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Abstract. Physical computational devices leak side-channel information that may, and often
does, reveal secret internal states. We present a general transformation that compiles any
circuit into a device that maintains secrecy even in the presence of well-defined classes of
side-channel leakage. Our construction requires only a minimal leak-proof component: one
that draws random elements from a simple distribution. We thus reduce the problem of
shielding arbitrary complex circuits to the problem of shielding a single simple component.
Our approach is based on modeling the adversary as a powerful observer that inspects the
device via a “limited” measurement apparatus. We capture the notion of “limited” measure-
ments using computational complexity classes, and our proofs of security rely on the hardness
of certain functions for these classes. Thus, for example, AC0 lower bounds yield a construc-
tion that is resilient to any leakage that can be computed by constant-depth circuits. More
generally, we give a generic composition theorem that shows how to build a provably secure
devices of arbitrary complexity out of components that satisfy a simulatability condition.
Several applications are shown.
In contrast to previous works, we allow the side-channel leakage to depend on the whole state
and on all the wires in the device, and to grow unbounded over time.

1 Introduction

The best of cryptographic algorithms are insecure when their implementations inadver-
tently reveal secrets to an eavesdropping adversary. Even when the software is flawless,
practical computational devices leak information via numerous side channels, including
electromagnetic radiation (visible and otherwise) [33][24], timing [9], power consumption [23],
acoustic emanations [38], and numerous effects at the system architecture levels (e.g., cache
attacks [5][29][30]). These leakages are particularly accessible when the computational de-
vice is at the hands of an adversary, as is often the case for many modern devices such
as smart-cards, TPM chips and (potentially stolen) mobile phones and laptops. Reducing
these leakages has proven excruciatingly difficult and costly, and their complete elimination
is nowhere in sight.



If computational device leaks abundantly, then why are many side channel attacks hard
to carry out, and why do some devices remain unbroken? It is because useful measurements
can be practically difficult to realize. Physical measurement apparatuses typically produce a
“shallow” observation about the measured object, by combining some of its salient physical
properties in a simple way. The observation consists of a limited amount of information,
obtained as a simple function of physical state of the device; any in-depth analysis happens
only as post-processing.

Following Micali and Reyzin [25], we thus think of the measurement apparatus as
performing computation on the physical state of the device, on behalf of the adversarial
observer. While the observer is powerful (e.g., polynomial-time or even unbounded), it is
constrained to learning the output of a computationally-bounded leakage function f applied
to the state of the device. The function f is adaptively chosen by the observer from a class
L, which models the practical limitations of the physical experimental setup available to
the adversary. For example, L may consist of all functions computable by circuits of small
depth.

To protect against such computationally-bounded leakages, one may try to encode the
computation in a way that is too complicated for the class L to decode. We show that,
indeed, for certain classes of leakages, any computation can be so encoded: namely, we
give a method for transforming arbitrary circuits into new circuits, which are still leaky
but whose leakage is useless to the attacker (in the sense of offering no advantage over
black-box access to the original circuit’s functionality).

Our model and results generalize those of Ishai, Sahai and Wagner [18], who considered
leakage of at most t wires (in our terms, this means L consists of all functions which output
verbatim some t of their inputs). In contrast, we consider classes of leakage functions which
have simultaneous access to the whole state of the circuit and can be queried repeatedly
in an adaptive manner. The leakage functions are constrained in just two ways: to reside
in a low complexity class, and to have a bounded output size per invocation (the aggregate
output over multiple adaptive invocation is unbounded). Note that these constraints are
necessary when we allow observing of the whole state: if f ∈ L can output the whole state
in one shot then there is no hope of security, and if f is computationally powerful enough
to predict the future state of the device then the observer can recover the full state at some
point in the future by the “precomputation” attack of [12] and [22, Section 5].

1.1 Our Results

After defining the model, we give a number of positive results, of varying generality, on the
existence of circuit transformations that protect against computationally-bounded leakage.
We also discuss complementary impossibility results justifying some of our requirements.

Leakage resilience from linear secret sharing. Given any linear secret sharing scheme
Π and a leakage class L which cannot decode Π, we show an explicit construction that
transforms any circuit C into a circuit Ĉ that is resilient against leakages in L.
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The gist of the construction is to encode every wire of C into a bundle of wires in Ĉ using
Π, where each wire carries a single share. Similarly to Ishai et al. [18], we transform each
gate in C into a gadget in Ĉ which operates on encoded bundles. The gadgets are carefully
constructed to use Π internally in a way that looks “essentially random” to leakages in L,
and we show that this implies that the whole content of the transformed circuit remains
“essentially random” to a leakage in L. Hence, the adversary gets no advantage from his
observation of the leakage; formally, this is captured by a simulation-based definition.

Our construction makes an extra requirement: the gadgets require the use of a small
leak-free component O, which merely outputs samples from a fixed distribution, namely
the encoding of 0 under Π. Thus, following the approach of Micali and Reyzin [25], who
proposed reducing the physical security of complex cryptographic constructions to the
physical security of simple components that are used in those constructions, we reduce
the security of arbitrary circuits to the security of one simple component. This simple
“opaque” component is minimal in many respects: it has no secrets, no states and no
outputs; moreover, it can be computed by a small shallow circuit, or even computed in
advance and read from a leak-free sequential-access storage. Furthermore, we show how
the leak-free requirement can be relaxed.

Resilience against AC0 and ACC0[p] leakage. As a concrete example, we invoke known
circuit lower bounds to obtain an unconditionally secure transformation. For the case where
the scheme Π is given by the parity function (i.e., a bit b is shared into random bits whose
parity is b), and the leakage class AC0 (Boolean circuits of constant depth, polynomial size
and unbounded fan-in), the lower bound of Hastad [17] implies that functions in L cannot
decode Π. As a further example we show that “sum mod p encoding” can be used to
instantiate our construction to result in resilience of ACC0[q] leakage, for distinct primes p
and q.

Security proof via general composition. We show a general technique for proving
security of leakage-resilient circuit transformations. Namely, we capture a strong notion
of leakage-resilience for circuits or parts thereof, by saying that they are reconstructible if
there exist certain efficient simulators for their internal wires that fool the leakage class.
We then show a composition result: if all parts of a circuit are reconstructible then so is
the whole circuit. This implies security of the transformation. Thus, security of the overall
transformation is reduced to reconstructibility of the individual gadgets used. Our specific
results using linear secret-sharing schemes follow this route, and other transformations can
be built by devising different gate gadgets and merely showing that each is reconstructible
by itself.

Leakage-resilience from opaque public-key encryption. We demonstrate the useful-
ness of the aforementioned general composition, by using it to concisely prove the security
of another (very different) circuit transformation that is secure against all polynomial-
time measurement. This transformation relies on more complicated leak-free gates, which
compute public-key encryption and decryption.
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Necessity of leak-free gates. We argue that the use of leak-free components (as done
in our constructions) is actually necessary, at least for “natural” constructions whose se-
curity is proven by (or implies) reconstructibility. This is done by showing that if such a
transformation uses only leak-free components of fixed size (or even components which can
be merely verified by circuits of small depth), then hard functions have shallow circuits; for
certain parameter regimes this is unconditionally false, and for others it implies an unlikely
collapse of complexity class hierarchies, e.g., AC = P/poly.

1.2 Models and Assumptions

Leakage from computational devices is more than an artifact of practical constraints on
engineering and manufacturing: it appear to reflect fundamental physical reality. Indeed,
the holographic bound conjecture in physics asserts that all information (entropy) in a re-
gion of space could be transcribed on its boundary surface, and moreover, the holographic
principle conjecture asserts an isomorphism between the observable properties of the re-
gion’s interior and those of its boundary surface [44][43][7].4 Consequently, if two states of a
computational device are (statistically) indistinguishable under all physical measurements
of the surface of the device, then their internal states, and thus their future input/output
relation, are (statistically) indistinguishable. Put otherwise, perfect useful containment of
(usable) secrets is physically impossible.

Despite these harsh realities, we wish to obtain meaningful security functionality, which
typically necessitates storing and computing on secrets. Thus, cryptographers are asked to
play poker using a deck of transparent cards. What would be a sound way to proceed?
Clearly, it is necessary to posit some limits on the adversary’s observational powers, oth-
erwise all secrets might be directly observed. Several recent works (for both particular
functionalities and general ones), as well as this work, make specific assumptions about the
nature of the leakage. We review these assumptions below.

1.2.1 Leak-free components
A natural restriction on the adversary’s power is to posit that some parts of the circuit do
not leak (i.e., are not provided as inputs to the leakage function).

The model of Micali and Reyzin [25] (and subsequently Dziembowski and Pietrzak
[12], Pietrzak [32] and Faust et al. [13]) assumes the presence of leak-free memory. This is
captured by the statement that “only computation leaks information” (axiom 1 in [25]),
i.e., memory not accessed during a computation step does not affect the observable leakage
from that stage.

The “Oblivious RAM” model of Goldreich and Ostrovsky [15,16] reverses the roles:
while memory is leaky, the computation is assumed to be on a leak-free secure processor.
4 Of the many variants of these conjectures, we refer to the spacelike projection theorem of the covariant

entropy bound as defined by Bousso [7], and to the strong holographic principle as defined by Smolin
[40]. These apply to closed, smooth surfaces in the absence of gravitational and relativistic effects. Of
course, in practice most side channels are rather more prosaic; the gap is analogous to that of energy
consumption in current VLSI technology vs. physical lower bounds on reversible computation.
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In this model, they show a generic transformation that makes random-access machines
resilient to polynomial-time leakage (with polylogarithmic blowup in memory size and
running time).

Both the leak-free memory and leak-free processor assumption seem most applicable
when the adversary resides within the system (e.g., code executing on a chip) and is re-
stricted by the system’s communication channels. They seem more difficult to realize when
circuits may be physically probed in ways that do not respect the architecture’s designated
channels, and may even be in the hands of the adversary. Popular storage technologies
leak physical information: SRAM and flip-flops have distinct observable current flows ac-
cording to their state; RAM is frequently refreshed by (potentially leaky) circuitry; hard
disks induce a magnetic field that is, in principle, measurable in aggregate; and the ease
of global measurement on optical media is readily observable by looking at the surface
of a partially-recorded CD-R disc. The leak-free processor of [15,16] is fairly complex: in
particular, it contains a pseudorandom function and its key, a number of registers, and
assorted logic. Protecting such complex circuits is, in fact, our goal.

Our constructions, too, rely on a leak-free component (whose necessity is discussed in
Section 7). This component is simple, small and stateless, and can be used for protecting
arbitrary circuits. Notably, one can compose our construction with that of Goldreich and
Ostrovsky [15,16], by applying their transformation to protect the large memory, and then
applying our transformation to protect the secure processor.

Given the physical realities, assuming any leak-free components generally means assum-
ing that an adversary is simply not able to capture the information that is leaking from
the component. If the adversary is able to capture the information, then the assumption
is violated, and thus the proof of security no longer applies, even if the adversary can’t
put the information to good use for specific schemes. We therefore provide a relaxation of
this assumption in Section 6.2. The relaxation requires merely that the internal wires of
the component be efficiently simulatable in a way that is indistinguishable for the leakage
function.

1.2.2 Spatial locality

Several works build security on the assumption that the leakage measurement is spatially
local. That is, the model assumes that the leakage observed by the adversary is a function
of just a part of the device’s state (e.g., a few wires, or one component, or partial memory),
independently of the rest of the device’s state.

For example, Ishai et al. [18] consider the case of an adversary that can read out a
small number of wires but gets no information at all about the rest of the wires. For
the case of leakage of a single wire (“first-order power analysis”), practical schemes have
been proposed and implemented using XOR-based masking; these trivially fail as soon
as the spatial locality assumption is even slightly violated, e.g., by an observer that can
simultaneously measure an XOR of two wires (such “high-order power analysis” attacks
have indeed been demonstrated in practice (e.g., [45]). More generally, functionality-specific
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masking schemes have proposed against spatially-local leakage for any fixed number of wires
(e.g., [36] specifically for the AES cipher).

Alas, global measurements are typically easier to conduct than localized measurements
that focus on specific wires or memory cells; in many side-channel attacks, the main practi-
cal difficulty for the attacker lies precisely in obtaining high spatial resolution and accuracy.
Thus, many attacks do use global measurements. For example, several classical attacks use
a global power consumption to learn a global property, namely the total Hamming distance
of a state transition, from which it covers the cipher’s secret keys.

Note that several aforementioned constructions [12][32][13], which are defined in terms
of leak-proof memory (i.e., “only computation leaks information”) actually remain secure
in a more lax but still spatially-local model. As observed in [12, Footnote 2], the circuit’s
state consists (essentially) of two halves, and the schemes remain secure if the observer can
measure both halves simultaneous but independently, i.e., the leakage function is of the
form f(SL, SR) = (fL(SL), fR(SR)) where SL and SR are the two halves of the state. This
relaxation of spatial locality still forbids global measurement of non-associative functions.

In contrast to most previous work, we allow the leakage function to see everything,
and assume, instead, that it is limited in what it can compute and output. The price we
pay for this generalization is in computational assumptions: we must also assume (unless
a complexity lowerbound is readily available, as in the case of AC0) that some encoding
scheme is hard for the leakage function to decode.

1.2.3 Other related approaches

Recently, various constructions [2,3,20,27] have been presented that achieve security against
adversaries that can learn arbitrary functions of the secret key without relying on leak free
components or the spatial locality assumption. All these constructions are stateless and thus
must assume that total leakage does not exceed the size of the secret key. In [2] Akavia
et al. show that certain lattice-based public-key encryption schemes remain remarkably
secure in this model. Naor and Segev [27] show how to achieve CCA1 and even CCA2
security using hash-proof systems. Provably secure signature schemes have been proposed
by Alwen et al. [3] and independently by Katz [20].

Dodis et al. [10] study the problem of “cryptography with auxiliary information.” In
this model the range of the leakage function f is not necessarily bounded. Instead, they
assume that given f(sk) it is exponentially hard to compute sk. This is similar, in spirit,
to our assumption that functions in L cannot decode.

Standaert et al. [41] consider a restricted version of the model in [25] by assuming
a limited class of leakage functions, such as ones that are currently used in practice to
break systems (such as Hamming weight attacks). In this model Petit et al. [31] analyze a
block-cipher based construction for a PRNG.

In [42], Standaert et al. work in the random oracle model and assume that the leakage
functions are unable to query the random oracle (and are also non-adaptive). They show
that standard PRF constructions are leakage-resilient in the random oracle model.
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Recent work of Rabin and Vaikuntanathan [34] considers the case of “noisy leakage,”
assuming that the observer sees a corrupted copy of the state subject to some noise. For the
case where the noise independently flips each observed wire value with some probability,
[34] shows how arbitrary circuits can be compiled for resilience against noisy leakage. This
model can be recast as a special case of ours, and we provide an alternative security proof
for the construction of [34] (see Section 6.4).

1.3 Organization of this Paper

Section 2 defines our model for leakage-resilient circuit transformations. Section 3 describes
our main construction of circuit transformers from linear secret sharing schemes. Security
of this construction is proved in Section 4 (which defines the notion of “reconstructibile”
stateless circuits and proves that it holds for our construction) and Section 5 (which derives
security for the general stateful case). Section 6 explores a number of special cases and
generalizations of our construction and proof techniques. Lastly, Section 7 investigates
whether leak-free circuits can be built without large leak-free component.

2 Definitions

We generalize the notion of a private transformation from Ishai, Sahai, and Wagner [18][19].
For readers familiar with the model of [18], we quickly summarize the generalization here
(a more detailed description of the model is provided below). First, whereas [18] speak of a
“t-private transformation” that is secure against observers who can access at most t wires,
we generalize it to an “L-secure transformation” that is secure against observer who is able
evaluate any leakage function f in the class L. At each clock cycle, the observer gets to pick
a function f ∈ L and obtains f computed on the wires of the circuit (similarly to the model
of Micali and Reyzin [25]). Further, whereas the transformers of [18] take boolean circuits
into circuits that allow random gates in addition to boolean gates, we consider different
sets of of allowable gates, and explicitly specify what circuits are being transformed into
what circuits.

2.1 Notation

We consider circuits whose wires carry elements of an arbitrary finite field K. Circuits may
use randomness gates, and thus their output is not may not be determined solely by the
inputs. For a circuit C containing w wires, a wire assignment to C is a string in Kw, where
each element represents a value on a wire of C. By WC(X) we denote a distribution of
wire assignments that is induced when a circuit C is being evaluated on an input X (in
particular, if C is deterministic, then WC(X) has only one element in its support). We
use WC(X|Y ) to denote the same distribution conditioned on the fact that the output of
C(X) was Y . For a circuit C let kI be the number of inputs, kO the number of outputs
and kS the size of the stateful memory (if any); the size of a circuit is the number of gates
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in it. For brevity we let C ∈ C mean that the function computed by the circuit C is in the
function class C.

If D is a distribution, then y ←− D means a random variable y is drawn from D. (If D is
a set with no distribution specified, then by default we assume the uniform distribution.)
If D is an algorithm, then y ←− D(x) denotes the output of D on input x; in particular, if D
is randomized, then y is a random variable. D ≡ D′ means the distributions D and D′ are
identical. For brevity, we often identify random variables and their distribution.

For n ∈ N, let [1, n] denote the range of integers {1, . . . , n}. Function composition is
denoted by f ◦ g : x 7→ f(g(x)). If L1 and L2 are two sets of functions, then L2 ◦ L1 is
a set of functions {f ◦ g | f ∈ L2, g ∈ L1}. Also, for integer n and function class L, let
(n×L) denote the class of functions of the form (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)) where
fi ∈ L (i ∈ [1, n]).

Vectors, denoted ~v = (v1, . . . , vn), are column vectors.

2.2 Defining Circuit Transformation

In order to understand our definition, it helps to keep the following scenario in mind.
Imagine a circuit that has a secret stored within it and uses the secret together with an
input to come up with an output; the secret itself may get modified during the computation.
For example, the circuit may implement a pseudorandom generator, a stream cipher, or a
block cipher, where the keys are secret. The observer gets to interact with the circuit by
giving it inputs, observing some physical leakage from the computation, and viewing the
outputs. We want to make sure that the ability to observe physical leakage does not help
the observer: that is, the observer learns nothing more about the state of the circuit from
the leakage than it could learn from just the inputs and outputs. To this end, we show how
to convert arbitrary circuits into transformed circuits that satisfy this goal (i.e., leaks no
useful information), yet are functionally equivalent.
Circuits. A circuit is a directed graph with gates as nodes and wires as edges. Wires carry
values, which, for this paper, will be from an (arbitrary) field K; in particular, we may set
K = GF(2) to speak of a Boolean circuit. Gates a specified (randomized) function of the
values on their input wires and send the result along their output wires. We consider the
following gates operating on elements of K (in addition to the input, output, and memory
gates): ⊕,	, and � (which compute, respectively, the sum, difference, and product in K,
of their two inputs), the “coin flip” gate $ (which has no inputs and produces a random
independently chosen element of K), and for every α ∈ K, the constant gate constα (which
has no inputs and simply outputs α). Fanout is handled by a special copy gate that takes as
input a single value and outputs two copys. If we use one output of a gate k times, then it
is passed through a subcircuit of k−1 copy gadgets arranged in a tree (the structure of the
tree may be chosen arbitrarily). Notice that copy gates are just the identity (pass-through
wires) and are present mainly for notational convenience.

SHALLOW(d, s) denotes the set of all deterministic circuits (i.e., ones without $ gates)
that have at most s ⊕,	, and � gates that are arranged at most d deep (i.e., the longest
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path in the circuit has at most d such gates on it). Note that copy and constα gates are
allowed in the circuit and do not count towards d or s.

A stateful circuit additionally contains memory gates, which have a single incoming
edge and any number of outgoing edges.5 Memory gates maintain state: at any clock cycle,
a memory gate sends its current state down its outgoing edges and updates it according to
the value of its incoming edge. Any cycle in the circuit must contain at least one memory
gate.

The state of all memory gates at clock cycle i is denoted by Mi, with M0 denoting the
initial state. Inputs to and outputs from clock cycle i are denoted, respectively, by xi and
yi. When a circuit is run in state in Mi−1 on input xi, the computation will result in a wire
assignment Wi; the circuit will output yi and the memory gates will be in a new state Mi.
We will denote this by (yi,Mi,Wi) W C[Mi−1](xi).

Transformer. A circuit transformer TR takes as input a security parameter t, a circuit
C, and an initial state M0 and produces a new circuit Ĉ and new initial state M̂0.6 Note
that the set of allowable gates of Ĉ may be different from the set of allowable gates of C
(we will explicitly name those sets when constructing concrete transformers). We require
the transformer to be sound : for all C and M0, C[M0] should behave identically to Ĉ[M̂0].
By “behave identically” we mean that for any number of clock cycles q and any set of
inputs x1, x2, . . . , xq (one for each clock cycle) the distribution of the outputs y1, y2, . . . , yq
is the same for C starting at state M0 and Ĉ starting at state M̂0.

Class of leakage functions L. The attacker (observer) of our transformed circuit will be
able to choose a function f in some class of functions L that we will specify. The function f
will take the circuit’s wire assignment as input and output a result in some range λ. In order
for the observer to be able to specify f , we assume a fixed (but arbitrary) representation
of L and, for brevity, identify functions in L with their representation.

Security. We want to make sure that the transformed circuit leaks no useful information
to an observer. We use the term (L, τ)-observer to denote an observer OBS with physical
observations limited to functions in class L computed on the wires of the circuit and
running time (not including the computation by the leakage function itself) limited to τ .
To formalize that such an observer learns nothing useful, we the existence of a simulator
SIM: anything the observer learns can also be learned by SIM which does not observe any
leakage.

If the observer OBS gets to query the circuit q times, each time choosing a fresh func-
tion from L, we call it a q-adaptive (L, τ)-observer. The number of observations q, the
observer’s running time τ , and various other running times and success probabilities are
all parameterized by a security parameter t, which is given as input to the transformation
TR. For readability, we will omit t from most of our discussion.

5 Formally, our notion of a stateful circuit is essentially the same as the one in [18].
6 Throughout this paper, we use the hat notation 2̂ (reminiscent of the proverbial “tinfoil hat”) to designate

circuit or components that are transformed for leakage-resilience.
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Consider the following two experiments that start with some circuit C in state M0, and
allow it to run for q iterations. In both experiments, we assume that OBS and SIM are
stateful, i.e., remember their state from one invocation to the next.

Experiment Expreal
TR (OBS,L, q, C,M0, t)

(Ĉ, M̂0)←− TR(C,M0)
(x1, f1)←− OBS(Ĉ), with f1 ∈ L
For i = 1 to q − 1

(yi, M̂i,Wi) W Ĉ[M̂i−1](xi);
(xi+1, fi+1)←− OBS(yi, fi(Wi))

(yq,Mq,Wq) W Ĉ[M̂q−1](xq);
Return output of OBS(yq, fq(Wq)).

Experiment Expsim
TR (SIM, q, C,M0, t)

x1 ←− SIM(C), with x1 being an input
For i = 1 to q − 1

(yi,Mi)←− C[Mi−1](xi)
xi+1 ←− SIM(yi)

(yq,Mq)←− C[Mq−1](xq)
Return output of SIM(yq).

We will say that the transformed circuit is secure if the outputs of the two experiments
are indistinguishable. In fact, for ease of notation, we will consider only the case when the
two experiments output 0 or 1 (this is without loss of generality: if the two experiments
have more complex outputs, then we can incorporate the distinguisher, which would get
those outputs and produce 0 or 1, into OBS and SIM). We are now ready to state our
definition precisely.

Definition 1 (Security of Circuit Transformation). A circuit transformer TR is
(L, τ, τ ′, q, ε)-secure if for every q-adaptive (L, τ)-observer OBS there is a simulator SIM
running in time τ ′ such that for all circuits C and initial states M0

|Pr[Expreal
TR (OBS,L, q, C,M0, t) = 1]− Pr[Expsim

TR (SIM, q, C,M0, t) = 1]| ≤ ε,

where the probabilities are taken over all the coin tosses involved in the experiments.7

To help explain the meaning of the parameters, we note that a stronger result is obtained
when L, τ , and q are larger (because it allows for more leakage functions and stronger
observers), τ ′ is as close as possible to τ , and the distinguishing advantage ε is as small
as possible (because it indicates tighter simulation). The definition is a generalization of
the definition of Ishai, Sahai, and Wagner [18, Section B.3] (for the reader familiar with
that definition, we note that our security parameter is denoted t rather than σ; our class
of leakage functions is arbitrary L rather than observations of t wires; and the running
time τ ′′ of the distinguisher is not present in our definition because we incorporate the
distinguisher into the observer and simulator).

Leakage-indistinguishability. Our proof will, naturally, involve having the simulator
produce simulated wire distributions that are indistinguishable from real ones by the ob-
server. The following definition captures what such indistinguishability means.

7 Recall that TR itself and the above parameters are functions of a security parameter t.
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Definition 2 (Leakage-Indistinguishability). Two distributions X,X ′ are said to be p-
adaptive (L, τ, ε)-leakage-indistinguishable, if for any (L, τ) observer OBS making at most
p queries to its oracle,

|Pr[OBSEval(X,·) = 1]− Pr[OBSEval(X′,·) = 1| ≤ ε, (1)

where Eval(X, f) can be queried once with a leakage function f ∈ L and evaluates to f(X).
The probabilities above are taken over the relevant distributions X,X ′ and the internal coin
tosses of OBS.

If p = 1, we will omit the words “p-adaptive” in the definition above.

3 Main Result: Circuit Transformation from Linear Secret Sharing
Schemes

3.1 Theorem Statement

Our main result states that if there exists a linear encoding scheme for elements of K
(taking a single element to t elements) for which encodings of any two values are is 2-
adaptive leakage-indistinguishable, then there exists a secure circuit transformation, where
the loss in leakage class is only SHALLOW(3, O(t2)), and the loss in the time and success
probability is linear in circuit size and the number of queries qTR. We now describe it more
formally.

Our main construction, using linear secret sharing schemes, uses the following elements.
Gates in the original circuit. The original circuit C is allowed the already defined gates
⊕,	,�, $, copy, constα, as well as memory gates. Note that if K = GF(2) then � is the
AND gate and const1 ⊕ a is the NOT gate, so any boolean circuit can be easily transformed
into one in C.
Encoding for the wires. Our transformation can be based on any linear encoding
scheme Π = (Enc,Dec), which maps a single element of K to a vector in Kt and back.
It is defined as follows. In the simplest case of K = GF(2), an encoding of a bit x is a
random string of t bits whose exclusive-or is x. More generally, for security parameter t,
a linear encoding scheme Π is defined by a decoding vector ~r = (r1, . . . , rt) (viewed as a
column vector for the purposes of linear algebra), with each ri a nonzero element of K, as
follows. Dec : (y1, . . . , yt) 7→

∑
i yiri = ~r T~y = ~y T~r (these operations are over K), and Enc

is a (probabilistic) algorithm that, on input x, chooses uniformly at random an element of
Dec−1(x). For x ∈ K, we let Enc(x) denote the distribution of encodings of x, use to ~x to
denote a particular encoding from this distribution. For elements x1, . . . , xn ∈ K, denote
Enc(x1, . . . , xn) = (Enc(x1), . . . ,Enc(xn)).

Beside the aforementioned parity encoding, other examples of linear encodings schemes
include threshold linear secret sharing schemes (e.g., [37,6]): the reconstruction function of
a perfectly secret linear secret sharing scheme with threshold t may be used as Dec, and
the sharing procedure as Enc.
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Opaque gates. In our scheme, the transformed circuit Ĉ is built of the same gate types
as the original circuit, with the addition of a new opaque gate denoted O. The O gate has
no inputs, and outputs an encoding sampled from the distribution Enc(0). Crucially, while
the wires coming out of this gate can be observed by the leakage function, we assume that
the gate itself (just like every other gate) does not leak information.

One may think of O as implemented in small subcircuits that are completely free of
observable leakage (e.g., for the case of K = GF(2), such a subcrcuit can be quite simple:
generate t random bits b0, . . . , bt−1 and output bi ⊕ bi+1 mod t for 0 ≤ i ≤ t− 1).8.

The requirement of leak-free component is a strong one. As argued in Section 7, it
is actually necessary, in a certain sense (which, admittedly, leaves some loopholes). Note,
however, that this leak-free component is minimal in many senses:

1. It is a fixed standardized functionality which can be designed and validated once and
added to one’s VLSI “cell library” — which is far better than having devise separate
protection mechanisms for every circuit of interest.

2. It has no secret keys, no inputs and no internal state — it merely samples from a
distribution.

3. It can be realized by a leak-free circuit that is small and shallow, as shown above.
4. It can be realized using just polylog(t) random bits, as discussed in Section 6.2.
5. Alternatively, because we only need samples from a distribution, we can have the opaque

“gate” simply read them one by one from a precomputed list. Thus, it suffices to have
leak-proof one-time storage (a consumable “tape roll”) instead of leak-proof computa-
tion.

6. It suffices that each instance of O is leakage-resistant in a weaker sense., as discussed
in Section 6.2.

The only sense in which our leak-free component is not minimal is the size of its output,
which (in the case of our unconditional results invoking circuit lower bounds, in Section 6.1)
turns out to be rather large. Improving this parameter is left as an important open problem.

Encoding leakage-indistinguishability. Before we state our main result, we need to
define what it means for functions in L to be unable to distinguish an encoding of x from
an encoding of x′.

Definition 3 (Encoding Leakage-Indistinguishability). An encoding scheme Π is
p-adaptive (L, τ, ε)-leakage-indistinguishable, if for any two elements x, x′ ∈ K the distri-
butions Enc(x) and Enc(x′) are p-adaptive (L, τ, ε)-leakage-indistinguishable.

If p = 1, we will omit the words “p-adaptive” in the definition above.
As a simple example, the aforementioned parity encoding scheme is∞-adaptive (L,∞, 0)-

leakage-indistinguishable (i.e., information-theoretically leakage-indistinguishable) against

8 This method of sampling from the distribution of parity-0 strings was brought to our attention by Vinod
Vaikutanathan, and used in [34]
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the class L of leakage function that can access at most t − 1 wires, because the value be-
ing encoded is independent of the observed leakage. This, indeed, is the special case given
in [18].

We can now state our main theorem:9

Theorem 1. Let LTR be some class of leakage functions and let qTR, εΠ , τΠ ≥ 0. If there
exists a linear encoding scheme Π that is 2-adaptive (LΠ , τΠ , εΠ)-leakage-indistinguishable,
then there exists a circuit transformation TR that is (LTR, τTR, τ

′
TR, qTR, εTR)-secure for

– any τTR ≤ τΠ − qTRO(st2), where s is the number of gates plus the number of input
wires in C,

– some τ ′TR ≤ τTR + qTRO(st2),
– some εTR ≤ εΠ(qTR + 2)(s(t+ 2) + k), where k is the number of memory gates in C,
– LΠ = LTR ◦ SHALLOW(3, O(t2)) (for K = GF(2), LΠ = LTR ◦ SHALLOW(2, O(t2))) .

The rest of this section is dedicated to describing the transformation; the next two
sections contain the proof of its security. Special cases of this theorem, as well, as general-
ization beyond linear encoding schemes, are discussed in Section 6.

3.2 The Transformation for Stateless Circuits

We will first describe our transformation for circuits without any memory gates, which
we call stateless circuits. We should note that, unlike in [18], inputs and outputs for our
stateless circuits do not come already encoded. Encoding the inputs and decoding the
outputs is explicitly the job of our stateless transformation.

We extend the transformation to general (i.e., stateful) circuits in Section 3.3.
Given a stateless circuit C, our transformation TR produces the transformed circuit Ĉ

as follows (see Figure 1 for an example). Each wire w in C is replaced by a wire bundle in Ĉ,
consisting of t wires ~w = (w1, . . . , wt), that carry an encoding of w. Each gate is transformed
into a gadget, built out of gates, which takes encodings and outputs encodings. Each ⊕,
	, �, $, copy and constα gate is replaced by a ⊕̂, 	̂, �̂, $̂, ĉopy and ĉonstα gadget,
respectively. Crucially, note that the internals of these gadgets may leak. The gadgets
themselves are described in Figure 3 and a graphical presentation of the transformation
for the � gate is shown in Figure 2.

Because our gadgets operate on encoded values, Ĉ needs to have a subcircuit at the
beginning of that encodes the inputs and another subcircuit at the end that decodes the
outputs. However, in our proofs, we want to be able to also reason about transformed
circuits without encoding and decoding. Thus, we do not require that every transformed
circuit Ĉ should have such encoding and decoding. Instead, we introduce artificial input
9 The theorem’s statement, as well as its proof, involves some careful tracking of parameters. This is

necessary since our setting is that of shallow circuits and low complexity classes, where reductions must
be tight to be meaningful.
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Fig. 1. Example of a circuit C for the function (a, b, c) 7→ ((a�b)⊕c, c), and the correspond-
ing transformed circuit Ĉ. Three parallel lines denote encoding (t wires). Dashed borders
indicate a gadgets, whose internal wires leak. Note that in C, the special gates encoder,
decoder, mask and copy are just the identity (pass-through wires) and are present merely
for notational convenience.

and output gates that can be part of C for syntactic purposes. If such gates are present (as
they would be on any “complete” circuit that one would actually wish to transform), then
Ĉ will include input encoding and output decoding. If they are not, then Ĉ will operate
on already encoded inputs and produce encoded outputs.

More precisely, if we wish for Ĉ to include input encoding and output decoding, then
the circuit C given to TR must have two special gates in sequence on every input wire:
an encoder gate followed by a mask gate, both of which are simply the identity. Also, on
every output wire there must be a special decoder gate, which is also the identity. These
special gates must not appear anywhere else in C. In Ĉ each encoder gate is replaced by
a an ̂encoder gadget which performs encoding (see below), each decoder gate is replaced
by an ̂decoder gadget that performs decoding (see below), and each mask gate is replaced
by a m̂ask gadget (that is needed for security and is described in Figure 3).

The ̂encoder gadget takes an input a ∈ K and outputs an encoding (i.e., a wire bundle)
~a ∈ Kt of a. The encoding can be chosen arbitrarily from the support of Enc(a) — the
choice does not affect security or correctness. This can be implemented using just constα
and � gates: ~a = (r−1

1 a, 0, . . . , 0).
The ̂decoder gadget takes an encoding (i.e., a wire bundle) ~a ∈ Kt of a and outputs

a←− Dec(~a). This is computed by a decoding circuit constructed out of constα, ⊕, and �
gates.

Incidentally, observe that because every gadget other than ̂encoder or ̂decoder ends
with a masking by an output of O,10 and wire bundles do not fan-out (instead, they go
through the ĉopy gadget), each connecting wire bundle carries encoding of its value that is
chosen uniformly and independently of all the wires in the transformed circuit. This fact,
together with the construction of the gadgets, is what enables the simulation.

10 One can instead define the basic gadgets as not including this masking with O, and instead place a mask

gate on every wire. The resulting transformation is similar. However, this doesn’t cleanly generalize to
the case of transformations not necessarily based on linear encodings — see Section 6.3.
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Fig. 2. A step-by-step illustration of the �̂ gadget. Steps (1-3) are all part of the trans-
formed gadget �̂.

Transformation c← a� b ⇒ ~c← ~ab�~b:
Compute the t× t matrix

B ← ~a~b T = (aibj)1≤i,j≤t using t2 � gates
Compute the t× t matrix S

where each column of S is output by O
U ← B + S (using t2 ⊕ gates)
Decode each row of U using t− 1 ⊕ gates,

t � gates, and t constα gates
to obtain ~q ← U~r,
where ~r is the decoding vector
(it does not matter how this decoding is
performed as long as there are O(t) wires
in the decoding subcircuit and each one
carries some linear combination of the
wires being decoded, plus possibly a
constant)

~o← O
~c← ~q + ~o (using t ⊕ gates)

Transformation c←− $ ⇒ ~c←− b$:
ci ←− $ for i ∈ [1, t]
Output ~c

Transformation c← a⊕ b ⇒ ~c← ~ab⊕~b
(or c← a	 b ⇒ ~c← ~ab	~b):

~q ← ~a+~b (or ~q ← ~a−~b)
using t ⊕ (or 	) gates

~o← O
~c← ~q + ~o (using t ⊕ gates)

Transformation b← mask(a) ⇒ ~b← m̂ask(~a)
~o← O
~b← ~a+ ~o (using t ⊕ gates)

Transformation a← constα ⇒ ~a← ĉonstα,
for any α ∈ K

Let ~α be a fixed arbitrary encoding of α.
~o← O
~a← ~α+ ~o (using t ⊕ gates)

Gadget (~b,~c)← ĉopy(~a)
~o1 ← O, ~o2 ← O
~b← ~a+ ~o1 (using t ⊕ gates)
~c← ~a+ ~o2 (using t ⊕ gates)

Fig. 3. Gadgets used in the stateless circuit transformation TR.

Before we get to the proof of security, however, let us demonstrate that the transformed
circuit is functionally the same as C.
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Lemma 1 (Soundness of TR). The stateless circuit transformation TR is sound.

Proof. Since we encode the input, do a gate-by-gate transformation, and then decode the
output, it suffices to prove that our gate gadgets work correctly on encoded values:

⊕̂: For ~c = ~a⊕~b⊕~o, with ~o being an encoding of 0, we get by linearity that Dec(~c) = a⊕b.
�̂ : Dec(~c) = ~r T(~q+~o) = ~r T((B+S)~r+~o) = ~r T((~a~b T +S)~r+~o) = (~r T~a)(~b T~r) + (~r TS)~r+

~r T~o = ab+~0 T~r + 0 = ab
	̂, ĉopy, ĉonstα, m̂ask, $̂: Similar to ⊕̂, by linearity

ut

3.3 Full Circuit Transformation

To augment the above stateless circuit transformation to a full circuit transformation, we
have to explain how to transform the initial state M0 and what to do with each memory
gate. This is quite simple, given what we have already done. The initial state is replaced
by a randomly chosen encoding Enc(M0). Each memory gate is replaced by a gadget that
consists of t memory gates to store the encoding followed by a m̂ask gadget to guarantee
re-randomization of the state.11 Soundness of this transformation is straightforward, and
its security is proved in the next two sections.

4 Reconstructibility of Stateless Circuits

4.1 High-Level Overview

In order to show the security of our transformation, we have to build a simulator. Our sim-
ulator will be quite simple, giving random values to internal wires and simulating gadgets
to be consistent with those random values (note that this will imply that the simulated
outputs of O used within gadgets will no longer be encodings of 0). The wires that are
used to encode the inputs of Ĉ (in the ̂encoder gadget) to and decode the outputs (in
the ̂decoder gadget) will be simulated honestly, because the simulator knows the inputs
and the outputs. The simulator will run the adversary OBS and apply the adversarially-
supplied leakage functions the simulated wire values. The difficult part is showing that
OBS cannot distinguish true wire values from simulated ones when its access to the wire
values is limited by functions available in the class LTR.

This is done by a hybrid argument, in which encodings of real values are replaced by
encodings of random values, one encoding at a time. At each hybrid step, we will prove
indistinguishability by a reduction to the security of the encoding scheme. In other words,
we will show by reduction that if OBS equipped with functions from LTR can distinguish
the wire distributions, then some adversary OBSΠ , equipped with functions from a slightly
11 Masking the output of the memory gadget has two reasons: first, we want to allow the total leakage

to be much larger than the size of the state, and second, we want to allow adversary to choose leakage
functions adaptively.
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larger class LΠ , can distinguish two encodings. Given an encoding, our reduction will need
to fake the remaining wires of the circuit and give them as input to the function from LTR.

Efficiency of such a reduction is particularly important. If OBS specifies a leakage
function f for Ĉ, then OBSΠ will specify its own leakage function fΠ for the encoding and
return its result to OBS. This leakage function fΠ has to fake (in a way that will look
real to f and OBS) all the wires of Ĉ before it can invoke f . At the same time, fΠ should
not be much more complex than f , because our result is more meaningful when difference
between the power of LΠ and the power of LTR is smaller. The main trick is for OBSΠ to
hardwire as much as possible into fΠ , so that when fΠ observes the encoding, it has to do
very little work before it can invoke f .

An important observation is that during the hybrid argument, OBSΠ and fΠ are essen-
tially simulating the circuit in a particularly efficient manner. This very efficient simulator
will be called reconstructor, and is the main technical tool in our proof.

4.2 Reconstructors

A reconstructor simulates the internal wires of a transformed circuit Ĉ given its encoded
inputs and outputs in a way that is L-leakage-indistinguishable. We show the existence of
reconstructors for stateless circuits without ̂encoder and ̂decoder gadgets.

Reconstructors actually consist of two parts: first, as much as possible is precomputed
before the inputs and outputs of Ĉ are known. Then, once the inputs and outputs of Ĉ
are given, all of the remaining (connecting) wires in Ĉ are computed. We can think of the
precomputed part as sampling from a distribution of functions that map encoded input
and output of Ĉ into full wire assignments to Ĉ. The transformed circuit Ĉ is randomized,
so the simulated wires must be randomized; we let the precomputed part (which, in our
reduction, is OBSΠ) draw this randomness. This allows us to “hard-wire” the randomness
into the on-line part. Thus, crucially, this lets the on-line part of the reconstructor be
computed a shallow circuit (as opposed to Ĉ, which can be very deep).

Intuitively, the existence of a reconstructor shows that functions in L cannot gain much
from looking at the innards of Ĉ; and since they cannot gain much from looking at encoded
inputs and outputs of Ĉ either (because these encodings are leakage-indistinguishable),
security will follow for any reconstructible circuit.

We will show the existence of reconstructors for the single-gate gadgets, and then give a
composition lemma that shows that whole stateless circuits consisting of gadgets connected
by wire bundles (i.e., all except ̂encoder and ̂decoder) are reconstructible too.

Definition 4 (Reconstructor). Let Ĉ be a (transformed) circuit. We say that a pair of
strings (X,Y ) is plausible for Ĉ if Ĉ might output Y on input X, i.e., if Pr[Ĉ(X) = Y ] > 0.

Consider a distribution REC bC over the functions whose input is a pair of strings, and
whose output is an assignment to the wires of Ĉ. Define REC bC(X,Y ) as the distribution
obtained by sampling R bC ←− REC bC and computing R bC(X,Y ). Such a distribution is called a
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(L, τ, ε)-reconstructor for Ĉ if for any plausible (X,Y ), the following two wire assignment
distribution are (L, τ, ε)-leakage-indistinguishable:

– W bC(X|Y ),
– REC bC(X,Y ).

If the support of the distribution REC bC is in some class of functions R, we say that Ĉ is
(L, τ, ε)-reconstructible by R.

We shall also use the following property of our gadgets:

Definition 5 (Rerandomizing). Let C be a circuit with kI inputs and kO outputs, and
no encoder or decoder gates. Let Ĉ be the corresponding transformed circuit. We say
that Ĉ is rerandomizing if, for any fixed input (x1, x2, . . . , xkI) and its encoded input X ∈
Enc(x1, x2, . . . , xkI), the encoded output Ĉ(X) is distributed like Enc(C(x1, x2, . . . , xkI)),
i.e., independently of the particular encoding X.

Note that the definition of reconstructors speaks only of reconstructing the internal
wires when all external wires (i.e., input and output encodings) are known and plausible.
When we invoke this definition, we will see that it implies the stronger notion that the
internal wires can be reconstructed even if some external wires are not known (e.g., those
corresponding to a circuit’s secret inputs) and thus a plausible (X,Y ) is not readily avail-
able. Intuitively, these proofs will proceed substituting random encodings for the missing
external wires (using the rerandomizing property too), and arguing that these cannot be
distinguished from the correct (plausible) encodings.

4.3 Single Gadget Reconstructors

Let us show that all single-gate gadgets except ̂encoder and ̂decoder have reconstructors
and are rerandomizing. The rerandomizing property follows immediately from the fact
that every gadget’s output is, as the last step of the gadget, masked by the output of O.
Therefore, we focus on the existence of reconstructors.

For the “coin flip” gadget $̂, this is trivial:

Lemma 2 ($̂ is reconstructible). The $̂ gadget is (L,∞, 0)-reconstructible by SHALLOW(0, O(t))
for any L.

Proof. The reconstructor RECb$ is the distribution whose only support is the following

circuit Rb$. Given an empty X (i.e., the desired input of $̂) and a Y = (~y) (i.e., the desired

output of $̂), Rb$(X,Y ) outputs a wire assignment that simply lets the output of $̂ carry
the only consistent value, namely ~y. This is distributed identically to the honest case. ut

In the ⊕̂ and 	̂ gadgets, the reconstructor will need to “connect” the inputs and outputs:
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Lemma 3 (⊕̂ and 	̂ gadgets are reconstructible). The ⊕̂ and 	̂ gadgets are (L,∞, 0)-
reconstructible by SHALLOW(2, O(t)) for any L.

Proof. We will do the proof for ⊕̂; the proof for 	̂ is similar. The reconstructor RECb⊕ is
the distribution whose only support is the following circuit Rb⊕. On inputs (X,Y ) where
X = (~a,~b) (i.e., the desired input of the ⊕̂ gate), and Y = (~c) (i.e., its desired output), Rb⊕
assigns the wires of ⊕̂ in the only consistent way: ~q ←− ~a⊕~b and ~o←− ~c	 ~q.

If ~a,~b,~c are chosen as in the definition of a reconstructor, then the resulting output
of Rb⊕ is identically distributed to the wire distribution Wb⊕(X|Y ), since in both cases ~o
takes the only possible consistent value ~o ←− ~c	 ~q. Notice that Rb⊕ can be computed by a
circuit of depth 2 because on inputs ~a,~b,~c it first will compute ~q ←− ~a⊕~b and based on that
~o←− ~c	 ~q. The 	 and ⊕ gates above operate only on single field elements, so Rb⊕ requires
O(t) size. ut

Lemma 4 (ĉopy, m̂ask, and ĉonstα are reconstructible). The ĉopy gadget, the m̂ask
gadget, and, for every α ∈ K, the constα gadget are (L,∞, 0)-reconstructible by SHALLOW(1, O(t)),
for any L.

Proof. We will do the proof for the ĉopy gadget; the other two are similar. The reconstruc-
tor RECĉopy is the distribution whose only support is a circuit Rĉopy that on inputs (X,Y )
where X = (~a) (i.e., the desired input of the ĉopy gate), and Y = (~b,~c) (i.e., its desired
output), assigns the wires of ĉopy in the only consistent way: ~ob = ~b	 ~a and ~oc = ~c	 ~a.

If ~a,~b,~c are chosen as in the definition of a reconstructor, then the resulting output of
Rĉopy is identically distributed to the wire distribution Wĉopy(X|Y ), since in both cases ~ob
and ~oc take the only possible consistent value ~ob ←− ~b	~a and ~oc ←− ~c	~a. Notice that Rĉopy

can be computed by a circuit of depth 1 because on inputs ~a,~b,~c it needs only to compute
~ob, ~oc, both requiring a 	 operation. The size of RECĉopy is O(t) for computing the 2t 	
operations. ut

Before we move on to the most interesting case, which is the �̂ gadget, we give technical
lemma which will let us relate two leakage-indistinguishability statements using a shallow
wire simulator fS .

Lemma 5. Let W0,W ′0 be distributions over Kk for some k > 0.12 Let FS be a distribution
over k-input functions in some class L′ . Define the following distributions:

W1 ≡ fS(W0) where fS ←− FS (2)
W ′1 ≡ fS(W ′0) where fS ←− FS . (3)

Let L1 be a class of leakage functions and let ε0 > 0, τ0 > 0. If W0 and W ′0 are (L0, τ0, ε0)-
leakage-indistinguishable, then W1 and W ′1 are (L1, τ1, ε1)-leakage-indistinguishable. Here,
L0 = L1 ◦ L′, ε0 = ε1, and τ0 − τ1 is the time needed to sample from FS.
12 In our case, these will be wire assignments to a circuit with k wires. Notice that this can also just be a

single encoding.
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Fig. 4. Outline of the reduction in Lemma 5

Proof. We show by contradiction that for all observers OBS1 running in time at most τ1

|Pr[OBS
Eval1(W1,·)
1 = 1]− Pr[OBS

Eval1(W ′1,·)
1 = 1| ≤ ε1, (4)

where Eval1 can be queried once by OBS1 with a leakage function f1 ∈ L1.
Suppose for contradiction that (4) is violated for some (L1, τ1)-observer OBS1, then we

will construct an (L0, τ0)-observer OBS0 that breaks the leakage-indistinguishability of the
distributions W0 and W ′0. The observer OBS0 will invoke OBS1 as a subroutine, answering
OBS1’s leakage query and eventually outputting whatever OBS1 outputs (see Figure 4).
To answer the leakage query f1 ∈ L1 of OBS1, the observer OBS0 will use its own oracle
Eval0. The difficulty is that Eval0 evaluates a leakage function f0 ∈ L0 on a sample either
from W0 or W ′0, whereas OBS1 produces a query f1 to be evaluated on a (possibly much
larger) wire assignment sampled from W1 or W ′1.

We address this by using a function fS , drawn from the distribution FS , that takes as
input a single “challenge” that is either sampled from W0 or W ′0 and outputs a full wire
assignment from either W1 or W ′1, respectively. To recap, OBS0 lets OBS1 choose f1 ∈ L1,
and draws a function fS from FS . It then queries Eval0 on f0 = f1 ◦ fS and forwards the
answer back to OBS1. Finally, if OBS1 returns a bit b, then OBS0 outputs b as its own
guess.

To analyze the distinguishing advantage of OBS0, consider the following two cases,
where x←− K:

Pr[OBS
Eval0(W0,·)
0 = 1] = Pr[OBS

Eval1(fS(W0),·)
1 = 1]

(2)
= Pr[OBS

Eval1(W1,·)
1 = 1]

Pr[OBS
Eval0(W ′0,·)
0 = 1] = Pr[OBS

Eval1(fS(W ′0),·)
1 = 1]

(3)
= Pr[OBS

Eval1(W ′1,·)
1 = 1]

By taking the difference, we see that if (4) then

|Pr[OBS
Eval0(W0,·)
0 = 1]− Pr[OBS

Eval0(W ′0,·)
0 = 1| ≤ ε1.
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Thus, we get that ε0 = ε1. Observe also that f0 ∈ L0 (i.e., the reduction doesn’t lose much in
the leakage function’s power): since fS ∈ L′ indeed we have that f0 = f1◦fS ∈ L0 = L1◦L′.
Finally, note that the only extra time OBS0 spends (i.e., τ0 − τ1) is the time required to
sample from the distribution FS . ut

To show reconstructibility of the �̂ gadget, we first consider a reduced variant, denoted
~̂. It is the same as �̂ but directly outputs ~q, i.e. without adding the output of O. We will
show that its wire assignment distribution can be replaced by a “fake” one in a leakage-
indistinguishable way:

Lemma 6 (Randomization of ~̂). Let Lb~ be a class of leakage functions and let ε >
0, τ > 0. If the encoding scheme Π is (LΠ , τ, ε)-leakage-indistinguishable, then for any valid
encodings X = (~a,~b) the following wire assignment distributions are (Lb~, τ − O(t2), tε)-
leakage-indistinguishable:

– Wb~(X)
– Wrandb~ (X): as Wb~(X) except that S is drawn independently-and-uniformly from Kt×t

Here, LΠ = Lb~ ◦ SHALLOW(2, O(t2)), and in the special case of K = GF(2), LΠ =
LRECb� ◦ SHALLOW(2, O(t2))).

Proof. We prove this statement by a hybrid argument. We define t + 1 wire assignment
distributions W`b~(X) (` ∈ [0, t]) as follows:

– W`b~(X): The distribution is as Wb~(X), except that for the first ` columns of S the
elements are drawn uniformly-and-independently from K instead of using O.

Note that the 0th and tth hybrid distributions are the same as the distributions in the claim.
We will show that for all ` ∈ [1, t] and all X, W`−1b~ (X) and W`b~(X) are (Lb~, τ −O(t2), ε)-
leakage-indistinguishable, which will conclude the proof of the lemma.

In Claim 4.3 we show for any ` ∈ [1, t] and any X the existence of a distribution F`S of
functions in SHALLOW(2, O(t2)) samplable in time O(t2) that take as input a single encod-
ing and map it either to W`−1b~ (X) or W`b~(X), depending on whether the given encoding
was an encoding of 0 or of a random value. By applying Lemma 5 to Claim 4.3 (setting
W0 = Enc(0),W ′0 = Enc(z) for a random z ∈ K) we get that W`−1b~ (X) and W`b~(X) are
(Lb~, τ −O(t2), ε)-leakage-indistinguishable, where LΠ = Lb~ ◦ SHALLOW(2, O(t2)). ut

The following technical claim proves the existence of the distribution F`S used above in
Lemma 6 and may be skipped by the reader.

Claim. For any ` ∈ [1, t] and any encoding X = (~a,~b), there exists a distribution F`S over
functions in SHALLOW(2, O(t2)) that take as input a single encoding and output a wire
assignment for ~̂, such that for fS ←− F`S and x←− K:

W`−1b~ (X) ≡ fS(Enc(0)), (5)

W`b~(X) ≡ fS(Enc(x)). (6)
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Proof. fS on input ~e shall output a full wire assignment of ~̂, with ~e embedded into
the `th column of S, and with the correct distribution on the remaining wire values. This
guarantees that if the target encoding ~e is drawn uniformly-and-independently from Enc(0)
then fS(~e) is distributed identically to the hybrid wire distributionW`−1b~ (X). On the other
hand, if ~e is drawn uniformly-and-independently from Enc(x), with x ←− K, then fS(~e) is
distributed identically to W`b~(X).

The difficulty is that fS must have small (constant) depth, but needs to output a
wire assignment for the deep circuit ~̂. We solve this problem by hard-wiring most of
the resulting wire assignment directly into fS . The only parts of the wire assignment that
cannot be hard-wired are those that depend on the input ~e, but fortunately they can be
easily computed (indeed, this was exactly the goal in designing the ~̂ gadget).

Concretely, the distribution F`S is defined by drawing fS as follows:

1. From given X = (~a,~b) compute consistently the matrix B = (aibj)i,j∈[1,t] and hard-wire
~a,~b,B into fS .
Hard-wired into fS: ~a,~b and B = (aibj)i,j∈[1,t]

2. Most columns of S are hard-wired into fS : left of the `th column they are drawn at
random, and right of the `th column they are drawn from Enc(0). The `th column is
filled with the challenge encoding ~e.
Hard-wired into fS: For i ∈ [1, `− 1] ~Si ←− Kt and for i ∈ [`+ 1, t] ~Si ←− Enc(0)
Computed by fS on input ~e: ~S` = ~e

3. Using B and S hard-wire all elements of U = B+S into fS except for the `th column.
For the `th column, fS computes on input ~e, for each i ∈ [1, t], the value Ui,` ← Bi,`+ei.
Hard-wired into fS: For i ∈ [1, t], j ∈ [1, t]`: Ui,j = Bi,j + Si,j
Computed by fS on input ~e: For i ∈ [1, t]: Ui,` = Bi,` + ei

4. Consider, for i ∈ [1, t], the decoding subcircuit in ~̂ that computes qi with values from
the row ~Ui. As defined in Figure 3, each wire in this subcircuit carries some linear
combination of {Ui,j}j , plus possibly a constant. If this linear combination does not
depend on Ui,` (i.e., the input to fS), then pre-compute this wire and hard-wire the
result into fS . On the other hand, if it does depend on Ui,` = Bi,`+ei, then pre-compute
the partial linear combination except the term that depends on ei and hard-wire the
result into the description of fS . On input ~e, fS computes the missing outputs by ⊕-ing
the partial linear combination with the missing term (which is ei times a constant).
Hard-wired into fS: Values for wires that do not depend on Ui,`, and partial linear

combinations for wires that depend on Ui,`.
Computed by fS on input ~e: For wires that depend on Ui,` compute the output of

fS by ⊕-ing the precomputed partial linear combination with ei times the appro-
priate constant.

Let us first consider the outputs of fS that are independent of ~e. In W`−1b~ (X) and W`b~(X)
the first `− 1 columns in S are independently-and-uniformly drawn from Kt, whereas the
last t− `− 1 columns are sampled from Enc(0). The other hard-wired outputs that do not
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depend on ~e, are computed honestly from X and S, thus with respect to only these values,
W`−1b~ (X), W`b~(X) and the outputs of fS are identically distributed. If on the other hand
an output of fS depends on ~e we distinguish two cases:

1. ~e←− Enc(0): This means the `th column of S is assigned an encoding drawn from Enc(0).
Together with the observation that all remaining wires are computed honestly using S
and B, we get that fS(Enc(0)) and W`−1b~ (X) are distributed identically.

2. ~e ←− Enc(x): Here, the `th column of S is assigned an encoding drawn from Enc(x).
With the same observation as above we get that fS(Enc(x)) andW`b~(X) are distributed
identically.

It is clear that the circuits from F`S can be sampled in time O(t2). It remains to show that
they are indeed shallow. The input to fS is used to adjust the `th column of U , which
requires a circuit of depth 1 and size t. Additionally, adjusting the values in the subcircuits
for the computation of qi requires computation of depth 2 (for the computation of ei times
a constant and ⊕-ing it) and O(t) size. Overall, we get circuits of size O(t2) and depth 2.
In the case of GF(2), there is no need to multiply ei by a constant, so depth is only 1. ut

Now we can prove the existence of a shallow reconstructor circuit for the �̂ gadget that
is leakage-indistinguishable from the real �̂ gadget, even though the real �̂ gadget is deep.

Lemma 7 (�̂ is reconstructible). Let LRECb� be a class of leakage functions and let
τ > 0, ε > 0. If Π is (LΠ , τ, ε)-leakage-indistinguishable, then the �̂ gadget is (LRECb� , τ −
O(t2), tε)-reconstructible by SHALLOW(2, O(t2)), where LΠ = LRECb� ◦SHALLOW(3, O(t2))
(and if K = GF(2), then LΠ = LRECb� ◦ SHALLOW(2, O(t2))).

Proof. The reconstructor RECb� is a distribution over circuitsRb� with inputs (X,Y ), where
X = (~a,~b) (i.e., the desired input of the �̂ gate), and Y = (~c) (i.e., its desired output). Let
Rb� ←− RECb�, then we define the distribution RECb� as follows:

1. Sample independently-and-uniformly from Kt×t the matrix U and compute the values
on the wires in the subsequent subcircuits for the computation of ~q (including ~q). All
the values are hard-wired as one of Rb�’s outputs.

2. On input X, Rb� computes the matrix B ←− (ai� bj)i,j , i, j ∈ [1, t]. It outputs the result
as part of the wire assignment.

3. Rb� computes online S ←− B	U and ~o←− ~c	~q (i.e. once using B that depends on input
X and once using the input Y = ~c).

Circuits sampled from RECb� have size O(t2) (because they need to compute matrices B
and S) and depth 2, because S is computed from B, that in turn has been computed from
the inputs.

We now show that if X,Y are chosen as in the definition of reconstructors, the wire
distribution RECb�(X,Y ) is (LRECb� , τ, tε)-leakage-indistinguishable from the wire distribu-
tionWb�(X|Y ). We define the distributionWrandb� (X|Y ) based onWrandb~ (X) from Lemma 6
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with ~o ←− Y − ~q connecting the output of Wrandb~ (X) and Y . In both RECb�(X,Y ) and
Wrandb� (X|Y ) the matrix U is sampled uniformly-and-independently from Kt×t, since in the
latter U ←− S ⊕M , where S is sampled uniformly-and-independently from Kt×t. Further,
in both cases we have ~o ←− ~c − ~q, where ~q is computed honestly and consistently from U .
Therefore, the distributions are identical: RECb�(X,Y ) ≡ Wrandb� X|Y .

Note that Wb�(X|Y ) can be obtained from Wb~(X) by computing ~o←− Y − ~q; similarly,
Wrandb� (X|Y ) can be obtained from Wrandb~ (X) by the same computation. And Lemma 6
tells us that Wb~(X) and Wrandb~ (X) are (LRECb~ , τ − O(t2), tε)-leakage-indistinguishable.
Therefore, letting fS be the circuit that performs such a computation (note that it is
in SHALLOW(1, O(t)) and FS be the singleton distribution that has only fS in it, we can
apply Lemma 5 and obtain thatWrandb� (X|Y ) ≡ RECb�(X,Y ) andWb�(X|Y ) are (LRECb� , τ−
O(t2), tε)-leakage-indistinguishable. ut

4.4 Multi-Gadget Circuit Reconstructors

We now proceed to prove the central lemma showing how gadget reconstructors compose
together to yield a reconstructor for the whole circuit.

Lemma 8 (Multi-Gadget Circuit Reconstructor). Let L bC be some set of leakage
functions and εΠ > 0, τΠ > 0, t > 0. Let Π be (LΠ , τΠ , εΠ)-leakage-indistinguishable. Let
C be a stateless circuit of size s, without encoder or decoder gates with kI inputs and kO

outputs. Then the transformed circuit Ĉ is rerandomizing and (L bC , τ bC , ε bC)-reconstructible
by SHALLOW(2, (kI + kO)O(t2)). Here, we have ε bC = εΠs(t + 2), τ bC = τΠ − O(st2), and
LΠ = L bC ◦ SHALLOW(3, O(t2)) (for K = GF(2), LΠ = L bC ◦ SHALLOW(2, O(t2))).

Proof. Let Ĉ be the transformed circuit, with inputs denotedX = (~x1, . . . , ~xkI) and outputs
denoted Y = (~y1, . . . , ~ykO). Let first gadgets denote the set of topologically-first gadgets in
Ĉ, and let last gadgets denote the set of topologically-last gadgets in Ĉ. The wires that
go between gadgets (i.e., not directly connected to X or Y , and not part of the innards of
some gadget) are called connecting wires.

The fact that Ĉ is rerandomizing follows immediately from the fact that the last gadget
are rerandomizing, and the randomness used in each gadget is independent.

The reconstructor REC bC is a distribution over circuitsR bC with inputs (X,Y ). We define
REC bC , with R bC ←− REC bC , for input (X,Y ) that is plausible for Ĉ, as follows:

1. For each g gadget in Ĉ, sample Rbg ←− RECbg.
2. For each connecting wire, sample a random encodings, i.e., ~v ←− Enc(v) with v ←− K.
3. For each gadget g in Ĉ except for the first gadgets and last gadgets, pre-compute
Rbg(U, V ) and hard-wire the result intoR bC . Here, U (resp., V ) are the encodings assigned
above to the wire bundles that are the inputs (resp., outputs) of ĝ.
Hard-wired into R bC: For each gadget ĝ in Ĉ that is not a first gadget or a last

gadget, the output of running Rbg(U, V ) is hard-wired into the description of R bC .
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4. On input (X,Y ) the reconstructor R bC computes for all of the first gadgets and last
gadgets. For the first gadgets, the input wire bundles are given in X and the outputs
have been hard-wired above. Similarly, for the last gadgets, the inputs have been hard-
wired and the outputs are given in Y .
Hard-wired into R bC: Hard-wire the description of Rbg for each gate g in the first

gadgets and last gadgets, and the values of the connecting wires that touch it.
Computed by R bC on input (X,Y ): For each gadget g in the first gadgets and last

gadgets, compute Rbg(·, ·) and output the result.

We now analyze the size and depth of the reconstructor REC bC . For a circuit C with kI

inputs and kO outputs, R bC ←− REC bC on inputs (X,Y ) only needs to compute kI + kO

reconstructor circuits (for the first gadgets and last gadgets). This requires size at most
(kI + kO) times the maximum size of a single-gadget reconstructor, and same depth as the
deepest single-gadget reconstructor. In our case �̂ gate is the largest (of size O(t2)) and
(of depth 2), which gives the claimed size and depth.

There remains to show that for any plausible (X,Y ), and R bC ←− REC bC , R bC(X,Y ) is
(L bC , τ bC , ε bC)-leakage-indistinguishable from W bC(X|Y ). The proof is by a hybrid argument,
outlined as follows. First, we replace all gadgets in Ĉ by their corresponding reconstruc-
tors. Then, we replace all connecting wires with random encodings, keeping the innards of
gadgets consistent with these random encodings.

We first prove that we can replace each gadget in Ĉ with an appropriate gadget recon-
structor keeping the connecting wires consistent. We will use the following notation. Let
{ĝi} for i ∈ [1, s] denote the gadgets in Ĉ. Drawing a wire assignment from the distribution
W bC(X|Y ) of the real circuit, we denote its elements as follows. For the ith gadget ĝi in Ĉ,
Ui are its inputs and Vi are its outputs (these are identified with elements of X or Y if ĝi is
a first gadget or a last gadget). Note that (Ui, Vi) is always plausible for ĝi, by definition.
Let us define the following hybrid wire assignment distributions:

W0bC : W bC(X|Y ).

W ibC (i ∈ [1, s]): Same asW i−1bC except that the assignment to the wires inside ĝi is replaced
by Rbgi(Ui, Vi) with Rbgi ←− RECbgi .

The following claim shows that W i−1bC and W ibC are (Lbgi , τbgi , εbgi)-leakage-indistinguishable
for all i ∈ [1, s]. More precisely,

Claim. Let Lbgi be some class of leakage functions and let τbgi > 0, εbgi > 0. For any i ∈ [1, s],
if ĝi is (Lbgi , τbgi , εbgi)-reconstructible, then the distributions W i−1bC and W ibC are (Lbgi , τbgi −
O(st2), εbgi)-leakage-indistinguishable.

Proof. For any i ∈ [1, s] we use Lemma 5 with the following mapping: W1 = W i−1bC ,W ′1 =
W ibC and W0 = Wbgi(Ui|Vi),W ′0 = Rbgi(Ui, Vi) with Rbgi ←− RECbgi . To apply Lemma 5 we
need to define the distribution FS , where fS ←− FS :
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ĝ+
i

… …

Fig. 5. This shows the notation used in Claim 4.4. In the two consecutive experiments,
W i−1bC and W ibC , U and V are sampled from the same distribution, whereas in W i−1bC ~vi is
drawn from the honest distribution and in W ibC ~v′i is a random encoding.

1. For all j ≥ i+ 1 sample from Wbgj (Uj |Vj) and hard-wire the result into the description
of fS .

2. For all j ≤ i − 1 sample Rbgj ←− RECbgj and run Rbgj (Uj , Vj) to obtain a valid wire
assignment for that part of the circuit. Hardwire the result into the description of fS .

3. For the part of the wire assignment that represents ĝi, fS just outputs its input.

Note that fS takes as long to sample as the time required to either compute or reconstruct
the s − 1 gadgets, which, in our case, is O(t2) per gadget. It is easy to see that fS is in
SHALLOW(0, 0). Moreover, if fS takes as input a sample from Wbgi(Ui|Vi) then its output
is distributed as W i−1bC . On the other hand if the input is Rbgi(Ui, Vi), then fS ’s output is
identically distributed to W ibC . These facts, combined with Lemma 5 and the fact that W0

and W ′0 are (Lbgi , τbgi , εbgi)-leakage-indistinguishable, show that W1 = W i−1bC and W ′1 = W ibC
are (Lbgi , τbgi −O(s, t2), εbgi)-leakage-indistinguishable. This concludes the claim. ut

Next, we show that we can replace the connecting wires in Ĉ with random encodings.
Let m be the number of connecting wire bundles in Ĉ (since every gadget in Ĉ has at most
two inputs, m ≤ 2s). Associate each bundle of connecting wires with integer i ∈ [1,m] and
denote the encoding carried by this bundle by ~vi. Denote by ĝi− the gadget that has ~vi as
an output wire bundle, and by ĝi+ the gadget that has ~vi as input (see Figure 5). We define
iteratively the following hybrid wire assignment distributions:

W ibC i ∈ [s+ 1, s+m]: Same as W i−1bC except that ~vi is replaced with a random encoding
~v′i (and the internal wires in ĝi− and ĝi+ are adjusted accordingly, as the wire bundles
are given as inputs to the reconstructors of ĝi− and ĝi+).

Intuitively: WsbC is the wire assignment distribution that results from running, for each

gadget in Ĉ, its corresponding reconstructor using honestly-computed connecting wires.
Then, in W ibC for i = s + 1, . . . , s + m, we replace step-by-step the honest encodings at
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the connecting wires with random encodings. The final distribution, Ws+mbC , is identical to
REC bC(X,Y ).

We next prove a claim stating that for all i ∈ [s+ 1, s+m] the distributions W i−1bC and
W ibC are (LW , τW , εW)-leakage-indistinguishable.

Claim. Let LW be some class of leakage functions and let τΠ > 0, εΠ > 0. If Π is
(LΠ , τΠ , εΠ)-leakage-indistinguishable, then for all i ∈ [s+1, s+m] the distributionsW i−1bC
and W ibC are (LW , τW , εW)-leakage-indistinguishable with εW = εΠ , τW = τΠ −O(st2), and
LΠ = LW ◦ SHALLOW(2, O(t2)).

Proof. To prove this statement for any i ∈ [s + 1, s + m], we apply Lemma 5 with the
following assignment for the distributions:W1 =W i−1bC ,W ′1 =W ibC andW0 = Enc(vi),W ′0 =
Enc(v′i), with v′i ←− K. Furthermore, we define the distribution FS , with fS ←− FS that takes
as input a single encoding ~e:

1. Sample Rbgi− from RECbgi− and Rbgi+ from RECbgi+ and hard-wire their descriptions into fS .
2. Sample the values for all the connecting wire bundles except ~vi according toW ibC (which

is the same as W i−1bC for those wire bundles).

3. For each gadget ĝ in Ĉ except ĝi− and ĝi+, pick a reconstructor from the appropriate
reconstructor distribution Rbg ←− RECbg, and run Rbg(U, V ), where (U, V ) are the sampled
values for the input and output wire bundles of ĝ. The resulting wire assignments for
each gadget are hard-wired into fS .

4. Pick and hardwire reconstructors Rbgi− ←− RECbgi− and Rbgi+ ←− RECbgi+ and wire their
descriptions into fS . On input ~e, run on-line the reconstructors Rbgi− and Rbgi+ , using
as their inputs and outputs the wire bundles already sampled and ~vi set to e. Output
their resulting wire assignments together with the hardwired wire assignments for all
the other gadget reconstructors.

We claim that

W i−1bC ≡ fS(~e), if ~e←− Enc(vi),

W ibC ≡ fS(~e), if ~e←− Enc(v′i).

Indeed, in either case, all the wires internal to gadgets are computed according to recon-
structors, and the connecting wire bundles except ~vi are sampled identically in the two
distributions. If e ←− Encvi then, because all the gadgets are rerandomizing, the joint dis-
tribution of e together with all the other wires is indeed W i−1

tC (note that this is the only
place where we use the fact that the gadgets are rerandomizing, but the use of this fact
here is crucial: if Enc(vi) was correlated with some other connecting wire bundle, we could
not hardwire that bundle into fS , because it would not be known until e was given).

Sampling fS ←− FS takes O(st2) time, because that’s how long it takes to sample
the reconstructors. Let us now analyze the complexity of fS . Since most of the wire as-
signments are hard-wired in advance into fS , on input ~e fS only needs to run ĝi− and
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ĝi+. Thus, we get that functions fS ←− FS can be computed by SHALLOW(sW , dW) with
sW = size(RECbgi−)+size(RECbgi+) and depth dW = max(depth(RECbgi−), depth(RECbgi+)). From
the analysis of single gadget reconstructors it follows that the size and depth of reconstruc-
tors is maximal for the �̂ gadget. More precisely, with Lemma 7 we get dW = 2 and size
sW = O(t2). If we now apply Lemma 5 with the fact that W0 and W ′0 are (LΠ , τΠ , εΠ)-
leakage-indistinguishable, we get that W1 = W i−1bC and W ′1 = W ibC are (LW , τW , εW)-
leakage-indistinguishable. ut

Putting now the results from Claim 4.4 and Claim 4.4 together we get that W0bC =
W bC(X|Y ) andWs+mbC = REC bC(X,Y ) are (L bC , τ bC , ε bC)-leakage-indistinguishable. Here, τ bC =
τΠ −O(st2) and

ε bC = m · εΠ +
∑

1≤i≤s
εbgi ≤ m · εΠ + s · max

1≤i≤s
(εbgi). (7)

Since max
1≤i≤s

(εbgi) = tεΠ we get with 7 and m ≤ 2s that

ε bC = (m+ ts)εΠ =≤ εΠs(t+ 2).

It remains to analyze the complexity of L bC . In Lemma 2-4, we can set L = L bC . Fur-
thermore, in Lemma 7 we can set LRECb� to L bC , and thus get that if Π is (LΠ , τ, εΠ)-
leakage-indistinguishable, then �̂ is (LRECb� , τ − O(t2), tεΠ)-reconstructible with LΠ =
LRECb� ◦ SHALLOW(3, O(t2)). Finally, we let LW from Claim 4.4 be L bC . This gives us

LΠ = max(L bC ◦ SHALLOW(2, O(t2)),L bC ◦ SHALLOW(3, O(t2))) = L bC ◦ SHALLOW(3, O(t2)).

Note that depth 3 can be reduced to 2 in the case of GF(2) (see Lemma 7). This concludes
the proof. ut

5 Stateful Circuits

We now proceed to prove Theorem 1 (stated in Section 5), thereby establishing bout the
security of the transformation.

Proof (Proof of Theorem 1). Let us give an outline of the proof. We have to show that
for every qTR adaptive (LTR, τTR)-observer OBS, there exists a simulator SIMTR that only
has black-box access to the circuit and runs in time at most τ ′TR time, such that for every
stateful circuit C[M ] of size s, with memory of size k, kI inputs and kO outputs, the output
distribution of OBS and SIMTR are statistically close.

The idea for the proof is simple: SIMTR runs OBS as a subroutine and eventually will
output whatever OBS outputs. To get the right output SIMTR has to simulate Expreal

TR

without knowledge of the initial secret state M0. This in particular includes answering the
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leakage queries of OBS in a way that is consistent with the public inputs and outputs of
the circuit.

For the proof we view each clock cycle 1 ≤ i ≤ qTR of the stateful circuit C[M ]
as a stateless circuit C∗ that runs on public input xi and outputs a public output yi.
Additionally, during the computation it will make use of the state Mi−1 that in C∗ will
be represented as a secret input and returns as additional output Mi (notice that these
inputs and outputs are already in encoded form and will not require ̂encoder and ̂decoder
gadgets). Thus, C∗ has k + kI inputs, k + kO outputs and s gates (since instead of having
mask gates after the memory gates, we put them after the additional inputs). Let now
Ĉ[M̂ ] be the transformation of C[M ]. Ĉ consist of a special encoder sub-circuit Ê that
consists of ̂encoder gadgets taking as input xi and outputting a valid encoding, and a
decoder sub-circuit D̂ made out of ̂decoder gadgets that takes as input Yi (this is the
output of Ĉ[M̂i−1](xi) in encoded form) and outputs yi. Furthermore, since Ĉ is stateful it
has memory gadgets to store M̂i. As already outlined above, for the proof we will eliminate
the memory gadgets and view the secret state M̂i−1 as Ĉ’s secret input and M̂i as its
secret output. We will denote this circuit with Ĉ∗ and write (M̂i, yi) ←− Ĉ∗(M̂i−1, xi) for
the computation in the ith clock cycle.

Notice that since Ĉ∗ is stateless, it looks promising to apply Lemma 8 which would prove
almost instantly the security of the transformation. However, we encounter some problems
here: first, Lemma 8 explicitly excludes encoder and decoder gates. Second, the secret
state M̂i for 1 ≤ i < qTR can be observed two times (once as the output of the ith cycle,
and once as the input to the (i + 1)th), and, moreover, the observer can pick its leakage
functions adaptively. Let us be more precise about the last point: when OBS observes the
computation in Ĉ∗(M̂i−1, xi) with output yi, he can pick a leakage function fi and obtains
some knowledge about the secret state M̂i. Adaptively, based on that knowledge (i.e. on the
output yi and the leakage that may depend on M̂i) the observer may then pick a leakage
function fi+1 and obtains leakage depending on the computation Ĉ∗(M̂i, xi+1). The crucial
observation here is that both the leakage in the ith and (i+1)th observation may very well
depend on the secret state M̂i. We will address these issues in the following analysis.

Let us now define how the simulator SIMTR works and then show by a hybrid argument
that this simulation is indistinguishable for any qTR adaptive (LTR, τTR)-observer OBS.
SIMTR runs in the experiment Expsim

TR described in Definition 1 and is defined for any
circuit C as given in 6. Notice that SIMTR does not know the secret state, but instead
uses random encodings Zi to compute a valid wire assignment. Furthermore, it uses Yi as
the encoded public output of Ĉ∗ on input (M̂i−1, Xi), which was sampled independently
from the distribution Enc(yi) (in particular, independent of the inputs (Xi, M̂i−1)). If we
can show that this simulation is indistinguishable for OBS that expects to run in Expreal

TR

(cf. Definition 1), then we have proven the theorem. We prove this indistinguishability
by a hybrid argument following a similar approach as in Lemma 8, though, due to the
adaptivity of the observer, we will not argue about hybrid wire assignment distributions,
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Simulator SIMTR(OBS, qTR, C)
Sample uniformly at random encodings (Z0, . . . , ZqTR+1), where each Zi

consists of k encodings of random elements of K
For each i ∈ [1, qTR] sample R bC∗ ←− REC bC∗
Run OBS(qTR, C)
For each query (fi, xi) of OBS:

Query C[Mi−1] on input xi to obtain yi
Sample encoding Yi ←− Enc(yi)
Compute wire assignment WE for the ̂encoder with input xi and its output Xi

Compute wire assignment WD for ̂decoder gadget with input Yi and output yi
Sample W ←− R bC∗((Zi−1, Xi), (Zi, Yi))
Return (fi(WE ,W,WD), yi) to OBS

Return the output of OBS.

Fig. 6. Description of the simulator that runs in the experiment Expsim
TR .

but rather about hybrid experiments. In each of these hybrid experiments we describe how
the simulation of OBS’s view can be done.

In the first hybrid experiment Exp−1
TR the simulator will use the correct honest state

M0 to answer all the queries by computing honestly the wire assignment for all wires in
the circuit. Since this is only a syntactic change to Expreal

TR , trivially for any qTR adaptive
(LTR, τTR)-observer, for any circuit C and any initial state M0, we get that:

|Pr[Expreal
TR (OBS,LTR, qTR, C,M0, t) = 1]− Pr[Exp−1

TR = 1]| = 0.

Let us now give an outline of the following hybrid experiments. In the hybrid experi-
ment Exp0

TR, the simulator answers OBS’s queries by using as the wire assignment for the
sub-circuits Ĉ∗ the output of an appropriate reconstructor as opposed to the real wire as-
signment in Exp−1

TR. In the further (qTR+2)k hybrid experiments, Expi,jTR with i ∈ [0, qTR+1]
and j ∈ [1, k], we replace step-by-step the real memory M̂i with random encodings Zi. No-
tice that in all these experiments we use Yi independently sampled from the distribution
Enc(yi) as the encoded public output of Ĉ∗. As soon as we start to replace the real memory
M̂i with the random encodings Zi, (Yi+1, M̂i+1) may no longer be a consistent output of
Ĉ∗. However, we will show that this setting is indistinguishable from the case where all
wires are honestly computed.

Let us be more precise and define Exp0
TR as the hybrid experiment where the simula-

tor knows M0, which allows him (together with the knowledge of xi) to sample M̂i, Xi, Yi.
Then, this simulator answers each of the qTR queries (fi, xi) by computing wire assignments
for W bC∗ by running the appropriate reconstructor R bC∗((Xi, M̂i−1), (Yi, M̂i)) and comput-
ing WE ,WD in plain view. We need to show that if each of the wire assignments for Ĉ∗
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is (L bC , τ bC , ε bC)-reconstructible for some L bC and τ bC ≥ 0, ε bC ≥ 0, then the simulation in ex-
periment Exp0

TR is ε bC indistinguishable for any qTR-adaptive (L bC , τ bC−qTRO(st2))-observer
OBS from the simulation in Exp−1

TR.
For each query (fi, xi) computing the wire assignment WE and WD is easy (and can be

done by the simulator) since the inputs to both are known: for the ̂encoder it is xi and for
the ̂decoder Yi. Moreover, it is not difficult to see that the pair ((Xi, M̂i−1), (Yi, M̂i)) is a
plausible input for the reconstructor of Ĉ using the rerandomizing property. The remaining
“inner” parts of Ĉ∗ are computed by the reconstructor R bC∗ . Since Ĉ∗ is rerandomizing and
(L bC , τ bC , ε bC)-reconstructible, we get by the same argument as in Claim 4.4 that replacing
real wire assignments for Ĉ∗ with reconstructed once is indistinguishable for OBS (given
that the inputs to the reconstructor are plausible). Notice also that we need to replace the
reconstructors for all clock cycles. Proving this can be done by a simple hybrid argument
along the lines of Claim 4.4. We omit the details in this sketch and obtain for any qTR

adaptive (L bC , τ bC − qTRO(st2))-observer OBS

|Pr[Exp0
TR = 1]− Pr[Exp1

TR = 1]| ≤ qTRε bC . (8)

Before moving on and showing that we can replace each encoding of the state by a random
encoding, let us analyze how the parameters L bC , τ bC and ε bC can be expressed in terms of the
parameters for the encoding scheme Π. If the underlying encoding scheme Π is 2-adaptive
(LΠ , τΠ , εΠ)-leakage indistinguishable, then we get by Lemma 8 τ bC ≤ τΠ − qTRO(st2)),

ε bC = εΠs(t+ 2), and (9)

LΠ = L bC ◦ SHALLOW(3, O(t2)), for some L bC . (10)

Next, we prove that the simulator can replace each single encoding of the state with a
random encoding. This proof is similar to Claim 4.4 with some subtleties. Notice that during
qTR observations the observer can learn information on qTR + 2 states with each having k
elements. Thus, we define (qTR + 2)k hybrid experiments, with i ∈ [0, qTR + 1], j ∈ [1, k]

Expi,jTR: This is as the previous experiment, but replacing the jth element of the ith state
with a random encoding,

and order them as follows

Exp0,1, . . . ,Exp0,k,Exp1,1, . . . ,Expq+1,k−1,Expq+1,k.

For ease of notation, we identify Expi,0 with Expi−1,k for i > 0 and Exp0,0 with Exp0.
We next prove that the simulation in these hybrid experiments are indistinguishable

for a qTR-adaptive (LTR, τTR)-observers.

Claim. Let LW be some class of leakage functions and let εΠ ≥ 0, τΠ ≥ 0. If Π is 2-adaptive
(LΠ , τΠ , εΠ)-leakage indistinguishable, then for any qTR-adaptive (LW , τW)-observer OBS
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(where τW = τΠ − qTRO(st2) and LΠ = LW ◦ SHALLOW(2, O(t2))), for any circuit C, any
initial state M0, and for any i ∈ [0, q + 1], j ∈ [1, k]:

|Pr[Expi,j−1
TR = 1]− Pr[Expi,j = 1]| < εΠ . (11)

Proof. We prove this claim by contradiction. Suppose there exists such an observer OBS, a
state M0, and values i ∈ [0, q+1], j ∈ [1, k] such that (11) does not hold, then we will build
a 2-adaptive (LΠ , τΠ)-observer OBSΠ that will distinguish an encoding of the jth element
of the ith state from a random encoding. Such OBSΠ will simulate the environment for
OBS, placing its target encoding as element number j in the ith state. Notice that OBSΠ
will use in the simulation of the environment for OBS the fact that it can observe the
target encoding two times, as well as the fact that it (unlike SIMTR) is allowed to depend
on the true initial state M0. Notice again that knowing M0 and the inputs xi given by
OBS in each round allows to compute all states Mi, 1 ≤ i ≤ qTR + 1 and, thus, to sample
M̂i ←− Enc(Mi).

OBSΠ will work as follows: it runs OBS as a subroutine and has to answer its queries.
Before we describe how this is done first notice that we will omit details on how to compute
the wire assignment of Ê and D̂ since it is trivial given xi and Yi.13 Depending on the value
of i we distinguish three cases for answering the leakage queries (f`, x`), ` ∈ [1, qTR]. First,
the ith state is not part of the wire assignment observed during the `th query. Second, the
ith state is part of the input of Ĉ∗ during the `th observation, and finally, the ith state
represents parts of the output in the wire assignment for the `th observation. Let us be
more precise and analyze how OBSΠ answers the `th query:

1. If the ith state is not part of the wire assignment for the `th observation, then OBSΠ
answers the queries in the same way as in the two hybrid experiments (notice that
both are identical except for the queries where the ith state is part of the observed
wire assignment). We notice in particular that for such queries OBSΠ knows the secret
input and output state (these can either be the real state or already random encodings)
and thus has no problem simulating the answers for these queries (by computing all
the wires in the circuits with the reconstructors).

2. If the ith state is part of the input of Ĉ∗ during the `th observation (i.e. ` = i + 1),
then OBSΠ needs to produce a honest wire assignment for Ĉ∗. This wire assignment
depends on the jth element of the ith state. OBSΠ is going to put its target encoding
at this position. We denote by M̂ ′i the ith state in Expi,j−1

TR , except that whenever the
jth element is used we use the target encoding. If the target encoding is an encoding of
the real value at this position then the simulation is identical to Expi,j−1

TR . On the other
hand, if it is an encoding of a random value, then the simulation is identical to Expi,jTR.
The difficulty is that if OBSΠ puts the target encoding at this position, then it has
to come up with a wire assignment for Ĉ∗ that is consistent with the target encoding.

13 xi can basically be chosen by OBS himself which together with Mi−1 allows to compute yi and to sample
Yi ←− Enc(yi). Again notice that Yi is for all experiments the encoding of the same value yi.
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Since the target encoding is only known to the leakage function, this has to be done in
a shallow way. For this purpose OBSΠ will use an appropriate reconstructor R bC∗ drawn
from REC bC∗ (recall that already in experiment Exp0

TR the real wire assignments have
been replaced by appropriate reconstructors) and run it as part of the leakage function
fΠ on input ((Xi+1, M̂

′
i), (Yi+1, M̂i+1)). This would result in a security loss that depends

on kI, kO and k (since the reconstructor takes as input ((Xi+1, M̂
′
i), (Yi+1, M̂i+1))). A

more thorough analysis will allow us to eliminate this loss.14 Eventually, OBSΠ will
do a leakage query fΠ to EvalΠ . fΠ takes as input a single target encoding, computes
online the reconstructor R bC∗ on it, and finally evaluates f` on the output of R bC∗ . The
result of this will be returned to OBSΠ .

3. If the ith state represents part of the output in Ĉ∗’s wire assignment during the `th
observation (i.e. ` = i), then OBSΠ needs to produce a honest wire assignment for
Ĉ∗. This wire assignment depends on the jth element of the ith state. The analysis is
similar to step 2.

A crucial point in this simulation is that OBSΠ has to query EvalΠ twice to obtain a
consistent simulation. Once when the ith state is input to Ĉ∗ and a second time when
it is part of the output. This is possible since Π is assumed to be 2-adaptive leakage
indistinguishable. For the rest of the reduction refer to Claim 4.4. With Lemma 8 (and the
therein defined size and depth of the reconstructor) this gives us the following parameters: If
Π is 2-adaptive (LΠ , τΠ , εΠ)-leakage indistinguishable, then for all i ∈ [0, qTR +1], j ∈ [1, k]
the simulation of two consecutive experiments are εW -indistinguishable for qTR-adaptive
(LW , τW)-observers. ut

Putting things together we obtain with Claim 5 and equation 8-10: If Π is 2-adaptive
(LΠ , τΠ , εΠ)-leakage-indistinguishable, then for any circuit C of size s, any initial state M0

with size k, any qTR ≥ 0, t > 0 and any qTR-adaptive (LTR, τTR)-observer

|Pr[Expreal
TR (OBS,LTR, qTR, C,M0, t) = 1]− Pr[Expsim

TR (SIMTR, qTR, C,M0, t) = 1]| ≤ εTR.

Here, τTR = τΠ − qTRO(st2) and

εTR = |Pr[Exp−1
TR = 1]− Pr[Exp0

TR = 1]|+
∑

i∈[0,qTR+1],j∈[1,k]

|Pr[Expi,j−1
TR = 1]− Pr[Expi,jTR = 1]|

= qTRε bC + (qTR + 2)kεΠ
= qTRεΠs(t+ 2) + (qTR + 2)kεΠ
≤ εΠ(qTR + 2)(s(t+ 2) + k).

14 Fortunately, all of the outputs of bC∗ and all inputs except for the jth element of the ith state are known
to OBSΠ and, thus, can be hard-coded into the description of R bC∗ . In particular, this guarantees that the

size of the reconstructor for bC∗ is extremely small (i.e. it consists only of a single gadget reconstructor).
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It remains to analyze the complexity of LTR. If we set in the above analysis L bC = LW =
LTR, then from Claim 5 and equation 10, we get

LΠ = max(LTR ◦ SHALLOW (2, O(t2)),LTR ◦ SHALLOW (3, O(t2))).

This proves the theorem. ut

6 Variants

6.1 Unconditional Security against Constant-Depth-Circuits Leakage

The result in Theorem 1 is conditioned on assumptions that decoding is “hard” for functions
in L. Lower bounds on computational tasks are notoriously difficult to prove, and therefore,
given our current state of knowledge, applying our results will, in most cases, require
computational assumptions about hardness of decoding for a given class of leakage functions
(or restrictions on how many wires they can observe, as in [18]).

However, we highlight some cases in which the theorem can be applied unconditionally.

6.1.1 AC0 leakage

Consider circuits over K = GF(2) with the decoder Dec being the parity function. It is
known that parity is hard to approximate for constant depth (also known as AC0) cir-
cuits. Thus, let C(d, s, λ) denote Boolean circuits made of NOT gates and unbounded
fan-in AND and OR gates, with λ bits of output, size s, and depth (not counting NOT
gates) d. Let L1

AC0 denote C(d, 2t1/d , 1) for some constant d. Then we can use the result
of H̊astad [17] (as cited in [21, Corollary 1]), which translated into our definition, says
that parity encoding is (L1

AC0 , τAC0 , 2−t
1/d+1

)-leakage-indistinguishable, for any τAC0 . More
generally, if we set LAC0 = C(d, exp(O(t(1−δ)/d), tδ) for some 0 < δ < 1, then we can
use the result of Dubrov and Ishai [11, Theorem 3.4], which says that parity encoding is
(LAC0 , τAC0 , exp(−Ω(t(1−δ)/d)))-leakage-indistinguishable.15

Since Theorem 1 requires that the underlying encoding scheme is leakage-indistinguishable
against 2-adaptive observers, we will need the following lemma and prove it specifically for
leakage functions modeled by circuits with unlimited fan-in AND and OR gates, such as AC0.

Lemma 9 (2-adaptive leakage-indistinguishability). Let D,E be two distributions
and d, s, λ, τ, ε ≥ 0. If D and E are (L, O(τ2λ), ε)-leakage-indistinguishable, then the two dis-
tributions are 2-adaptive (L′, τ, ε)-leakage-indistinguishable, where L = C(d+2, O(s2λ), 2λ)
and L′ = C(d, s, λ).

15 An even better result is obtained [11, Theorem 3.4] if one restricts d to d = 1: in that case, the ε
parameter in leakage-indistinguishability gets reduced to exp(−Ω(t− tδ log t)).
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Fig. 7. The structure of f when λ = 1

Proof. Assume for contradiction that D and E are not 2-adaptive (L′, τ, ε)-leakage-indistinguishable,
then there exists a 2-adaptive (L′, τ)-observer OBS′ such that 1 does not hold and we are
going to show how to build a (L, O(τ2λ))-observer OBS such that

|Pr[OBSEval(D,·) = 1]− Pr[OBSEval(E,·) = 1| > ε.

OBS runs OBS′ as a subroutine and has to answer its 2 leakage queries f1, f2. The difficulty
will be that OBS is supposed to only query Eval once. We will resolve this by putting all the
adaptivity into the leakage function. The resulting leakage function will output the result
of both leakage queries. The size of its circuit description will be exponential in λ.

OBS runs in two phases: first, a learning phase, where it is supposed to learn all possible
leakage functions from OBS′ for the second leakage query. Second, a leakage phase, where
it builds a leakage function, obtains valid leakage from Eval with just a single query, and
finally returns the reply to OBS′. The learning phase is pretty simple: OBS runs OBS′ as
a subroutine and gets back f1. Since OBS is only allowed to query Eval once, it cannot
query Eval with f1 directly. Instead, it needs to find out f2 that OBS′ would use for every
possible output Λ ∈ {0, 1}λ of f1. To do so, it rewinds OBS′ 2λ times, and each time gives
a different Λ to OBS′ to obtain the function fΛ2 . (Observe that some values of Λ may be
an invalid return for the leakage function f1 and by this OBS′ might notice that he is run
in a simulated environment; in that case, OBS′ may take more time than τ ′, so OBS will
stop after τ ′ steps.)

Let us now describe the leakage phase. OBS will build its leakage function f as follows:
on input S, f computes Λ1 = f1(S), fΛ1

2 (S), and outputs both values.
We need to compute the circuit complexity of f . All 2λ possible functions of f2 need to

be hardwired into the circuit, but they can be computed in parallel with each other and
together with f1 (so they increase the size, but not the depth, of the circuit). Then the
output of one of these functions needs to be “selected” according to the output of f1. This
selection can be done by adding depth two (not counting NOT gates) and O(2λ) additional
gates, as shown in in Figure 7 for the case when λ = 1. Thus, we get for some L′ = C(d, s, λ)
that L = C(d+ 2, O(s2λ), 2λ) as stated in the lemma.

The rest of the proof is straightforward: OBS can use its return from the oracle Eval
to answer the two leakage queries f1, f2 of OBS′. Since this is a perfect simulation, we get
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that if OBS′ can distinguish with advantage more than ε, then so can OBS. Notice that the
running time of OBS is O(2λτ). ut

Generalizing Lemma 9. We can generalize this lemma in two ways: first, by a similar
argument we can prove security against p adaptive observers. This, however, increases the
function’s size exponentially in p and λ and moreover requires that the functions in L can
output pλ bits. Second, observe that we have proven this Lemma for the special case that
the leakage functions are circuits with particular gates. This can be generalized to other
function classes as long as they suffice to compute the function f (and in particular, the
selection part). Notice that if the function class allows if-branching then the running time
of f will only increase by a factor linear in p, whereas the size of the description will still
suffer from an exponential blow-up.

If we instantiate in Theorem 1 the encoding scheme with parity, we get from Lemma 9
the following corollary.

Corollary 1. Let 0 < δ < 1, d ≥ 4, t > 0, qTR ≥ 0 be some constants and let d < 1/δ − 1.
There exists a circuit transformation that is (LAC0

TR , τTR, τ
′
TR, qTR, εTR)-secure for

– any τTR ≤ O(τAC02−λ)− qTRO(st2), where s is the number of gates plus the number of
input wires in C,

– some τ ′TR ≤ τTR + qTRO(st2),
– some εTR ≤ (qTR + 2)(sC(t+ 2) + k)εAC0, where k is the number of memory gates in C,
– LAC0

TR = C(d− 4, exp(O(t(1−δ)/d)), btδ/2c)16

Proof. For ease of notation, let εAC0 = exp(−Ω(t(1−δ)/d)). In [11, Theorem 3.4] the au-
thors showed that the parity encoding is (LAC0 , τAC0 , εAC0) for any τAC0 , where LAC0 are
circuits that output tδ bits and are of depth d and size exp(O(t(1−δ)/d)). Lemma 9 then
shows that the encoding scheme is 2-adaptive (L′

AC0 , O(τAC02−λ), εAC0)-leakage indistin-
guishable, where L′

AC0 are circuits that output btδ/2c and have depth d − 2 and size
exp(O(t(1−δ)/d)− btδ/2c) = exp(O(t(1−δ)/d)), where the equality follows from d < 1/δ − 1.
If we now apply Theorem 1 with K = GF(2), and observe that SHALLOW(2, O(t2) can be
implemented in C(2, O(t2)), λ) for some λ (by expressing the constant-size depth-2 ⊕ gates
as a constant-size CNF or DNF), we obtain the desired result. ut

Improving the security loss. The bounds from Corollary 1 imply that asymptotically
the leakage function classes that parity encoding and our transformed circuits can tolerate
are similar as long as d < 1/δ−1. This restriction can be eliminated by relaxing the security
definition. More precisely, if in Definition 1 we restrict the adversary to choose the leakage
function fi, i ≥ 2, adaptively only on the output of the leakage functions f1, . . . fi−2, then
Theorem 1 won’t require 2-adaptive leakage-indistinguishability of the encoding scheme.
Hence, in Corollary 1 the restriction that d < 1/δ − 1 can be eliminated. Notice though
that the choice of fi and the input xi may still depend on the circuit’s output y1, . . . , yi−1.
16 Notice that this is still in the class of AC0 circuits since d− 4 is constant.
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6.1.2 ACC0[q] leakage
A natural way to extend the class of L1

AC0 to something more general is to allow parity
gates (or more generally, gates that compute modular sums). Clearly, such circuits can
compute the parity function, but are there still other functions that cannot be computed
by such circuit? This is indeed the case. Let us be a little bit more precise. For any integer
n let MODn be the gate that outputs 0 if the sum of its inputs is 0 modulo n, and 1
otherwise. We define the class L1

ACC0[n]
as functions computable by Boolean circuits made

of unbounded fan-in AND, OR, NOT and MODn gates, of output length 1, depth at most d, and
polynomial size. Let Πp be the simple additive secret sharing scheme modulo p. By a result
of Razborov and Smolensky [35,39], for any distinct primes p and q, the encoding Πp is
leakage-indistinguishable for functions in L1

ACC0[q]
. Since Πp has a linear decoding function,

we can apply Theorem 1 to get security of circuit transformation based on Πp encoding.

6.2 Replacing opaque gates with reconstructible gadgets

The scheme in Section 3 requires an “opaque” gate O, i.e., a leak-free component that
samples string from a certain prescribed distribution. We now show that O can, in fact, be
replaced by a gadget built out of smaller gates operating in plain view — as long as this
gadget is reconstructible. Thus, to make arbitrary circuits leakage-resilient, it suffices to
find a way to build one specific simple circuit in a way that is reconstructible for the given
leakage class.

The following composition lemma shows that any opaque gate can be replaced by a
reconstructible gadgets; to invoke it for the scheme of Section 3, let g = O.

Lemma 10 (Inside-out composition). Let C be an arbitrary circuit. Let Ĉ be its trans-
formation, and let g be gates in Ĉ. Let ĝ be a gadget for gi, i.e., a circuit which implements
the same (probabilistic) mapping as gi but whose internal wires are observable by the leak-
age function. Let Ĉ ′ be the composite circuit obtained from Ĉ by replacing g with ĝ. Let τ
be the maximal time needed to compute all the wires in ĝ either by using an appropriate
reconstructor or the real inputs.

If Ĉ is (L bC , τ bC , ε bC)-reconstructible by R bC for some L bC , τ bC , ε bC and ĝ are (Lbg, τbg, εbg)
reconstructible by Rbg for some Lbg, τbg, εbg, then Ĉ ′ is (Lbg,min(τ bC , τbg) − O(sτ), εbg + ε bC)-
reconstructible by R′bg ◦ R bC , where R′bg = {x 7→ (x, f(x))|f ∈ Rbg}.
Proof (Proof sketch). Since Ĉ is rerandomizing, so is Ĉ ′. The reconstructor REC bC′ is defined
by composing the given reconstructors REC bC and RECbg as follows (see Figure 8 for nota-
tion). Sampling R bC′ ←− REC bC′ is done by sampling R bC ←− REC bC and Rbg ←− RECbg. Given X
and Y , R bC′ uses R bC(X,Y ) to assign the wires of Ĉ ′ that come from Ĉ; in particular this
assigns U and V , so Rbg(U, V ) is used to assign the remaining wires inside ĝ.

To argue indistinguishability, define the hybrid distribution W1bC′(X,Y ) as assigning

the wires that come from Ĉ honestly (i.e., drawing them from W bC(X|Y )) and then recon-
structing the remaining wires that come from ĝ (using RECbg(U, V )).
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Fig. 8. Notation for Ĉ ′ obtained by composing Ĉ and ĝ.

A distinguisher between W bC′(X|Y ) and W1bC′(X,Y ) yields a distinguisher between
RECbg(U, V ) and Wbg(U |V ) (violating the property of RECbg): let W ←W bC(X|Y ) and let U
and V be the input and output of ĝ in W ; then given a challenge wire assignment to ĝ,
combine it with W to get a full wire assignment to Ĉ ′ and feed it to the given distinguisher.

Similarly, a distinguisher between W1bC′(X,Y ) and REC bC′(X,Y ) yields distinguisher
between W bC(X|Y ) and REC bC(X,Y ) (violating the property of REC bC): given a challenge
wire assignment to Ĉ, one can complete it to a wire assignment to Ĉ ′ (by filling in the
wires of ĝ using RECbg) and invoke the given distinguisher.

We omit in this sketch showing how the parameters work out. ut

The above holds for replacing a single gate. The proof easily generalizes to replacing
multiple gates, with a small loss in parameters.

Alternative security proof. Incidentally, this lemma suggests an alternative proof for
the security of the scheme Section 3. One first defines opaque encoded gates that perform �,
⊕, etc. on encoded values in an opaque way: they get encoded inputs and output a random
encoding of the correct result, without any leakage from within the gate (the wires between
gates do, as usual, leak).17 . One can transform any circuit C into a circuit Ĉ using opaque
encoded gates in the natural way. This Ĉ is readily verified to be reconstructible (by a
simplified version of Lemma 8). Then, replace each opaque encoded gate in Ĉ with the
corresponding reconstructible gadget given in Figure 3; the resulting circuit is, of course,
identical to the transformed circuit of Section 3, and its reconstructibility follows from
Lemma 10.18

Reducing randomness. The fact that opaque gates can be replaced by reconstructible
gadgets implies another useful property: we can replace an opaque gate O by another
opaque gate O′ which uses less randomness, as long as the two cannot be distinguished
by the observer. This allows a cheaper implementation of the opaque gate. For example,
in the case of AC0, O (which samples random t-bit strings with parity 0) can be replaced
by O′ which uses just polylog(t) random bits, expanded to t− 1 pseudorandom bits using
Nisan’s unconditional pseudorandom generator against AC0 [28]. Similarly, against AC0

one can use any imperfect source of randomness that is merely polylog(t)-independent [8].

17 For example, c← a⊕ b is converted to ~c← Enc(Dec(~a)⊕ Dec(~b))
18 For tight results, note that, as in the proof of Lemma 8), only the reconstructors for first and last gates

need to be computed online (due to the rerandomizing property of our gates).
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6.3 Generalization to Arbitrary Reconstructible Gadgets

In Sections 3 through 5 we define and analyze a particular class of constructions, based on
linear secret sharing schemes. In Section 6.1 we further specialize this to the case of the
parity scheme and AC0 leakages.

However, the proof techniques introduced along the way are, in fact, more general. Note
that Lemma 8 relies essentially only on the fact that the gate gadgets are rerandomizing
and reconstructible. One can obtain an analogous result using any encoding method (not
necessarily a linear one) and a corresponding set of sound gate gadgets that are rerandom-
izing and reconstructible. We thus obtain a general composition lemma for reconstructors,
informally stated thus:

Lemma 11 (Reconstructor composition for encoding-based circuits (informal)).
Let Π = (Enc,Dec) be any (not necessarily linear) encoding scheme that is (LΠ , τΠ , εΠ)-
leakage-indistinguishable for some LΠ , τΠ , εΠ . Let G be a set of gates operating on plain
values, and let Ĝ be a set of corresponding gadgets, operating on encoded values, which are
sound for Π. Suppose each gadget in Ĝ is rerandomizing and (L bG, τ bG, ε bG)-reconstructible
by R bG. Let TR be the circuit transformation defined analogously to Section 3, but changed
in the natural way to use Π and Ĝ. Then for any stateless circuit C of size s (without
encoder or decoder gates) with kI inputs and kO outputs, TR(C) is rerandomizing and
(L bC , τ bC , ε bC) reconstructible by R bC , for

– LΠ = max(L bG,L bC ◦ (2×R bG)) ,
– any τ bC ≤ τΠ − st bG, where t bG is maximum time require to run or reconstruct a gadget

in Ĝ,
– some ε bC ≤ s(ε bG + iεΠ), where i is the maximal fan-in of the gates in G,
– R bC = (kI + kO)×R bG .

Consequentially, the transformation TR is secure for the appropriate values of param-
eters (similar to Theorem 1).

The proofs are straightforward generalizations of Theorem 1 and Lemma 8, and thus
omitted.

Lastly, note that these results further generalize to the case where each wire bundle
in Ĉ uses a different encoding scheme, since we never rely on the encoding schemes being
identical.

6.4 Unconditional Security against Noisy Leakages

Thus far, we considered leakage classes L that are constrained in computational power per
se. As discussed in Section 1.2.3, an alternative assumption, recently introduced by Rabin
and Vaikuntanathan [34], is that the leakage is noisy, i.e., the observer gets an imperfect
copy of the circuit’s state subject to some noise. Their work shows a circuit transformation
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secure against such noisy leakage. Here we show that their model can be recast as a special
case of ours, and outline an alternative, concise proof of the security of their scheme using
our reconstructor machinery.

Noisy leakage, as defined in [34], assumes that each leaked bit19 is randomly flipped
independently of the rest, with some probability p. In our model, this is captured by the
leakage class Lp = {Np} where Np is a probabilistic circuit that independently flips each
input bit with probability p and outputs the result.

Theorem 2 ([34]). The circuit transformation of [34], which encodes each bit into t bits,
is (Lp, τ, τ + poly(t, q, s), q, 2−p

Θ(1)
)-secure for circuit size s and any q, τ .

Proof (Alternative proof (sketch)). The key observation (similarly to [34]) is that the parity
encoding Π (as used in Section 6.1) is also leakage-indistinguishable against Lp: by Yao’s
XOR lemma, when the encoding is sufficiently large compared to p, given a noisy string
Np(x), the observer cannot approximate the parity of the original string x. Next, we observe
that the gadgets defined in [34] are rerandomizing and, by (by a tight reduction to the
leakage-indistinguishability of the encoding Π) also reconstructible against leakages in Lp.
By Lemma 11, the claim follows. ut

6.5 Circuit Transformation from Opaque Public-key Encryption

We describe a simple circuit transformer, using public-key encryption, that is secure against
any polynomial-time measurement (i.e., OBS is polynomial-time and likewise L = P).
Our intention is, chiefly, to demonstrate another application of the general reconstructor-
composition lemma of Section 6.3. Since this transformer relies on leak-free components
that are large and have to maintain (short-term) secret states, we do not claim it can be
implemented realistically or efficiently.

The transformation, TRPK, is defined thus. Let (PKGen,PKEnc,PKDec) be a public-
key encryption scheme with IND-CPA security, and let k be a security parameter. Let the
original circuit C consist of AND, OR and NOT gates, along with the special gates encoder,
decoder, mask and copy defined in Section 3. The transformation, like that of Section 3,
converts each wire in the circuit into a wire bundle, and each gate g into a gadget ĝ. Here,
each bundle carries an encryption of the original wire’s value.

For the gadgets ÂND, ÔR, N̂OT, ĉopy and m̂ask, the gadget consists simply of a single
opaque component which decrypts all its inputs, applies the suitable operation on plaintexts,
and encrypts the outputs; it is assumed that this opaque component is completely leak-
free.20 The encryption keys are separately negotiated along each wire, using the following
wire protocol : the downstream opaque component generates a key pair (sk, pk) and sends

19 We focus on their main model. For simplicity, we considering the binary where K = GF(2). These
observations are easily generalized to larger fields and suitable noise models.

20 As in Section 6.2, the scheme remains secure if the opaque components are replaced by arbitrary gadgets
which have the same functionality and are reconstructible.
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Fig. 9. An AND gate and its transformation under TRPK and TR′PK. Note how ÂND conducts
3 instances of the wire protocols.

pk upstream; the upstream opaque components then sends the encryption of the plaintext
under pk. This is illustrated in Figure 9 (center).

Lastly: the ̂encoder gadgets consists of a leak-free component which receives a plaintext
a as input and a public key pk from the downstream component, and sends PKEnc(pk, a) to
the downstream component. The ̂decoder gadget consists of a leak-free component which
generates a key pair (sk, pk), sends pk upstream, receives a ciphertext â from upstream,
and outputs PKDec(sk, â).

Soundness of TRPK follows trivially from the soundness of the encryption scheme.

Theorem 3. The circuit transformation TRPK is (P, τ(k), τ(k) + poly(k), q(k), negl(k))-
secure for any polynomials τ ,q and circuits of size poly(k).

Proof (Proof sketch). We define an artificial circuit transformation TR′PK which is secure
iff TRPK is secure. This TR′PK is similar to TRPK, except that the wire protocol is replaced
by a non-interactive one, using the following encoding scheme Π = (Enc,Dec) (see Fig-
ure 9). The upstream component transmits each value a using the encoding procedure
Enc(a) which outputs (pk, â), where (sk, pk) ←− PKGen(1k) and â ←− PKEnc(pk, a); the se-
cret key sk is discarded. The downstream component does not have the decryption key;
instead, it recovers a by running Dec(pk, â), which recovers and outputs a by brute force
search.21 In TR′PK, ̂encoder and ̂decoder are opaque component that simply run Enc and
Dec respectively.

Note that the circuit transformations TRPK and TR′PK are indeed secure with identical
parameters, since their wire assignments have identical distributions (the only difference is
in the direction by which the public keys are sent between opaque components). In TR′PK all

21 The inefficiency of the opaque components used by TR′PK is irrelevant to the security proof of TRPK.
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gadgets (except ̂encoder and ̂decoder) are rerandomizing. Also, by the IND-CPA security
of the encryption scheme, these gadgets are (P, poly(k), negl(k))-reconstructible by the
distribution of depth-0 circuits that simply output a precomputed sample from Enc(0). By
Lemma 11, the claim follows. ut

7 On the Necessity of Opaque Gates

Our constructions reduce the leakage-resilience of arbitrary circuits to that of simple
“opaque gate” components, and Section 6.2 provides significant leeway for the realiza-
tion of these components. But can large opaque gates be completely eliminated? Alas,
as shown next, large opaque gates are necessary for secure and sound transformation of
arbitrary circuits, if the transformation’s security follows from (or implies) reconstructibil-
ity. Moreover, we conjecture that large opaque gates are necessary for some “black-box”
constructions of transformers.

7.1 Necessity of opaque gates for reconstruction

We begin by showing that large opaque gates are necessary when using our proof tech-
nique, and more generally, in any (sound) circuit transformation in which the transformed
circuits contains some part which is (shallowly) reconstructible. Otherwise, for any circuit
C, there exists a shallow circuit C ′ that computes the same function — which, for suitable
parameters, is obviously false.

Let us first give a general lemma relating the parameters of C ′ to those of the trans-
formation and the reconstructor.

Notation. In the following, we assume for simplicity that all gates are binary, i.e., K =
{0, 1}. Let DS(d, s) denote the class of functions computable by unlimited fan-in Boolean
circuits of depth d and size s. For a set of (probabilistic) gates G, define the class of
functions that verify gates in G as VG = {vg|g ∈ G}, where vg(x, y) = 1 iff the output y is
plausible for g on input x (i.e., Pr[g(x) = y] > 0).

Lemma 12. Let TR be any circuit transformer, which output circuits Ĉ using gate set G.
Suppose Ĉ is of the form Ĉ = D̂ ◦ Ĉ ′ ◦ Ê, where Ê is an “encoder” in some function class
L bE, Ĉ ′ is a rerandomizing“core” circuit, and D̂ is any “decoder” circuit.

Suppose that for some deterministic single-output circuit C, function class LREC bC and
distinguishing advantage ε < 1, the core Ĉ ′ of Ĉ ←− TR(C) is (L1, O(1), ε)-reconstructible
by LREC bC′ . Then the function computed by C lies in the class {ANDs}◦(s×VG)◦LREC bC ◦L bE.

Here, L1 = {ANDs}◦(s×VG), where s is the size of C and ANDs is the AND gate of fan-in
s.

Proof. We shall show that the function computed by C is also computed by C ′, defined as
follows. Intuitively, C ′ will ask LREC bC′ to reconstruct the internal wires of C while forcing
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the output to (an encoding of) 0, and then verify reconstructor’s output. If 0 is indeed the
correct output then verification will succeed (with high probability), otherwise it must fail.

First, think of C ′ as drawn from the following distribution over circuits. For a random
string r and drawing R bC′ ←− REC bC′ , on input x:

1. Encode the inputs: X ←− Ê(x) using the randomness r.
2. Let Y be an arbitrary (fixed) string that decodes to 0, i.e., D̂(Y ) = 0.
3. Compute W ←− R bC′(X,Y ); then set the input wires in W to X, and the output wires

to Y .
4. For each gate g in Ĉ ′, verify (using vg ∈ VG) that the the wires connected to g in the

assignment W are plausible for g.
5. If all tests in the previous step succeeded, output 0. Otherwise output 1.

Correctness: if C(x) = 0 then (X,Y ) is plausible for Ĉ ′ (since Ĉ ′ is rerandomizing)
and thus, by the definition of the reconstructor REC bC′ , the wire assignment distribution W
is (L1, O(1), ε)-leakage-indistinguishable from W bC′(X|Y ). Since steps 4+5 are in L1, the
verification will pass with probability at least 1−ε (otherwise steps 4+5 form a distinguisher
between W and W bC′(X|Y )). Thus, C ′ outputs 0 with probability at least 1− ε.

Conversely, if C ′(x) outputs 0 then W is plausible for every gate g in Ĉ ′. Thus, W
has non-zero probability in the honest wire assignment distribution W bC′(X), since the
probabilistic gates in Ĉ ′ use independent randomness.22 The output wires in W are Y , so
by the soundness of TR, this means C(x1, . . . , xkI) = Dec(Y ) = 0.

We have thus shown that the randomly drawn C ′ computes the same function as C
with probability at least 1 − ε. Fixing the best random choice of r and R bC′ , we get as
specific circuit C ′ that computes the same function as C. Lastly, note that C ′ indeed lies
in the class {ANDs} ◦ (s× VG) ◦ LREC bC ◦ L bE . ut

In particular, this means that transformed circuits that have constant-depth recon-
structors and constant-depth encoders must use large opaque gates:23

Lemma 13. Let TR be any circuit transformer (with any ε < 1), which output circuits Ĉ
using gate set G. Suppose Ĉ is of the form Ĉ = D̂◦ Ĉ ′ ◦ Ê, where Ê ∈ AC0 is an “encoder”
circuit, Ĉ ′ is a rerandomizing “core” circuit, and D̂ is any “decoder” circuit. Then at least
one of the following holds:

1. Transformed circuits use arbitrarily large opaque gates, i.e.,
The gate set G is infinite.

22 The fact that different gates are independent is implicit in the very definition of “gate”; if they were
dependent, then functions in VG would not be able to meaningfully verify correctness of the circuit.

23 Indeed, for the unconditionally-secure circuit transformation shown in Section 6.1, to maintain the level
of security one has to increase t (the output size of the opaque gate O) logarithmically with the size of
the transformed circuit C.
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2. Transformed circuits are not reconstructible by AC0, i.e.,
There exist circuits C such that for Ĉ ←− TR(C), the core circuit Ĉ ′ is not (L1, O(1), ε)-
reconstructible by AC0.
Here, L1 = {ANDs}◦(s×VG), where s is the size of C and ANDs is the AND gate of fan-in
s.

Proof. Suppose condition 2 is false. Then for any circuit C computing a function fC , we
can invoke Lemma 12 with LREC bC = AC0 to show fC ∈ {ANDs} ◦ (s× VG) ◦ AC0 ◦ AC0.

If condition 1 is violated, the class VG is finite and thus has constant-depth circuits;
hence so does (s× VG). It follows that fC ∈ DS(O(1), O(s)). But letting fC be the parity
function and letting C be a circuit that computes fC using a XOR-tree, this implies fC ∈
AC0 which (for sufficiently large kI) contradicts the circuit lower bound of [14][1][17]. ut

Note that the result holds even for very bad transformers that allow a distinguishing
advantage ε that’s arbitrarily close to 1. Also, note that result holds even when the decoding
procedure has arbitrary high complexity.

More generally, we can relax the assumptions on the depth of the encoder and recon-
structor circuits, and also allow the gadget set G to grow with the number of inputs. We
show that if the output of the transformer has reconstructors then at least one of the {
encoder, gate set verifier, or reconstructor } classes requires circuits that are deep or large.
Note that if the encoder is deep or large then the transformed circuit is inefficient; if the
gate set cannot be efficiently verified then it contains complicated opaque gates; and if the
reconstructor is deep or large, then the security reduction is inefficient and results in low
security.

Lemma 14. Let dG, sG, d bE , s bE , dR, sR be some integer functions of kI (the size of the input
of C).

Let TR be any circuit transformer (with any ε < 1), which output circuits Ĉ using gate
set G that can be verified in VG ⊆ DS(dG, sG). Suppose Ĉ is of the form Ĉ = D̂ ◦ Ĉ ′ ◦ Ê,
where Ê ∈ DS(d bE , s bE) is an “encoder” circuit, Ĉ ′ is a rerandomizing “core” circuit, and
D̂ is any “decoder” circuit.

Suppose that for any deterministic single-output circuit C the core Ĉ ′ of Ĉ ←− TR(C)
is (L1, O(1), ε)-reconstructible by DS(dR, sR) where L1 = {ANDs} ◦ (s× VG).

Then kIsG + sR + s bE > 2kI
Ω(1/2d)

where d = dG + d bE + dR.

Proof. By the lemma’s hypothesis, for any circuit C computing a function fC , we can
invoke Lemma 12 with LREC bC = DS(dR, sR) and L bE = DS(d bE , s bE) to get

fC ∈ {ANDs} ◦ (s× VG) ◦ LREC bC ◦ L bE
= {ANDs} ◦ DS(dG, sG) ◦ DS(dR, sR) ◦ DS(d bE , s bE)
= DS(dG + dR + d bE + 1, s · sG + sR + s bE + 1) .

(12)
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As shown by Hastad [17], for any depth d and infinitely many kI, there exists an kI-input
Boolean function fkId that has small circuits of depth d+ 1:

fkId ∈ DS(d+ 1, O(kI))

but requires exponential size for circuits of depth d:

fkId 6∈ DS(d, 2Ω(kI
1/2d)) .

Let C be a size-O(kI) depth-d circuit that computes fkId+1. Then by (12),

fC ∈ DS(dG + dR + d bE + 1, O(kI)sG + sR + s bE)

yet setting d = dG + d bE + dR + 1 we get

fC 6∈ DS(dG + d bE + dR + 1, 2Ω(kI
1/2d)) .

Hence O(kI)sG + sR + s bE > 2Ω(kI
1/2d). The claim follows.

ut

Note that Lemma 13 follows as a special case of Lemma 14 by setting sG, dG to O(1)
(because a finite gadget set G can be verified by a constant set of circuits), setting dR, d bE
to O(1), and setting sR, s bE to kI

O(1).
When d approaches log(kI), Lemma 14 no longer gives a meaningful bound on s. How-

ever, Lemma 12 does yield (by the same technique) much stronger conditional lower bounds.
The following lemma implies, for example, that if there exists a transformer for which the
encoder, gate set verifier and reconstructor all have polylogarithmic-depth polynomial-
size circuits, then all of P/poly has such circuits (and in particular P/poly = AC and
the AC hierarchy collapses), which would be a very surprising, and non-relativizing [26],
complexity-theoretic result.

Lemma 15. Consider a function ξ : N → N. Let TR be any circuit transformer (with
any ε < 1), which output circuits Ĉ using gate set G that can be verified in VG ⊆
DS(ξ(kI), kI

O(1)). Suppose Ĉ is of the form Ĉ = D̂ ◦ Ĉ ′ ◦ Ê, where Ê ∈ DS(ξ(kI), kI
O(1))

and Ĉ ′ is rerandomizing.
Suppose that for any deterministic single-output circuit C the core Ĉ ′ of Ĉ ←− TR(C) is

(L1, O(1), ε)-reconstructible by DS(ξ(kI), kI
O(1)) where L1 = {ANDs}◦(s×VG). Then P/poly

has circuits of depth 3ξ(n) + 1 and polynomial size.

7.2 Necessity of reconstruction

The above lower bounds leave a major loophole: does secure circuit transformation require
circuits whose core is reconstructible and rerandomizing? Indeed the construction of [18]
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evades our lower bounds: it gives a circuit transformation that is (LISW[t],∞, poly(ts),∞, 0)-
secure (where LISW[t] contains functions that directly output t of their inputs, and s is the
circuit size), using just AND and NOT gates. The lower bound of Lemma 13 is avoided since
for their AND gadget there do not exist shallow reconstructors (indeed, reconstructing their
AND gadget requires solving a system of t linear equations). Their proof avoids the need for
reconstructors by having a simulator that uses leakage function f (chosen by the observer)
in a non-blackbox manner: it inspects f to see what are the wires of Ĉ that f reads, and
simulates just these few wires. This is possible because Lτ has trivial computational power
and does not even access most of its input.

However, we conjecture that this reconstructor-free approach cannot be significantly
extended to larger leakage classes. For more complicated leakage functions that access
the whole wire assignment (i.e., that are not spatially local), one runs into the following
difficulty: even simple leakage classes like NC0 can implement strong cryptographic func-
tionality [4], so it is hard to imagine simulators that handle leakage functions given by
nontrivial circuits in any way other than simply invoking them in a black-box fashion.
Such invocation requires supplying the leakage function with a full wire assignment to Ĉ,
which is exactly the role of reconstructors. Specifically, we conjecture the following:

Conjecture 1 (Necessity of reconstructibility (informal)). For nontrivial leakage classes L,
and for any encoding-based circuit transformation whose security against L is provable by
a tight “black-box reduction” to the leakage-indistinguishability of the encoding scheme,
the “core” of the transformed circuit is reconstructible by efficient circuits.

Here, “black-box reduction” means that the reduction (from distinguishing encodings
to distinguishing Expreal

TR from Expsim
TR in Definition 1) uses black-box access to the latter

distinguisher, and that the simulator SIM in Definition 1) uses black-box access to OBS
and the leakage function f that OBS generates.

Combining the necessity results of Section 7.1 with the above conjecture, we expect
that opaque gates are inherent to “natural” circuit transformer constructions.

Lastly, note that Lemma 11 (on reconstructor composition) also implies lower bounds:
if a secure encoding-based circuit transformer TR uses gadgets that happen to be recon-
structible and rerandomizing, then the transformed circuits are rerandomizing and recon-
structible, and thus (by Section 7.1) TR must use large large leak-free gates.

We note that these results and conjectures apply only to transformers that are perfectly
sound, and conjecture that the bounds can be circumvented if the transformation has
imperfect soundness.
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