
Augmenting Leakage Detection using

Bootstrapping

Yuan Yao1, Michael Tunstall2, Elke De Mulder2, Anton Kochepasov2, and
Patrick Schaumont1

1 Virginia Tech,
Blacksburg, VA 24060, United States

{yuan9,schaum@}vt.edu
2 Rambus Cryptography Research,

425 Market Street, 11th Floor, San Francisco,
CA 94105, United States

{michael.tunstall,elke.demulder,anton.kochepasov}@cryptography.com

Abstract. Side-channel leakage detection methods based on statistical
tests, such as t-test or χ2-test, provide a high confidence in the presence
of leakage with a large number of traces. However, practical limitations
on testing time and equipment may set an upper-bound on the number
of traces available, turning the number of traces into a limiting factor
in side-channel leakage detection. We describe a statistical technique,
based on statistical bootstrapping, that significantly improves the effec-
tiveness of leakage detection using a limited set of traces. Bootstrapping
generates additional sample sets from an initial set by assuming that it
is representative of the entire population. The additional sample sets are
then used to conduct additional leakage detection tests, and we show how
to combine the results of these tests. The proposed technique, applied
to side-channel leakage detection, can significantly reduce the number
of traces required to detect leakage by one, or more orders of magni-
tude. Furthermore, for an existing measured sample set, the method can
significantly increase the confidence of existing leakage hypotheses over
a traditional (non-bootstrap) leakage detection test. This paper intro-
duces the bootstrapping technique for leakage detection, applies it to
three practical cases, and describes techniques for its efficient computa-
tion.

Keywords: Side-Channel Analysis · Leakage Detection · Bootstrapping

1 Introduction

Testing the side-channel leakage of a design is a challenging task. The test re-
quires careful planning of an experiment to measure a side-channel, such as the
power consumption, followed by analysis of the measurements. The objective
of the analysis is to detect side-channel leakage within a reasonable amount of
time. Traditionally, the analysis was done using a side-channel analysis attack

2 Y. Yao et al.

such as Differential Power Analysis [8]. However, the number of attacks and pos-
sible attack targets in a typical cryptographic implementation can be very large.
Therefore, it becomes desirable to formulate the analysis in a generic manner
independent of specific attacks for a side-channel leakage assessment. The most
popular among those assessments is Test Vector Leakage Assessment (TLVA),
proposed in 2011 by Goodwill et al. [6]. TVLA uses Welch’s t-test, under a null
hypothesis that no leakage is present, in a pointwise comparison of two sets
of power consumption traces. In a non-specific TVLA test, the two sets cor-
respond to power traces under a constant (plaintext) input on the one hand,
and power traces under a random (plaintext) input on the other hand. Any t-
statistic greater than 4.5σ (corresponding to a false positive rate of 1 × 10−5)
would indicate the presence of leakage. A known, but accepted, disadvantage of
TVLA is that the test does not establish a relationship between leakage and ex-
ploitability. Hence, side-channel leakage confirmed by TVLA does not imply that
the leakage can be efficiently exploited by a side-channel attack. An example of
a difficult-to-exploit side-channel leakage would occur during the middle round
of a cipher, since an efficient side-channel attack such as DPA would typically
require side-channel leakage in the initial and/or final round of the cipher.

While TVLA is widely used for research and testing, it brings its own unique
challenges. False negatives occur when the measurements contain side-channel
information but TVLA fails to detect it. This can have several causes. First,
TVLA confirms side-channel leakage by demonstrating a statistically meaningful
difference-of-means between two sets of measurements. If the amount of side-
channel leakage is small, that difference of means will be small as well. The
number of measurements in that case may be insufficient to discern a meaningful
difference. Second, the measurements could be very noisy and have a low Signal-
to-Noise Ration (SNR) [9, 18]) and, again, the number of measurements may be
too small to detect a statistically meaningful difference.

The risk of a false negative in TVLA can be minimized by increasing the
number of measurements or by enhancing the test by, for example, using multiple
input vectors for the fixed set [2, 15]. Another strategy is to deploy a fixed-versus-
fixed TVLA test [15] (as opposed to fixed-versus-random). This will reduce the
algorithmic noise but it has the added drawback that some leakage may not
show up due to the choice of inputs. Ideally, the confidence in the outcome of
the evaluation can be improved by repeating the TVLA test multiple times over
new measurements.

Hence, all known techniques that reduce the number of false negatives for
TVLA require an increase in the total number of measurements. This is prob-
lematic, since the number of measurements is typically limited in practice by the
available testing time.

In this work, we seek to reduce the number of false negatives in TVLA, with-
out the need for more physical measurements, or, looking at it from a different
angle, we aim to decrease the number of measurements needed for detecting leak-
age. We base our work on statistical bootstrapping, a computer-based technique
for statistical inference proposed by Efron [5]. Bootstrapping starts from an ini-

Bootstrapping Leakage Detection 3

tial sample set, which is assumed to be representative of the population. The
bootstrapping procedure infers population parameters by repeated re-sampling
of the initial sample set and by analyzing the resulting re-sampled data sets.
Applied to side-channel leakage detection, we aim to decide if the population,
corresponding to the set of power traces, shows side-channel leakage at a given
confidence level. To demonstrate this hypothesis, we make use of an initial sam-
ple of a limited set of power traces and use the bootstrapping method. Our
results show that bootstrapping based leakage detection reduces the size of the
sample (i. e. , the number of traces required) by at least one order of magnitude
while maintaining the same confidence level.

We first demonstrate the proposed methodology using simulations, where we
control the amount of leakage that is present. We then further demonstrate our
findings by analyzing three practical implementations, including a software AES
with Boolean masking, an unprotected hardware AES and a lightly protected
hardware AES. In addition to this experimental work, we also describe the lim-
itations of the proposed bootstrap method. Finally, we discuss an optimized
technique to compute leakage detection parameters using bootstrapping on an
initial sample. Our proposed technique enhances earlier work that computes the
test statistics using trace histograms instead of individual traces [13].

This paper is organized as follows. Section 2 introduces several preliminary
concepts: the Welch’s t-test, the bootstrapping mechanism, and the Kolmogorov-
Smirnov test. Section 3 applies bootstrapping to the leakage detection problem.
We discuss results based on simulations and a variety of software and hardware
implementations. Section 4 clarifies the limitations of bootstrapping. Section 5
describes a technique for the efficient implementation of bootstrapping applied
to TVLA. We then conclude the paper.

2 Preliminaries

We first provide an introduction to the methods we will use throughout the text.

2.1 Leakage Detection using Welch’s t-test.

Welch’s t-test is a statistical test used to compare sample means of two sets with,
possibly, unequal variance but still under the assumption of normality. The out-
put of the test provides a test statistic which can be combined with a threshold
to validate the null hypothesis H0 that both sets have equal means, or state
there is no evidence supporting the null hypothesis so the alternative hypothesis
Ha holds. We consider sets A,B of size nA, nB , with means µA, µB and standard
deviation σA, σB , respectively. With these notations, the null hypothesis and the
alternative hypothesis are noted as follows,

H0 : µA = µB Ha : µA 6= µB (1)

4 Y. Yao et al.

and the t-statistic is calculated with the following formula:

ψ =
µA − µB

√

σA
2

nA
+ σB

2

nB

(2)

where ψ ∼ t(0, ν) with ν degrees of freedom. In practice, we use the result that
the t-distribution is asymptotically equivalent to the standard normal distribu-
tion as the degrees of freedom increase, i.e. we can assume ψ ∼ N(0, 1). We then
transform the t-statistic into a p-value using the Cumulative Density Function
(CDF) to argue about the validity of H0.

Goodwill et al. [6] proposed to use Welch’s t-test to detect leakage in imple-
mentations of cryptographic algorithms by comparing two sets of side-channel
acquisitions. One set would be acquired with fixed input and the other with
random input. Welch’s t-test can be computed point-wise on the acquisitions. A
null hypothesis is formulated at each point individually assuming independence
of the points. Intuitively, one can see that if the means of those two sets (or
the distributions) are not equal, the power consumption is data-dependent and
could potentially leak information.

Goodwill et al. [6] proposed a Type I error, i. e. a false positive, rate of
1 × 10−5, meaning the two-tailed p-value p < 1 × 10−5 would stipulate there
is no evidence H0 is true. This corresponds to an absolute value of |ψ| > 4.5.
In practice, Welch’s t-test is applied point-wise across a set of acquisitions so
the probability of seeing at least one Type I error is significantly larger than
1 × 10−5. Ding et al. [18] proposed adjusting the threshold by taking the trace
length (total number of points in a measurement) into consideration. For ease
of expression, we will use the threshold defined by Goodwill et al. [6], but a
different threshold may be appropriate when applying our method.

2.2 The Bootstrapping Method.

The bootstrapping method is a computation-based statistical tool proposed by
Efron [5] to make inferences about a population parameter based on a sam-
ple set. It is typically used to estimate statistical distributions and to quantify
uncertainty, under the assumption that the sample set is representative of the
population.

Given a set of observations Sobs consisting of n samples, {s1, . . . , sn}, from
a given population we can apply bootstrapping by repeated sampling, with re-
placement, from Sobs. This process can be repeated b times, producing b sets
{S′

1
, . . . , S′

b}, where b is chosen arbitrarily. More explicitly, we detail this process

in Algorithm 1, where we define the operation
R
←− as taking a random sample

from a set. Statistical tests can then be applied to each of these sets producing
a set of statistics, which can allow a better analysis than just relying on the
observed set Sorig.

Pattengale et al. [11] recommended repeating this process 100–500 times to
get a robust description of the distribution of the population. In our work, we
show that far fewer iterations are required for leakage detection.

Bootstrapping Leakage Detection 5

Algorithm 1: Generating Bootstrapping Sets

Input: Sobs = {s1, . . . , sn} with n, b ∈ Z>0

Output: {S′

1, . . . , S
′

b}

1 for i = 1 to b do

2 for i = 1 to n do

3 s′j
R
←− {s1, . . . , sn} ;

4 end

5 S′

i ← {s
′

1, . . . , s
′

n} ;

6 end

7 return {S′

1, . . . , S
′

b}

2.3 Kolmogorov-Smirnov Test

In this paper, we also apply the one-sample Kolmogorov-Smirnov test (KS test),
which is a measure of the difference between a sample distribution and a defined
distribution. The null hypothesis of the test H0 is that the samples come from
the defined distribution, with the alternative hypothesis Ha that the samples
have a different distribution.

Let (s1, s2, ..., sn) be the samples in a data-set. For any number x, the em-
pirical distribution function value is the fraction of the data that is smaller than
x:

Fn(t) =
1

n

n
∑

i=1

I{
sj ≤ x

} (3)

Where I is the indicator function. The test statistic D exploits the maximum
distance of the empirical distribution from the sampled distribution and the
defined distribution:

D = sup
x
|Fn(x)−G(x)| (4)

Where G computes the CDF of the defined distribution and sup is the supremum
function. After getting the D statistic for the KS-test, the corresponding p-
value can be calculated from the CDF of the one-sample Kolmogorov-Smirnov
distribution.

3 Applying Bootstrapping to Leakage Detection

In this section, we describe how we apply bootstrapping to leakage detection.
Without loss of generality, we discuss our results using Welch’s t-test, since the
same method could be applied to any other test that produces a p-value. That
is, similar improvements would be seen if one were to use other statistical tests,
such as the χ2 test [10], Hoteling’s T 2-test or Diagonal-test(D-test) [4].

Let Sobs = {s1, . . . , sn} be the set of n acquisitions to be used in a leakage
detection test, as described in Section 2.1. Each si, for i ∈ {1, . . . , n}, consists of
an acquisition and the corresponding metadata indicating whether it belongs to

6 Y. Yao et al.

set A or B. We apply bootstrapping, as shown in Algorithm 1, to Sobs to provide
b sample sets {S′

1
, . . . , S′

b}, where the choice of b is arbitrary. We then conduct
Welch’s t-test on each set and compute the resulting p-value, giving {p′

1
, . . . , p′b}.

Each p-value represents a test with

H0 : no leakage Ha : leakage (5)

and we wish to combine the p-values to test this null hypothesis. Figure 1 demon-
strates the proposed methodology.

Fig. 1. Bootstrap Leakage Detection Enhancement

In general, the p-value is a measure of evidence on whether the null hypothesis
is true, where a p-value close to 0 can be taken as a lack of evidence that the null
hypothesis is true, and that the alternate hypothesis may be true. By definition,
if the null hypothesis is true then the p-value is uniformly distributed over the
interval [0, 1]. It has been shown that the p-value distribution is highly skewed
when the alternative hypothesis is true [7].

In this work, we use the distribution of the p-values {p′
1
, . . . , p′b} to evaluate

whether there is evidence that the null hypotheses are true. That is, if the null
hypotheses are true then

{p′
1
, . . . , p′b} ∼ U(0, 1) .

We can test whether this is the case using the one-sample Kolmogorov-Smirnov
test to compare {p′

1
, . . . , p′b} to a uniform distribution. In the KS-test we have

the null hypothesis that the data-set is drawn from the defined distribution, and
the alternate hypothesis that it is not. That is,

H0 : {p′
1
, . . . , p′b} ∼ U(0, 1) and Ha : {p′

1
, . . . , p′b} 6∼ U(0, 1) . (6)

The resultant KS test statistic reflects the similarity of the distribution of the
p-values with the uniform distribution. That is, we use the KS-test to combine

Bootstrapping Leakage Detection 7

{p′
1
, . . . , p′b} to a single p-value to test the null hypothesis:

H0 : no leakage Ha : leakage (7)

As proposed by Goodwill et al. [6], we shall assume the significance level α of
1×10−5, and reject the null hypothesis if the p-value return by the KS-test gives
p < 1× 10−5.

3.1 Simulating Leakage Detection

To demonstrate the effectiveness of our method we simulated a single sample,
i. e. a simulated acquisition with a trace length of one. We generated sets of data
where the sample is the Hamming weight of an 8-bit value with added Gaussian
noise to achieve a signal-to-noise ratio of 1 dB. This simulates the setup in the
practical environment where the traces are noisy and multiple traces are needed
for the t-test to reach the threshold used to indicate leakage.

In Figure 2, we show how the t-statistic, converted to a p-value, produced
by TVLA evolves as the number of traces increases, compared to the evolution
of the p-values produced by the KS test on the p-values generated by Boot-
strapping, as described above. As proposed by Moradi et al. [10], we plot the
negative logarithm base 10 of the p-value in both cases. This allows for simple
comparison and the 4.5σ threshold becomes 5. In our simulation, a straightfor-
ward implementation of the TVLA will show leakage after 1600 traces. If we
apply bootstrapping we can see the leakage from 200 to 400 traces, depending
on the number of iterations of the bootstrapping method that is applied.

Fig. 2. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) using simulated traces

To demonstrate why this occurs we generated three sets of single-point traces:
Trace-set-A is calculated as the fixed value 5. Trace-set-B and Trace-set-C are
calculated from the Hamming weights of 8-bit random values. As above, we
added Gaussian noise to achieve a signal-to-noise ratio of 1 dB. In Figure 3, we
can see two plots of frequency versus p-value, where the p-values are generated

8 Y. Yao et al.

from 5000 iterations of the bootstrapping method on 1000 samples. The left plot
is the result of applying bootstrapping to TVLA between Trace-set-A and Trace-
set-B, and the right plot from applying bootstrap enhanced TVLA to Trace-set-
B and Trace-set-C. These tests represent the fixed-versus-random case and a
comparison case of random-versus-random. In each case the resulting p-values
are grouped into bins defined by dividing up the interval [0, 1] into 100 equally
sized bins. The difference in the observed distributions is quite striking.

Fig. 3. The sample distribution of the p-values taken from 5000 iterations of the boot-
strapping method applied to samples where a the null hypothesis is false (left) and true
(right)

3.2 Experimental Results

We then performed experiments to evaluate the practical benefits of bootstrapped
enhanced TVLA on a variety of implementations and platforms.

Software AES with Boolean masking. The first experiment is an applica-
tion of the proposed test to a näıve implementation of a Boolean masked
AES on an NXP LPC2124, a 16/32 bit ARM7TDMI-S chip. The implemen-
tation was a straightforward 8-bit implementation making use of randomized
masked tables for the S-box and the xtime operations. As noted by Balash
et al. [2], such implementations are unlikely to be secure. Measurements
were acquired with a Langer RF − U2, 5 − 2 electromagnetic probe over a
decoupling capacitor using a PicoScope 3206D at 400 MS/s with 200 MHz
bandwidth. The results of applying bootstrapping to TVLA compared to
a straightforward application of TVLA are given in Figure 4. A straight-
forward implementation of TVLA shows leakage after around 800 traces. In
comparison, we can detect leakage from 60 to 90 traces using Bootstrapping,
depending on the number of iterations of the bootstrapping method that is
applied.

Unprotected hardware AES. Our next target was a straightforward single
round per clock cycle hardware implementation, i. e. all 16 S-boxes are com-
puted in parallel, on a Xilinx Kintex-7 FPGA. We used a custom FPGA

Bootstrapping Leakage Detection 9

Fig. 4. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) applied to an implementation of AES in software

prototyping board where we measured the voltage drop across a measure-
ment resistor using a Tektronix DPO7104C at 1 GS/s. The results of ap-
plying bootstrapping to TVLA compared to a straightforward application
of TVLA are given in Figure 5. We only need, at most, around 70 traces
to detect the leakage using bootstrapping, while 1000 traces are needed for
straightforward TVLA.

Fig. 5. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) applied to an unprotected implementation of AES on
an FPGA

Lightly protected hardware AES. Our last target was an AES implementa-
tion protected with a dual-rail countermeasure with no regard to glitches [16]
implemented on the same FPGA platform as the unprotected AES imple-
mentation, described above. As previously, we used a custom FPGA pro-
totyping board where we measured the voltage drop across a measurement
resistor using a Tektronix DPO7104C at 1 GS/s. Figure 6 shows the results
of applying bootstrapping to TVLA compared to a straightforward applica-
tion of TVLA. Similar to previous cases, significant acceleration of leakage
detection can be observed when applying Bootstrapping.

10 Y. Yao et al.

Fig. 6. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right)

In the three experiments presented above, we can see that the bootstrapping
method reduces the number of traces required to detect leakage by at least one
order of magnitude in all cases. Or, were we to use all the measurements, we
would get with a high certainty all the leaking points this set could uncover. For
the first two targets presented there is some modest variation in the required
number of traces required to see leakage as we increase the number of iterations
of the bootstrapping method. However, for the third target(lightly protected
hardware AES) the difference is much larger. If bootstrapping is applied 10
times we require 450 traces to detect leakage, whereas we only require 40 traces
if bootstrapping is applied 100 times. Both of these numbers stand in stark
contrast to the number of traces required by a straightforward TVLA, which is in
the order of 1× 104. This highlights that Bootstrapping significantly accelerates
leakage detection.

4 Limitations

The idea of the bootstrap technique is to get an estimate of the deviation of a
sample statistic from the true value of the statistic, and relies on the indepen-
dence of the samples to do so. It does not allow one to extrapolate information
from the underlying data if it is not represented in the acquired set. What it can
do is give us some assurance on the test statistic and its variation to give more ac-
curate picture. That is, if the collected data set is representative of the underlying
distribution, re-sampling will help produce a more accurate statistical analysis.
There exists limitations of this technique, as demonstrated in Figure 7. The top
left plot shows the result of a straightforward fixed-versus-random TVLA test,
as described in Section 2.1, on 5× 105 traces, where the t-test statistic is turned
into a p-value under the null hypothesis that there is no leakage. From this pic-
ture, it is clear that some points are already crossing the 4.5σ line (i.e. where
− log

10
p = 5), while other points are getting close to the line. As has been clear

from the literature, the results of a t-test are greatly affected by the signal-to-
noise ratio of the measurements, and reliably identifying false negatives and false

Bootstrapping Leakage Detection 11

positives is problematic. The bottom right plot shows the bootstrapping method
applied b = 5 times to the same 5 × 105 traces (we note recommendations on
b are significantly larger in literature [11]). This demonstrates that we get a lot
more assurance on the points that do not provide evidence the null hypothesis
is correct and all points which showed leakage in the original figure are present.
The top right plot shows the result of bootstrapping a 1000 traces with b=20,
and the bottom left plot shows the result of a bootstrapping of 5000 traces with
bootstrapping method applied b = 5 times. Neither of these figures are showing
the peak around sample point 30 visible in the top left plot indicating that the
underlying data is not sufficiently representative of the full set because we have
restricted the number of traces. However, we do have peaks at other points that
are not visible in the entire set, again caused by bias in the smaller number of
traces. While bootstrapping can allow one to determine if leakage is visible on a
smaller number of traces, it is subject to bias in the acquired traces.

Fig. 7. The negative log of p-value returned by the TVLA test for a fixed-versus-random
t-test with 50000 traces (top left), 1000 traces with 20 iterations of the bootstrapping
method (top right), 5000 traces with 5 iterations of the bootstrapping method (bottom
left) and 50000 traces with 5 iterations of the bootstrapping method (bottom right)

12 Y. Yao et al.

5 Implementation Details

Algorithm 2: Updating H

Input: H with elements eijkl where i ∈ {1, . . . , c}, j ∈ {1, . . . , q},
k ∈ {1, . . . ,m}, l ∈ {1, . . . , 2r}, a set of n traces S = {s1, . . . , sn}
with st = {st1, . . . , stm} for t ∈ 1, . . . , n and associated classifier
values zti for each of the classifications. For ease of notation,
classifier values will be in 1, . . . , q rather than the actual value.

Output: H

1 for t = 1 to n do

2 for i = 1 to c do

3 for k = 1 to m do

4 j ← ci ;
5 l← st,k ;
6 ei,j,k,l ← ei,j,k,l + 1 ;

7 end

8 end

9 end

10 return H

Statistical processing for side-channel analysis can be computationally in-
tensive and, since bootstrapping runs a statistical analysis multiple times, the
process can be even more demanding. The most straightforward approach to
computing statistical tests is to store all the acquisitions to a hard disk, read
the measurements, run the data through the algorithm of interest and com-
pute the results. Another approach is to use one-pass algorithms, which find the
required statistical characteristics during acquisition. Implementations of this
concept vary from having all the statistics ready and updating them on-the-
fly to updating an accumulator for each new sample and computing results on
demand [12–14, 17].

Our bootstrapping method requires calculating different statistical tests (i. e.
, Welch’s t-test and KS-test), which use statistical moments and observed fre-
quencies. Hence, we chose a histogram approach, where the histogram contains
all the information about the sample distribution that becomes available while
acquiring traces and, therefore, describes the sample distributions. It is then pos-
sible to derive properties appropriate for both tests as required. Our statistical
technique is based on the work by Reparaz et al. [13]. However, we describe in
more detail how to implement it using a tensor and how to apply the technique
for statistics other than the t-statistic.

We assume that the leakage assessment is performed over a set of observed
samples S with n traces of m sample points with c classifications. Each sample
point in the measurement has r meaningful bits, corresponding to 2r integer

Bootstrapping Leakage Detection 13

values, which are used as indices of counter bins. Each classification should have
q sets of histograms, where q is the number of bins required to cover each pos-
sible classifier value. This approach can be represented as a 4-dimensional set
ZcZqZmZ2r . We shall denote an instance of this set as H. An element of H is
denoted eijkl where i ∈ {1, . . . , c}, j ∈ {1, . . . , q}, k ∈ {1, . . . ,m}, l ∈ {1, . . . , 2

r}.
For example, in an evaluation of the non-specific fixed-versus-random test, we
have c = 1 and q = 2. If we would wish to conduct a correlation power analy-
sis [3] on an 8-bit intermediate state with the hamming weight model we would
have a separate classifier with c = 256 and q = 9.

Before acquiring data one would set H to all zeros and update H after each
acquisition of n traces with using Algorithm 2. At any given moment, the results
of the statistical tests can be rapidly computed from H.

In this approach, the first two statistical moments, µ and σ2, with respective
elements µijk and σ2

ijk, for Welch’s t-test become:

µijk =
1

Nijk

2
r

∑

l=1

ei,j,k,ll

σ2

ijk =
1

Nijk − 1

2
b

∑

l=1

ei,j,k,l(l − µijk)
2

(8)

where Nij =
∑

2
r

l=1
ei,j,1,l.

The CDF function d, which is used to define the sampled distribution, see
(3), and to compute the KS test, for each point k, classifier i and classifier value
j becomes:

dijkl =

l
∑

s=1

ei,j,k,s. (9)

Note that it is easy to compute more statistics in a straightforward way. As an
example, the correlation traces ρ with elements rik, representing the k-th point
in the i-th trace, are computed from H as shown in Equation (10).
We define a mean and variance trace as the the first two statistical moments of
the trace samples, split by classifiers, with respective elements µik and σ2

ik. We

define the mean and variance of the classifiers as the µ′

i and σ
′

i
2
. The pointwise

covariance of the traces and classifiers is defined as covik with the number of

14 Y. Yao et al.

traces defined as N .

N =

q
∑

j=1

2
r

∑

ℓ=1

e1,j,1,l

µik =
1

N

q
∑

j=1

2
r

∑

ℓ=1

ℓ ei,j,k,l

σ2

ik =
1

N

q
∑

j=1

2
r

∑

ℓ=1

Hi,j,k,l(ℓ− µik)
2

µ′

i =
1

N

q
∑

j=1

2
r

∑

ℓ=1

ℓ ei,j,1,l

σ′

i
2
=

1

N

q
∑

j=1

2
r

∑

ℓ=1

ei,j,1,l(ℓ− µ
′

ij)
2

covik =

q
∑

j=1

2
r

∑

ℓ=1

ℓ ei,j,k,l

rik =
(covik − µik µ

′

i)
√

σikσ
′

i

(10)

Equations (8), (9) and (10) use the notation used in Algorithm 2, where i
is a classifier index, j is a bin, k is a trace sample point, and l is a counter bin
index.

This approach has been implemented as a native code python module, com-
piled from cython code to C code to a dynamically linked DLL. The Intel MKL
library has been used to derive the required statistics. The space H has an
element type represented by a 32-bit unsigned integer, which establishes the
memory requirement for H as 4× c× q ×m · 2r bytes. This would allow one to
process up to 4 billion traces, which is typically more than sufficient to evaluate
leakage. It is important to note that the size of H should be small enough to
fit within CPU L3 cache, which is typically 5, 7 or 15MB. This implementation
strategy allowed us to efficiently evaluate the bootstrapping method.

The speed increase achieved by using bootstrapping is highly dependent on
the collection speed. For fast implementations, analysis may take around the
same amount of time as the time required to collect all the acquisitions. For some
other implementations, where inputs have to be provided for each acquisition,
e. g. over a serial port, the time required to collect all the acquisitions can be
considerably slower than the subsequent analysis. As noted by Reparaz et al. [13],
the speedup of using histograms is a factor of 500 times faster than a regular
implementation of the t-statistic calculation, assuming that the acquisitions fit
within CPU L3 cache. If we consider bootstrapping, one can argue that an
order of magnitude fewer traces are required to get the same information, which
will mean that the time required to collect all the acquisitions will decrease by

Bootstrapping Leakage Detection 15

same amount, at the cost of running b bootstrapped regular tests fewer traces.
Fortunately, as shown above, we do not require b to be very large to get significant
results, and in general it does make sense to apply bootstrapping.

6 Conclusion

In this paper, we describe how to use bootstrapping to augment side-channel
leakage detection tests by repeated sampling with replacement from an acquired
set of traces and combining the results of each set. Simulations and experi-
ments show that even a small number of iterations of the bootstrapping method
present significant improvements over straightforward TVLA [6]. The bootstrap-
ping method presented above can be applied to other statistical leakage detection
methods [4, 10], and we would likewise expect a similar increase in performance
at the cost of extra calculation time. We also show an efficient way of computing
the necessary statistics to compensate for the extra calculation time, based on
methods described by Reparaz et al. [13].

Recent work by Bache et al. [1] proposed a somewhat similar approach to our
work, although without the application of bootstrapping. They describe using
the confidence interval, instead of a single p-value/t-statistic, to improve the as-
surance of the presence, or absence, of leakage. The confidence interval provides
the error-probability for a false negative. However, the confidence interval makes
it harder for an evaluator to make a judgment about leakage, when compared
to the pass/fail criteria used in straightforward TVLA. In comparison, applying
bootstrapping to TVLA, as we describe, provides a single pass/fail parame-
ter from combining p-values, making the results easier to interpret than those
provided by the method presented by Bache et al. [1]. Moreover, since applying
bootstrapping extracts more information from an existing set of acquisitions, ap-
plying bootstrapping to TVLA improves the data-efficiency in leakage detection.
That is, it can predict/detect leakage with fewer acquisitions. In comparison, the
accuracy of the method presented by Bache et al. using the confidence interval
is highly dependent on the number of acquisitions.

7 Acknowledgement

This research was supported in part by National Science Foundation Award
1617203. I also would like to express my deep gratitude to my co-authors for
their great support in my internship and development of this research work. The
authors would like to thank anonymous reviewers for their valuable feedback.

References

1. Bache, F., Plump, C., Güneysu, T.: Confident leakage assessment–a side-channel
evaluation framework based on confidence intervals. In: DATE 2018. pp. 1117–
1122. IEEE (2018)

16 Y. Yao et al.

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.: On the cost of
lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer (2015)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer (2004)

4. Bronchain, O., Schneider, T., Standaert, F.X.: Multi-tuple leakage detection and
the dependent signal issue. IACR Transactions on Cryptographic Hardware and
Embedded Systems (2), 318–345 (2019)

5. Efron, B.: Bootstrap methods: Another look at the jackknife. The Annals of Statis-
tics 7(1), 1–26 (1979)

6. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST non-invasive attack testing workshop. vol. 7, pp.
115–136 (2011)

7. Hung, H.J., O’Neill, R.T., Bauer, P., Kohne, K.: The behavior of the p-value when
the alternative hypothesis is true. Biometrics pp. 11–22 (1997)

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual International
Cryptology Conference. pp. 388–397. Springer (1999)

9. Mangard, S., Oswald, E., Standaert, F.X.: One for all–all for one: unifying standard
differential power analysis attacks. IET Information Security 5(2), 100–110 (2011)

10. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with the
χ2-test. IACR Transactions on Cryptographic Hardware and Embedded Systems
(1), 209–237 (2018)

11. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R.P., Moret, B.M.E., Sta-
matakis, A.: How many bootstrap replicates are necessary? Journal of Compu-
tational Biology 17(3), 337–354 (2010)

12. Pebay, P.P.: Formulas for robust, one-pass parallel computation of covariances
and arbitrary-order statistical moments. Tech. rep., Sandia National Laboratories
(2008)

13. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer (2017)

14. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh:, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer (2015)

15. Standaert, F.X.: How (not) to use Welch’s t-test in side-channel security evalu-
ations. In: Bilgin, B., Fischer, J.B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp.
65–79. Springer (2019)

16. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at
the logic level: Next generation smart card technology. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2003, 5th International Workshop, Cologne, Germany, Septem-
ber 8-10, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2779,
pp. 125–136. Springer (2003). https://doi.org/10.1007/978-3-540-45238-6 11,
https://doi.org/10.1007/978-3-540-45238-6 11

17. Welford, B.: Note on a method for calculating corrected sums of squares and prod-
ucts. Technometrics 4(3), 419–420 (1962)

18. Zhang, L., Ding, A.A., Durvaux, F., Standaert, F.X., Fei, Y.: Towards sound and
optimal leakage detection procedure. IACR Cryptology ePrint Archive 2017, 287
(2017)

