
Protecting Against Unexpected System Calls

C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray, J. H. Hartman
Department of Computer Science

University of Arizona
Tucson, AZ 85721

{linnc,mohan,bakers,collberg,debray,jhh}@cs.arizona.edu

Abstract
This paper proposes a comprehensive set of techniques
which limit the scope of remote code injection attacks.
These techniques prevent any injected code from mak-
ing system calls and thus restrict the capabilities of an
attacker. In defending against the traditional ways of
harming a system these techniques significantly raise the
bar for compromising the host system forcing the attack
code to take extraordinary steps that may be impractical
in the context of a remote code injection attack. There
are two main aspects to our approach. The first is to
embed semantic information into executables identify-
ing the locations of legitimate system call instructions;
system calls from other locations are treated as intru-
sions. The modifications we propose are transparent to
user level processes that do not wish to use them (so
that, for example, it is still possible to run unmodified
third-party software), and add more security at minimal
cost for those binaries that have the special information
present. The second is to back this up using a variety
of techniques, including a novel approach to encoding
system call traps into the OS kernel, in order to deter
mimicry attacks. Experiments indicate that our approach
is effective against a wide variety of code injection at-
tacks.

1 Introduction
Code injection attacks, in which a remote attacker at-
tempts to fool a software system into executing some
carefully crafted “attack code” and thereby gain control
of the system, have become commonplace. Such attacks
can be broken down into three distinct phases. First, the
attacker exploits some vulnerability in the software (a
common example being buffer overflows) to introduce
the attack code into the system. Next, the system is
tricked into executing this injected code (e.g., by over-

writing the return address on the stack with the address
of the attack code). This then causes the various actions
relating to the attack to be carried out.

In order to do any real damage, e.g., create a root
shell, change permissions on a file, or access proscribed
data, the attack code needs to execute one or more sys-
tem calls. Because of this, and the well-defined system
call interface between application code and the underly-
ing operating system kernel, many researchers have fo-
cused on the system call interface as a convenient point
for detecting and disrupting such attacks (see, for exam-
ple, [5, 13, 17, 19, 29, 32, 35, 38]; Section 7 gives a more
extensive discussion).

This paper describes an interrelated set of host-based
defense mechanisms that prevents code injection attacks
from executing system calls. The primary defense mech-
anism embeds information into the executable specify-
ing the location and nature of each legitimate system
call in the binary. This information plays two comple-
mentary roles. First, it allows the operating system ker-
nel to verify the address from which a system call is
made, thereby allowing it to detect system calls made di-
rectly from any injected attack code. Second, it supports
a novel cloaking mechanism that allows us to hide the
actual software trap instructions that trap into the kernel;
this serves to thwart mimicry attacks by making it harder
to discover library routines that trap into the kernel. This
is backed up by a novel “code pocketing” mechanism,
together with a combination of low level code obfusca-
tion schemes, to thwart code scanning attacks aimed at
discovering program code that will lead to system calls.

To be practical, the defense mechanism must work
transparently with third-party software whose source
code may not be available. Our binary rewriting tools
analyze binaries and add system call location informa-

14th USENIX Security SymposiumUSENIX Association 239

14th USENIX Security Symposium

tion to them, without requiring the source code. This
information is contained in a new section of an ELF bi-
nary file. Our modified OS kernel checks system call
addresses only if an executable contains this additional
section. This makes our approach flexible: if an exe-
cutable does not contain this section, the intrusion detec-
tion mechanism is not invoked. It is therefore possible
to run unmodified third-party software as-is, while at the
same time protecting desired executables; the use of bi-
nary rewriting means that an executable can be protected
without requiring access to its source code.

The rest of the paper is organized as follows. Sec-
tion 2 presents assorted background material. Sections 3
and 4 explain the proposed modifications to the Linux
kernel and protected binaries. Section 4.2.1 describes
how dynamically linked binaries can be handled using
the same basic scheme. In Section 5 we summarize the
results of deploying our implementation. Section 6 dis-
cusses limitations of our approach and directions for fu-
ture work. Finally, Section 7 summarizes previous work
related to intrusion detection, and Section 8 concludes.

2 Background
Our approach to intrusion detection and the steps we
take to defend against mimicry attacks both depend on
various aspects of the structure of executable files, the
way in which system calls are made, and the mechanism
for dynamically linking against shared libraries. For
completeness, this section gives a high-level overview
of the relevant aspects of these topics.

2.1 The System Call Mechanism

In most modern computer systems privileged operations
can only be performed by the OS kernel. User level pro-
cesses use the system call interface to request these oper-
ations of the kernel. This interface varies from system to
system. The following describes the system call mech-
anism implemented in the Linux kernel, running on any
of the IA-32 family of processors.

To invoke a system call, a user level process places
the arguments to the system call in hardware registers
%ebx, %ecx, %edx, %edi, and %esi (additional argu-
ments, if any, are passed on the runtime stack); loads the
system call number into register %eax; and then traps
into the kernel using a special interrupt instruction, ‘int
0x80.’ The kernel then uses the system call number
to branch to the appropriate code to service that system
call. One effect of executing the int instruction is to
push the value of the program counter (i.e., the address

.text

Code Segment

Data Segment

ELF Header

Program Header Table

...

.interp

.rel.plt

.plt

...

.data

.got

.bss

...
.symtab

Section Header Table
(optional)

Extra
Information

.rodata

Figure 1: The structure of a typical ELF executable

of the next instruction) onto the stack; since this is done
by the hardware immediately before control passes to
the kernel, this value cannot be spoofed by attack code,
and therefore serves as a reliable indicator of the location
from which the system call was invoked.

2.2 Structure of an Executable File

The ELF (Executable and Linkable Format), first ap-
pearing in the System V Application Binary Interface,
has become the most widely used binary format on Unix
based systems. The structure of ELF binaries offers a
great deal of flexibility and lends itself well to the em-
bedding of auxiliary data [21].

Figure 1 shows the structure of a typical ELF binary.
Conceptually, it consists of an ELF header, which con-
tains basic information about the type and structure of
the binary; some header tables that describe the vari-
ous sections comprising the file; and a several sections,
which contain the code, data, etc., of the program. Most
executables have a .text section containing (most of)
the executable code, a .data section that holds initial-
ized data, an .rodata section that contains read-only
data, a .bss section that contains uninitialized data, and
a .got section that contains the global offset table (this
is discussed more in Section 2.3).

The number and contents of the sections comprising
an ELF file are not fixed a priori: we can add new
sections containing auxiliary semantic information, pro-
vided that the relevant header tables are updated appro-

USENIX Association240

priately. We use this aspect of ELF files to embed, into
each executable, information about the locations of sys-
tem call instructions (i.e., the ‘int 0x80’ instructions
that trap into the OS kernel) in the file.

2.3 Dynamic Linking

When a binary is statically linked all functions refer-
enced in the program are included, i.e., there is no need
to load anything extra at runtime. A dynamically linked
binary, however, may call functions that are not defined
within the binary and are instead linked at runtime by
the dynamic linker (ld.so). The details of this process
are complex, and we discuss only those aspects of dy-
namic linking and shared objects that are central to this
paper, namely, those which provide ways for attack code
to execute a system call in a dynamically linked library.

Dynamically linked binaries are not loaded and run di-
rectly by the OS as are statically linked binaries. Instead,
they contain an extra interpreter section (.interp)
that contains the name of an interpreter binary (the dy-
namic linker) that should be run instead. The OS maps
the dynamic linker into the executable’s address space,
then transfers control to it, passing it certain informa-
tion about the target program, such as the entry point,
location of the symbol tables, etc. The dynamic linker
then scans the target binary’s.dynamic section for any
shared libraries on which the binary depends and maps
their executable portions into the executable’s address
space. Private copies of any private data for the shared li-
brary is created by the linker and finally the linker passes
control to the target program.

The default behavior of the dynamic linker is to re-
solve the address of each dynamically linked function
when it is first invoked during execution (this is referred
to as lazy binding). Two sections of the executable play
a crucial role in this: the procedure linkage table (PLT)
and the global offset table (GOT). Each dynamically
linked routine has unique entries in the PLT and GOT.
Initially these entries refer to the dynamic linker, so that
when a dynamically linked function is first invoked con-
trol is transferred to the linker instead of the function.
The dynamic linker uses the name of the function (acces-
sible via the PLT linkage used to invoke it) to locate the
function in the shared library’s exported symbol table.
The function’s entry point address is then patched into
the executable’s GOT, the stack cleaned up, and con-
trol transferred to the target function. Patching the GOT
entry causes subsequent invocations of the function to
jump to the function instead of the dynamic linker.

GOT

address
(Sec 4)

(Sec 4.2.1)
offset

PLT

(Sec 4.2.1)
name

offset
(Sec 4.2.1)

signature
(Sec 4.2)

address
(Sec 4)

Symbol

Table

(Sec 4.2.1)
name

Syscall Handler

address
(Sec 4)

syscall #
calling convention

function

(Sec 4.1)

kernel space

user space

Figure 2: Attack model. Arrows represent information
necessary to access data structures and functions repre-
sented by rectangles, with the ultimate goal of accessing
the syscall handler at the bottom. Labels on arrows in-
dicate sections where our preventative measures are de-
scribed.

2.4 The Attack Model

This paper focuses on remote code injection attacks. We
assume that the attacker has access to the source code
for the application being attacked and to the methods
we use to randomize the binary, but not to the particular
instance of the randomized binary running on the host
under attack. In other words, we assume some level of
inscrutability, in that that the attacker has no way to de-
termine the instruction sequence or layout of any of the
system’s programs, or shared libraries; we take advan-
tage of this in our approach to detecting and preventing
certain kinds of mimicry attacks. This assumption im-
plies that any analysis of the executable being attacked
must be done in an on-line manner by the attack code it-
self. In the extreme, the attack code could include a sim-
ulator on which to simulate and analyze the executable.
We assume that the attack code is capable of such anal-
ysis, and do not assume a priori bounds on the amount
of time or space that the attack code may use for such
analysis. However, increasing the attack code’s time and
space requirements make intrusion detection easier; ide-
ally, the bar is raised high enough that attacks have ob-
vious symptoms. Finally, we assume that in order to do
any damage to the system outside the compromised pro-
cess, the attacker must make use of system calls.

Figure 2 is an illustration of the attack model. At
the bottom is the system call handler inside the OS ker-

14th USENIX Security SymposiumUSENIX Association 241

14th USENIX Security Symposium

nel. Executing this handler is the ultimate goal of the
attacker. Rectangles represent functions and data struc-
tures; arrows represent information necessary to access
them. For example, if the attacker knows the system
call calling convention and proper system call number
it can invoke the system call handler directly by synthe-
sizing the proper code. Failing that, the attacker can in-
voke a function that performs the proper system call if it
knows the function’s address. Failing that, the attacker
can get the functions’s address from the symbol table
or PLT/GOT if it knows the functions’s name. And so
on. Our methods of making the necessary information
unavailable to the attacker are described in subsequent
sections, as indicated by the labels on the arrows.

3 Adding Semantic Information to
Executables

In essence, our goal is to distinguish system calls in-
voked illegally by attack code from those invoked legally
as part of a program’s normal execution. We begin
with the simple observation that this objective can be
achieved, in great part, by examining the address of the
system call instruction: if this is not any of the known
locations from which the application can possibly trap
into the kernel, then it must be within attack code. This
raises several issues, which we discuss in the remain-
der of this section and the next: (Section 3.1) how is
the set of “allowed” system call instruction locations to
be determined and associated with an executable? (Sec-
tion 3.2) how should such information be used? (Section
3.3) how should dynamically linked libraries be han-
dled? and, finally: (Section 4) what if the attack code
co-opts an system call instruction that is part of the pro-
gram code (or a dynamic library)?

3.1 Constructing Interrupt Address Ta-
bles

We use post-link-time binary rewriting to identify the
address of each system call instruction in the executable
(our implementation currently uses the PLTO binary
rewriting system for Intel x86 ELF executables [31]).1

This information is then added to the ELF executable as
a new section, the Interrupt Address Table (IAT); the as-
sociated headers in the ELF file modified appropriately;
and the file written back out. The IAT section is an op-

1This assumes that there are no “hidden” system calls in the bi-
nary, i.e., system call instructions executed from dynamically gener-
ated code on the stack or heap, or in code that is dynamically decrypted
and executed.

tional component of an ELF executable, allowing exe-
cutables that do not have this section to run as-is, albeit
without the protections we describe. The information
in the IAT consists of two values for each system call
instruction found in the binary: (i) the address of the in-
struction immediately following the system call instruc-
tion; and (ii) the system call number associated with it.

Notice that there is enough information in the IAT en-
tries that the system call numbers passed into the kernel
by the system call now become redundant: the kernel
could use the address pushed on the stack by the system
call instruction to obtain the corresponding system call
number from the IAT. This turns out to be very useful,
as discussed in Section 4, for disguising system call in-
structions and thwarting mimicry attacks.

3.2 Using Interrupt Address Tables

We modified the Linux kernel to incorporate IAT infor-
mation into the kernel data structure representing pro-
cesses. When an executable is loaded, it is checked to
see whether the executable file contains an IAT section.
If it does, the contents of that section are copied into the
kernel data structure for the corresponding process; oth-
erwise, this field in the process structure is set to NULL.
An executable that does not contain an IAT section is ex-
ecuted without any of the checks described in this paper;
thus, third party software can be run as-is. The remain-
der of this discussion focuses exclusively on executables
containing an IAT section.

When a system call instruction occurs during the ex-
ecution of a process, the kernel checks that the address
pushed on the stack by the ‘int 0x80’ instruction ap-
pears in the IAT information for that process. A system
call from an address found in the IAT is allowed to pro-
ceed; otherwise, a possible intrusion is signalled.

3.3 Handling Dynamically Linked Li-
braries

Unlike addresses in an executable binary, addresses in a
dynamically linked library are not determined until the
dynamic linker maps the library into the process’s ad-
dress space. This means that the dynamic linker must
update a library’s IAT after the library has been mapped,
then make this updated IAT available to the kernel – the
kernel cannot simply read the IAT from the library ELF
file directly. The kernel then merges the information
from the IAT into its internal data structure.

The dynamic linker uses a new system call to provide
new IAT sections to the kernel. The arguments to this

USENIX Association242

system call are the base address and size of the new IAT.
If all libraries are mapped at program load time, the ad-
dresses of all system call instructions in the shared li-
braries will appear in the kernel level IAT for the process
before it runs. The one exception to this is the interpreter
(dynamic linker) itself, since it is a shared object and
would not be able to make system calls before its own
IAT section is loaded. This is not a problem because the
kernel is responsible for mapping the interpreter into the
executable (before the process begins execution), and it
can therefore retrieve and patch the linker’s IAT before
the process begins to execute.

By default, the dynamic linker uses a lazy binding
mechanism to map libraries – a library is not mapped un-
til the process references it during execution. This makes
the process vulnerable to mimicry attacks, and must be
modified as discussed in Section 4.2.1.

4 Thwarting Mimicry Attacks
Mimicry attacks are attacks crafted to make the behavior
of the attack code mimic the normal execution behavior
of a program [37]. This allows such attacks to bypass in-
trusion detection systems that focus on detecting anoma-
lous behaviors.

The IAT information makes it possible to identify any
system call made from the injected code, since the ad-
dresses for such instructions will not appear in the IAT.
To get around this the attack code must use a system call
instruction that is already in the program: either part of
the program code, or in a shared library. This section
discusses the forms such attacks take and the steps we
take to prevent them.

To use a system call instruction that is part of the
program, the attack code must branch either (i) to the
system call instruction itself, or (ii) to some location
from which execution eventually reaches a system call
instruction, e.g., some function in the standard C library.
There are two possibilities. The first is that of a “known
address attack,” in which the attack code jumps to a
fixed address that contains (or leads to) a system call
instruction. The second possibility represents a class
of attacks we term scanning attacks. Here, the attack
code scans the application’s code, starting from a valid
code address (e.g., using the return address on the run-
time stack), looking for a particular pattern of bytes; its
aim is to identify a code address from which execution
can reach a system call instruction. The pattern scanned
for may be simply a byte sequence for a particular in-
struction, e.g., the 2-byte sequence 0xcd80 encoding

the system call instruction ‘int 0x80,’ or a longer se-
quence representing several instructions, e.g., some ini-
tial prefix of the system() library function. Such at-
tacks can take a variety of forms, e.g.: set up the argu-
ments to a particular system call, then scan for, and jump
to, an int 0x80 instruction; or set up the arguments to
a particular library routine (say, open()), then scan for
a byte signature for that routine and invoke it from the
attack code. The first possibility listed above, that of
known address attacks, can be foiled using a variety of
techniques that make code addresses unpredictable, e.g.,
address obfuscation [3]. The remainder of this section
therefore focuses on addressing scanning attacks. There
are two distinct components to our approach: disguising
system call instructions so that they are difficult to iden-
tify (Section 4.1); and making it harder to use pattern
matching to identify specific functions (Section 4.2).

4.1 Disguising System Call Instructions

One weakness in existing executables is that system call
instructions are easily identifiable, making them poten-
tially vulnerable to scanning attacks, as described above.
We can address this by making system call instructions
harder to identify, by disguising them as other, less con-
spicuous, instructions (e.g., load, store, or div instruc-
tions). The idea is to use these other instructions to gen-
erate a trap into the kernel, e.g., by loading from an ille-
gal memory address or dividing by zero, and letting the
kernel decide whether the trap is actually a system call
in disguise.

The IAT contains the addresses of legitimate system
call instructions, making it easy for the kernel to decide
whether or not a trap is a legitimate system call. The
kernel checks the address of any instruction that causes
a trap into the kernel against the IAT; a trap whose ad-
dress is found in the IAT is processed as a system call,
otherwise it is processed as a normal trap.

This scheme can be quite effective in disguising sys-
tem call instructions. For example, since the Intel x86
architecture allows most arithmetic instructions to take
a memory operand, an illegal address trap can be gener-
ated from a wide variety of innocuous-looking instruc-
tions, e.g., add, sub, mov, etc. Moreover, the particular
instruction used to disguise a particular system call in-
struction in an application or library can be varied ran-
domly across different systems.

From a practical perspective, disguising system call
instructions in this manner makes it significantly harder
for attack code to identify software trap instructions: in-

14th USENIX Security SymposiumUSENIX Association 243

14th USENIX Security Symposium

stead of a handful of conspicuous ‘int 0x80’ instruc-
tions, the attack code now has to contend with the pos-
sibility that pretty much any instruction in the program
could potentially trap into the kernel. In even medium-
sized programs, the number of such candidates could
easily number in the hundreds of thousands. From a the-
oretical perspective, the problem of determining whether
a given instruction—say, an add instruction with a mem-
ory operand—could cause a runtime exception is prov-
ably difficult: it is a straightforward reduction to flow-
sensitive pointer aliasing, which is complete for deter-
ministic exponential time [23].

4.2 Hindering Scanning Attacks

Once system call instructions become difficult to iden-
tify reliably, the attack code is forced to fall back on
identifying specific functions that are known to lead to
system calls. This section discusses ways to hinder this.

We can imagine two classes of such attacks. An attack
might examine program metadata, e.g., symbol tables, to
discover information about functions; Section 4.2.1 dis-
cusses ways to hinder such attacks. Alternatively, such
an attack might scan the program text itself, looking for
specific byte sequences. Given a function f in a program
P, let I f :P be the shortest sequence of instructions (or
shortest byte sequence) that uniquely identifies f within
P. An attacker might examine his own copy of P, of-
fline, to determine I f :P, then craft a scanning attack that
searches for this sequence. Sections 4.2.2, 4.2.3, and
4.2.4 discuss several different ways to thwart such at-
tacks.

4.2.1 Symbol Information and Dynamic Libraries

One of the simplest ways to determine a function’s entry
point is to look up the function, by name, in the pro-
cess’s symbol table. The first and most basic step in
defending against this, therefore, is to strip all symbol
information from the binary. This is straightforward for
statically linked executables, since (other than for de-
bugging) symbol information is not needed after linking.
It is not as straightforward for dynamically linked exe-
cutables, however, because symbol information is fun-
damental to the default lazy binding scheme for resolv-
ing the addresses of dynamically linked routines (see
Section 2.3). Removing symbol information from a dy-
namically linked executable would therefore break the
standard lazy binding approach to resolving dynamically
linked routines.

It does not seem straightforward to address this prob-

lem while using lazy binding for dynamically linked rou-
tines, since the standard lazy binding mechanism relies
on the availability of symbol information. Our solution,
therefore, is to abandon lazy binding and opt for “ea-
ger binding” instead. The idea is to have the dynamic
linker resolve all GOT entries during the initial setup
operations it performs, after the dynamic libraries have
been mapped into the process’s address space, but be-
fore transferring control to the main program. We can
do this for the standard linker (ld.so) simply by setting
the LD BIND NOW environment variable. Once all the
GOT entries have been resolved in this manner, there is
no further need for the symbols and relocations for the
shared libraries, and they may be discarded. While this
can potentially increase the startup time for a process,
we believe that its impact will be small.

Conceptually very similar to the idea of scanning a
dynamically linked executable’s symbol table is that of
scanning a loaded shared object’s symbol table. To ad-
dress this problem, we add a little extra functionality to
our wrapper linker (see Section 3.3). After linking is
finished, either just before or directly after we discard
the symbols in the executable, we unmap the memory
regions in the shared libraries that contain symbol and
relocation information. This makes them inaccessible to
attack code; any attempt to scan these regions of the li-
brary results in a segmentation fault that can be caught
and flagged as a potential intrusion.

A final problem is that the GOT (directly) and the PLT
(indirectly) identify the entry points of all library rou-
tines needed by a dynamically linked executable. This
can allow an attacker to obtain a function’s entry point
by exploiting knowledge of the structure of a process’s
GOT. For example, if a program uses only a few dy-
namically linked library routines, the number of GOT
entries will be correspondingly small. In such cases,
an attack may be able to guess the correct entry point
for a desired function, with high probability, simply by
randomly choosing an entry in the GOT. A simple pro-
tective measure to address this is to introduce many fake
entries into the GOT and PLT. Because the GOT and PLT
usually account for only a very small fraction of the size
of an executable, the space impact of such fake entries
will usually be small. A second problem is that the GOT
may, by default, have a predictable layout, i.e., the same
function may lie in the same GOT slot in many or all
copies of the executable. This would allow an attacker to
execute any of the GOT resident library functions with-
out any guesswork. This can be handled by randomizing

USENIX Association244

the order of the entries in both the PLT and GOT.

An alternative approach to handling the problems in-
troduced by dynamic libraries is to abandon dynamic
linking altogether in favor of static linking. The SLINKY

project [7] has shown that with very minor effort (a small
tweak to the operating system kernel and some addi-
tional system software) the overhead traditionally asso-
ciated with static linking can be largely eliminated. The
resulting statically linked and stripped binaries will con-
tain no symbolic information exploitable by the adver-
sary.

4.2.2 Dead and Useless Code Insertion

A simple way to disrupt attacks that scan for specific
byte sequences is to insert randomly chosen instruction
sequences into the code that change its contents but not
its semantics [14]. Examples of such instruction se-
quences include: nops and instruction sequences that
are functionally equivalent to nops, e.g., ‘add $0, r’,
‘mov r, r’, ‘push r; pop r’, etc., where r is any
register; and arithmetic computations into a register r
that is not live. In each case, we have to ensure that
none of the condition codes affected by the inserted in-
structions is live at the point of insertion. It is worth
noting that some advanced viruses, e.g., encrypted and
polymorphic viruses, use a similar mechanism for dis-
guising their decryption engines from detection by virus
scanners [33, 40]. The approach can be enhanced using
binary obfuscation techniques [22].

The higher the frequency with which such instruc-
tions are inserted, the greater the disruption to the origi-
nal byte sequence of the program, as well as the greater
the runtime overhead incurred. One possibility to deter-
mining a “good” insertion interval would be to compare
the byte sequences of all the functions (and libraries)
in a program to determine, for each function, the short-
est byte sequence needed to uniquely identify that func-
tion in that program, and thereby compute the length of
the shortest byte sequence that uniquely identifies any
function. Any insertion interval smaller than this length
would be effective in disrupting such signature-based
scanning attacks.

4.2.3 Layout Randomization and Binary Obfusca-
tion

Code layout randomization involves randomizing the or-
der in which the functions in a program appear in the
executable, as well as randomizing the order of basic
blocks within each function [14]. In the latter case, it

may be necessary to add additional control transfer in-
structions to preserve program semantics.

In principle, the attack code could overcome the ef-
fects of layout randomization by, in effect, disassem-
bling the program and constructing its control flow
graph, thereby essentially reverse engineering the pro-
gram. While this is possible in principle if we assume
no limits on the time and space utilization of the at-
tack code, it would require the injected attack code to
be dramatically larger, and more sophisticated, than at-
tacks commonly encountered today. Moreover, such re-
verse engineering by the attack code can be thwarted
using binary obfuscation techniques [22], which inject
“junk bytes” into an executable to make disassembly al-
gorithms produce incorrect results.

4.2.4 Pocketing

Another approach to thwarting scanning attacks is to
divide the address space of the executable into non-
contiguous segments, separated by “pockets” of invalid
addresses. If the attack code accesses one of the invalid
address pockets, it generates a trap into the kernel that
can be recognized as an intrusion. On modern virtual
memory systems, where memory protection is typically
enforced at the level of pages, such pockets must ap-
pear at page boundaries and occupy an integral number
of pages.

There are two distinct approaches creating such dis-
continuity. First, we can separate the code section into
many segments, assigning to each successive segment
a load address which leaves a gap from the previous
segment’s ending address. Second, we can create sev-
eral gaps (via code insertion) in the executable sections
and unmap them at runtime. The first approach has the
disadvantage that the program header table will contain
the exact addresses where pockets begin and end, which
may introduce a vulnerability if the attacker happens to
find the location of the program header table. The ad-
vantage of this scheme, however, is that the physical
size of the executable on disk will experience only a
minimal increase. The second approach has the disad-
vantage that the physical size on disk can increase dra-
matically. However, it offers the advantage that a care-
ful implementation can actually hide the code that does
the unmapping within the pockets themselves, prevent-
ing an attacker from discovering the location of the exe-
cutable’s pocket layout.

A straightforward approach to inserting pockets is to
simply insert them at arbitrary page boundaries, adjust-

14th USENIX Security SymposiumUSENIX Association 245

14th USENIX Security Symposium

ing in the obvious way any instruction that happens to
span the page boundary, and inserting an unconditional
jump to branch over the pocket. This approach is ap-
pealing because it introduces virtually no increase in
memory requirements for the application. The uncon-
ditional branches, however, might act as an indicator of
a valid continuation address that an attacker might fol-
low to “jump over” pockets. An alternative approach,
used in our implementation, is to insert pockets in loca-
tions where no modifications to control flow are neces-
sary, namely, between functions. Since function bound-
aries are not guaranteed to lie on page boundaries, this
approach requires adding some padding into the exe-
cutable, which increases its memory footprint.

5 Experimental Results
We integrated our ideas into plto [31], a general pur-
pose binary rewriting tool for the Intel IA-32 executa-
bles. Our tool implements all of the ideas described in
this paper, with the single exception of the handling of
dynamically linked libraries (Section 3.3); plto currently
handles only statically linked binaries. Our tool takes as
input a statically linked relocatable binary, and outputs
the executable that results from performing intraproce-
dural layout randomization, nop-equivalent insertions,
pockets insertions, or system call obfuscation, in various
combinations determined by command-line arguments.

Our experiments were run on an otherwise unloaded
3.2 GHz Pentium 4 processor with 1 GB RAM running
Fedora Core 1. All kernel modifications necessary for
this intrusion detection system were implemented in the
Linux kernel, version 2.6.1. The changes required to the
kernel were minimal, spanning only a handful of source
files, including the file containing the trap handler entry
code, the file containing the ELF specific loader module,
and the files containing the main task structure definition
and task structure handling routines.

5.1 Design of Attack Experiments

One simple approach to evaluating the efficacy of our
approach to detecting code injection attacks would be
to subject it to several currently known viruses/worms.
There are two major problems with such an approach.
First, many different attacks may exploit the same kinds
of underlying software vulnerabilities (e.g., a buffer
overflow on the runtime stack), which means that the
number of “known attacks detected” need not have any
correlation with the variety of vulnerabilities that an IDS
is effective against. Second, such an approach would

completely ignore attacks that are possible in principle
but which have not (yet) been identified in the wild. For
these reasons, we opted against relying on known attacks
to evaluate the efficacy of our approach. We decided,
instead, to use a set of carefully constructed synthetic
attacks, whose design we describe here.

We begin by observing that our work assumes that
the attack code has been successfully injected into the
system and then executed, and aims to prevent this ex-
ecuting attack code from executing a system call. The
nature of the exploit by which the attack code was in-
jected and executed—be it via a buffer overflow on the
stack, an integer overflow, a format string vulnerabil-
ity, or some other mechanism—is therefore unimportant:
we can pick any convenient means to introduce “attack
code” into a running application and execute this code.
Furthermore, the particular application used for the at-
tack is also unimportant, as long as it is a realistic appli-
cation, i.e., one that is of reasonable size and which con-
tains some appropriate set of system calls which we wish
to protect. Accordingly, our efficacy experiments use a
single vulnerable application, and a single code injection
method, to introduce and execute attack code; this attack
code varies from experiment to experiment and attempts
to use a variety of different approaches to executing sys-
tem calls. By using a carefully crafted collection of at-
tacks in this manner, including both direct invocation of
system calls using an ‘int 0x80’ instruction in the at-
tack code, and mimicry attacks involving scanning, we
can gauge the efficacy of our approach to a wide variety
of attacks.

We used the m88ksim program (from the SPEC-95
benchmark suite), a simulator for the Motorola 88000
processor, as our attack target. The program is roughly
17,000 lines of C code, which maps to a little over
123,000 machine instructions over some 835 functions
(compiled with gcc -O3 and statically linked). We chose
this program because it makes use of several poten-
tially dangerous library calls, including open and system
(which eventually makes the system call execve). We
simulated direct attacks, i.e., where the injected code
contains the ‘int 0x80’ system instruction for the
system call it attempts to execute, by injecting the at-
tack code onto the runtime stack and branching to it; the
mimicry attacks, which involved various different ways
to locate and branch to system calls in the library rou-
tines, were written in C and linked in as part of the pro-
gram.

USENIX Association246

5.2 Efficacy

This section discusses the specific classes of attacks we
tested, and the outcome in each case.

5.2.1 Injected System Call Instructions

The first class of attacks we consider execute a system
call instruction directly from the injected attack code. In
practice, such an attack might result from injecting exe-
cutable code onto the stack or the heap and then branch-
ing to this code (e.g. the Morris worm). Our test that rep-
resents this sort of attack uses a simulated buffer over-
flow, where instructions are first pushed onto the stack,
then executed by jumping into the code on the stack. The
instruction sequence so injected contains a system call
instruction ‘int 0x80’ to invoke the system call, pre-
ceded by some instructions to set up the arguments to
this system call.

Our tests show that such attacks are completely pre-
vented via the interrupt verification mechanism pro-
posed in Section 3. Upon executing an interrupt from
any location not found in the IAT, the operating system
correctly declares the interrupt malicious and takes ap-
propriate action.

5.2.2 Known-Address Attacks

Since each binary is randomized on a per-install basis, as
described earlier, we assume that the attacker is unaware
of the absolute address of any particular function or in-
struction in the binary. The Code Red virus and Blaster
worm are examples of known-address attacks that are
thwarted if addresses are randomized. Bhatkar at al.
have demonstrated the efficacy of such randomization
techniques against this class of attacks [3]. We therefore
did not separately examine known-address attacks in our
experiments.

5.2.3 Scanning Attacks

We examined several scanning attacks that used pattern
matching to try and discover the locations of valid sys-
tem call entry points. Under the assumption that library
code addresses have been randomized, e.g., via address
obfuscation [3], such attacks must discover the locations
of suitable system calls as follows:

1. Identifying code that will eventually lead to the de-
sired system call. The attack code can scan for a
known sequence of instructions from the code for
that system call or a (library or application) func-
tion that invokes that system call.

2. Identifying the appropriate system call instruction
directly. The attack code can scan for a system call
instruction ‘int 0x80.’ There are two variations
on this approach:

(a) identify a location where the appropriate sys-
tem call arguments are set up, followed by the
system call instruction; or

(b) identify just the system call instruction,
whereupon the attack code itself sets up the
system call arguments appropriately, then
branches to the system call.

We devised a synthetic attack representative of each such
class of attacks:

1. As a representative attack that attempts to scan the
code to find a known code signature, we used an
attack that looks for a 17-byte sequence that com-
prises the first basic block (eight instructions) of the
execve system call:

55 // push %ebp
b8 00 00 00 00 // mov $0x0,%eax
89 e5 // mov %esp,%ebp
85 c0 // test %eax,%eax
57 // push %edi
53 // push %ebx
8b 7d 08 // mov 0x8(%ebp),%edi
74 ff // je 8076d26

Note that there is nothing special about this partic-
ular byte sequence, other than that it happens to be
one that is known to lead to an execve system
call. We could have just as easily chosen another
byte sequence corresponding to code for a suitable
system call.

2. We used the following attacks to scan for system
calls directly:

(a) To identify code that sets up the system call
arguments and makes the system call, we used
an attack that scans for a 6-byte (two instruc-
tion) sequence to load the value 0xb8, the
system call number for the execve system
call, into register %eax, followed by a system
call instruction:

b8 0b 00 00 00 // movl 0x$b8, %eax
cd 80 // int $x80

(b) To identify system call instructions, we sim-
ply looked for the two-byte (one instruction)
sequence

14th USENIX Security SymposiumUSENIX Association 247

14th USENIX Security Symposium

System Call Time w/o IAT (µsec) Time with IAT (µsec) % Increase
getpid 0.71 0.96 35.2
open 19.58 19.77 1.0
read 95.75 98.19 2.5

Table 1: Effect of IAT checking on an individual system call.

cd 80 // int $x80

Each of these synthetic attacks was unsuccessful against
the implemented intrusion detection measures, namely
use of the IAT in combination individually with each of
disguising system call interrupts, nop-equivalent inser-
tion, pocket insertion, and layout randomization. At-
tacks in category 1, which attempted to find code that
would eventually lead to a system call, failed because
of layout randomization and nop-equivalent insertion,
which disrupted known byte sequences throughout the
code. Attacks in category 2(a) and 2(b), which attempted
to find the system calls directly, failed because the sys-
tem call instruction was disguised, as described in Sec-
tion 4.1.

5.3 Cost of the IAT Mechanism

There are two aspects to the cost of the underlying IAT
mechanism: the incremental cost for an individual sys-
tem call, and the impact on the overall performance of
realistic applications. For these evaluations, our bench-
mark programs were compiled using gcc version 3.2.2,
at optimization level -O3, with additional command-
line flags to produce statically linked relocatable bina-
ries. These binaries were then processed using our tool,
described above. Execution times were measured using
the time shell command. Each timing result was gath-
ered by running the program 5 times, discarding the low-
est and highest execution times so obtained, and averag-
ing the remaining 3 run times.

To evaluate the effect of IAT checking on an individ-
ual system call, we measured the time taken to execute
a lightweight system call (getpid) and two moderate-
weight ones (open, read), with and without IAT. In each
case, we used the rdtsc instruction to measure the sys-
tem time taken to make each call n times in a loop (we
used n = 10,000,000 for getpid, 100,000 for open, and
300,000 for read), and divided the resulting time by n to
get the average time for a single call. We repeated this
10 times for each system call, removed the highest and
lowest run times, and averaged the remaining eight run
times. Table 1 shows the results.

Not surprisingly, getpid experiences the largest per-
centage increase from incorporating IAT checks in the
kernel, but the actual increase is quite small, about
0.25 µsec per call on average. The additional runtime
overhead for open and read are quite small: 1% for
open and 2.5% for read. The reason read experiences
a larger increase than open is that in the program we
used, it happened to appear later in the IAT, which—
because of the naive linear search currently used by our
implementation—led to a larger search time.

To evaluate the effect of IAT checks on realis-
tic benchmarks, we used ten benchmarks from the
SPECint-2000 benchmark suite.2 The results are shown
in Figure 3. It can be seen from this that the effect of
adding IATs on realistic applications is quite small: on
average disk file sizes increase about 0.11%, total mem-
ory size by 0.45%, and execution time by 1.7%. This
is not surprising, since for unmodified executables, the
kernel executes only a few instructions per system call
to discover that a process has no associated IAT and pro-
ceed without any further attention to verification. The
overhead associated with executing binaries with the
protection system enabled is only slightly higher. One
reason for only such a small increase in runtime is that
system calls compose such a small fraction of the over-
all runtime in general due to the low frequency of their
occurrence.

5.4 Cost of Transformations to Thwart
Mimicry attacks

5.4.1 Time Cost

The effect of using various techniques for thwarting
mimicry attacks on execution time is shown in Figure
4(a). Pocketing incurs an overhead of 2.8% on average.
The reason for this small overhead is that the unmapped
pages inserted are loaded into memory only once and are
never executed, There is, however, one program, crafty,
for which pocketing incurs a significant overhead, of
around 13.5%. This turns out to arise, not from the

2We were unable to build two other benchmarks in the suite,
perlbmk and eon.

USENIX Association248

bzip2 crafty gap gcc gzip mcf parser twolf vortex vpr Mean
0.0

1.0

2.0

3.0

4.0

5.0

in
cr

ea
se

(%
)

0.0

1.0

2.0

3.0

4.0

5.0

in
cr

ea
se

(%
)

disk space

memory footprint

execution time

0.
11

3
0.

04
5

1.
7

Figure 3: Time and space costs of IAT

system call verification mechanism, but due to a com-
bination of increased page faults and a degradation in
instruction cache performance.

NOP insertion incurs a runtime overhead of 5% on
average, with two programs, crafty and gcc, incurring
overheads of 8.5% and 9% respectively. This overhead
comes directly from the increase in the number of in-
structions executed.

Layout randomization incurs a cost of 5.7% on av-
erage, with three programs experiencing significant in-
creases in runtime: crafty (9.3%), gcc (14.7%), and
vortex (10.2%). The cost increases here arise primar-
ily from a degradation in instruction cache performance
(see, e.g., Pettis and Hansen [25]). Our experiments in-
dicate that unless layout randomization is done carefully,
it can lead to a large increase in the number of TLB
misses, resulting in a significant degradation in perfor-
mance.

In comparison to other system call tracing based ap-
proaches such as Janus [16], Ostia [16], systrace [26]
and ASC [29], the runtime overheads incurred are seen
to be quite modest3. The worst case micro-benchmark
overheads (35%) are a much smaller than other ap-
proaches (Janus: 10×, Ostia: 12×, systrace: 25× and
ASC: 3×). Similarly, the worst case benchmark over-
head (15%) are also quite comparable (Janus: 8%, Ostia:
25%, systrace: 30% and ASC: 3%).

5.4.2 Space Cost

We considered two different aspects of space: the mem-
ory footprint of a program, and the amount of disk
space it occupies. For each program, the disk space
was obtained simply from the size of the executable
file; its memory footprint was measured by examining
the program header table and adding up the sizes of

3Since each system provides different levels and types of security,
a direct comparison is not possible.

each segment that is to be loaded into memory (i.e., the
PT LOAD flag is set); in the case of pocket insertion,
we then subtracted out the space occupied by pockets.
In general, the disk and memory footprints of a program
will be different, for two reasons. The first is that not
all sections in the disk image of a program are placed in
memory (e.g., the IAT section is not), while not all sec-
tions in memory are represented explicitly in the disk
image (e.g., the bss section). The second is that the
pocketing transformation introduces unused pages into
the executable that affect its disk size but not its mem-
ory size. The increase in memory footprint size for our
benchmarks is shown in Figure 4(b), with the effects on
disk size shown in Figure 4(c).

The increase increase in the memory requirements of
a program due to the introduction of the IAT is mini-
mal in user space and only approximately 8n bytes in
kernel space, where n is the number of system calls in
the program (the IAT has two 4-byte entries per system
call). Since n is typically quite small in most programs,
the memory impact of the IAT is also small. The bulk
of the memory increases result from the secondary de-
fenses, i.e., layout randomization, nop-equivalent inser-
tion, and pocket insertion. On average, the overall mem-
ory cost is not large, ranging from about 9% for pocket
insertion to 12% for NOP insertion, to about 20% for
layout randomization. The largest increases are seen for
layout randomization, where several benchmarks incur
memory footprint increases of around 25% (e.g., gcc:
26.2%; mcf: 24.5%; vortex: 23.7%).

The increases in disk size are also reasonable for both
layout randomization and NOP insertion, with over-
heads of 21.6% and 13.5% respectively. However, the
space requirements for pocket insertion are much larger
than the respective memory requirement (89.5% on aver-
age). This is due to the fact that while the actual insertion
of pockets does not increase the memory footprint of the
affected executable since these pockets are unmapped at

14th USENIX Security SymposiumUSENIX Association 249

14th USENIX Security Symposium

bzip2 crafty gap gcc gzip mcf parser twolf vortex vpr Mean
0

5

10

15

in
cr

ea
se

(%
)

0

5

10

15

in
cr

ea
se

(%
) IAT + Randomization

IAT + pockets

IAT + NOPs

(a) Execution Time

bzip2 crafty gap gcc gzip mcf parser twolf vortex vpr Mean
0

10

20

30

in
cr

ea
se

(%
)

0

10

20

30

in
cr

ea
se

(%
)

IAT + Randomization

IAT + pockets

IAT + NOPs

(b) Memory footprint

bzip2 crafty gap gcc gzip mcf parser twolf vortex vpr Mean
0

25

50

75

100

in
cr

ea
se

(%
)

0

25

50

75

100

in
cr

ea
se

(%
)

IAT + Randomization

IAT + pockets

IAT + NOPs

(c) Disk size

Figure 4: Time and space costs for thwarting mimicry attacks

runtime, the padding still takes up space in the file.4

6 Extensions and Future Work
The defence mechanisms described in this paper focus
primarily on “control flow attacks,” which try to manip-
ulate the program’s normal control flow in order to ex-
ecute the appropriate system call(s). They currently do
not address “data attacks” based on altering the data that
get propagated in the system, for example, by changing
the arguments to system calls. Such attacks are diffi-
cult to track since data values are generally not known

4The pockets actually do contribute to the memory image initially,
but are unmapped before execution of the original executable.

until runtime and can potentially vary with each execu-
tion. Secondly, features such as interpretation, run-time
code generation and templates, which are seen in many
new programming models, introduce levels of indirec-
tion which can potentially be exploited to attack the sys-
tem. In this section we discuss such attacks, and pro-
pose simple extensions which may be used to formulate
appropriate defences.

6.1 Data Attacks

Argument Hijacking Attacks.
An argument hijacking attack is one in which the goal is
to replace the arguments to a legitimate system call with
those of an attackers choice. A simple defence would

USENIX Association250

rely on extending code randomization to methodically
hide system call parameters. Randomization techniques
can be used to try and make it difficult for attack code
to identify parameters, by making it appear as though
all system calls have the same number of parameters
(system call homogenization) and by randomizing the
order of arguments (argument randomization) in a way
that potentially allows each call site to use its own per-
mutation [28]. Incorporating such a scheme would be
straightforward from an implementation perspective and
would require trivial modifications to the IAT. Specifi-
cally, for each entry in the table one would need to store
two additional fields indicating correct parameter loca-
tions and the exact argument order.

A more sophisticated defence would be through the
realization of a system call monitor [29]. To do this, one
would need to modify the IAT so that each entry contains
additional information which encodes for each system
call argument a set of acceptable values. Thus each entry
in the IAT would correspond to a call-site specific sys-
tem call policy which can, at runtime, be checked each
time the system call occurs. Techniques described by
Rajagopalan et al. can directly be applied for automat-
ically deriving system call policies and realizing more
sophisticated monitors [29].

Interpreted programs.
A related problem arises with interpreters embedded in
applications. Programs executed on such interpreters are
viewed as data to the underlying system. This means that
if a “bad” system call is executed in interpreted code—
either because the injected attack code is interpreted, or
because the attack code has modified part of an inter-
preted program—then this system call will be seen by
the underlying defences as coming from a legitimate ad-
dress, and will be allowed to execute. Such attacks are
not addressed by the techniques proposed here.

6.2 Advanced Scanning Attacks

Templates.
Implementations of object oriented programming lan-
guages, such as C++, keep function pointers associated
with the virtual methods in a class in a structure called a
vtable, which is typically stored in static memory. Scan-
ning the static memory region to locate vtables can be
used as the starting point for a scanning attack. If a
vtable is identified, the attack can potentially bypass pro-
tection mechanisms such as pocketing. One way to de-
fend against this is using fine-grained pocketing, possi-
bly by inserting pockets between basic blocks.

Stack inspection.
Another related attack is one in which the adversary ex-
amines the stack in search of addresses (such as function
return addresses or function pointers stored in local vari-
ables) which can serve as a starting points for scanning
attacks. Randomizing the order of local variables within
activation records may prevent known address attacks,
and encrypting pointers (as done by PointGuard [8]) can
be used to prevent accesses to return addresses and func-
tion pointers. Note that for any of these advanced scan-
ning attacks, the attacker must inject a significantly com-
plex mechanism such as an interpreter or a simulator into
the running program. A related side effect would be that
programs under attack would show a drastic increase in
their cycle count. This anamolous behaviour would po-
tentially trigger an alarm in any intrusion detection sys-
tem.

Dynamic Interfaces.
Distributed object technologies such as Microsoft COM
suffer from the same vulnerabilities as object oriented
languages, in that they place structures containing func-
tion pointers in memory. In COM, interfaces to objects
are dynamically generated and passed in from outside
the application program. Even if the application pro-
gram was obfuscated, these external objects would likely
not be obfuscated, and the interface structures could eas-
ily be scanned and identified by an attacker. Further-
more, COM identifies its objects and interfaces through
Globally Unique Identifiers (GUIDs), and this makes it
easy for an attacker to determine objects and derive in-
formation such as the type and the operations supported.

One solution that we propose would be the introduc-
tion of a small shim layer between the application and
the COM infrastructure. Binary rewriting techniques
could be used in the application program to encrypt the
GUIDs and permute the function pointers in the COM
interface structures. The shim layer would decrypt and
de-permute these data structures before sending them
to the COM infrastructure. Systems such as COM are
significantly more complex and hence securing them is
non-trivial, and an area of future work.

7 Related Work
The work that is closest to ours is that Rabek et al., who
propose monitoring the origin of library calls for the
Windows operating system to prevent misuses of critical
functions [27]. Their particular approach suffers mostly
due to the fact that intercepting attack code at this level
is vulnerable to mimicry attacks that “spoof” the return

14th USENIX Security SymposiumUSENIX Association 251

14th USENIX Security Symposium

address on the stack. The approach can also be bypassed
by the scanning attacks described here. Also related is
the work of Bernaschi et al., who propose modifications
to the Linux operating system to regulate the usage of
security-critical system calls [2]. System calls are in-
tercepted at the kernel level and are validated based on
rules stored in database. An example rule is validation
of arguments known to be valid or safe. A drawback
of this approach is that it requires manual encoding of
access control rules for individual system calls and ap-
plications.

Du Varney et al. have proposed embedding semantic
information into ELF binaries via an added section [9].
This work aims to simplify the task of post-processing
executables for security purposes using binary rewriting
tools. Because of this, the nature of the information em-
bedded into binaries by Du Varney et al. is very different
from ours.

Bhatkar et al. propose the use of address obfuscation
to foil known-address attacks [3]. The idea is to ran-
domize the base addresses of the stack, heap and code
regions, and add gaps within stack frames and at the end
of memory blocks requested by malloc. This technique
is effective against known address attacks but is suscep-
tible to the scanning attacks described in this paper.

There is a wide body of literature on defending against
code injection attacks. Several researchers have pro-
posed static program analysis to detect potential vulner-
abilities such as buffer overflows [15, 20, 36]. When
applied thoroughly, such schemes have the advantage
of not letting an attacker even begin an attack. One
disadvantage of such schemes is that they require that
programs be recompiled using special compilers. This
makes it difficult to apply them to third-party software,
where the source code is unavailable and the conditions
under which the binary was produced are not known.

ExecShield [34] prevents code injection via buffer
overflow by making the process’s heap and stack non-
executable. This is difficult on the x86 architecture be-
cause it lacks separate “read” and “execute” page pro-
tection bits; ExecShield solves the problem by limiting
the size of the code segment and putting the stack and
heap beyond the end. Although this technique prevents
code injection attacks, it does not prevent overwriting
the return address with the address of a library, e.g. sys-
tem. ExecShield performs address randomization to mit-
igate this type of attack, although this requires compiler
support. ExecShield does not support programs that le-
gitimately have executable content on the stack such as

trampolines. These programs must have a flag set in the
executable header indicating that ExecShield must not
be invoked.

Other techniques, such as StackGuard [10] and For-
matGuard [11], aim to prevent control transfers to the at-
tack code. As in the previous case, such schemes require
that programs be recompiled using special compilers, in-
clude files, and/or libraries, making them difficult to ap-
ply to third-party software. Moreover, they can be by-
passed by well-crafted attacks (see, e.g., [4, 30]). There
has been some recent work on disrupting the actual ex-
ecution of attack code by means of “instruction set ran-
domization” [1, 18], but current proposals for this have
the drawback high execution overheads in the absence of
specialized hardware support. Finally, Chew and Song
have proposed techniques such as randomization of sys-
tem call numbers [5]; a drawback of such approaches is
its inflexibility in dealing with third-party software.

The idea of constructing semantic models of “legiti-
mate” system call behaviors for a program in terms of se-
quences of system calls, and monitoring departures from
such models, was proposed by Forrest et al. [13, 17, 38]
and subsequently explored by a number of researchers
(see, for example, [12, 19, 32, 35]). A drawback to this
approach is that it is vulnerable to specific mimicry at-
tacks [37]. Several of these schemes use the return ad-
dress pushed by a system call to identify its call site
[12, 32]. While this resembles our approach of identi-
fying legitimate system calls based on the return address
pushed by the software trap instruction, a significant dif-
ference between the two approaches is that our use of
the IAT mechanism allows for other defenses against
mimicry attacks, in partcular the system call cloaking
scheme described in Section 4.1. Another difference is
that schemes that rely on using training inputs to con-
struct their semantic models of “good” executions have
the drawback that it is difficult to ensure adequate code
coverage, making for the possibility of false positives;
by contrast, our approach is static, and so does not not
suffer from runtime code coverage issues.

The use of NOP-insertion and code layout randomiza-
tion to obfuscate code structure were proposed by For-
rest et al. [14]; however, this work does not describe an
implementation or provide experimental results. Other
work along these lines is that of Wroblewski [39]. Many
of these ideas can be traced to the Cohen’s work on sys-
tem diversification [6]. Additional techniques for binary
obfuscation, to hamper static disassembly, are described
by Linn and Debray [22].

USENIX Association252

Finally, several authors have proposed static analyses
and/or type-based schemes to detect potential security
vulnerabilities that could lead to the injection and acti-
vation of attack code [15, 20, 24]. Such schemes have
the considerable merit of preventing the injection of at-
tack code in the first place, which renders moot the is-
sues addressed in this paper. A major drawback with
such schemes is that they assume sufficient control of
the code bases of all of the applications to be run on a
system, so as to allow their analyses to be run on the
source code. This is not always a realistic assumption in
practice, since many applications are sold or distributed
only as binaries.

8 Conclusions
Code injection attacks on software systems have become
commonplace. Such attacks must eventually execute
one or more system calls to cause damage outside of the
compromised process. This paper describes a compre-
hensive approach for preventing the execution of such
system calls. The core idea is twofold: first, use a table
of addresses of “allowed” system call interrupt instruc-
tions to determine whether a given system call was ex-
ecuted from attack code; and second, use several differ-
ent techniques to thwart mimicry attacks that attempt to
get around this by identifying and executing system calls
in the program code or in libraries. Our experiments
indicate that the technique is effective and incurs only
small runtime overheads. From a pragmatic perspec-
tive, it is also flexible: first, it is possible to run unmod-
ified third-party software transparently, if desired, with-
out any problems; and second, the additional informa-
tion needed for our approach can be obtained using a bi-
nary rewriting approach on an executable, which means
that it is not necessary to recompile the source code for
an application using special compilers or libraries.

Acknowledgements
The work of Linn, Rajagopalan and Debray was sup-
ported in part by the National Science Foundation un-
der grants EIA-0080123, CCR-0113633, and CNS-
0410918. Discussions with R. Sekar and comments by
the anonymous reviewers were very helpful in improv-
ing the contents of the paper.

References
[1] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,

D. Stefanovic, and D. D. Zovi. Randomized instruction
set emulation to disrupt binary code injection attacks. In

Proc. 10th ACM Conference on Computer and Commu-
nication Security, pages 281–289, 2003.

[2] M. Bernaschi, E. Gabrielli, and L. V. Mancini. Operat-
ing system enhancements to prevent the misuse of system
calls. In Proc. ACM Conference on Computer and Com-
munications Security, pages 174–183, 2000.

[3] S. Bhatkar, D. C. Du Varney, and R. Sekar. Address ob-
fuscation: an efficient approach to combat a broad range
of memory error exploits. In Proc. 12th USENIX Security
Symposium, pages 105–120, 2003.

[4] Bulba and Kil3r. Bypassing StackGuard and Stack-
Shield. Phrack, 10(56), May 2000.

[5] M. Chew and D. Song. Mitigating buffer overflows
by operating system randomization. Technical Report
CMU-CS-02-197, Electrical and Computer Engineering
Department, Carnegie Mellon University, Pittsburgh, PA
15213, Dec. 2002.

[6] F. B. Cohen. Operating system protection through pro-
gram evolution, 1992. http://all.net/books/
IP/evolve.html.

[7] C. Collberg, J. H. Hartman, S. Babu, and S. K. Udupa.
Slinky: Static linking reloaded. In USENIX 2005 Annual
Technical Conference, pages 309–322, Apr. 2005.

[8] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point-
Guard: Protecting pointers from buffer overflow vulnera-
bilities. In Proc. 7th. USENIX Security Symposium, pages
63–78, Jan. 1998.

[9] D. Du Varney, S. Bhatkar, and V. Venkatakrishnan.
SELF: a transparent security extension for ELF binaries.
In Proc. New Security Paradigms Workshop, Aug. 2003.

[10] C. C. et al. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proc. 7th.
USENIX Security Symposium, pages 63–78, Jan. 1998.

[11] C. C. et al. FormatGuard: Automatic protection
from printf format string vulnerabilities. In Proc. 10th
USENIX Security Symposium, Aug. 2001.

[12] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack informa-
tion. In Proceedings of the IEEE 2003 Symposium on
Security and Privacy, pages 62–77, May 11–14 2003.

[13] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for UNIX processes. In Proc.
IEEE Symposium on Security and Privacy, pages 120–
128, 1996.

[14] S. Forrest, A. Somayaji, and D. H. Ackley. Building di-
verse computer systems. In Workshop on Hot Topics in
Operating Systems, pages 67–72, 1997.

[15] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and
D. Vitek. Buffer overrun detection using linear program-
ming and static analysis. In Proc. 10th ACM Conference
on Computer and Communication Security, pages 345–
354, 2003.

14th USENIX Security SymposiumUSENIX Association 253

14th USENIX Security Symposium

[16] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A del-
egating architecture for secure system call interposition.
In Proc. Network and Distributed Systems Security Sym-
posium, February 2004.

[17] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[18] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Coun-
tering code-injection attacks with instruction-set random-
ization. In Proc. 10th ACM Conference on Computer and
Communication Security, pages 272–280, 2003.

[19] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the
detection of anomalous system call arguments. In Proc.
European Symposium on Research in Computer Security
(ESORICS), volume 2808 of Springer LNCS, pages 326–
343, 2003.

[20] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proc. 10th. USENIX
Security Symposium, pages 177–190, Aug. 2001.

[21] J. R. Levine. Linkers and Loaders. Morgan Kaufman
Publishers, San Francisco, CA, 2000.

[22] C. Linn and S. Debray. Obfuscation of executable code
to improve resistance to static disassembly. In Proc. 10th.
ACM Conference on Computer and Communications Se-
curity (CCS 2003), pages 290–299, Oct. 2003.

[23] R. Muth and S. K. Debray. On the complexity of flow-
sensitive dataflow analyses. In Proc. 27th ACM Sympo-
sium on Principles of Programming Languages (POPL-
00), pages 67–80, Jan. 2000.

[24] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proc. 29th ACM
Symposium on Principles of Programming Languages
(POPL), pages 128–139, Jan. 16–18, 2002.

[25] K. Pettis and R. C. Hansen. Profile-guided code posi-
tioning. In Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
16–27, June 1990.

[26] N. Provos. Improving host security with system call poli-
cies. Proceedings of the 12th USENIX Security Sympo-
sium, 2003.

[27] J. C. Rabek, R. Khazan, S. M. Lewandowski, and R. K.
Cunningham. Detection of injected, dynamically gen-
erated, and obfuscated malicious code. In Proc. 2003
ACM Workshop on Rapid Malcode (WORM), pages 76–
82, New York, N.Y., 2003. ACM Press.

[28] M. Rajagopalan, S. Baker, C. Linn, S. Debray,
R. Schlichting, and J. Hartman. Signed system calls and
hidden fingerprints. Technical report, TR04-15, Depart-
ment of Computer Science, The University of Arizona,
Tucson, AZ 85721, May 2004.

[29] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting.
Authenticated System Calls. In Proc. IEEE International
Conference on Dependable Systems and Networks (DSN-
2005), June 2005.

[30] G. Richarte. Bypassing the StackShield and StackGuard
protection: Four different tricks to bypass StackShield
and StackGuard protection. Technical report, Core
Security Technologies, Apr. 2000. http://www2.
corest.com/corelabs/papers/index.php.

[31] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto:
A link-time optimizer for the Intel IA-32 architecture.
In Proc. 2001 Workshop on Binary Translation (WBT-
2001), 2001.

[32] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous pro-
gram behaviors. In Proc. IEEE Symposium on Security
and Privacy, pages 144–155, 2001.

[33] Symantec Corp. Understanding and managing polymor-
phic viruses. Technical report, 1996.

[34] A. van de Ven. New security enhancements in Red Hat
Enterprise Linux. http://www.redhat.com/f/
pdf/rhel/WHP0006US_Execshield.pdf.

[35] D. Wagner and D. Dean. Intrusion detection via static
analysis. In IEEE Symposium on Security and Privacy,
pages 156–169, 2001.

[36] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
first step towards automated detection of buffer overrun
vulnerabilities. In Proc. Network and Distributed System
Security Symposium, pages 3–17, Feb. 2000.

[37] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detecion systems. In Proc. 9th. ACM Confer-
ence on Computer and Communications Security (CCS),
pages 255–264, 2002.

[38] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In
Proc. IEEE Symposium on Security and Privacy, 1999.

[39] G. Wroblewski. General Method of Program Code Ob-
fuscation. PhD thesis, Wroclaw University of Technol-
ogy, Institute of Engineering Cybernetics, 2002.

[40] T. Yetiser. Polymorphic viruses: Implementation, detec-
tion, and protection. Technical report, VDS Advanced
Research Group, 1993. http://www.virusview.
net/info/virus/j&a/polymorf.html.

USENIX Association254

