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Abstract

Purpose of Review We summarize recent advances in strategies that aim to restore optic nerve function and vision in glaucoma

through protective, reparative, and regenerative avenues.

Recent Findings Neuroprotection relies on identification of early retinal ganglion cell dysfunction, which could prove challeng-

ing in the clinic. Cell replacement therapies show promise in restoring lost vision, but some hurdles remain in restoring visual

circuitry in the retina and central connections in the brain.

Summary Identification and manipulation of intrinsic and extrinsic cellular mechanisms that promote axon regeneration in both

resident and transplanted RGCs will drive future advances in vision restoration. Understanding the roles of multiple cell types in

the retina that act in concert to promote RGC survival will aid efforts to promote neuronal health and restoration. Effective RGC

transplantation, fine tuning axon guidance and growth, and synaptogenesis of transplanted and resident RGCs are still areas that

require more research.
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Introduction

Glaucoma is treated as a disease of the anterior segment of the

eye, since the only modifiable risk factor is intraocular pressure

or IOP. Even so, vision loss in the disease arises from degener-

ation of the 1.5 million or so retinal ganglion cell (RGC) axons

that comprise the optic nerve and form the optic projection to the

brain [1]. Even with available hypotensive treatments, many

patients with glaucoma continue to progress to sectors of irre-

versible vision loss and eventual blindness. Since early field

defects typically do not affect central vision, glaucoma is often

unrecognized by patients until irrevocable damage to neural tis-

sue has already occurred. Therapeutic interventions that target

not IOP, but rather the causes of irreversible vision loss should

incorporate three avenues corresponding to different points in

progression: protection, repair, and regenerate (Fig. 1). Each av-

enue represents an important therapeutic window in disease pro-

gression with distinct characteristics and mechanistic targets.

Identifying intrinsic and extrinsic mechanisms that can be lever-

aged to prevent RGC degeneration, repair dysfunctional cells,

and promote regeneration of the optic nerve and projection re-

quires understanding the signatures of IOP-related stress to the

neural substrate, compensatory or adaptive responses to that

stress, and processes that could be boot-strapped for tissue re-

placement during these windows. This review will highlight

some recent advances in addressing RGC and optic nerve de-

generation andwill focus on the intrinsic responses that influence

RGC axon survival, repair, and regeneration in glaucoma.

The Optic Nerve Head—a Critical Locus
for Degeneration and Potential Regeneration

Sensitivity to IOP in glaucoma involves stress conveyed to

RGC axons at the optic nerve head, which induces degenera-

tive events in both distal and proximal structures [1]. In the
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retina and prelaminar region, RGC axons remain unmyelinat-

ed in well-defined bundles (or fascicles) that penetrate a plex-

us of astrocytes, capillaries, and connective tissues. In leaving

the lamina cribrosa, RGC axons finally become myelinated,

forming the optic nerve proper. The optic nerve head acts as a

biological scaffold, a mesh of connective tissues and cells

built to withstand changes in force, stress, and strain due to

both fluctuations in IOP and its absolute magnitude [2]. Stress

at the ONH conveyed to RGC axons leads to changes in ac-

tivity, dendritic remodeling, axon atrophy, glial hypertrophy,

and eventual glial scar formation.

Stress to RGCs in glaucoma progresses in both directions

from the nerve head: retrograde towards the RGC body in the

retina and anterograde towards central axonal targets in the

brain. Work with transgenic mice demonstrates that the prox-

imal (retrograde) and distal (anterograde) programs

progressing on either side of this junction are to some extent

independent [3–7]. In the retrograde direction, RGC dendritic

arbors experience pruning, with loss of excitatory synapses. In

the anterograde direction, active axonal transport from the

retina to central brain terminals diminishes early in

progression, with subsequent disassembly of the myelinated

axon in the nerve and degradation of post-synaptic targets in

the brain [8, 9]. Importantly, the unmyelinated axon segment

in the retina and proximal nerve head remains intact along

with the RGC body long after degeneration of the rest of the

axon and pruning of the dendritic arbor. The optic nerve head

is therefore a critical locus in the degeneration of RGCs and

understanding the underlying mechanisms is key to develop-

ing protective, reparative, and regenerative strategies to pre-

serve the optic projection and prevent vision loss in glaucoma.

Early Glaucoma: Strategies to Protect RGCs

Neuroprotective strategies aim to restore homeostasis between

stressed RGCs and their environment in the optic projection to

promote survival and protect unaffected RGCs from early pro-

gression. Animal studies involving either induced (e.g.,

microbead occlusion, [10]) or genetic (e.g., DBA/2J and GC-

1−/−mice [10–12]) elevations in IOP have proven invaluable in

identifying key molecular events in RGC dysfunction, which

Fig. 1 Windows of opportunity for vision restoration in glaucoma. Cross-

sections through squirrel monkey optic nerve demonstrate stages of

glaucoma. Early in disease progression, stressors at the optic nerve head

lead to dysfunction of retinal ganglion cells (RGCs) and their axons and

activation of glial cells in the retina and optic nerve. At this stage,

neuroprotective strategies aim to restore homeostasis between

dysfunctional RGCs and their environment and protect normally

functioning RGCs from disease-relevant stress. As glaucoma

progresses, early degenerative events include remodeling of cytoskeletal

and synaptic structures throughout the RGC projection and increased

inflammatory signaling from resident glial cells. At this stage in disease

progression, therapies aim to repair reversible damage at the molecular

and cellular level and to reduce inflammation to prevent further damage.

Later stages include loss of RGCs and their axons with glial scarring in

the optic nerve, which is a barrier to axon regeneration. Replacement

therapies to restore visual function require RGC replacement and axon

regeneration to appropriate central brain targets with remyelination in the

optic nerve
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highlight an early window of neuroprotective opportunity.

Ideally, neuroprotective strategies should prevent RGC dys-

function and thus subsequent degeneration while promoting

repair or even regeneration of damaged tissue to restore vision,

as reviewed elsewhere [13]. While clinical neuroprotective tri-

als have proven difficult [14], therapies involving growth fac-

tors may have the potential to achieve those goals.

RGC dendrites are dynamic during development,

expanding and contracting in response to environmental stim-

uli, but become stable when cells reach maturity [15].

Shrinkage of dendritic arbors occurs before complete degen-

eration of cells; thus, dendritic regeneration is a crucial step in

the replenishment of RGC health and function [16, 17••]. An

important discovery is that RGCs possess the intrinsic ability

to regenerate dendrites after injury; application of exogenous

insulin after injury drives dendritic growth via the activation

of the mammalian target of rapamycin (mTOR) pathway

[17••]. Harnessing mTOR-driven regeneration of RGC den-

drites may prove to be a useful neuroprotective strategy in

glaucoma treatment in the future.

RGC axons extend a great distance from the retina to

multiple termination zones in the brain. In murine models

of glaucoma, dysfunctional axon transport is evident early

in disease [9]. RGC axons rely on functional axonal trans-

port for a plethora of neurotrophic factors, including brain-

derived neurotrophic factor (BDNF), nerve growth factor

(NGF), and ciliary neurotrophic factor (CNTF) [18, 19]. In

glaucoma, transport of BDNF is compromised after eleva-

tions in IOP [20], while levels of BDNF are reduced in

serum and tears of glaucoma patients [21, 22]. BDNF pro-

motes the survival and growth of RGCs in vitro [23–25],

while intravitreal injection of AAV2-derived BDNF signif-

icantly protected RGCs from degeneration following optic

nerve transection and also improved optokinetic responses

[26•]. Neurotrophin-based therapies have shown some effi-

cacy in promoting RGC survival. NGF protects RGCs from

injury in vitro [27, 28], while intravitreal administration of

NGF and BDNF delays RGC death after acute optic nerve

injury but does not prevent complete degeneration [29–31].

In a small study of patients with glaucoma, NGF eyedrops

improved multiple aspects of visual acuity [32]. CNTF has

some neuroprotective effects in vivo [33, 34] and is capable

of stimulating axonal regeneration [35], which may be par-

tially mediated by release of CNTF by astrocytes [36].

Although preclinical research into the neuroprotective ef-

fects of growth factors appears promising, one drawback to

recombinant growth factor therapy appears to be the rapid

clearance in vivo of exogenous neurotrophins, which are

protein-based drugs and are highly sensitive to proteolytic

degradation [37, 38]. Advancements in the development and

use of viral vectors to overexpress neurotrophins in the retina

may help to improve outcomes. Overexpression of BDNA or

CNTF using viral vectors increases RGC survival after injury

[26, 39, 40•, 41, 42]. Initial phase 1 clinical safety trials have

shown that human CNTF is safe for human retinal tissue [43].

Recombinant NGF is in phase 1 clinical trials for glaucoma

(Clinicaltrials.gov identifier: NCT02855450) after a previous

clinical trial showed that topical delivery was well tolerated by

patients [44]. While non-invasive retinal imaging utilizing a

fluorescent biomarker of RGC apoptosis is helpful in tracking

progression [45], translating preclinical findings into regular

use for neuroprotection relies on earlier intervention by detect-

ing more subtle changes in RGC function.

Cell Replacement Strategies

For patients with severe visual field deficits, indicative of gross

RGC degeneration, strategies to replace lost RGCs may be the

only way forward to restore vision. Photoreceptor replacement

to restore vision provides proof-of-concept that integration of

new neurons into the mammalian retina is possible [46–49],

albeit without the complication of long-distance projection to

multiple targets required of RGCs. Animal studies have already

highlighted the challenges associated with transplanting RGCs

into mature retinal tissue [50•, 51, 52••, 53–57]. The generation

and injection of healthy RGCs into a diseased eye is only the

first step in a long and convoluted process of trying to reestablish

the cellular connections needed to process visual information.

Successful implantation would require healthy RGCs, accurate

integration into retinal circuits, and axonal connections with

appropriate areas in the brain. Injection of RGCs into the vitre-

ous only results in less than 10% incorporation into the ganglion

cell layer [58]. The inner limiting membrane (ILM) formed by

Müller glia and astrocytes prevents facile integration both

in vivo and in vitro [57, 59]. Disruption by enzymatic digestion

in explants improved dispersion of transplanted RGCs with a

marked increase of neurite extension into retinal parenchyma

[60]. Intravitreal injections themselves cause a localized inflam-

matory response, which may inhibit RGC survival. Once incor-

porated into the ganglion cell layer, the implanted RGCs need to

form meaningful synaptic connections with other cells of the

inner retina and produce an axon that can reach visual targets

in the brain.

In terms of building new RGCs, there have been significant

breakthroughs in the effort to generate pluripotent stems cells in

recent years, including the developments of inducible pluripo-

tent stem cells (iPSCs) from human fibroblasts [61]. These cells

have an advantage over embryonic stem cells since they can be

generated on a patient-specific basis, limiting the possibility of

an unwanted immune response. Organoids derived from plurip-

otent stem-cells are self-organizing three-dimensional structures

of cellular networks that form in vitro after supplementationwith

various growth and differentiation factors [62]. Retinal organoid

cups recapitulate many of the aspects of vertebrate retinal devel-

opment, including gene expression and retinal lamination
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[63–66]. Organoid-derived RGCs also exhibit photoreceptor-

driven action potentials comparable to the earliest light re-

sponses recorded from the neonatal mouse retina [67].

Planar-derived RGCs are transdifferentiated from pluripotent

stem cells in culture [68], and after purification in culture have

similar electrophysiological properties to native RGCs; hPSC-

RGCs demonstrate characteristic spontaneous and current-

evoked activity, indicating functional axons; however, they

do not develop the ability to form circuitry as RGCs in

organoids do [69–71]. Co-culture of hPSC-RGCs with other

cell types improves dendritic complexity and electrophysio-

logical responses [72].

One major limitation to using iPSC-derived RGCs for

transplantation is that generated cells will carry the same ge-

netic susceptibility to degeneration as the donor. For example,

iPSC-RGCs derived from a donor carrying a mutation in the

optineuron gene implicated in normal-tension glaucoma will

carry the same gene [37, 73]. Generation of RGCs for trans-

plantation may appear facile after discussion of the progress

that has been made in the in vitro generation of RGCs; how-

ever, the retina harbors multiple retinal subtypes, each with

distinct roles in the generation of visual signals [74].

Identifying the retinal subtypes that are most vulnerable to

stress and degeneration in glaucoma is still challenging [14,

75]. Understanding how RGC cell types react to stress during

progression will allow targeted production of specific types of

RGCs, with better functional outcomes after transplantation

and perhaps greater ability to produce axons capable of relay-

ing signals to appropriate brain targets.

Extrinsic Factors in RGC Axon Regeneration

Mature retinal tissue is an extension of the central nervous

system (CNS), which has a very low capacity to regenerate

after injury due to both cell-intrinsic and cell-extrinsic factors.

Following optic nerve crush, axons with modest sprouting

may not extend sufficiently long distances and eventually

die [76]. RGCs are surrounded by a complex network of

supporting cells that promotes RGC function and survival.

Even so, microglia and astrocytes in the optic nerve projection

produce an early neuroprotective response following injury

that can impede axon regeneration [77, 78]. Microglia are

immediate responders to injury, where they become reactive

and secrete TNF-a, Il-1a, and C1q that recruit astrocytes to the

lesion site [79]. Astrocyte reactivity and proliferation are con-

trolled by the signal transducer and activator of transcription

protein-3 (STAT3), which is a member of the JAK/STAT

signaling pathway [80]. STAT3 promotes glial scar formation

from newly proliferated and activated astrocytes [81].

Astrocytes remodel and increase accumulations of

neurofilaments and organelles and upregulate cell-cell com-

munication pathways to recruit metabolic resources to the site

of injury [4, 82, 83••]. In spinal cord injury, glial scar for-

mation may be initially neuroprotective by shielding neigh-

boring uninjured axons from pro-apoptotic factors released

by injured axons [84]. The removal of proliferating reactive

astrocytes or genetic ablation of STAT3 accelerates axon

degeneration [85]. Early inflammatory events in the retina

can trigger axon regeneration; induction of inflammation

by injection of zymosan into the eye or inflammation as a

result of lens injury is sufficient to cause RGCs to regenerate

axons through the injured optic nerve [86, 87]. Likewise, mac-

rophage secretion of oncomodulin protein appears to promote

intraocular inflammation and enhance optic nerve regeneration

[88–90]. If the capacity of the retina to trigger an inflammatory

response is reduced, i.e., by genetic deletion of two receptors

that are expressed by inflammatory cells, Toll-like receptor 2

(TLR2) and dectin-1, then pro-regenerative effects of Zymosan

injection are negated [91].

While early inflammation may benefit optic nerve regener-

ation, long-term glial scarring and inflammation inhibit axon

growth. Reactive astrocytes and oligodendrocytes upregulate

genes that inhibit axon regeneration directly or indirectly

through activation of receptors on the surface of oligodendro-

cytes. These factors include chondroitin sulfate proteoglycans

(CSPGs), Slit2, and ephrins [79, 92–94]. In healthy optic

nerve, oligodendrocytes are myelinating glial cells that deposit

myelin to help axon signal conductance; however, under path-

ogenic conditions, oligodendrocytes present a number of pro-

teins that inhibit axon outgrowth including myelin-associated

glycoprotein, oligodendrocyte myelin glycoprotein, and signal-

ing through nogo receptors (NgR), [95–99]. Genetic deletion of

NgR subtypes breaks this transduction pathway and enhances

axon regrowth and motor activity after spinal cord injury; how-

ever, the results are subtle [100–102].

Late in progression, astrocyte processes fill in optic nerve

volumes as glial scaring takes the place of degenerated axons

[103]. Pioneering research has highlighted a far earlier role for

astrocytes in providing support to injured RGC axons via me-

tabolite redistribution in the optic nerve projection [83••].

Astrocytes are a known cellular support system for RGCs and

their axons in the optic projection. Astrocytes respond to injury

in the optic nerve by redistributing metabolic resources from

healthy tissue via connexin-43 gap junctions [83••]. This study

brings to light a novel mechanism by which astrocytes respond

to axonal stress by providing auxiliary metabolic support, that

if harnessed, could promote RGC survival and regeneration.

Calcium-dependent astrocyte remodeling could allow focal re-

distribution of resources where needed [82, 104].

Cell-Intrinsic Factors That Influence Regeneration

During early development, RGC axon growth proceeds at a

rapid rate to allow the extension of axons from the retina to

reach distant targets in the brain. However, as RGCs transition
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from an embryonic to postnatal state, they reduce their axon

growth speed by over 1000-fold [39]. External growth-

promoting factors in the local RGC environment are the

primary driving force for axon extension during RGC mat-

uration but attempts to capture this process through exoge-

nous growth factors after injury have been unsuccessful

[105]. A confounding factor in exogenous growth factor

application is that mature neurons show decreased respon-

siveness to growth factors and even more so after injury

[106]. Control of axon growth is likely a complex interplay

between extracellular signals and intrinsic RGC signaling

pathways. If such intrinsic cellular pathways are identified

and harnessed, progress could be made in encouraging

RGCs to grow axons post-injury.

Targeting cell-intrinsic pathways to reprogram RGCs to a

proaxogenic state have been met with more success. Several

intrinsic molecular pathways can influence axonal growth in-

cludingmembers of theKruppel-like-factor transcription family.

When overexpressed, Klf-4 and Klf-9 suppress axon outgrowth

[107], while overexpression of Klf-6 and Klf-7 enhances axon

outgrowth. After optic nerve injury in mice, conditional knock-

down or deletion of Klf-4 promotes optic nerve regeneration

[107, 108]. A key molecular event that occurs during the matu-

ration of RGCs is downregulated expression of phosphorylated

mammalian target of rapamycin (phosphor-mTOR) [109].

Deletion of the mTOR inhibitor, phosphatase, and tensin homo-

log (PTEN) enhances the ability of neurons to regenerate after

injury even in the absence of growth factors [110, 111].

Combining the effects of the mTOR pathway with inhibition

of SOCS3, a JAK/STAT3 inhibitor, further enhances RGC re-

generation [112]. The mTOR pathway is a ubiquitous pathway

that promotes the growth and survival of cells by regulating

protein synthesis [113] and appears to act as a key regulator of

optic nerve regeneration [114•]. Although approaches to harness

intracellular pathways seem to promote long-distance RGC ax-

on growth, a number of hurdles remain. Some therapies, such as

targeting mTOR, thus far only favor axon regeneration of a

subset of RGCs [115], which would have limited benefits in

patients. Other avenues may harness activity-generating cation

channels that may serve to boost RGC excitation to promote

survival and growth [116].

Axon Guidance and Synapse Formation

Prompting axon regeneration from mature RGCs is a chal-

lenge in itself; once axon generation is initiated, the next hur-

dle is the correct direction of axon growth and generation of

new synapses with targets in the brain. Efforts to regenerate

axons have already demonstrated aberrant growth to improper

targets [112, 117, 118]. Techniques using electric fields to

direct axons to their targets have showed promise in vitro

[119] and in vivo using nerve transection models [120–122],

but safer application of electrical fields will determine whether

this technique can be applied to humans [123]. An alternative

approach using 3D-printed scaffolds to aid in axon guidance

has been implemented in vitro [69, 124] but is in their infancy

in their translation to the clinic.

As well as proper guidance to terminals, axons need to

establish functional synapses in the diencephalon. Progress

in this field is already hampered by limitations in long-

distance axon regeneration. Going forward, understanding

the process of synaptogenesis and cellular mechanisms in-

volved in RGC development may help to promote synaptic

development in regenerated RGCs. For example, in utero,

developing RGCs are primed to respond to light stimulation

by spontaneous neuronal activity called “retinal waves” [125].

This process drives voltage-dependent influx of calcium,

which alters transcription of genes to promote synapse forma-

tion. Harnessing these developmental systems may promote

synaptic formation in transplanted RGCs.

Conclusions and Future Directions

We face many challenges in trying to restore lost vision for

patients with advanced glaucoma. The main focus of next

generation glaucoma therapies is in the neuroprotection of

RGCs to prevent vision loss and in cell replacement therapies

to restore vision. Re-wiring the visual system is not a facile

goal, the first obstacle lies in identifying windows of restor-

ative opportunity. The earliest window of opportunity is when

RGCs first become dysfunctional; in animal models, this is

easily identified; however, in humans, it is more challenging

to identify early RGC dysfunction. Currently, elevated IOP is

the only indicator that RGCs are experiencing increased

stress, and it is at this point that our neuroprotective strategies

would be most effective. Further research into improved reti-

nal imaging in the clinic would greatly enhance the efficacy of

neuroprotective therapy by identifying early RGC dysfunc-

tion. It is unlikely that neuroprotective strategies alone will

prevent RGC loss, since glaucoma patients often progress

with the disease until visual defects occur.

Cell replacement therapy has long been a tantalizing pros-

pect for many neurodegenerative diseases. The potential ther-

apeutic value of RGCs derived from retinal organoids and

planar systems is vigorously under investigation by numerous

groups facilitated by the National Eye Institute’s “Audacious

Goals Initiate for Regenerative Medicine.” There are still hur-

dles to overcome however; for example, defining the most

effective delivery system for donor cells into the host retina,

examining how the introduction of foreign cells impacts the

native retinal environment, and determining if donor RGCs

integrate and form functional circuits that restore visual pro-

cessing. The restoration of vision requires transplanted RGCs

to grow axons that extend beyond the optic nerve head,

remyelination by oligodendrocytes, and correct guidance to
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terminals in the brain where new synaptic formation can oc-

cur. RGCs do not function in isolation, relying on both cell

intrinsic and extrinsic factors during disease to determine cell

fate. In fact, RGCs rely on multiple cell types for survival in

the optic tract. The novel finding that astrocytes directly act to

provide neuroprotection during stress by shuttling metabolic

resources further drives home this fact. Therefore, future prog-

ress in vision restoration will lie in harnessing the support

mechanisms by other cells in the visual system to promote

effective RGC transplantation and the formation of functional

visual circuits.
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