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We investigate topological properties of models that describe graphene on realistic substrates which
induce proximity spin-orbit coupling in graphene. AZ2 phase diagram is calculated for the parameter space
of (generally different) intrinsic spin-orbit coupling on the two graphene sublattices, in the presence of
Rashba coupling. The most fascinating case is that of staggered intrinsic spin-orbit coupling which, despite
being topologically trivial,Z2 ¼ 0, does exhibit edge states protected by time-reversal symmetry for zigzag
ribbons as wide as micrometers. We call these states pseudohelical as their helicity is locked to the
sublattice. The spin character and robustness of the pseudohelical modes is best exhibited on a finite flake,
which shows that the edge states have zero g factor, carry a pure spin current in the cross section of the
flake, and exhibit spin-flip reflectionless tunneling at the armchair edges.
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Graphene is an exciting material to investigate electrical
transport [1], but it also has remarkable spin properties
that make it useful for spintronics applications [2,3]. One
outstanding issue in graphene spintronics [4] is the
enhancement of spin-orbit coupling (SOC), which is only
about 10 μeV in pristine graphene [5], to realize topologi-
cal effects [6] such as the quantum spin Hall state (QSHS)
[7,8], anomalous quantum Hall effect [9,10], or topological
superconductivity in graphene.
The most promising way to induce SOC in graphene is

via proximity effects which allow graphene to inherit
properties from the substrate. Substrates can break the
sublattice symmetry, which has two important effects. First,
an orbital gap opens due to the staggered potential, and,
second, intrinsic SOC acquires a staggered term. In the
original model of Kane and Mele [7], the intrinsic cou-
plings on A and B sublattices are the same. In proximitized
graphene, they can be different, such as graphene on copper
[11]. The most extreme case is graphene on transition
metal dichalcogenides (TMDCs), schematically depicted in
Fig. 1(a). By these substrates spin-valley locking is induced
in graphene, manifested in the appearance of the valley
Zeeman coupling—opposite (in sign) intrinsic SOCs in the
sublattices [12–14], which enables, for example, optical
spin injection in graphene [15,16]. Rashba coupling is also
induced which can lead to efficient charge-to-spin con-
version [17]. Valley Zeeman effect can be detected as a
giant spin lifetime anisotropy [18–20].
There are already experiments on graphene on TMDCs

[14,21–27]. Weak localization [14,24,25,27] and spin
transport measurements [21,26,28] confirm the proximity
induced SOC in graphene in the range of 1 to 10 meV.
Density functional theory calculations predict SOC of
about 1 meV [12–14,25,29]. In the extreme case of strong
SOC, as in graphene on WSe2, inverted band structure

arises [13,14,25,30], indicating the possibility of topologi-
cal edge states. At the moment there is no consistent
picture. The inverted structure was reported to be

FIG. 1. Schematics of proximity induced properties in gra-
phene. (a) Graphene placed on a symmetry-breaking substrate.
(b) Hopping parameters used in our model. Sublattice A is
represented as empty dots and sublattice B as filled dots. Symbols
colored in red (blue) denote spin-up (spin-down) characteristics.
Dashed red lines encode spin-up intrinsic SOC hoppings (signs
indicated by arrows), for the uniform case of λAI ¼ λBI , within a
hexagon. Helical states and their velocity directions are indicated
by long arrows. Panel (c) shows reciprocal K and K0 directions
with respect to the lattice. Intrinsic SOC hoppings are shown for
staggered intrinsic SOC, λAI ¼ −λBI , by red dashed lines. Solid
(dashed) gray arrows indicate valley edge states located in the
κ ¼ 1 (−1) valley. Red and blue arrows show pseudohelical states
carrying finite spin current along the ribbon.
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topologically nontrivial (Z2 ¼ 1) [14], which appears in
line with the appearance of helical edge modes (termed
quantum spin Hall states) [13], but is inconsistent with the
statement of having a trivial system (Z2 ¼ 0) [25].
We aim to provide a unified picture of the topological

nature of proximity models and the existence and character
of protected edge states. We introduce a modified Haldane
model [31] with staggered intrinsic SOC to illustrate how
edge states appear in models with spin-valley locking.
There are in general two pairs of edge states formed at each
edge, pseudohelical and valleylike. This makes the bulk
model trivial [25], which we prove by the study of the Z2

phases within the intrinsic SOC space. Can protected edge
states arise in a Z2-trivial system? Yes. And the key is to
gap out the unwanted (valley) pair of states by finite-size
effects. This is effortlessly realized in narrow ribbons, as we
show. The remaining pair is protected against time-reversal
scattering, just like the QSHS. But unlike helical states of
the QSHS, our edge states are pseudohelical, being spin-up
at one zigzag edge and spin-down at the other. These states
are connected by reflectionless spin-flip tunneling at the
armchair edges of a flake. Unlike helical, pseudohelical
states carry pure spin current, and have zero g factor.
The electronic structure of a bipartite hexagonal lattice

with broken sublattice and horizontal reflection sym-
metries, such as graphene on a substrate, can be described
by the C3v-symmetric Hamiltonian [13,32,33]:

H ¼ −

X

hi;ji;s
tc†iscjs þ

X

i;s

ξiΔc
†
iscis

þ 2iλR

3

X

hi;ji;s;s0
½ðŝ × dijÞz�ss0c

†
iscjs0

þ i

3
ffiffiffi

3
p

X

⟪i;j⟫;s;s0
λiIνij½ŝz�ss0c†iscjs0 : ð1Þ

The hopping terms are depicted in Fig. 1(b). Nearest-
neighbor hopping t occurs between sites i and j, preserving
spin s. The staggered potential Δ has signs ξi ¼ 1 and −1,
for sublattice A and B, respectively. Rashba SOC λR mixes
states of opposite spins and sublattices. The unit vector dij

points from site j to i and ŝ is the vector of spin Pauli
matrices. The last term, the intrinsic SOC, is a next-nearest-
neighbor hopping. It couples same spins and depends on
clockwise (νij ¼ −1) or counterclockwise (νij ¼ 1) paths
along a hexagonal ring from site j to i. This term dis-
tinguishes intrinsic SOC at different sublattices λiI , where i
stands for A or B. This is the principal extension of the
models introduced earlier by Haldane [31], Kane and
Mele [7], and McClure and Yafet [34]. The extension
makes the models experimentally relevant, while introduc-
ing new physics. Following Ref. [7], we use in this work
for numerical examples values of t ¼ 1, Δ ¼ 0.1t, λR ¼
ð3=2Þ × 0.05t, and λAI ; jλBI j ¼ 3

ffiffiffi

3
p

× 0.06t if not indicated

differently. In reality, we expect weaker couplings from
proximity effects [13], but here our goal is to demonstrate
qualitative features of the models. We will also comment on
what is expected in real samples.
To illustrate the physics of our model, let us first look

only at spin-up (spinless) electrons and choose the two
opposite limits λAI ¼ λBI ¼ λI as the uniform and λBI ¼
−λAI ¼ λI as the staggered intrinsic SOC model cases. The
corresponding spinless (with sz omitted) linearized parts
of Fourier transformed Hamiltonian Eq. (1) at the K=K0

point are [12,33]

Huniform
I ¼ λIσzκ; ð2Þ

H
staggered
I ¼ λIσ0κ: ð3Þ

κ ¼ �1 labels the K=K0 point and σ Pauli matrices
act in sublattice (pseudospin) space; see Supplemental
Material [35].
The energy spectrum of a zigzag ribbon for spin-up

electrons is plotted in Figs. 2(a) and 2(b). The two valleys
with bulklike subbands are well visible. Between valley
maxima and minima, edge modes appear due to the chiral
nature of graphene [31]. Unlike edge states from uniform
SOC with opposite velocities, edge states from staggered
SOC have the same velocities, which produces current in
the ground state, here assigned to spin-up electrons.
The spectra in Figs. 2(a) and 2(b) can be understood

from simple considerations. The staggered potential Δσz
creates a gap and leads to the pseudospin-valley state
ðvK; cK; vK0; cK0Þ ¼ ðB;A;B;AÞ; here c and v label the
conduction and valence bands. For K electrons, the phase
of the Bloch wave function on sublattice A (B) rotates
(increases by 2π=3) counterclockwise (clockwise). For K0

electrons this behavior is reversed. We now add intrinsic
SOC, which can be viewed as an action of a vector potential
(Peierls phase) [31], whose rotation within the sublattices is
sketched in Figs. 1(b) and 1(c). If the Bloch phase rotation
has the same sense as the rotation of the vector potential,
the energy of the state increases. If the rotations are
opposite, the energy decreases. (This is analogous to a
system with an orbital momentum in a magnetic field.)
In the uniform case, the vector potential rotates counter-

clockwise [Fig. 1(b)] so that at K electrons in sublattice A
are at higher and electrons in sublattice B are at lower
energies. The opposite is true at K0. This establishes the
connection to Eq. (2), which is a valley-pseudospin Zeeman
coupling (with sz omitted). Once the effective magnetic
field λI overcomes the staggered potential Δ, the sublattice
occupation becomes ðB;A;A;BÞ, flipping A and B at K0,
and a chiral state that crosses the gap develops, as shown
in Fig. 2(a). This is the well-known case of a Chern
insulator [31].
In the case of staggered intrinsic SOC, the Peierls field

acts on each sublattice equally in each valley [see Fig. 1(c)].
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The energy levels shift in opposite directions in the two
valleys, and the sublattice expectation values remain
ðB; A;B; AÞ; see Fig. 2(b). The Hamiltonian in Eq. (3)
represents a valley Zeeman coupling. If λI ≥ Δ, the system
becomes metallic, as the conduction band in the K0 point
has lower energy than the valence band in the K point.
Nevertheless, there are isolated propagating states, which
connect states of the same sublattice expectation value from
the different valleys.
Let us now reinstate both spins into the picture. The

complete spectra for zigzag ribbons are obtained by
mirroring the spectra in Figs. 2(a) and 2(b) around the
time-reversal invariant point π=a and flipping the spin of
the mirror image. If we also introduce Rashba SOC, we get
additional spin mixing. The results are shown in Figs. 2(c)
and 2(d). In the uniform case, the resulting band structure
is additive, leading to two pairs of helical edge states, a
manifestation of the QSHS [7]. The only effect of Rashba
SOC is the mixing of spins in the bulk bands and a slight
shift in energies.
In the staggered case, Fig. 2(d), there are also spin-

polarized edge modes present, as in the QSHS. We call

them pseudohelical for the reasons stated below. Contrary
to the QSHS, the edge states with the same spin on different
edges travel along the same direction, see Fig. 1(c), leading
to a pure spin current (zero charge current). Rashba SOC
opens a bulk gap in the valleys due to the different spin
expectation values of valence and conduction bands. This
gap is inverted. Inside the gap, two new edge states appear
in each valley with quenched spins. Each valley contributes
one mode per edge with opposite velocities on the distinct
boundaries [see Fig. 1(c)]. Having both valley-centered and
pseudohelical states, we term this the quantum valley spin
Hall state (QVSHS) [36]. We note that similarly to the case
of the QSHS [8], λR ≫ λI destroys the edge states.
The Hamiltonian in Eq. (1) possesses time-reversal

symmetry, and has broken particle-hole and sublattice
symmetries; therefore, it belongs to the class AII [37].
In two dimensions this leads to the possibility of a Z2

classification, which for our set of models is shown in
Fig. 3, in the space of the two sublattice intrinsic SOC
parameters. This map shows four distinct regions separated
by gap closings, where one can expect a change in the
topological invariant. Z2 invariants are calculated numeri-
cally [38] in Ref. [35]. The QSHS regions in the upper
right and lower left corners exhibit nontrivial topologies,
while the QVSHS, located on the λAI ¼ −λBI diagonal, is Z2

trivial. Bulk band structures representing this phase dia-
gram are given in Ref. [35].
We find the staggered cases to have a trivial Z2 invariant,

as stated in Ref. [25] for λAI ¼ −λBI . In addition, we find that
unlike zigzag ribbons, armchair ones have no edge states
[25,35]. The valley Chern number in the staggered case is 1
(see Ref. [35]), as found also in Ref. [30]. This Chern
number characterizes the states that occur inside the valley

FIG. 2. Spectra of 100 unit cells wide zigzag ribbons. The color
code in (a) and (b) for the spinless case denotes the sublattice
expectation value: red for sublattice A and blue for sublattice B.
The spectrum of the spinful case with additional Rashba SOC in
(c) and (d) is color coded with the spin expectation value: red for
spin-up and blue for spin-down. Left-hand column shows the
uniform case, λAI ¼ λBI , and the right-hand column shows the
staggered case with strong spin-valley locking, λBI ¼ −λAI .

FIG. 3. Z2 phase space and bulk gap landscape of graphene in
the λAI − λBI plane. Color denotes the size of the gap in graphene.
Solid lines are analytical expressions for a (global) bulk graphene
gap closing, which separate trivial (0) and nontrivial (1) phases
from each other. Orbital parameters and Rashba SOC are the
same as in the text.
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and confirms the existence of one conducting channel per
edge and valley. The valley states are similar to valley states
in bilayer graphene [39], where edge modes are absent in
armchair ribbons as well. This absence is due to intervalley
(short-range) scattering as K and K0 are mapped onto each
other in the armchair geometry.
Crucial for our further analysis is the localization

behavior of the edge states. To get the localization length,
we fit jψðyÞj2 ∝ expð−y=λÞ, where y is measured from the
edge [35]. We find that pseudohelical edge states decay
very fast, over half a unit cell (λ ≈ 0.4a), whereas valley
states have a much longer localization length (λ ≈ 9a). This
indicates that for narrow ribbons valley states should be
gapped due to hybridization. A comparison of the band
structures for zigzag ribbons of width of ten unit cells for
uniform and staggered cases is shown in Figs. 4(a) and
4(b), respectively. Indeed, the valley states exhibit a gap in
the QVSHS in Fig. 4(b), explaining the sole occurrence of
apparent quantum spin Hall states in Ref. [13].

The larger decay length of the valley states is due to
their spectral closeness to bulk states; see Fig. 2(d). We find
the relation w=a≲

ffiffiffi

3
p

πt=Eg between the zigzag ribbon
width w and the value of the inverted gap Eg, for which
valley edge states gap out due to finite-size quantization
effects [35,40]. For realistic gaps [13] (in the order of meV)
valley states should be gapped out in ribbons provided
they are narrower than 2.5 μm, which is accessible to
experiments.
With the valley states gapped out, we are left with a

single pair of pseudohelical states at each edge inside the
gap. What are these states and how do they compare to the
helical modes of the QSHS? In particular, since the spin-up
modes head in one direction along the two edges, how do
the states meet in a finite flake? To clarify this question, we
explored finite graphene flakes taking states from within
the gap as shown in Fig. 4(a) and 4(b). To simulate short-
range scattering we removed one orbital from the left
zigzag edge. Additionally, we calculated spin and site
expectation values as well as probability bond currents
[41]. In the QSHS, Fig. 4(c), we find, as expected, a true
helical edge state flowing along the boundary, avoiding the
short-range scatterer and preserving its spin along z. The
time-reversed partner of this state has the opposite chirality
and opposite spin polarization.
The edge states appearing in the finite-size gap of the

QVSHS are presented in Fig. 4(d). They have several
fascinating features. (a) The probability bond current
navigates around the short-range scatterer and does not
scatter back. There is only the time-reversed partner, Tψ
of the edge state ψ , available at this energy and, as for
topologically protected states, backscattering is forbidden
as long as the impurity V is nonmagnetic and scattering is
elastic (mathematically, hψ jVjTψi ¼ 0). (b) Spin polariza-
tion is opposite on the two edges, which are formed by
different sublattices. This is why we call these states
pseudohelical—with “pseudo” describing either the pseu-
dospin-spin locking or “not-really-helical” character of the
states. Net spin current flows in this state along the zigzag
direction. Also, we explicitly checked that the out-of-plane
g factor of the pseudohelical states is zero, as expected
since, although they are locally spin polarized, globally the
pseudohelical states are spinless. (c) Further, also at odds
with true helical states, which exist along the armchair
edge, pseudohelical states exhibit reflectionless tunneling
[35] along the armchair boundary, gradually changing their
spin in Fig. 4(d) due to Rashba SOC. This tunneling
connects protected modes at opposite edges by narrow
channels, which could be termed wormholes, as in 3D
topological insulators [42]. We discuss the transition to the
bulk behavior of wider flakes in Ref. [35]. (d) We checked
that the pseudohelical states are robust with respect to
nonmagnetic on-site disorder up to strengths comparable to
Rashba SOC [35]. Finally, our model also predicts inter-
esting states that exist at a single edge only; see Ref. [35].

(a) (b)

(c) (d)

FIG. 4. Finite-sized zigzag ribbons and flakes of width of ten
zigzag unit cells. Left-hand column is for the case of λAI ¼ λBI and
right-hand column for λBI ¼ −λAI . Panels (a) and (b) show the
band structure of an infinite zigzag ribbon over half of the
Brillouin zone with spin expectation values as color code (up in
red, down in blue). Panels (c) and (d) show finite flakes of length
of 100 zigzag cells and properties of a state that lies at energy
indicated by dashed lines in (a) and (b), respectively. Empty dots
denote the lattice, full dots indicate the site expectation value
color coded for spin polarization, and black arrows show
probability bond currents. Orbitals in the middle areas of (c)
and (d) have been removed, acting as short-range scatterers.
Images of flakes have been cut due to size constraints.
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The pure spin current generated by pseudohelical states
and the fact that valley states are spin unpolarized suggest
that spin and charge current flows in a two-terminal
geometry with G ¼ 4e2=h for wide ribbons and fully
spin-polarized current with G ¼ 2e2=h for narrow ribbons.
To conclude, we provide a Z2 map for a general class of

graphene Hamiltonians and show that the spin-valley
locking models are Z2 trivial. Nevertheless, we prove that
protected states exist even in such trivial systems, due to
size quantization. These findings are important for gra-
phene on substrates such as TMDCs, especially with the
ability of atomically precise growth of zigzag ribbons [43].
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