potential cleavage sites. b Proteolytic cleavage of

PARs by soluble exogenous proteases exposes new N-terminal sequences that serve as tethered ligands for G protein dependent activation of

receptors. Alternatively, proteolytic cleavage at other sites destroys the function of the receptor to prevent intracellular signal transduction
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Tryptase is the main protease of mast cells, and activates

PAR2 by proteolytic cleavage to induce calcium signaling

and proliferation [54–57]. The source tissue of tryptase re-

portedly plays an important role in the cleavage and induc-

tion of tryptase-activated PAR signaling, reflecting

differences in posttranslational modifications, such as gly-

cosylation and sialic acid modifications [54, 58]. Tryptase

induces calcium signaling via PAR1 when PAR2 is

co-expressed, but cannot activate human platelets, suggest-

ing that tryptase does not directly cleave PAR1 [54–57].

Chymase is a mast cell serine protease that also cleaves

PAR1 in human keratinocytes and fibroblasts, and thus pre-

vents thrombin sensitivity [59]. Moreover, the epithelial

serine protease matriptase cleaves and initiates inflamma-

tory responses in human and mouse keratinocytes and in

Xenopus oocytes overexpressing human PAR2 [44, 60–63].

PARs have been identified as substrates of kallikreins,

which are serine proteases that have been related to

various inflammatory and tumorigenic processes [64].

Kallikrein-4 increases intracellular calcium levels via

PAR1 and PAR2, but activates PAR1 most efficiently

[65]. Kallikrein-14 induces calcium signaling via PAR1,

PAR2, and PAR4, but can also shed PAR1 to prevent sig-

naling. Rat platelets are activated by kallikrein-14 via the

proteolytic cleavage of PAR4, but are not activated by

kallikrein-5 and kallikrein-6 [66]. Instead, neurotoxic ef-

fects of kallikrein-6 were inhibited by blocking PAR1

and PAR2, indicating a direct proteolytic role in PAR ac-

tivation [67].

Neutrophils are mobilized to sites of inflammation and

infection, where they modulate inflammatory signaling, in

part by secreting PAR-cleaving proteases. The neutrophil

serine protease cathepsin G prevents thrombin-induced

effects by cleaving PAR1 into non-functional parts [68,

69]. In contrast, cathepsin G reportedly induced chemo-

attractant signaling via PAR1, further supporting the role

Table 1 PAR1 cleaving proteases

Protease Major cleavage site Additional cleavage sites

Mammalian proteases Thrombin R41S42

aPC R46N47 R41S42

FVIIa unknown

FXa R41S42

Trypsin R41S42

Chymase unknown

MMP-1 D39P40, L44L45, F87I88 N47P48, R70L71,K82Q83

MMP-2 L38D39

MMP-3,-8,-9 R41S42

MMP-12 unknown

MMP-13 S42F43 L38T39, mouse

Cathepsin G R41S42, F55W56, Y69R70

Neutrophil elastase A36T37, V72S73, A86F87

Proteinase-3 A36T37, P48N49, V72S73, A92S93

Plasmin K32A33, R41S42, R70 L71, K76 S77, K82 Q83

Kallikrein-4,-5,-6 unknown

Kallikrein-14 R46N47

Granzyme A,B, K unknown

Calpain-1 K32A33, S76K77

Non-mammalian proteases PA-BJ R41S42, R46N47

Thrombocytin R41S42, R46N47

DerP1 unknown

Gingipain R R41S42

SpeB L44L45

LepA unknown

S.pneumoniae proteases unknown

Thermolysin F43L44, L44L45

penC R41S42
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of cathepsin G in PAR1 activation [70]. Another unex-

pected observation of cathepsin G was that cleavage sites

differ between recombinant and native human PAR2 [26,

71, 72]. These discrepancies may reflect the influence of

cell types and posttranslational modifications on PAR

cleavage. Studies in mice and humans show that platelet

activation by cathepsin G is dependent on PAR3 and

PAR4 [71, 73, 74]. Cathepsin G also cleaves and activates

PAR4 on endothelial cells [75]. The neutrophil proteases

elastase and proteinase-3 cleave recombinant PAR1 and

PAR2 at various sites [26, 72]. Recently, rat elastase was

shown to cleave and activate PAR1, although sequences of

rat and human PAR1 have low homology [76]. In contra-

diction with neutrophil proteases that prevent PAR signal-

ing at sites of inflammation, monocytes secret the

protease cathepsin S, which initiates inflammatory

Table 2 PAR2 cleaving proteases

Protease Major cleavage site Additional cleavage sites

Mammalian proteases Thrombin R36S37

aPC unknown

FXa R36S37

Trypsin R36S37 K34G35, K51G52, K72L73

Tryptase R36S37

Chymase G35R36 L38I39, mouse

Matriptase R36S37

Cathepsin G F65S66 F59S60, F64S65

Cathepsin S G40K41 E56P57, mouse

Neutrophil elastase A66S67, S67V68 V42D43,V48T49,V53T54,V58T59,T74T75,V76F77

Proteinase-3 D62E63 V48T49,V55E56,T57V58 V61D62,K72L73,T74T75,T75V76,V76F77

Plasmin R36S37 K34G35

Testisin unknown

Kallikrein-4, unknown

Kallikrein-5,-6,-14 R36S37

Calpain-2 unknown

Non-mammalian proteases Der-P1,-P2,-P3,-P9 unknown

Cockroach E1-E3 R36S37

Gingipain R unknown

LepA unknown

EPa S37L38 S38L39, rat

S.pneumoniae proteases unknown

Thermolysin unknown

Serralysin unknown

P.acnes proteases unknown

aPA unknown

Bromelain unknown

Ficin unknown

Papain unknown

penC R36S37

Table 3 PAR3 cleaving proteases

Protease Major cleavage site Additional cleavage sites

Mammalian proteases Thrombin K38T39 mouse PAR3 at K37S38

aPC R41G42

FXa R41G42

Trypsin unknown
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signaling by cleaving PAR2 [72, 77, 78]. Low concentra-

tions of the fibrinolytic protease plasmin prevent platelet

activation by cleaving PAR1, whereas high concentrations

of plasmin lead to the cleavage and activation of PAR1

[79]. Plasmin also cleaves PAR2 and prevents subsequent

activation by trypsin [26, 80].

The serine proteases granzyme A and granzyme B in-

duce intracellular signaling pathways that lead to neur-

onal death via PAR1 [81, 82]. Recently, granzyme K was

also shown to activate PAR1 and promote inflammatory

endothelial signaling [83, 84]. Few studies show activa-

tion of PAR1 by proteases of the granzyme family, and

the details of this interaction remain poorly

characterized.

Cysteine proteases Calpain-1 is a calcium-dependent

cysteine protease that has been associated with inflam-

matory disorders, and initiates calcium signaling path-

ways by activating PAR1 [26]. At very high

concentrations, calpain-2 was also shown to cleave

PAR2, and the authors suggested that this cleavage event

inactivated PAR2 [26]. Recently, calpain-1 was shown to

be induced by thrombin-activated PAR1, and subse-

quently regulated the internalization of PAR1 [85].

Metalloproteases Matrix metalloproteases (MMPs) are

known to be involved in various inflammatory- and

cancer-related conditions. MMP-1 cleaves human PAR1

and initiates platelet activation [86–89]. MMP-1 also

regulates cancer cell activities depending on PAR1 avail-

ability [90]. Similarly, MMP-2 cleaves human PAR1 and

enhances platelet activation [91], and MMP-3, MMP-8,

and MMP-9 were shown to induce platelet activation via

PAR1 [92]. Whether these three MMPs cleave PAR2 is

not clear, although PAR2 activation by trypsin induced

secretion of MMP-9 in human airways, suggesting that

MMP-9 is a PAR2-activating protease [93]. In mice,

PAR1 expression was regulated by MMP-12, and acti-

vated PAR1 increased MMP-12 secretion [94, 95]. A

similar feedback loop involving MMP-12 and PAR2 has

been reported in mice [96]. Moreover, MMP-13 was

shown to activate PAR1 and induce intracellular signal-

ing [87], and thrombin-induced activation of PAR1 and

PAR3 was associated with increased levels of MMP-13

in human chondrocytes [24].

In addition to coagulation and inflammation, PAR acti-

vation may play roles in human germ cells, where the

serine protease testisin activates PAR2 and induces cal-

cium signaling and ERK1/2 activation. This interaction

may play roles in the regulation of ovarian and testicular

cancer, as suggested previously [97, 98].

Non-mammalian proteases

Exogenous proteases from various species that modulate

PAR activation are disscues in the following section and

are summarized in Fig. 3.

Bacterial proteases Endogenous mammalian proteases

are not the only regulators of PAR activation. Indeed,

both pathogenic and commensal bacteria secret various

proteases that cleave PARs and act as inflammatory

modulators [99]. In this section, we describe bacterial

proteases that either activate PARs, and thus allow bac-

teria to penetrate host barriers, or inactivate PARs to

prevent inflammatory signaling by the host.

The human pathogen Pseudomonas aeruginosa secrets

two PAR-cleaving proteases with contrasting effects. The

exoprotease LepA cleaves and activates PAR1, PAR2,

and PAR4, and subsequently induces nuclear factor

kappa B (NFκB) promoter activity [100], whereas

Table 4 PAR4 cleaving proteases

Protease Major cleavage site Additional cleavage sites

Mammalian proteases Thrombin R47G48

Trypsin R47G48

Cathepsin G R47G48

Kallikrein-14 unknown

Non-mammalian proteases PA-BJ R47G48

Thrombocytin R47G48

Der-P3 unknown

Gingipain R R47G48

LepA unknown

S.pneumoniae proteases unknown

Bromelain unknown

Ficin unknown

Papain unknown
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cleavage by elastase EPa inactivates PAR2 to prevent in-

flammation in lungs [101].

The streptococcal pyrogenic exotoxin B (SpeB) of

Group A Streptococcus also inactivates PAR1 by cleav-

ing it, and thereby renders human platelets unrespon-

sive to thrombin [102]. In mice, proteases of

Streptococcus pneumoniae cleaved PAR2 and facili-

tated the spread of the pathogen from the airways

into the blood stream [103]. PAR1 has also been as-

sociated with S. pneumonia-mediated sepsis in mice,

although direct cleavage of PAR1 was not shown

[104, 105]. Pulmonary inflammation from S. pneumo-

niae infections is reduced in PAR4 knockout mice

[106], further supporting this causal link.

Inflammation-associated periodontal diseases are pre-

dominantly induced by the Porphyromonas gingivalis

cysteine protease gingipain R, which activates PAR2

[107, 108]. Subsequently, gingipain R activates PAR1 and

PAR4, and thereby, human platelets [109–111]. This

mechanism may also explain associations between peri-

odontitis and cardiovascular events [112].

In addition, supernatants from Propionibacterium

acnes cultures initiated inflammatory signaling in hu-

man keratinocytes via PAR2 [92]. The virulence of P.

acnes was also reduced in PAR2 knockout mice [113],

further suggesting that PAR2 is involved in bacterial

infections.

Serralysin is a matrix metalloprotease expressed by

Serratia marcescens, and induced inflammation in hu-

man airway cells via PAR2 in vitro [114].

Finally, Bacillus thermoproteolyticus rokko secretes the

metalloprotease thermolysin, which cleaves and inacti-

vates PAR1 to prevent thrombin-induced signaling in rat

astrocytes [115, 116]. The in vitro effects of

PAR2-cleavage by thermolysin, however, vary between

cell lines [116].

Amoeba proteases In acanthamoebic keratitis, PAR2

triggers inflammation following secretion of the plas-

minogen activator (aPA) by Acanthamoeba strains, lead-

ing to induction of IL-8 in human corneal epithelial cells

[117].

Reptile proteases Following snakebites, coagulation dis-

orders in humans and mice occur due to the presence of

venom proteases. In Proatheris superciliaris bites, venom

proteases activate platelets by activating PAR1 and PAR4

[118]. Bothrops atrox and B. jararaca are snake species

of the family viperidae. These snakes secrete the serine

proteases PA-BJ and thrombocytin, which activate hu-

man platelets via PAR1 and PAR4 [119].

Insect proteases Several cysteine and serine proteases

from insects induce inflammation-associated diseases

Fig. 3 Non-mammalian exogenous proteases induce PAR-driven pathological effects. Various proteases are secreted from bacteria, amoebae,

insects, plants, fungi, and snakes, and can cleave PARs and modulate signal transduction, leading to inflammation, thrombosis, or pain
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such as asthma. For example, dust mite allergens contain

the serine proteases DerP2, DerP3, and DerP9 [120] and

the cysteine protease DerP1. DerP1 induces

PAR2-dependent signaling, whereas thrombin-induced

PAR1-signaling is prevented by these proteases in hu-

man epithelial cells [121]. DerP3 was also recently

shown to activate PAR4, and this process was associated

with allergies to dust mites [122].

Similar to proteases from house dust mites, three

serine proteases (E1–E3) from cockroach extracts acti-

vate PAR2 and induce inflammatory signaling in mice

and humans [123–125].

Fungal proteases Pen C is a serine protease from Peni-

cillium citrinum that induces IL-8 in human airway cells

by activating PAR1 and PAR2 [126]. Proteases from As-

pergillus fumigatus have also been shown to prevent

PAR2-dependent inflammation [127]. Moreover, serine

proteases from Alternaria alternate induced calcium sig-

naling in human bronchial cells and induced inflamma-

tion in mice by secreting IL-33 following PAR2

activation [128–130].

Plant proteases Bromelain is a mixture of cysteine pro-

teases that is extracted from pineapple which is used as

a PAR-independent anti-inflammatory agent [131]. Bro-

melain cleaves PAR2 and thereby prevents the associated

inflammatory signaling [132]. In another study, however,

bromelain, ficin, and papain activated PAR2 and PAR4

by proteolytic cleavage, leading to increased intracellular

calcium levels [133]. Thus, further studies are required

to further clarify the modes of action of pineapple

proteases.

Cleavage-independent PAR activation by agonist peptides

Independent of proteolytic cleavage, PARs can be acti-

vated by synthetic soluble ligands corresponding with

cleaved N-terminal sequences, or can be transactivated

by cleavage-generated N-terminal regions of homo- or

heterodimer partners.

Synthetic peptides that mimic the first six amino acids

of tethered N-terminal ligands can act as agonist pep-

tides that activate PARs in the absence of cleavage

events [11, 18, 134]. Specific activation of PARs by a sol-

uble agonist peptide was first shown for human PAR1

with the peptide SFLLRN [6, 18]. However, this peptide

also activated PAR2 [135–137] and therefore various

peptides were tested for specific PAR1 activation. Yet,

PAR1 was the most specifically and efficiently activated

by TFLLRN [138]. In addition to thrombin agonist pep-

tides, other PAR1 agonist peptides have been identified.

In particular, the peptide NPNDKYEPF reproduced the

effects of aPC [28], and PRSFFLRN corresponds with

the N-terminal peptide generated by MMP-1 [86].

SLIGKV corresponds with the trypsin cleaved

N-terminal region of human PAR2. However, the corre-

sponding rat N-terminus SLIGRL is a more specific and

efficient PAR2 agonist in rodents and humans [136,

139], and only the synthetic peptide LIGRLO achieved

this effect more efficiently than SLIGRL in humans

[140]. The roles of ECL-2 in specific PAR activation have

been shown using labeled PAR2 agonist peptides [141,

142]. Because the thrombin generated PAR3 peptide

does not activate the G protein autonomously, no such

agonist peptides have been identified to date [9, 143].

GYPGKF corresponds with the thrombin-cleaved human

PAR4 and has weak activity as an agonist [144]. But re-

placement of the first amino acid glycine (G) with ala-

nine (A) induced PAR4 by 10-fold. This peptide may be

suitable as a platelet activator in humans and mice [145].

Several models of PAR–PAR interactions have been

proposed and extensively studied based on PAR transac-

tivation by agonist peptides [146]. When PAR1 is

blocked on endothelial cells, however, thrombin, and not

the PAR1-specific agonist peptide TFLLRN, induces sig-

naling, reportedly by facilitating the heterodimerization

of PAR1 and PAR2 [147]. Thrombin activation of the

PAR1–PAR2 heterodimer leads to constitutive internal-

ization and activation of β-arrestin by the PAR1 C-tail

[146]. Accordingly, the required co-localization of PAR1

and PAR2 was shown in a human overexpression sys-

tem, in mice studies of sepsis, and in PAR1–PAR2-dri-

ven cancer growth in a xenograft mouse model [148,

149]. In other studies, stable heterodimerization of hu-

man PAR1 and PAR4 was shown in platelet cells, and

thrombin accelerated platelet activation under these

conditions [150, 151]. Similar studies of mouse platelets

showed efficient activation of platelets by thrombin in

the presence of PAR3–PAR4 heterodimers [143]. Con-

sistent with the thrombin-cleaved PAR3 peptide, which

is not self-activating, PAR3 signaling was observed in

the presence of PAR1 or PAR2 [22, 23, 34, 152]. Yet, het-

erodimerization influenced signal transduction and PAR

membrane delivery due to enhanced glycosylation [153].

In addition to activation by heterodimerization, PARs

interact with other receptors, such as ion channels, other

G protein-coupled receptors (GPCRs), receptor tyrosine

kinases (RTKs), receptor serine/threonine kinases

(RSTKs), NOD-like receptors, and TLRs [154]. In par-

ticular, PAR2 initiated inflammatory signaling pathways,

resulting in pain due to transactivation of the ion chan-

nels TRPV1 and TRPV4 in humans and mice [155–159].

Similar inflammatory effects follow transactivation of the

RTKs EGFR and VEGFR by PAR2 and PAR4 [160–163].

Bacterial interactions with PARs suggest important roles

of PARs in infectious disease. In agreement, TLRs

recognize bacteria-derived molecules and contribute to

innate immunity [164, 165]. Moreover, direct
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interactions of PAR2 with TLR3 and TLR4 were neces-

sary for inflammatory responses to LPS in human cell

lines and knockout mice and rats [166–171].

PAR signaling

Activation pathways

PARs belong to a large family of GPCRs and induce

multiple signaling pathways after coupling with heterodi-

meric G proteins. Activation of the Gα-subunit due to

the exchange of a guanine from GDP to GTP results in

dissociation of the Gβγ-dimer and activation of down-

stream pathways [172, 173].

Following proteolytic cleavage or induction of agonist

peptides, the engaged signaling pathways vary between

tissues, cell lines, and the availability of co-receptors for

transactivation. Depending on the ligand, specific

α-subunits are activated, and these regulate subsequent

cellular functions as summarized in Fig. 4. For example,

thrombin-stimulated PAR1 activates the small GTPase

protein RhoA via ERK1/2 kinases, but not via Rac1,

whereas aPC-stimulated PAR1 induces Rac1 via Akt kin-

ase, but not via RhoA [13, 174–176]. Moreover, in ac-

cordance with PAR1 cleavage sites, aPC prevents

thrombin-induced RhoA signaling [16]. However, in

contrast with thrombin-induced RhoA activation on

platelets and endothelial cells, PAR1-agonist peptides

and thrombin activated the inhibitory G protein Gi

which leads to the inhibition of adenylyl cyclase in hu-

man fibroblasts [177, 178]. Other studies indicate that

PAR2 activation is less tissue specific than PAR1 activa-

tion, and trypsin and VIIa cleaved PAR2 and activated

Gαq and Gi, resulting in calcium influx, MAPK activa-

tion, and inflammatory signaling [8, 179].

Signaling by tethered ligands can differ from that gen-

erated by corresponding soluble agonist peptides. For

example, thrombin-cleaved PAR1 activated Gα12/13 and

Gαq and induced Rho and Ca2+ signaling, whereas the

PAR1-agonist peptide activated only Ga12/13 and down-

stream RhoA-dependent pathways that affected endothe-

lial barrier permeability [180]. Similar observations of

human platelets suggested that platelet activation

followed coupling of thrombin-activated PAR1 with mul-

tiple heterotrimeric G protein subtypes, including Gα12/

13 and Gαq [181–183]. Moreover, trypsin and the

PAR2-agonist peptide induced ERK1/2 signaling and in-

flammation by activating PAR2 [29, 180, 184–186].

β-arrestins also play major roles in PAR-induced signal-

ing independently of G protein activation. For instance,

aPC-activated PAR1 induces cytoprotective effects by

recruiting β-arrestin in endothelial cells. Thus, aPC

cleavage fails to protect β-arrestin deficient cells from

the effects of thrombin [187, 188]. In addition, multiple

studies show that activated PAR2 co-localizes with

β-arrestin-1 and arrestin-2 and induces ERK1/2 signaling

[77, 189–191].

Desensitization and termination

PAR activation is regulated by internalization and pro-

teolytic desensitization, which limits the duration of sig-

naling. For instance, PAR1 is constitutively internalized

and recycled or agonist-induced internalized and de-

graded as described in [192, 193] and shown in the

scheme of Fig. 5. As discussed above, some

PAR-cleaving proteases abolish receptor responses by re-

moving (shedding) or destroying the tethered ligands.

For example, PAR1 is inactivated following cleavage by

cathepsin G, and thrombin activation is hence pre-

vented, allowing the formation of clotting under inflam-

matory conditions.

Depending upon proteolytic cleavage, PAR1 rapidly

internalizes or accumulates on the cell surface [194, 195].

Activated PAR1 is internalized via clathrin- and

dynamin-dependent mechanisms, and is sorted from early

endosomes to lysosomes for degradation [196–199].

Fig. 4 G protein-coupled signaling induced by PAR activation.

Depending on the tethered ligand, activated PAR couples with G

protein α-subtypes. Gαq activates phospholipase Cβ (PLCβ), which

mobilizes calcium. This further activates MAPKs (ERK1/2) and induces

Ras signaling. Primarily, Gα12/12 and Gaq activate the Rho pathway.

Gαi inhibits the activation of adenylyl cyclase, which leads to

reduced production of cAMP. In contrast, the βγ-subunit functions

as a negative regulator when bound to the α-subunit. After receptor

activation, subunits separate, and the βγ-subunit interacts with other

proteins, thereby activating or inhibiting signaling
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Although the mechanisms that terminate PAR1 sig-

naling are not clearly understood, this process is

known to involve phosphorylation, ubiquitination, and re-

cruitment of β-arrestin [200–204]. In contrast with PAR1,

activated PAR2 is not constitutively internalized [205].

Thus, to prevent persistent signaling upon activation,

PAR2 is phosphorylated and ubiquitinated and then binds

β-arrestin before being internalized and degraded [206–

208]. Under these conditions, the activated and internal-

ized PAR2 is not recycled and instead induces

β-arrestin-dependent endosomal ERK1/2 signaling in the

cytoplasm [189, 191, 209]. Thus, large cytoplasmic stores

of newly generated PAR2 are required for rapid

externalization and activation on cell membranes [210].

Although less is known about how PAR4 signaling is

terminated, recent observations suggest that PAR4 in-

ternalization is independent of β-arrestin and slowly

occurs via clathrin- and dynamin-dependent pathways

[211]. In agreement, human platelets internalized PAR4

much slower than PAR1, and exhibited prolonged PAR4

signaling activity [212]. Moreover, growing evidence indi-

cates that PAR–PAR heterodimerization is important for

internalization, and that the underlying mechanisms in-

clude PAR2-dependent glycosylation of PAR4, thus affect-

ing membrane transport [153]. Upon internalization,

endosomal PAR4 dimerizes with the purinergic receptor

P2Y12 and induces Akt signaling by recruiting β-arrestin

within endosomes [213].

Depending on stimuli, PAR expression patterns

are regulated by complex combinations of cell

surface presentation, endocytosis, vesicle born or

recycled (i.e., re-exocytosed) receptors, and traffick-

ing modes that are linked to posttranslational modi-

fications of PAR.

Role of PARs in inflammation
With the current increases in the prevalence of inflam-

matory diseases, published in in vitro and in vivo studies

of the roles of PARs in inflammation have become more

numerous. These are reviewed below.

Systemic inflammation and inflammatory cells in the

cardiovascular system

PARs are critical for the interplay between clotting pro-

teases of platelets, endothelial cells, and vascular smooth

muscle cells that regulate hemostasis, vascular barrier

function, vascular tone, vascular homeostasis, cell adhe-

sion, and inflammatory responses [150]. The roles of

PARs in these processes vary significantly between spe-

cies. Specifically, whereas functional PAR1 and PAR4 are

expressed in human platelets [214], PAR1, PAR3, and

PAR4 have been found in guinea pig platelets [215].

Whereas mouse and rat platelets lack PAR1, they are ac-

tivated at low concentrations of thrombin, which is re-

cruited by PAR3 onto the surface of platelets and then

efficiently activates PAR4 [4]. Due to interspecies differ-

ences in PAR expression, mouse and rat studies of PARs

are difficult to translate to humans. PARs in endothelial

cells contribute positive regulatory signals for endothelial

adhesion molecules such as vascular cell adhesion

molecule-1 (VCAM-1), intercellular adhesion molecule-1

(ICAM-1), and E-selectin [216, 217], all of which promote

vascular barrier function. As a counterpart of intravascular

cells, PAR4 induces leukocyte migration [75], and PAR2

expressed on macrophages promotes inflammatory modu-

lators such as interleukin-8 (IL-8) [218]. These modes of

signaling all contribute to a complex PAR-mediated inter-

play of endothelial cells that is orchestrated by intravascu-

lar cells and cytokine secretion. In addition, PARs,

Fig. 5 PAR trafficking. Activation-independent constitutive or agonist-induced internalization regulates PAR1 signaling
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particularly PAR1, regulate vascular barrier function, and

hence, extravasation of macromolecules such as comple-

ment proteins and antibodies. In addition,

thrombin-mediated activation of PAR1 increases endothe-

lial barrier permeability by activating mitogen-activated

protein kinases (MAPKs) [219]. Although this effect is re-

versed by activated protein C (aPC)-mediated activation of

PAR1 [28, 174, 175, 220]. Thrombin further promotes

prostaglandin 2 (PGE2) secretion, and consequent endo-

thelial barrier permeability [221]. Similarly, PAR1 activa-

tion increased vascular leakage in a murine model [222].

Inflammatory mediators, such as tumor necrosis factor

alpha (TNFα), were shown to regulate the expression of

endothelial PAR2, and the authors suggested that these

data were indicative of barrier protective effects of PAR2

[223]. Several other studies show that PAR2 activation in-

duces endothelium-dependent relaxation in blood vessels

of mice and in arteries of rats [224–228]. In contrast, dual

activities of PAR2 on blood vessels were reported in a

study of rats [229]. In this line, thrombin-activated PAR1

induced the expression of vascular endothelial growth fac-

tor in smooth muscle cells [230], thus revealing the rela-

tionship between coagulation and vascular growth.

Although the roles of PARs in the development of arterio-

sclerosis are yet to be elucidated, PAR2 and PAR4 were in-

duced in human arteries under inflammatory conditions

[223], suggesting important roles of PARs in vascular

inflammation.

Chronic inflammation of the gastrointestinal tract

In the gut lumen, human and bacterial proteases are

both present at high concentrations. Similar to endothe-

lial barriers, proteases regulate intestinal barrier perme-

ability via PARs, all four of which are expressed by cells

of the gastrointestinal tract [9, 224, 231, 232]. Trypsins

and tryptases are prominent intestinal proteases, sug-

gesting likely involvement of PAR2 as a major receptor of

intestinal inflammation. In accordance, intestinal tight

junctions are disrupted by PAR2-activating proteases,

leading to inflammatory signaling in humans and rats

[139, 206, 233, 234]. Although the roles of PARs in irrit-

able bowel syndrome (IBS) and inflammatory bowel dis-

eases remain unclear, roles of PARs in intestinal barrier

function have been described. Specifically, PAR1 and

PAR2 regulated permeability and chloride secretion,

which are involved in diarrhea and constipation in IBS pa-

tients [234–236]. In addition, activated endosomal PAR2

caused persistent pain in a mouse model of IBS [209].

Inflammatory diseases of the respiratory system

It has long been suggested that PARs are involved in the

pathophysiology of respiratory disorders, reflecting ob-

servations of elevated levels of PAR-activating proteases,

such as thrombin and tryptase, in bronchoalveolar lavage

fluid from patients with pulmonary inflammation [237,

238]. In a sheep asthma model and in asthmatic patients,

tryptase inhibitors reduced inflammation [239, 240], fur-

ther indicating important roles of PAR2 in respiratory

disease. These roles of PARs are also suggested by the

prominence of a variety of non-mammalian

PAR-activating proteases, such as those of house dust

mites and cockroaches [120, 123, 124]. Expression of

PAR1, PAR2, and PAR4 on bronchial epithelial and

smooth muscle cells induced inflammatory signaling in

multiple studies [55, 121, 241–245]. PAR2 is also upreg-

ulated in epithelial cells of patients with asthma and

chronic obstructive pulmonary syndrome (COPD) [246,

247]. Whether PAR2 activation results in bronchocon-

striction or dilatation remains controversial, in part

owing to interspecies differences and tissue dependen-

cies [242, 248, 249]. In humans, however, PAR1-agonist

peptides with thrombin, and a PAR2-agonist peptide

with trypsin and tryptase, induced bronchoconstriction

by inducing Ca2+ signaling in airway smooth muscle

cells [241, 244]. Moreover, the long-term activation of

PAR1 and PAR2 led to pulmonary fibrosis in mice

models [250].

Inflammatory skin diseases

High concentrations of exogenous proteases are present

on the skin of various species, and these may activate

PARs to regulate epidermal permeability and barrier

function [251]. Indeed, epidermal inflammation has been

linked to PAR1 and PAR2 activation in keratinocytes,

which comprise the epidermal barrier with

sub-epidermal skin fibroblasts [179, 252, 253]. Subse-

quent release of IL-8, IL-6, and granulocyte macrophage

colony-stimulating factor (GM-CSF) was also observed

previously [254], potentially involving NFκB activation

[255]. In addition, the inflammatory roles of PAR2 have

been demonstrated in mice models of atopic dermatitis

due to elevated tryptase and PAR2 expression levels

[256, 257]. Similar to studies in mouse models, PAR2

was upregulated in patients with atopic dermatitis, and

PAR2 agonists increased itch, causing irresponsiveness

of sensory nerves to therapy with antihistamines [258].

Rheumatic disease

“Rheumatic disease” is a common term for autoimmune

diseases that affect joints, bones, and muscles. Although

rheumatic disorders are numerous, some of the common

underlying symptoms include chronic joint inflamma-

tion, stiffness, and pain [259]. Currently, PAR2 is the

only PAR that has been associated with the development

of rheumatic diseases [260]. Direct roles of PAR2 in

rheumatic diseases were first indicated in 2003 in a

mouse study by Ferrell et al. [261]. In their study, a

PAR2-agonist peptide induced strong inflammatory
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effects in wt mice, causing joint swelling and synovial

hyperemia, whereas joint swelling was absent in PAR2

deficient mice [261]. Similarly, in patients with rheuma-

toid arthritis, PAR2 is upregulated in inflamed tissues

[262]. Further increases in PAR2 expression were noted

in monocytes, and the PAR2-agonist peptide upregulated

IL-6. In contrast, PAR2 expression was decreased after

treatments with antirheumatic drugs [263], further sup-

porting the role of PAR2 in rheumatic disease.

PAR modulators as targets for therapy
The complexity of PAR regulation is indicated by the

culmination of specific proteolytic cleavage modes (in-

activating or activating), protease inhibitors, and cofac-

tors, and with the effects of PAR glycosylation and

dimerization (Fig. 1). In this section we discuss classes of

agonists and antagonists that have been tested as PAR

modulators for use as therapeutic agents as summarized

in Fig. 6 and Tables 5, 6 and 7.

Peptide agonists and antagonists are short synthetic

peptides that mimick the PAR-tethered ligand that is lib-

erated by proteolytic cleavage, as described above. These

peptides either induce signal transduction or prevent

cleavage-dependent signaling following PAR rapid in-

ternalization, and some C- or N-terminal modifications

of soluble ligand sequences have resulted in increased

activation efficiency [18]. Peptidomimetic antagonists

are small protein-like chains that mimick the tethered li-

gands of PARs, and were recently used as PAR modula-

tors for the first time [264].Soon after PARs were

discovered, PAR1 blocking antibodies were reported

[265], and these blocked protease binding and or the

cleavage site of the receptor. Non-peptide small mole-

cules, such as the PAR1 antagonists vorapaxar [266] and

atopaxar [267], also interact with PARs, mainly via

ECL2.Only two classes of intracellular PAR antagonists

have been developed to date. Pepducins are cell pene-

trating palmitoylated peptides that were derived from

the intracellular loop of PAR, and these interfere with G

protein binding [268]. Parmodulins, in contrast, are

small molecules that bind PARs at the G protein binding

pocket of the C-tail to compete with Gαq subunits, but

not with other Gα subunits [269].

Examination of agonists and antagonists in vitro and in

preclinical studies (Tables 5, 6 and 7)

Clinical studies

Despite the importance of PARs in various pathophysio-

logical conditions, few PAR modulating tools have been

tested in clinical studies, and even fewer have been

established for treatment. Since the identification of

PAR1 as a platelet thrombin receptor, an abundance of

research has been conducted to identify PAR1 antago-

nists that can block platelet activation and prevent

thrombotic cardiovascular events. The first clinically ap-

proved PAR1 antagonist was the small-molecule antag-

onist vorapaxar [266]. Phase II clinical trials of this

agent showed reduced risks for myocardial infarction in

patients treated with vorapaxar in combination with

standard antiplatelet therapy. Moreover, the risks of

bleeding complications were not significantly increased

[270]. Subsequently, two large-scale phase III multicen-

ter, randomized, double-blind, placebo-controlled studies

of vorapaxar (ZONTIVITY, SCH530348) were per-

formed. In the Thrombin Receptor Antagonist in Sec-

ondary Prevention of Atherothrombotic Ischemic

Events–Thrombolysis in Myocardial Infarction 50 (TRA

2°P-TIMI 50; details at www.ClinicalTrials.gov;

NCT00526474) study, the rate of cardiovascular events

at the second efficacy endpoint were significantly re-

duced by vorapaxar in combination with standard anti-

platelet therapy [271]. Furthermore, in the Thrombin

Receptor Antagonist for Clinical Event Reduction in

Acute Coronary Syndrome (TRACER; details at www.

ClinicalTrials.gov; NCT00527943) study, vorapaxar re-

duced the hazard of first myocardial infarction of any

type in patients who were treated within 24 h of having

symptoms of a cardiovascular event. However, in the

TRACER study, vorapaxar failed to prevent secondary

ischemic events [272]. Because vorapaxar increased

bleeding complications in the clinical setting, the alter-

native PAR1 antagonist atopaxar (E5555) [267] was

tested in a phase II clinical trial called (Lessons From

Antagonizing the Cellular Effects of Thrombin-Acute

Fig. 6 PAR modulators. Pharmacological substances, such as 1)

peptides and peptidomimetics, 2) blocking antibodies, 3) small

molecules, 4) pepducins, and 5) parmodulins are used as therapeutic

agents that affect PAR activities
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Table 5 PAR1 signaling modulators

Class Agonist/
Antagonist

Name Receptor/Cell/
Tissue type

Cellular response

Peptide Agonist SFLLRN/−NH2 Human Induces platelet activation [6, 138, 265, 278, 279]

TFLLRN/−NH2 Human Induces platelet activation, enhances endothelial barrier permeability
[137, 138, 265]

NPNDKYEPF/
−NH2

Human Induces cytoprotective signaling [28, 187]

PRSFLLRN/−NH2 Human Induces platelet activation [86]

Human Induces ERK1/2 activation [280]

Antagonist YFLLRN Human Compets with thrombin and PAR1-AP and prevents platelet activation
[278, 279]

Peptidomimetic Antagonist RWJ-56110 Human Blunts thrombin and PAR1-AP effects on platelets and vascular endo-
thelial cells [264, 281, 282]

Human Blocks MMP-1 activaiton in SMCs [87]

RWJ-58259 Guinea pig Blocks thrombin and PAR1-AP platelet activation [215, 283]

Rat Blocks thrombin induced calcium release in AoSMC Inhibits intimal
thickening [111, 215, 264, 273]

Mouse Prevents destruction of intestinal barrier [62, 284]

Non-peptide small
molecule

Antagonist FR17113 Human Blocks PAR1-AP induced platelet activation [285, 286]

Human Inhibits thrombin and PAR1-AP induced ERK1/2 activation [287]

ER129614–06 Human Blocks thrombin and PAR1-AP induced platelet activation [288]

Guinea pig Shows antithrombotic effects [289]

F16357, F16618 Human Blocks PAR1-AP induced platelet activation [290]

Rat Shows antithrombotic effects [291]

SCH79797 Human Blocks thrombin and PAR1-AP induced calcium release and platelet ac-
tivation [292]

Human, Mouse Induces NETs formation and increases bacterial killing capacity [293]

SCH203009 Human Blocks thrombin and PAR1-AP induced platelet activation [292]

SCH530348
(vorapaxar)

Human, Monkey Blocks thrombin and PAR1-AP induced platelet activation [266]

E5555 (atopaxar) Human Blocks thrombin and PAR1-AP induced platelet activation and inhibits
thrombus formation [267]

Guinea pig Bleeding time not affected [267, 294]

Q94 Human Blocks thrombin induced calcium release [295]

Mouse Blocks thrombin induced ERK1/2 activation [296]

Pepducin Antagonist P1pal-12 Human Blocks thrombin induced platelet activation [268]

Human Blocks platelet activation [86]

Human Blocks MMP-1 induced endothelial damage [297]

Mouse Reduces lung vascular damage and sepsis lethality [297, 298]

P1-pal7
(PZ-128)

Human Blocks MMP-1 induced Akt signaling in cancer cells [150]

Human Blocks platelet activation [86]

Mouse Inhibits tumor growth [280]

Guinea pig Prevents from systemic platelet activation [86]

Parmodulin Antagonist ML161
(Parmodulin-2)

Human Blocks thrombin and PAR1-AP induced platelet activation [299]

Human Blocks thrombin induced inflammatory signaling on
endothelial cells [269]

Mouse Blocks thrombus formation [300]

Antibiotic Antagonist Doxycycline Human Inhibits thrombin induced cancer cell migration [301, 302]

Human Blocks MMP-1 cleavage [303]
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Table 5 PAR1 signaling modulators (Continued)

Class Agonist/
Antagonist

Name Receptor/Cell/
Tissue type

Cellular response

Antibody Antagonist ATAP-2
WEDE

Human Blocks thrombin cleavage of PAR1 and thrombin induced calcium
release [147]

Table 6 PAR2 signaling modulators

Class Agonist/
Antagonist

Name Receptor/Cell/Tissue
type

Cellular response

Peptide Agonist SLIGRL/−NH2 Human, Rat Induces calcium release [2, 8, 136, 139]

SLIGKV/−NH2 Human Induces calcium release [136]

2f-LIGRLO/
−NH2

Human, Rat Induces calcium release [140]

Antagonist FSLLRY-NH2 Human Blocks trypsin, not SLIGRL activation, reduces proinflammatory IL-8
and TNFα [82]

Rat Inhibits neuropathic pain [304]

LSIGRL-NH2 Human Blocks trypsin, not SLIGRL induced calcium release [305]

Peptidomimetic Antagonist K14585,
K12940

Human Reduces SLIGKV induced calcium release [306]

Human Inhibits SLIGRL induced NFkB activation [307]

C391a Human, Mouse Blocks calcium release and MAPK activation [308]

Non-peptide small
molecule

Agonist GB110 Human Induces calcium release [309]

AC-5541,
AC-264613

Human Induces calcium release [310]

Rat Induces edema and hyperalgesia [310]

Antagonist ENMD-1068 Human Blocks p.acnes induced calcium release and induction of IL-1a, IL-8
and TNFα [92]

Human Inhibited FVIIa induced cancer cell migration [311]

Mouse Reduces joint inflammation [260]

Mouse Blocks calcium release and reduces liver fibrosis [312]

GB83 Human Inhibits trypsin and PAR2-AP calcium release [313]

GB88 Human Blocks PAR2 induced calcium release [309]

Rat Reduces acute paw edema, inhibits PAR2-AP induced inflammation
[309, 314]

AZ8838
AZ3451

Human Blocks PAR2-AP induced calcium release and β-arrestin
recruitment [315]

Pepducin Antagonist P2pal-18S Human Blocks PAR2 induced calcium release [316]

Mouse Decreases risk for developing severe biliary pancreatitis [317]

P2pal-14GQ Human Blocks PAR2 induced calcium release [316]

Antibiotic Antagonist Tetracyclines
(Tetracycline,
Doxycycline,
Minocycline)

Human Inhibits SLIGRL induced IL-8 release [318]

Mouse Topical application of tetracycline decreases PAR2 induced skin
inflammation [319]

Rat Subantimicrobial doses of doxycycline inhibit PAR2 induced
inflammation [320]

Antibody SAM-11 Mouse Reduces joint inflammation [260]

Mouse Prevents allergic inflammation [124]

B5 Mouse Reduces joint inflammation [260]

Mouse Inhibits allergic airway inflammation [124]

MAB3949 Human Blocks trypsin induced PAR2 activation [315]
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Coronary Syndromes (LANCELOT-ACS; details at www.

ClinicalTrials.gov; NCT00548587) study [273]. Atopaxar

inhibited platelet aggregation in ACS patients in a

dose-dependent manner, and caused no side effects of

abnormal platelet activation, such as bleeding [274, 275].

Yet, patients receiving atopaxar had dose-dependent in-

creases in liver abnormalities [273].

To prevent the bleeding problems that arise from treat-

ments with PAR1 antagonists, a new class of PAR1 antag-

onist was designed, and the member pepducin PZ-128

(P1-pal7) was tested in a phase I trial [276]. This study

showed no reduction in platelet aggregation, but the plate-

let blocking effect of PZ-128 was reversible ex vivo in the

presence of saturating concentrations of the PAR1 agonist

peptide SFLLRN. Based on these promising findings, the

new PAR1 blocking agent PZ-128 was considered in the

coronary artery disease study Thrombin Receptor Inhibi-

tory Pepducin-Percutaneous Coronary Intervention

(TRIP-PCI). Data from this phase II trial are not yet avail-

able (details at www.ClinicalTrials.gov; NCT02561000).

As an alternative to PAR1 targeted antithrombotic drugs,

the PAR4 small-peptide antagonist BMS-986120 reduced

reversible thrombus formation ex vivo in a phase I trial

[277]. Consequently, this promising anticoagulant PAR4

antagonist is currently being compared with a standard

anticoagulant drug in a phase II study of stroke recurrence

(details at www.ClinicalTrials.gov; NCT02671461).

Conclusion
Since the identification of PARs in the 1990s, studies of

the complex mechanisms of PAR activation have been

abundant, and these have clarified the roles of PARs in

inflammatory disease. Various mammalian and

non-mammalian proteases have also been recognized as

PAR-mediated regulators of physiological and patho-

physiological processes. Despite the development of vari-

ous PAR modulators, few have been approved for

therapeutic use. Obstacles to this therapeutic strategy in-

clude species differences in PAR expression and limited

bioavailability of modulators in vivo and in clinical stud-

ies. Further research is needed to identify specific and ef-

ficient anti-inflammatory PAR modulators.
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IBD: Inflammatory Bowel Disease; IBS: Irritable Bowel Syndrome;
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aeruginosa-Derived Large Extracellular Protease; LPS: Lipopolysaccharides;

MAPK: Mitogen-Activated Protein Kinase; MMP: Matrix Metalloprotease;

NFκB: Nuclear Factor kappa B; PAR: Protease-Activated Receptor;
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PGE2: Prostaglandin E2; PI3K: Phosphatidylinositol-3-Kinase;

PLCβ: Phospholipase C beta; Rac1: Ras-Related C3 Botulinum Toxin Substrate
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Table 7 PAR4 signaling modulators

Class Agonist/ Antagonist Name Receptor/Cell/Tissue type Cellular response

Peptide Agonist GYPGQV/−NH2 Human, Rat Induces platelet activation [144]

GYPGKF/−NH2 Human, Rat Induces platelet activation [144]

AYPGKF/−NH2 Human, Mouse Induces platelet activation [145]

Peptidomimetic Antagonist tc-YGPKF Rat Blocks thrombin and PAR4-AP induced
platelets aggregation [321]

Non-peptide small molecule Antagonist YD-3 Human Blocks thrombin induced platelet
activation [282, 322–325]

Mouse, Rat, Rabbit Blocks thrombin and PAR4-AP induced
platelets activation [323–325]

ML-354 Human Blocks PAR4-AP induced platelet
activation [326–328]

BMS-986120 Human Blocks PAR4-AP induced calcium
release and platelet activation [329]

Human Blocks thrombus formation at
high shear stress [277]

Monkey Blocks platelet activation [329]

Pepducin Antagonist P4pal-10 Human, Mouse Blocks thrombin and PAR4-AP
induced platelet activation [268]

Rat Blocks thrombin and PAR4-AP induced
platelets activation [330]

P4pal-i1 Human Blocks PAR4 induced platelets activation [150]
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