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Abstract 

Introduction  

Glioblastoma is a primary brain tumor with a poor prognosis despite multimodal therapy 

including surgery, radiotherapy and alkylating chemotherapy. Novel therapeutic options are 

therefore urgently needed but the last years have been characterized by various drug failures 

in late-stage clinical development. 

Areas covered  

The proteasome represents a key target for anti-cancer therapy as successfully shown in the 

field of multiple myeloma and other hematologic malignancies, including mantle cell 

lymphoma where several drugs which interfere with the enzymatic activity of the proteasome 

have been approved and used both as single agents as well as in combinatorial regimens. 

This review article summarizes the preclinical and clinical development of proteasome 

inhibitors in the context of glioblastoma. 

Expert opinion  

Proteasome inhibitors have been assessed in preclinical glioma models for more than 15 

years. However, early clinical trials with bortezomib, the first clinically approved proteasome 

inhibitor in multiple myeloma, ended with disappointing results, as this agent does not cross 

the blood-brain barrier, which precluded further clinical development in glioblastoma. In 

contrast to bortezomib and other proteasome inhibitors, marizomib is a novel drug that 

displays strong inhibitory properties on all enzymatic subunits of the proteasome and, most 

importantly, crosses the blood-brain barrier, making it a potentially very active novel agent 

against intrinsic brain tumors. While preclinical studies of marizomib have demonstrated 

significant anti-glioma activity, its clinical benefit has yet to be proven in glioblastoma. 

Exploiting the biological effects of proteasome inhibitors in combination with other therapeutic 

strategies such as immunotherapy or other targeted approaches may represent a key next 

step in their clinical development. 

  



1. Background 

Gliomas are primary brain tumors, which are supposed to develop from neuroglial progenitor 

cells. The most frequent and most malignant subtype is glioblastoma [1]. For many decades, 

these tumors have been diagnosed based on histopathologic features such as the presence 

of cells undergoing mitosis, necrotic areas and microvascular proliferation. However, in the 

last decade, the molecular alterations underlying the biology of gliomas have been 

extensively characterized. Accordingly, the current edition of the World Health Organization 

(WHO) classification of tumors of the central nervous system (CNS) now comprises 

molecular markers to describe gliomas more specifically [2]. Most importantly, the 

identification of mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes has resulted 

in a re-classification of diffuse gliomas. While these mutations are frequent in lower-grade 

gliomas, they are only present in approximately 5-10% of glioblastomas [3]. In contrast to the 

increased understanding of glioblastomas and other brain tumors at the genetic and 

molecular level, therapeutic progress has been limited and the prognosis of patients affected 

by glioblastoma remains poor. In contemporary clinical trials, the median survival is typically 

in the range of 16 to 18 months while it remains only approximately 12 months in population-

based studies [4, 5].  

 

1.1 Standard of care and recent drug development for glioblastoma 

Patients with a cerebral lesion suspicious for a glioblastoma typically undergo a 

neurosurgical resection, which allows obtaining tissue that subsequently can be analyzed, 

and results in a definitive diagnosis. Maximum safe surgical resection, that is, removing as 

much of the tumor tissue as possible without causing new neurological deficits, has been 

considered the best surgical approach for glioblastoma. Beyond surgery, treatment for most 

patients with newly diagnosed glioblastoma is largely standardized and comprises 

radiotherapy with concomitant treatment with temozolomide followed by maintenance 

therapy with temozolomide for up to 6 cycles (TMZ/RT→TMZ) [6]. Elderly and frail patients 

may require adaptions in the treatment plan [5, 7]. Because of the limited efficacy of the 



currently available treatment options, several approaches have been tested in patients with 

newly diagnosed or recurrent glioblastoma including various targeted agents [8]. The addition 

of tumor-treating fields (TTFields) to maintenance therapy with temozolomide prolonged 

progression-free (PFS) and overall survival (OS) [9, 10]. Bevacizumab prolonged 

progression-free but not overall survival when added to standard temozolomide-based 

radiochemotherapy or to lomustine in newly diagnosed or recurrent glioblastoma, 

respectively [11, 12, 13]. In elderly patients, the addition of bevacizumab to radiotherapy did 

not prolong overall survival compared to RT [14]. Approaches that were also examined in 

randomized phase 3 trials but considered futile include the integrin inhibitor cilengitide [15], 

the EGFRvIII-targeting vaccine rindopepimut in patients with newly diagnosed glioblastoma 

[16] and the PD-1 inhibitor nivolumab in the recurrent setting [17].  

The numerous drug failures in late stage clinical development indicate that novel therapeutic 

approaches are urgently needed. Following their success against multiple myeloma, drugs 

designed to inhibit the activity of the proteasome, a central hub of many cellular processes, 

have also attracted interest as a novel treatment option against glioblastoma. The following 

summarizes important developments in the field of proteasome inhibition with a special focus 

on the evaluation of this treatment strategy against glioblastoma. 

 

1.2 The ubiquitin-proteasome pathway 

 

Degradation of proteins is a complex and strictly regulated process within a cell. The vast 

majority of proteins that are degraded enter the ubiquitin-proteasome pathway (UPP). 

Therefore, the UPP is a central regulator of various cellular processes including, but not 

limited to, cell survival, cell cycle progression, gene transcription, antigen presentation and 

DNA repair [18]. Proteins, which are no longer needed, misfolded or damaged, are subject to 

degradation by the UPP. To this end, a chain of exactly defined destruction steps is initiated 

which involves the ubiquitin activating enzyme 1 (E1), several ubiquitin-conjugating enzymes 

(E2) as well as the ubiquitin-protein ligases (E3). Ubiquitin is activated in an ATP-dependent 



manner and subsequently shuttled by E2 and E3 enzymes to the candidate protein [19]. The 

successive attachment of many ubiquitin moieties results in polyubiquitylation of the target 

protein. The polyubiquitin chain represents a signal for directing the tagged protein to the 

degradation process that is performed by the 26S proteosomal complex, which resides in the 

nucleus and cytoplasm of all eukaryotic cells. The 26S proteasome is composed of 20S core 

particles, which are linked to 1 or 2 19S units. The latter mediate cleavage of the ubiquitin 

molecules, which are subsequently recycled whereas the target protein is degraded by the 

20S core, which contains 3 catalytic activities: the caspase-like which is located in the β1 

subunit, the trypsin-like (β2 subunit) as well as the chymotrypsin-like activity (β5 subunit) [20]. 

All enzymatic activities recognize specific motifs, which include hydrophobic residues for the 

chymotrypsin-like activity, basic residues for the trypsin-like activity and acidic residues for 

the caspase-like activity [21]. The immunoproteasome represents an alternative variant of 

the proteasome. Its generation and activity is induced upon various stimuli such as tumor 

necrosis factor (TNF)-α or interferon (IFN)-γ signaling. In the immunoproteasome, several 

subunits of the 20S core are changed compared to the standard 20S unit, and the 19S 

particle is replaced by an 11S unit. Functionally, the immunoproteasome allows the 

degradation of proteins to peptides which are subsequently presented at the cell surface in a 

MHC class I-dependent manner [22].  

 

1.3 Proteasome inhibitors as anti-cancer agents 

 

On account of its central role in the biology of many cancer cells, the proteasome has long 

been considered a promising target for anti-tumor therapy [23]. The chymotrypsin-like activity 

is typically targeted by hydrophobic and therefore more cell-permeable inhibitors as 

compared to agents that interfere with the activity of trypsin- or caspase-like sites. Because 

of this, most available proteaseome inhibitors mainly inhibit the chymotrypsin-like activity but 

have less effect on the other 2 enzymatic sites [24]. On a functional level, proteasome 

inhibition leads to a stabilization of the NF-κB complex in the cytoplasm. Consequently, the 



expression of genes that are controlled by NF-κB is impaired. Many tumor cells such as 

multiple myeloma cells require intact NF-κB signaling to maintain proliferation and viability 

[25]. A reduction of misfolded protein clearance disturbs homeostasis of the endoplasmic 

reticulum, leading to cellular stress and impaired survival [26]. Inhibition of the proteasome 

may also increase the stability of tumor suppressor proteins such as p27 and p53, which 

reduces the proliferation of affected cells [27]. Taken together, drugs that interfere with the 

activity of the UPP may disrupt various cellular processes and lead to a stop of proliferation 

or the induction of cell death. In line with this assumption, initial in vitro data showed that 

exposure to drugs which inhibit the proteasome led to a halt in proliferation as well as the 

induction of apoptosis in a broad panel of cancer cells derived from hematological as well as 

solid tumors [28, 29]. Subsequently, preclinical in vivo testing demonstrated anti-tumor 

activity in leukemia and lymphoma models [30]. Proteasome inhibition may also interfere with 

the function of the immunoproteasomes and subsequent antigen presentation on MHC 

molecules. However, if this mechanism plays a relevant role in vivo and in the context of 

brain tumors has yet to be determined [31]. Among the preclinically available proteasome 

inhibitors, relatively few have reached clinical development (see below) due to  a variety of 

reasons, including limited activity, lack of specificity, or insufficient stability. 

 

Bortezomib 

Bortezomib was identified from a screening of several boronic acid peptide small molecule 

analogues that were tested against a panel of tumor cell lines [32]. It acts as a reversible 

inhibitor of the proteasome's chymotrypsin-like activity but has limited activity against the 

other enzymatic activities of the proteasome. Following extensive preclinical testing, the drug 

was the first proteasome inhibitor to enter clinical trials. Bortezomib was particularly active 

against multiple myeloma and was systemically investigated in early clinical studies followed 

by trials with larger patient cohorts in late and early relapse followed by newly-diagnosed 

disease. Upon successful completion of both phase 2 and phase 3 studies, the drug was 

approved by the FDA and other regulatory authorities for the treatment of patients with 



relapsed multiple myeloma [33, 34, 35] and later for patients with newly diagnosed disease 

[36]. Furthermore, the drug was subsequently approved for the treatment of patients with 

mantle cell lymphoma [37]. In contrast to its strong clinical activity against hematological 

malignancies as well as a substantial body of literature describing convincing anti-tumor 

activity in various preclinical models, bortezomib displayed minimal or no activity against 

solid tumors in larger trials [38]. Bortezomib is mainly metabolized through the liver. Side 

effects include nausea, diarrhea, fatigue, thrombocytopenia and peripheral neuropathy [39]. 

The latter may originate from a non-proteasome-dependent mechanism with non-selective 

binding properties of the drug, including serine proteases and other molecules [40]. 

 

Carfilzomib 

Carfilzomib was approved by the FDA for the treatment of patients with relapsed and 

refractory multiple myeloma in 2012 [41]. Mechanistically, carfilzomib is a selective and 

potent irreversible inhibitor of the β5 subunit of the 20S proteasome in the epoxyketone 

class. Furthermore, it specifically blocks the LMP7 subunit of the immunoproteasome. In 

multiple myeloma, carfilzomib has been tested as a single agent but also extensively in 

combination with other drugs such as dexamethasone and lenalidomide showing impressive 

activity [42]. Carfilzomib does not cross the blood–brain barrier and is much less likely to 

induce peripheral polyneuropathy than bortezomib [43]. However, in contrast to other 

proteasome inhibitors, the drug has been linked to significant but infrequent cardiovascular 

adverse events, vascular toxicity, pulmonary injury, and renal toxicity. [44].  

 

Ixazomib  

In contrast to bortezomib and carfilzomib, ixazomib is orally bio-available. Ixazomib obtained 

FDA approval in combination with lenalidomide and dexamethasone in patients with relapsed 

multiple myeloma [45]. It is in the boronate peptide class and mainly acts as a reversible 

inhibitor of the chymotrypsin-like activity of the 20S proteasome [46]. In line with other 

proteasome inhibitors, exposure of multiple myeloma cells to ixazomib induces marked 



caspase-dependent apoptosis [47]. Treatment-associated adverse events include 

gastrointestinal symptoms, dermatological side effects and neuropathy, albeit less than 

bortezomib, and unlike carfilzomib there is little or no significant vascular or cardiac toxicity 

described. [38]. 

 

Marizomib  

Marizomib, initially known as NPI-0052 or salinosporamide A, is produced by the marine 

bacteria Salinispora tropica and Salinispora arenicola. It was discovered by researchers from 

the Scripps Institution of Oceanography in La Jolla, CA [48]. The drug is an irreversible 

inhibitor in the beta-lactone class that binds to all catalytic moieties of the proteasome 

(specifically β1, β2, β5) with IC50 values in the low to mid nanomolar range [49]. 

Administration of marizomib to patients with advanced solid tumors and hematological 

malignancies led to a functional inhibition of all proteasome subunits in peripheral blood 

mononuclear cells, with the most pronounced effect on the chymotrypsin-like activity [50]. 

Similar to other proteasome inhibitors, marizomib displays strong anti-cancer activity in vitro 

and in preclinical tumor models. Exposure of leukemia cells to marizomib led to caspase 8 

and reactive oxygen species (ROS)-dependent apoptosis [51]. Following clinical testing in 

patients with multiple myeloma and other hematological malignancies, marizomib has also 

been studied in the context of glioblastoma (see below). In contrast to other proteasome 

inhibitors, marizomib crosses the blood-brain barrier, making it an attractive therapeutic 

option for tumors in the CNS. In this context, marizomib was administered to patients with 

CNS involvement of multiple myeloma [52]. Therapeutic activity was observed, which formed 

the basis for its further assessment in CNS tumors [53]. The toxicity profile of marizomib 

differs from other proteasome inhibitors and includes fatigue, nausea, headache, gait 

disturbances as well as visual and auditory hallucinations, but the drug is otherwise generally 

well tolerated. Adverse events associated with the CNS may be attributed to the ability of the 

drug to cross the blood-brain barrier and further strengthened the rationale for its evaluation 

in CNS disease. 



2. Proteasome inhibitors in neuro-oncology 

 

2.1 Activity of proteasome inhibitors in preclinical glioma models 

Several proteasome inhibitors were never tested in patients but their preclinical assessment 

defined their mechanism of action and suggested efficacy against glioma cells. Among the 

first tested drugs in this setting was MG132, a reversible proteasome inhibitor, which induced 

apoptosis in several human glioma cell lines [54]. Mechanistically, MG132 promoted 

mitochondrial depolarization, led to an activation of JNK and p38 and interfered with the 

PI3K/Akt pathway. Importantly, MG132 also exerted synergistic effects with several 

chemotherapeutic agents in glioma cells [55]. 

 

A proteasome inhibitor known as SC68896 also displayed strong anti-glioma activity in vitro. 

It reduced the proliferation of glioma cells which was associated with an accumulation of p21 

and p27 proteins and cell cycle arrest and induced caspase cleavage and apoptosis. 

SC68896 sensitized glioma cells to death stimuli such as tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) and CD95 ligand, a finding that was also observed with 

other proteasome inhibitors in glioma stem cell cultures as well as in other tumors [56]. 

Administration of SC68896 prolonged the survival of glioma-bearing mice upon 

intraperitoneal or intra-tumoral administration [57]. Similar to other potent proteasome 

inhibitors pre-clinically, clinical drug development was not further pursued by the 

manufacturer. 

 

Among the proteasome inhibitors  that have reached clinical development and achieved 

approval in other malignancies, bortezomib is a  prominent example and was first-in-class. 

Importantly, it has been extensively tested against glioma cell lines where it induced cell 

death and sensitized tumor cells to TRAIL [58, 59, 60]. While bortezomib significantly 

reduced the viability of glioma stem-like cells in vitro, no such effect was observed in neural 

stem/progenitor cells [61]. In contrast to these promising in vitro data, no growth inhibition 



was seen in two glioma xenograft models [62]. One study suggested that exposure of glioma 

cells to bortezomib had no impact on the methylation status of the MGMT promoter, but 

reduced MGMT RNA and protein levels resulting in a sensitization towards temozolomide. 

Furthermore, proteasome activity in intracranial gliomas was reduced by bortezomib and the 

combination of bortezomib and temozolomide prolonged the survival of glioma-bearing mice 

compared to monotherapy with temozolomide [63]. The combination of bortezomib with the 

anti-angiogenic agent bevacizumab had stronger therapeutic activity in glioma-bearing nude 

mice compared to either treatment alone [64]. Finally, bortezomib has been used repeatedly 

to sensitize tumor cells to other treatment modalities including immunotherapy. Preclinically, 

the therapeutic activity of an oncolytic virus was enhanced by combined administration with 

bortezomib in a mouse glioma model. This effect may rely on increased NK cell activity but 

also enhanced production of mitochondrial JNK and ROS phosphorylation in tumor cells [65]. 

In this context, this anti-glioma activity of the clinically approved proteasome inhibitor 

carfilzomib has also been assessed in vitro. Preclinically, the drug reduced the viability of 

glioma cells in the nanomolar range and impaired both migration and invasiveness [66]. 

 

More encouragingly, exposure of glioma cells to marizomib induced striking caspase-

dependent cell death. Furthermore, the drug reached orthotopically growing gliomas in mice 

and reduced the proteasomal activity in the tumor [67]. Subsequent preclinical assessments 

confirmed the blood-brain barrier-crossing properties of marizomib. Specifically, in studies 

involving rats and monkeys, marizomib levels in the brain were approximately 30% of those 

achieved in plasma [68]. The baseline chymotrypsin-like activity in the brain of monkeys was 

significantly reduced supporting a drug effect. Administration of marizomib to glioma-bearing 

mice prolonged their survival and subsequent analyses in mice using microdialysis probes 

implanted in the brain demonstrated changes in neurotransmitter levels upon intravenous 

treatment with marizomib. Brain samples collected at different time points after treatment 

showed that the activity of all 3 proteasome subunits was significantly reduced in the mouse 



brain by marizomib with a most pronounced reduction of the chymotrypsin-like activity, again 

supporting the potential for a therapeutic effect [69]. 

 

2.2 Proteasome inhibitors in clinical trials for glioblastoma patients 

Bortezomib, the first clinically approved proteasome inhibitor, was explored in several smaller 

trials in glioblastoma patients. An early phase 1 trial aimed at defining the side effects and 

maximum tolerated dose (MTD) of bortezomib in patients with recurrent malignant glioma. 

Adverse events included thrombocytopenia, neuropathy and fatigue [70]. In a single-arm 

study that enrolled 24 patients with newly diagnosed glioblastoma, bortezomib was added to 

TMZ/RT→TMZ. Median PFS was 6.2 months and median OS 19.1 months. Compared to 

historical controls, a benefit was assumed for patients with MGMT-methylated as well as 

MGMT-unmethylated tumors and no unexpected toxicity was observed [71]. In a "window of 

opportunity" trial, treatment with bortezomib was initiated in patients with recurrent 

glioblastoma before re-resection. Higher drug concentrations were found in the tumor tissue 

than in plasma [72]. However, due to disappointing results with all patients experiencing 

tumor progression within 6 months, this concept was not further pursued. A phase 2 trial 

exploring the safety and activity of bortezomib with the histone deacetylase (HCAC) inhibitor 

vorinostat in patients with recurrent glioblastoma was closed following an interim analysis 

demonstrating futility, with no patient being progression-free at 6 months [73]. Similarly, the 

combination of bortezomib with other drugs such as bevacizumab or tamoxifen in patients 

with recurrent glioblastoma failed to show therapeutic activity [74, 75].   

 

In order to test the safety of marizomib in patients with recurrent glioblastoma, a phase 1 trial 

(MRZ-108, NCT02330562) was initiated. Bevacizumab-naïve patients with first or second 

relapse were treated with bevacizumab and marizomib using a 3+3 dose-escalation design. 

An expansion cohort at a dose level of 0.8 mg/m2 with 24 patients was added upon definition 

of the MTD. Marizomib was administered at days 1, 8, and 15, bevacizumab at days 1 and 

15 of a 28 days cycle. The median age of the enrolled patients was 55 years. The most 



frequent treatment-related adverse events included fatigue, headache, hallucination, 

confusion and ataxia. One grade 5 adverse event (intracranial hemorrhage) was attributed to 

bevacizumab. Overall, 36 patients were included in the intent-to-treat population and 30 

patients could be evaluated by RANO criteria. The overall response rate was 39% and PFS 

at 6 months was 39%. Of 14 patients with MGMT-unmethylated tumors, 7 achieved a PR or 

better, and the PFS-6 rate in the subgroup of patients with unmethylated tumors was 49% 

[76]. Compared to patients receiving single agent bevacizumab, these data suggest a 

superior activity of the combination of marizomib and bevacizumab [77]. In patients with 

recurrent glioblastoma treated within the MRZ-108 study, the chymotrypsin-like activity in 

PBMC was almost completely inhibited 1 hour after the administration of marizomib. 

However, chymotrypsin-like activity levels normalized prior to the next marizomib 

administration 7 days later [69]. 

 

In the MRZ-112 study (NCT02903069), marizomib was assessed in patients with newly 

diagnosed glioblastoma in combination with standard TMZ/RT→TMZ. The trial aimed at 

determining the recommended dose (RD) for further studies. Patients received marizomib 

either in combination with RT and concomitant TMZ (TMZ/RT+MRZ→TMZ+MRZ) or only 

together with maintenance temozolomide (TMZ/RT→TMZ+MRZ) in a dose-escalation 3+3 

design. Following definition of the RD, a dose-expansion cohort for 20 patients receiving 

TMZ/RT+MRZ at RD → TMZ+MRZ was opened as well as a separate cohort of patients 

receiving TMZ/RT→TMZ+MRZ in combination with TTFields. MRZ was administered 

intravenously on days 1, 8, 15, 29, 36 during RT and days 1, 8, 15 during a TMZ+MRZ cycle. 

Overall, 66 patients were enrolled with a median age of 58 years and 50% of them receiving 

corticosteroids at baseline. In line with the results of the MRZ-108 study, fatigue and nausea 

were the most frequent adverse events, followed by hallucination, headache, confusion and 

ataxia. Adverse events affecting the central nervous system proved reversible and generally 

manageable typically being self-limiting within a few days. For the 35 patients receiving MRZ 



with TMZ/RT→TMZ, the median OS was 14.8 months with 7 patients still on treatment at the 

time of the analysis [78]. The addition of TTFields did not result in unexpected toxicity. 

 

Based on the clinical data obtained so far, a decision was taken to proceed with the clinical 

investigation of marizomib in glioblastoma patients in a pivotal randomized phase 3 trial 

(EORTC 1709, MIRAGE, NCT03345095). The trial aims at assessing the activity of 

marizomib in patients with newly diagnosed glioblastoma when added to standard 

temozolomide-based radiochemotherapy. The experimental treatment is compared to 

standard radiochemotherapy (Figure 1). A total of 750 patients will be randomized, and the 

primary endpoint of the trial is overall survival. Marizomib is therefore the clinically most 

advanced proteasome inhibitor in neuro-oncology, and the results of the EORTC 1709 trial 

will define if marizomib-mediated proteasome inhibition exerts a therapeutic benefit in 

glioblastoma patients. 

 

2.3 Challenges and outlook 

High-dimensional characterization of tumor tissue has allowed for a detailed understanding 

of the molecular biology of many brain tumors including glioblastoma. However, therapeutic 

progress has been limited and since the addition of temozolomide to the standard of care, no 

other drug has been established as a standard treatment. The preclinical activity of 

proteasome inhibitors and the availability of "next-generation" brain-penetrant drugs such as 

marizomib warrants their investigation in clinical neuro-oncology. However, despite their 

strong anti-tumor activity in vitro, the clinical activity of proteasome inhibitors has so far been 

mainly limited to multiple myeloma. The therapeutic activity of these drugs as single agents 

may be reduced over time as tumor cells may become resistant. Several mechanisms which 

may contribute to therapy resistance have been proposed, particularly in the context of 

multiple myeloma [79, 80]. These include point mutations in proteasome subunits rendering 

them insensitive to pharmacological inhibition as well as increased expression of 

components of the UPP [81, 82]. Higher expression levels of anti-apoptotic proteins and a 



reduced expression of pro-apoptotic proteins have also been observed [26]. Furthermore, 

changes in cell proliferation, the activation of autophagy and other pro-survival signaling 

pathways may play a role in some tumor cells [83, 84, 85]. The ongoing assessment of 

proteasome inhibitors in neuro-oncology therefore needs to be accompanied by appropriate 

translational studies, which will help gain greater insight in the biological activity of these 

drugs as well as develop rational combinations and any limitations associated with their use.  

 

3. Expert opinion 

 

Drug development in the area of glioblastoma has been characterized by various setbacks in 

the recent years. Among the drugs that have failed in late-stage clinical development are 

several targeted agents (e.g., the integrin inhibitor cilengitide) and anti-angiogenic drugs 

such as bevacizumab or cediranib. Furthermore, various immunotherapeutic approaches 

have resulted in disappointing outcomes including the peptide vaccine rindopepimut as well 

as the PD-1 inhibitor nivolumab. Strategies that have shown to improve overall survival of 

glioblastoma patients so far include radiotherapy as well as alkylating agents such as 

temozolomide and lomustine [6, 86, 87]. Targeting the proteasome may represent a 

promising strategy as it does not work through a single point of action such as the inhibition 

of one pathway but critically impairs various cellular mechanisms. The biochemical properties 

of novel proteasome inhibitors like marizomib, which allow them to cross the blood-brain 

barrier, represents an important prerequisite for the successful treatment of intrinsic brain 

tumors. Similar to the situation with glioblastoma in adults, diffuse midline gliomas represent 

a major therapeutic challenge in pediatric patients. A comprehensive series of sequential 

quantitative high-throughput screens of more than 2700 approved and investigational drugs 

suggested the combination of the HDAC inhibitor panobinostat and marizomib as a 

promising combination which was subsequently confirmed in patient-derived xenograft 

models [88]. Based on this and similar observations, the clinical investigation of proteasome 

inhibitors with appropriate drug partners is clearly warranted. 



 

Article highlights box 

 

• The ubiquitin-proteasome pathway is a key regulator of many cellular processes 

• Inhibition of the proteasome results in anti-proliferative and pro-apoptotic effects in 

glioma cells 

• A clinical benefit derived from proteasome inhibitors has not yet been demonstrated 

in larger clinical trials of treatment for glioblastoma patients 

• Marizomib is a novel, brain-penetrant pan-proteasome inhibitor which is currently 

being explored in clinical neuro-oncology  

• Proteasome inhibition may be exploited in combination with other therapeutic 

strategies such as immunotherapy or molecular targeted agents to further enhance 

clinical benefit 

 

Figure legend 

 

Design of the EORTC 1709 trial (MIRAGE). GTR, gross total resection; Gy, gray; i.v., 

intravenous; KPS, Karnofsky performance score; p.o., per os. 
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