
Protecting Circuits from Leakage:
the Computationally-Bounded and Noisy Cases

Sebastian Faust1 ?, Tal Rabin2, Leonid Reyzin3??,
Eran Tromer4? ? ? and Vinod Vaikuntanathan2

1 K.U. Leuven ESAT-COSIC/IBBT
2 IBM Research

3 Boston University
4 MIT

Abstract. Physical computational devices leak side-channel informa-
tion that may, and often does, reveal secret internal states. We present a
general transformation that compiles any circuit into a new, functionally
equivalent circuit which is resilient against well-defined classes of leakage.
Our construction requires a small, stateless and computation-independent
leak-proof component that draws random elements from a fixed distribu-
tion. In essence, we reduce the problem of shielding arbitrarily complex
circuits to the problem of shielding a single, simple component.

Our approach is based on modeling the adversary as a powerful observer
that inspects the device via a limited measurement apparatus. We allow
the apparatus to access all the bits of the computation (except those
inside the leak-proof component) and the amount of leaked information
to grow unbounded over time. However, we assume that the apparatus
is limited either in its computational ability (namely, it lacks the ability
to decode certain linear encodings and outputs a limited number of bits
per iteration), or its precision (each observed bit is flipped with some
probability). While our results apply in general to such leakage classes,
in particular, we obtain security against:

– Constant depth circuits leakage, where the measurement apparatus
can be implemented by an AC0 circuit (namely, a constant depth
circuit composed of NOT gates and unbounded fan-in AND and OR
gates), or an ACC0[p] circuit (which is the same as AC0, except that
it also uses MODp gates) which outputs a limited number of bits.

– Noisy leakage, where the measurement apparatus reveals all the bits
of the state of the circuit, perturbed by independent binomial noise.
Namely, each bit of the computation is perturbed with probability
p, and remains unchanged with probability 1− p.

? Supported in part by Microsoft Research through its PhD Scholarship Programme,
by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Pol-
icy), and FWO grant G.0225.07.

?? Supported in part by NSF grants CNS-0831281 and CNS-0546614.
? ? ? Supported by NSF CyberTrust grant CNS-0808907 and AFRL grant FA8750-08-1-

0088.

1 Introduction

The best of cryptographic algorithms are insecure when their implementations
inadvertently reveal secrets to an eavesdropping adversary. Even when the soft-
ware is flawless, practical computational devices leak information via numerous
side channels, including electromagnetic radiation (visible and otherwise) [30,23],
timing [7], power consumption [22], acoustic emanations [33], and numerous ef-
fects at the system architecture level (e.g., cache attacks [5,26,27]). Leaked in-
formation is even more easily accessible when the computational device is at
the hands of an adversary, as is often the case for many modern devices such
as smart-cards, TPM chips and (potentially stolen) mobile phones and laptops.
Reducing such information leakage has proven excruciatingly difficult and costly,
and its complete elimination is nowhere in sight.

There has lately been a growing amount of interest in coming up with pre-
cise definitions of security against side-channel attacks and in designing crypto-
graphic algorithms that withstand these attacks (e.g., [24,19,28,17,11,8,29,3,25,9]
and others). Micali and Reyzin [24] were the first to propose a general model
of side-channel attacks. They model a side-channel attacker as a two part en-
tity – the first is the measurement apparatus that performs measurements on
the physical state of the device. This is done on behalf of the second entity
which is the adversarial observer. The observer is assumed to be computation-
ally powerful (e.g., polynomial-time or even unbounded), and takes as input the
measurements of the apparatus. Thus, the power of the adversarial observer is
primarily constrained by the quality of the information provided by the mea-
surement apparatus.

It is interesting to note that even though computational devices leak abun-
dantly, many side channel attacks are hard to carry out and some devices remain
unbroken. This is due to the fact that useful measurements can often be difficult
to realize in practice. Physical measurement apparatuses typically produce a
“shallow” or “noisy” measurement of the state of the object, by combining some
of its salient physical properties in a simple way. The measurement consists of a
limited amount of information, obtained as a simple leakage function applied to
the physical state of the device; any in-depth analysis happens only in the form
of post-processing by the observer (rather than in the measurement apparatus).

In this work, we follow the paradigm of Ishai, Sahai, and Wagner [19] who
construct a general transformation from any cryptographic algorithm into one
that is functionally equivalent, but also leakage-resilient. The particular class
of leakage functions they consider is the class of spatially local measurement
functions, namely functions that read and output at most t bits of information.
In particular, the leakage functions are completely oblivious of a large portion
of the circuit’s state.

In contrast, we are interested in security against global measurements, which
are often easier to carry out than localized measurements that require a focus on
specific wires or memory cells; in many side-channel attacks, the main practical
difficulty for the attacker lies precisely in obtaining high spatial resolution and
accuracy. Furthermore, global measurements are typically also more informative

2

than local measurements. The question that motivates our work is whether, anal-
ogously to [19], we can construct a general circuit transformation that tolerates
global side-channel measurements.

1.1 Our Results

Similar to Ishai et al. [19], we present a general transformation for arbitrary
circuits that makes them resilient against certain classes of leakage. We now
explain what these classes of leakage are and describe our techniques.

Measurement Apparatus. As in most prior work, the measurement appa-
ratus in our model is not allowed to access some (very limited) portions of the
computation. It can observe the rest of the computation, and return either a
“computationally bounded” or a “noisy” function of the entire state.5 Specifi-
cally, the measurement apparatus is modeled as computing either of the following
types of leakage functions:

– a computationally-bounded leakage function f applied to the state of the de-
vice and all intermediate results that occur during the computation. The
class of functions L from which f can be chosen models the practical lim-
itations of the physical experimental setting available to the attacker. For
example, L may consist of all functions computable by circuits of small
depth.
For the computational limitation to be meaningful, the function must also
be limited in its output length (otherwise, the measurement apparatus could
simply leak the entire state by “computing” the identity function).

– a noisy leakage function, where the measurement apparatus returns the ac-
cessed bit with probability 1 − p and flips it with probability p. The mea-
surement apparatus can potentially access all the bits of the computation
this way.

There are specific components of the circuit that we consider to be leak-
free. We diverge from previous solutions by requiring that these components
be simple, stateless and computation-independent. By this, we mean that the
complexity of implementing the leak-free component is independent of the com-
plexity of the computed function, and that it neither holds secrets nor maintains
state. In particular, the leak-free component cannot hold the secret data used in
the computation.

Specifically, our leak-free components, which we call opaque gates, are defined
as follows. The opaque gate has no inputs and it outputs an element sampled
according to a fixed distribution which is independent of the computation being

5 When we refer to the state of a computation, we mean all the intermediate values
produced during the computation on a particular input. Once this computation is
done, the intermediate state is erased to make room for new computations. Thus,
the leakage function can access all the bits of the current computation, but not the
past computations. In fact, this is necessary to achieve security.

3

carried out. For example, an opaque gate that we consider is one that samples t
uniformly random bits subject to the condition that they have even parity.

The leakage function cannot observe the innards of the opaque gate, but it
can observe the wires going into and coming out of it. Although the requirement
of a leak-free component is a strong one, the leak-free components we require
are minimal in many senses:

1. It is a fixed standardized functionality which can be designed and validated
once and added to one’s VLSI “cell library” — which is far better than having
to devise separate protection mechanisms for every circuit of interest.

2. It has no secret keys, no inputs and no internal state, i.e., it is independent
of the computation in the circuit and merely samples from a distribution.

3. Alternatively, because we only need samples from a distribution, we can have
the opaque “gate” simply read them one by one from a precomputed list.
Thus, it suffices to have leak-proof one-time storage (a consumable “tape
roll”) instead of leak-proof computation. This is a viable option if the com-
putation is performed only a bounded number of times.

Many variations of the leak-proof component assumption have been made in
the literature. We highlight some of these works below.

– The “Oblivious RAM” model of Goldreich and Ostrovsky [15,16] considered
memory to be leaky and the computation to be on a leak-free secure processor
which stores a long-term secret key.

– The model of Micali and Reyzin [24] (and subsequent works [11,29,12]) re-
versed these roles: they assume that the memory cells that are not accessed
during a computation step do not affect the observable leakage from that
stage and cannot be measured by the apparatus. They called it the “only
computations leaks” assumption.6

– The model of Goldwasser et al. [17] (which, although presented in the one-
time programs setting, can be transformed into the leakage-resilient setting)
relaxes the assumption of Micali and Reyzin, assuming only that some read-
only memory (which holds secrets correlated to the computation) is leak-free
if it is not “touched”. The circuit, however, can only be executed a single
time (or more generally, a bounded number of times).

The adversarial observer is all-powerful, and in each invocation of the circuit, it
comes up with an input to the circuit as well as a leakage function, and obtains
the output of the computation (on the given input), together with the leakage.
The adversary decides which leakage function to use in a particular invocation
adaptively, depending on all the information it received so far. We design circuit
transformations that withstand such adversaries, and obtain the following main
results.

6 [11,29] point out that this requirement can be somewhat relaxed – it suffices that
leakage of memory that is not used is independent of the leakage from computation.

4

Theorem 1 (Informal). Let t be a (statistical) security parameter. There are
circuit transformations that convert any (possibly stateful) circuit C into a circuit
Ĉ that is resilient against the following leakage functions:

– Constant-depth AC0 circuits whose output length in each invocation is bounded
by t1−δ, for any δ > 0, and whose output length over the course of time is
unbounded.

– Noisy measurements that leak the entire state of the circuit in each invoca-
tion, where each bit flipped independently with probability p, for any constant
p ∈ (0, 1/2].

In both cases, the size of the transformed circuit Ĉ is larger than the size of the
original circuit C by a factor of O(t2).

Both results follow from a more general transformation that protects against any
leakage class, provided that it has an associated encoding scheme (See Theorem 2
for details). We should note that although AC0 is not a particularly strong class
of functions, it is strong enough to allow for measuring approximate Hamming
weight of the values on the wires [2]: something routinely measured by side-
channel attacks in practice.

1.2 Overview of the Techniques

To protect against the kinds of information leakage described above, we encode
the computation in a way that prevents the powerful computing observer from
gaining additional information about the computation. We show that, indeed,
for certain classes of leakage, any computation can be so encoded: namely, we
give a method for transforming arbitrary circuits into new circuits, which are
still leaky but whose leakage is useless to the attacker (in the sense of offering
no advantage over black-box access to the original circuit’s functionality).

More precisely, given any linear secret sharing scheme Π and a leakage class
L which cannot decode Π7, we show an explicit construction that transforms
any circuit C into a circuit Ĉ that is resilient against leakage in L.

The gist of the construction is to encode every wire of C into a bundle
of wires in Ĉ using Π, where each wire in the bundle carries a single share.
Similarly to Ishai et al. [19], we transform each gate in C into a gadget in Ĉ
which operates on encoded bundles. The gadgets are carefully constructed to use
Π internally in a way that looks “essentially random” to leakage functions in L,
and we show that this implies that the whole content of the transformed circuit
remains “essentially random” to a leakage in L. Hence, the adversary gets no
advantage from his observation of the leakage; formally, this is captured by a
simulation-based definition.

An important contribution of this work is a general technique for proving
security of leakage-resilient circuit transformations. Namely, we capture a strong
7 Technically, the requirement that we make for the class L is a little bit stronger then

not being able to decode.

5

notion of leakage-resilience for circuits or parts thereof, by saying that they are
reconstructible if there exist certain efficient simulators for their internal wires
that fool the leakage class. We then show a composition lemma: if all parts of
a circuit are reconstructible then so is the whole circuit. This implies security
of the transformation. Thus, security of the overall transformation is reduced to
the reconstructibility of the individual gadgets. Our specific results using linear
secret-sharing schemes follow this route, and other transformations can be built
by devising different gate gadgets and merely showing that each is reconstructible
by itself.
Other Related Approaches. Recently, starting from the work of Akavia
et al. [3], several results have appeared that show security against adversaries
that learn arbitrary functions of the secret state of a device without requiring
leak-free components (see [3,4,9,21,25] and the references therein). All these con-
structions assume that the total leakage does not exceed the size of the secret
key; in contrast, the total leakage in our case can be unbounded (subject only
to the condition that in every time period, it is bounded). Furthermore, these
works design specific cryptographic primitives such as encryption and signatures,
whereas we focus on a general leakage-resilient transformation.

Standaert et al. [35] consider security against particular attacks such as Ham-
ming weight attacks and analyze in [28] the security of a block-cipher based
construction of a pseudorandom number generator.

2 Preliminaries and Definitions

Notation. Throughout the paper, we let t denote the security parameter.
For n ∈ N, let [1, n] denote the set of integers {1, . . . , n}. We denote function
composition by f ◦ g : x 7→ f(g(x)). If L1 and L2 are two sets of functions,
then L2 ◦ L1 is a set of functions {f ◦ g | f ∈ L2, g ∈ L1}. Vectors, denoted
v = (v1, . . . , vn), will be treated as column vectors.

If D is a probability distribution, then the notation d ←− D means that the
random variable d is drawn from D. (If D is a set with no distribution specified,
then by default we assume the uniform distribution.) If D is a randomized algo-
rithm, then d←− D(x) denotes the output of D on input x. The notation D ≡ D′
means the distributions D and D′ are identical.
Circuits. We consider circuits whose wires carry elements of an arbitrary finite
field K; in particular, we may set K = GF (2) to speak of a Boolean circuit. We
consider circuits composed of the following gates operating on elements of K (in
addition to the input, output, and memory gates): ⊕,	, and � (which compute,
respectively, the sum, difference, and product in K, of their two inputs), the
“coin flip” gate $ (which has no inputs and produces a random independently
chosen element of K), and for every α ∈ K, the constant gate constα (which
has no inputs and simply outputs α). Fanout is handled by a special copy gate
that takes as input a single value and outputs two copies. Notice that copy gates
compute the identity function (pass-through wires) and are present mainly for
notational convenience.

6

For a circuit C containing w wires, a wire assignment to C is a string in Kw,
where each element represents a value on a wire of C. By WC(X), we denote
a distribution of wire assignments that is induced when a circuit C is being
evaluated on an input X (in particular, if C is deterministic, then WC(X) has
only one element in its support). ByWC(X|Y), we denote the same distribution
conditioned on the fact that the output of C(X) was Y .

Two classes of circuits figure prominently in this paper.

– The first class of circuits is SHALLOW(d, s), the class of all deterministic
circuits (i.e., ones without $ gates) that have at most s ⊕,	, and � gates
that are arranged at most d deep (i.e., the longest path in the circuit has at
most d such gates on it).8

– The second is a class that contains a single probabilistic circuit Np that
gets as input a string v, and outputs w = v ⊕ r, where each bit of r is
independently 1 with probability p, and 0 with probability 1− p.

Stateful Circuits. A stateful circuit additionally contains memory gates,
which have a single incoming edge and any number of outgoing edges.9 Memory
gates maintain state: at any clock cycle, a memory gate sends its current state
down its outgoing edges and updates it according to the value of its incoming
edge. Any cycle in the circuit must contain at least one memory gate.

The state of all memory gates at clock cycle i is denoted by Mi, with M0

denoting the initial state. Inputs to and outputs from clock cycle i are denoted,
respectively, by xi and yi. When a circuit is run in state Mi−1 on input xi,
the computation will result in a wire assignment Wi; the circuit will output
yi and the memory gates will be in a new state Mi. We will denote this by
(yi,Mi,Wi) W C[Mi−1](xi).

2.1 Leakage-Resilient Circuit Transformation

In this work, we construct a circuit transformation that takes as input a circuit
and outputs a functionally equivalent, and yet, leakage-resilient circuit. Our
definition generalizes the notion of a private transformation from Ishai, Sahai
and Wagner [19]. For readers familiar with the model of Ishai et al., we note that
the main difference is that whereas they speak of a “t-private transformation”
that is secure against observers who can access at most t wires, we consider the
general notion of a “L-secure transformation” that is secure against observers
who can evaluate any leakage function f within a class L. One can recover the
definition of Ishai et al. from our definition by simply letting L be the class of
functions that output a subset of their input bits.

In order to understand our definition, it helps to keep the following scenario
in mind. Imagine a circuit that has a secret stored within it (possibly in an
encoded form) and it uses the secret together with a (public) input to come up

8 Note that copy and constα gates do not count towards the depth d or the size s.
9 Formally, our notion of a stateful circuit is essentially the same as the one in [19].

7

with an output; the encoding of the secret itself may get modified during the
computation. For example, the circuit may implement a block cipher or the RSA
signing algorithm, where the keys are secret. An adversarial observer (who we
denote OBS) gets to interact with the circuit and the measurement apparatus by
iterating the following process polynomially many times, in an adaptive manner:
choosing an input for the circuit and a leakage function for the measurement
apparatus, and receiving the output of the circuit on the chosen input and the
physical leakage from the measurement apparatus. We would like to make sure
that the ability to observe physical leakage does not help the observer: that is,
the observer learns nothing more about the state of the circuit from the leakage
than it could have learnt from input-output access.

Circuit Transformer. A circuit transformer TR takes as input a security
parameter t, a circuit C, and an initial state M0 and produces a new circuit Ĉ
and new initial state M̂0.10 We require the transformer to be sound : for all C
and M0, C[M0] should behave identically to Ĉ[M̂0]. By “behave identically” we
mean that for any number of clock cycles q and any set of inputs x1, x2, . . . , xq
(one for each clock cycle) the distribution of the outputs y1, y2, . . . , yq is the
same for C starting at state M0 and Ĉ starting at state M̂0.

Security. We want to ensure that the transformed circuit leaks no useful
information to an observer other than what the observer could have obtained by
input-output access to the circuit’s functionality. We define an (L, τ, q)-observer
OBS to be an algorithm that: 11

– Queries the circuit q times with inputs xi, and receives the outputs yi.
– For each execution of the circuit (say, with input xi), chooses a leakage

function f ∈ L, and obtains f(WC(xi)). That is, the leakage function f
takes as input the circuit’s wire assignment on input xi, and outputs the
resulting leakage.

– Runs for at most τ steps (not including the computation by the leakage
function itself).

The observer makes the choice of which leakage function to use in a particular
execution adaptively, depending on all the information it has received so far. To
formalize that such an observer learns nothing useful, we show the existence of a
simulator SIM, and prove that anything the observer learns can also be learned
by SIM which only sees inputs and outputs of the circuit.

Consider the following two experiments that start with some circuit C in
state M0, and allow it to run for q iterations. In both experiments, we assume

10 Throughout this paper, we use the hat notation 2̂ (reminiscent of the proverbial
“tinfoil hat”) to designate circuit or components that are transformed for leakage-
resilience.

11 The number of observations q, the observer’s running time τ , and various other
running times and success probabilities are all parameterized by a security parameter
t, which is given as input to the transformation TR. For readability, we will omit t
from most of our discussion.

8

that OBS and SIM are stateful, namely, they remember their state from one
invocation to the next.

Expreal
TR (OBS,L, q, C,M0):

(Ĉ, M̂0)←− TR(C,M0)
(x1, f1)←− OBS(Ĉ), with f1 ∈ L
For i = 1 to q − 1

(yi, M̂i,Wi) W Ĉ[M̂i−1](xi);
(xi+1, fi+1)←− OBS(yi, fi(Wi))

(yq,Mq,Wq) W Ĉ[M̂q−1](xq);
Return output of OBS(yq, fq(Wq)).

Expsim
TR (SIM,OBS, q, C,M0):

(Ĉ, M̂0)←− TR(C,M0)
(x1, f1)←− OBS(Ĉ), with f1 ∈ L
For i = 1 to q − 1

(yi,Mi)←− C[Mi−1](xi)
Λi ←− SIM(xi, yi, fi), with Λi being the leakage
(xi+1, fi+1)←− OBS(yi, Λi)

(yq,Mq)←− C[Mq−1](xq);
Λq ←− SIM(xq, yq, fq)
Return output of OBS(yq, Λq).

The definition below says that the transformed circuit is leakage-resilient if
the outputs of the two experiments above are indistinguishable.

Definition 1. Let L be a class of circuits, and let τ = τ(t), τ ′ = τ ′(t), q = q(t)
and ε = ε(t) be functions of the security parameter t. A circuit transformer TR
is said to be (L, τ, τ ′, q, ε)-secure if for every (L, τ, q)-observer OBS, there is a
simulator SIM that runs in time τ ′ such that for all circuits C and all initial
states M0,∣∣Pr[Expreal

TR (OBS,L, q, C,M0) = 1]− Pr[Expsim
TR (SIM,OBS, q, C,M0) = 1]

∣∣ ≤ ε,
where the probabilities are taken over all the coin tosses involved in the exper-
iments. We refer to a circuit transformer being L-secure, as a shorthand for
saying that it is (L, poly(t), poly(t), poly(t), negl(t))-secure in the above sense.

Remark. We note that a stronger result is obtained when L, τ and q are as large
as possible (as it allows for more leakage functions, and stronger observers),
when τ ′ is as close as possible to τ , and when the distinguishing advantage ε is
as small as possible (because either of these indicate a tighter simulation).

3 Circuit Transformation from Linear Secret-Sharing

Our main result states that if there exists a linear encoding scheme for elements
of any field K (taking a single element to t elements) for which encodings of any
two values are indistinguishable by functions in a class L, then there exists a
circuit transformation that is secure against a slightly less powerful leakage class
LTR. (Jumping ahead, we remark that the leakage class L is essentially the same
as the class LTR “augmented with” a depth-3 circuit of size O(t2)).

We now describe the main elements in the circuit transformation.
Encoding for the wires. Our transformation can be based on any linear
encoding scheme Π = (Enc,Dec), which maps a single element of K to a vector
in Kt and back. In the simplest case of K = GF(2), an encoding of a bit x is
a random string of t bits whose exclusive-or is x. More generally, for security

9

parameter t, a linear encoding scheme Π is defined by a decoding vector r =
(r1, . . . , rt) ∈ Kt and the decoding function Dec : (y1, . . . , yt) 7→

∑
i yiri = r Ty.

Enc is a (probabilistic) algorithm that, on input x, chooses uniformly at random
an element of Dec−1(x).

Linear encoding schemes include the aforementioned parity encoding, as well
as any threshold or non-threshold linear secret sharing scheme, e.g., [32,6,20].

We need the notion of leakage-indistinguishability of an encoding scheme
which, roughly speaking, formalizes what it means for an encoding of two values
to be indistinguishable in the presence of leakage. In conjunction with formalizing
this notion, let us first introduce a more general definition that speaks about
leakage-indistinguishability of two distributions.

Definition 2. Two distributions X and Y are said to be (L, p, τ, ε)-leakage-
indistinguishable, if for any observer OBS, running in time τ and making at
most p queries to its oracle where each query f is a function in L,

|Pr[x← X; OBSEval(x,·)(1t) = 1]− Pr[y ← Y ; OBSEval(y,·)(1t) = 1| ≤ ε,

where Eval(x, ·) takes as input a leakage function f and outputs f(x).
We say that an encoding scheme Π is (L, p, τ, ε)-leakage-indistinguishable if

for any a, b ∈ K the two distributions Enc(a) and Enc(b) are (L, p, τ, ε)-leakage-
indistinguishable. If τ = poly(t) and ε = negl(t), then we abbreviate this to
(L, p)-leakage-indistinguishable.

Opaque gates. In our scheme, the transformed circuit Ĉ is built of the same
gate types as the original circuit, with the addition of a new opaque gate denoted
O. As mentioned in the introduction, the O gate has no inputs, and outputs an
encoding sampled from the distribution Enc(0). Crucially, while the wires coming
out of this gate can be observed by the leakage function, we assume that its
internals do not leak (we show how to somewhat relax this condition in the full
version). For the case of K = GF(2) our leak-free component can be implemented
by a circuit that works as follows: generate t random bits b0, . . . , bt−1 and output
the bits ci := bi ⊕ bi+1 mod t for 0 ≤ i ≤ t− 1.

As mentioned in the introduction, our leak-free component is minimal in
many senses; the only sense in which it is not minimal is that its size is pro-
portional to the security parameter t. Improving on this is left as an important
open problem.

We now state our main theorem. The rest of this section describes the trans-
formation, and the next section contains an overview of the proof of security.12

Theorem 2. Let t be the security parameter, and let LTR be some class of leak-
age functions. If there exists a linear encoding scheme Π that is (LΠ , 2)-leakage-
indistinguishable, then there exists a circuit transformation TR that is LTR-secure
provided that:

LΠ ⊇ LTR ◦ SHALLOW(3, O(t2))
12 A complete statement of the theorem keeps track of other parameters such as the

running-time of the observer as well as the simulator, and the distinguishing advan-
tage. We postpone the more detailed theorem statement to the full version.

10

The transformation increases the size of each multiplication gate by a factor
of O(t2) and the rest of the circuit by a factor of O(t), where the constants
hidden in O(·) are small.

3.1 The Transformation for Stateless Circuits

We will first describe our transformation for circuits without any memory gates,
which we call, like in [19], stateless circuits. We then show how to extend the
transformation to general (i.e., stateful) circuits.

Given a stateless circuit C, our transformation TR produces the transformed
circuit Ĉ as follows (see Figure 1 for an example). Each wire w in C is replaced
by a wire bundle in Ĉ, consisting of t wires w = (w1, . . . , wt), that carry an
encoding of w. Each gate is transformed into a gadget, built out of gates, which
takes encodings and outputs encodings. Crucially, note that the internals of these
gadgets may leak. The gadgets themselves are described in Figure 2.

Fig. 1. Example of a circuit C for the function (a, b, c) 7→ ((a ⊕ b) � c, c), and
the corresponding transformed circuit Ĉ. Three parallel lines denote encoding (t
wires). Dashed borders indicate a gadgets, whose internal wires leak. Note that
in C, the special gates encoder, decoder, mask and copy are just the identity
and are present for notational convenience.

Since our gadgets operate on encoded values, Ĉ needs to have a subcircuit
at the beginning that encodes the inputs and another subcircuit at the end
that decodes the outputs. However, in our proofs, we want to be able to also
reason about transformed circuits without encoding and decoding. Thus, we do
not require that every transformed circuit Ĉ should have such encoding and
decoding. Instead, we introduce artificial input and output gates that can be
part of C for syntactic purposes. If such gates are present (as they would be on
any “complete” circuit that one would actually wish to transform), then Ĉ will
include input encoding and output decoding. If they are not, then Ĉ will operate
on already encoded inputs and produce encoded outputs.

More precisely, if we wish for Ĉ to include input encoding and output decod-
ing, then the circuit C given to TR must have two special gates in sequence on
every input wire: an encoder gate followed by a mask gate, both of which are
simply the identity. Also, on every output wire there must be a special decoder
gate, which is also the identity. These special gates must not appear anywhere

11

Transformation c← a� b ⇒ c← a�̂b:
Compute the t× t matrix

B ← ab T = (aibj)1≤i,j≤t using t2 � gates
Compute the t× t matrix S

where each column of S is output by O
U ← B + S (using t2 ⊕ gates)
Decode each row of U using t− 1 ⊕ gates,

t � gates, and t constα gates
to obtain q ← Ur,
where r is the decoding vector
(it does not matter how this decoding is
performed as long as there are O(t) wires
in the decoding subcircuit and each one
carries some linear combination of the
wires being decoded, plus possibly a
constant)

o← O
c← q + o (using t ⊕ gates)

Transformation c←− $ ⇒ c←− $̂:
ci ←− $ for i ∈ [1, t]
Output c

Transformation c← a⊕ b ⇒ c← a⊕̂b
(or c← a	 b ⇒ c← a	̂b):

q ← a+ b (or q ← a− b)
using t ⊕ (or) gates

o← O
c← q + o (using t ⊕ gates)

Transformation b← mask(a) ⇒ b← m̂ask(a)
o← O
b← a+ o (using t ⊕ gates)

Transformation a← constα ⇒ a← ĉonstα,
for any α ∈ K

Let α be a fixed arbitrary encoding of α.
o← O
a← α+ o (using t ⊕ gates)

Gadget (b, c)← ĉopy(a)
o1 ← O, o2 ← O
b← a+ o1 (using t ⊕ gates)
c← a+ o2 (using t ⊕ gates)

Fig. 2. Gadgets used in the stateless circuit transformation TR.

else in C. In Ĉ each encoder gate is replaced by an ̂encoder gadget which per-
forms encoding (see below), each decoder gate is replaced by a ̂decoder gadget
that performs decoding (see below), and each mask gate is replaced by a m̂ask
gadget (that is needed for security and is described in Figure 2).

The ̂encoder gadget takes an input a ∈ K and outputs an encoding (i.e.,
a wire bundle) a ∈ Kt of a. The encoding can be chosen arbitrarily from the
support of Enc(a): a = (r−1

1 a, 0, . . . , 0). The ̂decoder gadget takes an encoding
(i.e., a wire bundle) a ∈ Kt of a and outputs a←− Dec(a). This is computed by
a decoding circuit with just constα, ⊕, and � gates. The operation of all the
gadgets is described in 2. For the soundness of our transformation, we refer the
reader to the full version.

Incidentally, observe that because every gadget other than ̂encoder or ̂decoder
ends with a masking by an output of O,13 and wire bundles do not fan-out (in-
stead, they go through the ĉopy gadget), each connecting wire bundle carries
an encoding of its value that is chosen uniformly and independently of all the
wires in the transformed circuit. This fact, together with the construction of the
gadgets, is what enables the simulation.

Handling Stateful Circuits. To augment the above stateless circuit trans-
formation to a full circuit transformation, we have to explain how to transform
the initial state M0 and what to do with each memory gate. The initial state is

13 One can instead define the basic gadgets as not including this masking with O, and
instead place a mask gate on every wire. The resulting transformation is similar.

12

replaced by a randomly chosen encoding Enc(M0). Each memory gate is replaced
by a gadget that consists of t memory gates to store the encoding followed by a
m̂ask gadget to guarantee re-randomization of the state.14

4 Proof of Security

Conceptually, the proof of security for the circuit transformation in Section 3
proceeds in two steps. First, consider a mental experiment where each gadget in
the transformed circuit Ĉ is perfectly opaque. Namely, the only wires that the
observer OBS can “see” are the external wires of the gadgets that connect the
output of a gadget to the input of another gadget (these are exactly the wires
that carry encodings of the values in the circuit C). The wires internal to the
gadgets are off-limits to OBS. Once in this (imaginary) world, we use the first
key property of our gadgets, namely

Re-randomizing: The output of each gadget in Ĉ is a uniformly random encod-
ing of the output of the corresponding gate in C.15

Letting w1, . . . , wm denote the values of the wires in C, the re-randomizing
property says that the wire-bundles in Ĉ that are external to the gadgets are
distributed like (w1, . . . ,wm) where the wi ← Enc(wi) are random and inde-
pendent encodings of the bit wi.

The simulator does not know the value wi (because it does not know the
secret state in the circuit), but will simulate it with a random encoding of a
random value w′i. Now, the leakage indistinguishability of the encoding scheme
tells us that given the leakage from any of these encodings (individually), it is
hard to tell if the underlying value is wi or w′i. By a hybrid argument, the same
holds for a vector of independent encodings of m values as well, which is what
the simulator uses.

Before we declare victory (in this imaginary world), let us look a little more
closely at the hybrid argument. At each hybrid step, we will prove indistinguisha-
bility by a reduction to the security of the encoding scheme. In other words, we
will show by reduction that if OBS equipped with functions from LTR can distin-
guish two hybrid wire distributions, then some adversary OBSΠ , equipped with
functions from a slightly larger class LΠ , can distinguish two encodings. Given
an encoding, our reduction will need to fake the remaining wires of the circuit
and give them as input to the function from LTR.

Efficiency of such a reduction is particularly important. If OBS specifies a
leakage function f ∈ LTR for Ĉ, then OBSΠ will specify its own leakage function
14 Masking the output of the memory gadget has two reasons: first, we want to allow

the total leakage to be much larger than the size of the state, and second, we want
to allow the adversary to choose leakage functions adaptively.

15 Of course, given the values of the internal wires of the gadgets as well, the outputs
of the gadgets are not independent encodings any more. But, note that we are still
in the mental experiment where the observer does not get to see the internals of the
gadgets.

13

fΠ for the encoding and return its result to OBS. This leakage function fΠ has
to fake (in a way that will look real to f and OBS) all the wires of Ĉ before
it can invoke f . At the same time, fΠ should not be much more complex than
f , because our result is more meaningful when difference between the power of
LΠ and the power of LTR is smaller. The main trick is for OBSΠ to hardwire
as much as possible into fΠ , so that when fΠ observes the encoding, it has to
do very little work before it can invoke f . In fact, in this imaginary situation,
all the remaining wires can be hardwired into fΠ because of independence of
encodings, so fΠ has to simply invoke f on its input wires and hardwired values.

The second step in the proof is to move from the mental experiment to the
real world, where the internals of the gadgets also leak. Unlike in the mental
experiment, where the values of all wire bundles were independent, values of
wires inside a gadget are correlated to its input and output wire bundles. Thus,
they cannot be hardwired into fΠ . Nor can they be computed by fΠ , because
the complexity of the gadgets is too high.

Handling this problem requires invoking the second key property of the gad-
gets, namely:

Reconstructibility: We say that a pair of strings (X,Y) is plausible for Ĝ if
Ĝ might output Y on input X. For every gadget Ĝ, there exists a distri-
bution RECĜ over low-complexity functions R, which takes as input X,Y
and produces a simulated distribution of the internal wires of Ĝ. If for any
plausible X,Y this distribution is (L, τ, ε)-leakage-indistinguishable from the
actual distribution of the internal wires of Ĝ (conditioned on X and Y), then
we say that Ĝ is (L, τ, ε)-reconstructible by R, and call RECĜ a (L, τ, ε)-
reconstructor.

In the following we will often omit the parameters τ and ε.
We use this property to handle leakage from gadgets. Given reconstructors for

each single gadget we can show that a transformed circuit that is encoding-based
(i.e. the gadgets operate on encodings) and composed of reconstructible gadgets
is secure according to Definition 1. On a high-level we will replace each gadget
with its reconstructor in addition to replacing connecting wire bundles with
random encodings. The proof that the simulation is indistinguishable requires
first doing a hybrid argument over gadgets as they are replaced by reconstructors
one-by-one, and then modifying the hybrid argument over the wires described
above. In the hybrid argument over the wires, fΠ can have hardwired values for
every wire in the circuit except the gadgets connected to the challenge encoding,
which will be computed by fΠ using the low-complexity function given by the
reconstructor. This allows for a very efficient reduction. The formal statement
of the composition lemma is given in Lemma 3.

Let us now move on to building reconstructors for two simple gadgets.

4.1 Reconstructors for Single Gadgets

We present proof sketches for the reconstructibility of the ⊕̂ and �̂ gadget.

14

Lemma 1 (⊕̂ and 	̂ gadgets are reconstructible). For any class of circuits
L, the ⊕̂ and 	̂ gadgets are (L,∞, 0)-reconstructible, where the reconstructor can
be computed by SHALLOW(2, O(t)).

Proof. In this sketch we will do the proof only for ⊕̂. The reconstructor REC⊕̂
is the distribution whose only support is the following circuit R⊕̂. On inputs
(X,Y) where X = (a, b) (i.e., the desired input of the ⊕̂ gate), and Y = (c)
(i.e., its desired output), R⊕̂ assigns the wires of ⊕̂ to q ←− a⊕b and o←− c	q.

If X,Y are chosen as in the definition of a reconstructor, then the resulting
output of R⊕̂ is identically distributed to the wire distribution W⊕̂(X|Y), since
in both cases o takes the only possible consistent value o ←− c	 q. Notice that
R⊕̂ can be computed by a circuit of depth 2 because on inputs X,Y it first
computes q ←− a ⊕ b and based on that o ←− c 	 q. The 	 and ⊕ gates above
operate only on single field elements, so R⊕̂ requires O(t) size. ut

Let us now give a proof sketch for the �̂ reconstructor. Notice that the main
technical difficulty is the fact that our simulation has to be shallow whereas the
real �̂ gadget is already a deep circuit. In the following, let K = GF(2).

Lemma 2 (�̂ is reconstructible). Let L�̂ be a class of functions, and as-
sume that the encoding Π is LΠ-leakage-indistinguishable, where LΠ ⊇ L�̂ ◦
SHALLOW(2, O(t2)). Then, the �̂ gadget is L�̂-reconstructible, where the recon-
structor can be computed by SHALLOW(2, O(t2)).

Proof (sketch). The reconstructor REC�̂ takes as inputs (X,Y), where X =
(a, b), and Y = (c) and is defined as follows:

1. Sample U uniformly from Kt×t and compute the values on the wires in the
subcircuits for the computation of q. Hard-wire the results as R�̂’s outputs.

2. On input X, R�̂ computes the matrix B ←− (ai � bj)i,j , i, j ∈ [1, t] and
outputs it as part of the wire assignment.

3. R�̂ computes S ←− B − U and o←− c− q.

REC�̂ has size O(t2) (because it needs to compute matrices B and S) and depth
2, because S is computed from B, that in turn has been computed from the
inputs.

It remains to show that the distribution R�̂(X,Y) produced by the recon-
structor and the actual wire distributionW�̂(X|Y) are leakage-indistinguishable
by leakage functions in L�̂. Since U is computed as B + S it suffices to show
that S can be replaced by a matrix sampled uniformly at random from Kt×t.

We prove it by a hybrid argument and define hybrids W`
�̂(X|Y) (` ∈ [0, t])

as W�̂(X|Y), except that for the first ` columns of S the elements are drawn
uniformly from K. We show the leakage-indistinguishability between two con-
secutive hybrids by a reduction to the encoding leakage-indistinguishability. As
part of this reduction we build the observer OBSΠ that runs OBS�̂ and has to
answer its leakage queries f�̂ ∈ L�̂. OBSΠ runs f�̂ as part of its own leakage
function fΠ ∈ LΠ . However, fΠ only expects a single target encoding e as input,

15

whereas functions from L�̂ expect a full wire assignment for �̂. Thus, before fΠ
runs f�̂, a wire simulator fS , computes a wire assignment for �̂ given only the
target encoding e. To keep the reduction tight (and our result meaningful), fS
has to be very simple; i.e. we use the input e as little as possible and hard-wire
most of the values of the wires of �̂ into fS . For any X,Y :

1. From X compute B = (aibj)i,j∈[1,t] and hard-wire a, b, B into fS .
2. Hard-wire the columns 1 . . . ` − 1 to random encodings and ` + 1 . . . t to

Enc(0). The `th column is filled with the challenge encoding e.
3. Hard-wire all elements of U = B + S into fS except for the `th column. For

the `th column, compute for each i ∈ [1, t], the value Ui,` ← Bi,` + ei.
4. The wires in the decoding sub-circuits to compute q from U carry the ⊕ of

some row {Ui,j}j . If a wire in the sub-circuit does not depend on Ui,` (i.e.,
the input to fS), then pre-compute its value and hard-wire the intermediate
result. On the other hand, if it depends on Ui,` = Bi,`+ei, then pre-compute
a partial sum except the term that depends on ei and hard-wire the result.
On input e, fS computes the missing outputs by ⊕-ing the relevant parts of
e.

5. With fixed Y and q from (3) compute o←− Y − q and output it.

It is not difficult to check that fS outputs a valid wire assignment for �̂ that is
either distributed as W`−1

�̂ (X|Y) or W`
�̂(X|Y). If e is drawn from Enc(0), then

the `th column of S is assigned an encoding drawn from Enc(0). Since all the
other wires are computed honestly using either hard-wired values or the input e,
fS(Enc(0)) andW`−1

�̂ (X|Y) are distributed identically. If e←− Enc(x), for x ∈ K,
then the `th column of S is assigned an encoding drawn from Enc(x), hence, we
get that fS(Enc(x)) and W`

�̂(X|Y) are distributed identically. Since fS needs
to compute the `th column of U , the values in the decoding sub-circuits, and
from q the value of o, fS ∈ SHALLOW(2, O(t2)). Together with the t hybrids, we
get that W�̂(X|Y) and R�̂(X,Y) are (L�̂, tε)-leakage-indistinguishable, if Π is
(LΠ , ε)-leakage-indistinguishable (where LΠ ⊇ L�̂ ◦ SHALLOW(2, O(t2))). ut

The rerandomizing property of the simple gadgets follows immediately from
the fact that every gadget’s output is masked by the output of O.

4.2 Security of Full Circuit Transformation

Until now we showed that individual gadgets are re-randomizing, and recon-
structible. The following central lemma, that is proved in the full version, states
how to compose reconstructors for single gadgets to yield a reconstructor for the
entire circuit.

Lemma 3 (Composition Lemma). Let LĈ be some set of leakage functions
and εΠ > 0, τΠ > 0, t > 0. Let Π be (LΠ , τΠ , εΠ)-leakage-indistinguishable.
Let C be a stateless circuit of size s, without encoder or decoder gates with
kI inputs and kO outputs. Then the transformed circuit Ĉ is rerandomizing and
(LĈ , τĈ , εĈ)-reconstructible by SHALLOW(2, (kI + kO)O(t2)) where LΠ = LĈ ◦
SHALLOW(3, O(t2)), εĈ = εΠs(t+ 2), and τĈ = τΠ −O(st2).

16

There is one caveat that remains in proving security according to Definition 1:
the ̂encoder and ̂decoder gadget are not reconstructible, however, the simulator
can easily include them into his simulation since the inputs and outputs of these
gadgets are known.

We would like to make a final remark: the circuit transformation that we dis-
cussed so far are based on any linear encoding scheme, however, the proof tech-
niques that we introduced along the way are more general. Note that Lemma 3
relies essentially on the fact that the gate gadgets are rerandomizing and re-
constructible. One can obtain an analogously result using any (not necessarily
linear) encoding scheme and a corresponding set of sound gate gadgets that are
rerandomizing and reconstructible. We refer the interested reader to the full
version.

5 Security against Constant Depth Leakage

In this section, we show how to use the general circuit transformation from
Section 3 to achieve security against leakage functions that can be computed by
constant-depth circuits.

5.1 AC0 Leakage

The first leakage class we consider is AC0, the class of constant-depth, polynomial-
size circuits formed out of NOT gates and unbounded fan-in AND and OR gates.
Let C(d, s, λ) denote the class of AND-OR-NOT Boolean circuits with depth d,
size s and λ bits of output.
The Encoding. The encoding we use in this case is the parity encoding. The
(randomized) parity encoding of a bit b is a sequence of bits (b1, . . . , bt) which
are uniformly random subject to the condition that their parity is the bit b. This
encoding can be computed in many different ways, for example, as:

enc(b): Generate bits b1, . . . , bt−1 uniformly at random, and set bt := b ⊕⊕t−1
i=1 bi.

Obviously, the decoding function for the parity encoding is simply the parity
function, namely the function that outputs the exclusive-or of the t bits in the
encoding.

The parity encoding is hard to decode for AC0 circuits. The classical result
of H̊astad [18] (which builds on [1,14]), translated to our definition, states that
the parity encoding of the bits 0 and 1 are indistinguishable by circuits in the
class C(d, 2t1/d , 1) for any constant d. This protects against AC0 circuits that
output 1 bit. Using a recent result of Dubrov and Ishai [10, Theorem 3.4], we
can protect against the circuit class C(d, eO(tδ/d), t1−δ) for any 0 < δ < 1, namely
AC0 circuits that output up to t1−δ bits.

We obtain the following theorem by instantiating Theorem 2 with the parity
encoding, and using the above observations about the leakage-indistinguishability

17

of the parity encoding against AC0 circuits. The reader is referred to the full ver-
sion for a tight statement and a formal proof of security.

Theorem 3. Let t be the security parameter, and 0 < δ < 1, and d ∈ N be con-
stants. Then, there exists a circuit transformation that is LAC0,d,δ-secure where
LAC0,d,δ = C(d− 4, eO(tδ)/d, t1−δ) is the class of all Boolean AND-OR-NOT cir-
cuits of depth at most d − 4, size at most eO(tδ)/d and output length at most
t1−δ.

In particular, the theorem states that the transformation is secure against
AC0 circuits (constant depth, polynomial-size circuits) that output at most t1−δ

bits, for any constant δ > 0.

5.2 ACC0[q] leakage

A natural way to extend the class of leakage functions from AC0 to something
more general is to allow the leakage function to have parity gates. Clearly, such
circuits can decode the parity encoding, but are there still other linear encoding
schemes that cannot be decoded by even such circuits? It turns out that such
encodings indeed exist. For any integer q, let MODq be the gate that outputs 0
if the sum of its inputs is 0 modulo q, and 1 otherwise. The class CMOD-q(d, s, λ)
is defined to be the functions computable by circuits made of NOT gates and
unbounded fan-in AND, OR and MODq gates, with depth d, size s and output length
λ. For example, letting q = 2, we get the class of depth d circuits that include
parity gates as well.

The encoding scheme we use in this case is the mod-q′ encoding scheme, for
some q′ that is co-prime to q, defined analogously to the parity encoding scheme
in Section 5.1. By a result of Razborov and Smolensky [31,34], for any distinct
primes q′ and q, the mod-q′ encoding is leakage-indistinguishable for functions
in the class CMOD-q(O(1), poly(t), 1), i.e., ACC0[q] circuits with output length 1.
Since the mod-q′ encoding is linear, we can apply Theorem 2 to get a secure
circuit transformation.

6 Security against Noisy Leakage

So far, we considered leakage classes that are constrained in terms of their com-
putational power and output length. In this section, we consider the noisy leakage
model, where the leakage consists of the values of all the wires in the circuit,
except that each bit is flipped with some probability p ∈ [0, 1/2]. More pre-
cisely, the class of noisy leakage functions is represented by the circuit class
L = {Np}p∈[0,1/2], where each circuit Np is probabilistic, and is defined as fol-
lows: Let Bp be the binomial distribution with parameter p which outputs 1
with probability p and 0 otherwise. Then, Np(x) = x ⊕ b, where each bit bi is
drawn from the distribution Bp and the different bi are independent.

Ideally, we would hope that the circuit transformation in Section 3 provides
security against noisy leakage as well. However, this turns out to be false, and in

18

fact, there is an explicit attack against the transformation in Section 3 (as well
as the circuit transformation of Ishai et al. [19]) in the presence of noisy leakage,
even when the noise is very small.

We outline the basic idea of the attack here. Specifically, the attack is against
the construction of the multiplication gadget �̂ in Figure 2. The gadget takes as
input two encodings a and b and first computes the t2 bits {ai ∧ bj : i, j ∈ [t]}.
Consider the first t bits (a1 ∧ b1, . . . , a1 ∧ bt). If a1 = 0, then all these bits are
0, whereas if a1 = 1, then roughly half of them are 1. Given such disparity, the
observer can determine whether a1 is 0 or 1, even if he is given a noisy version of
these t bits (for any noise parameter p < 1/2). Proceeding in a similar way, he
can reconstruct all the bits ai, and thus the input bit a itself. The fundamental
reason why this attack works is that the construction of the �̂ gadget in Figure 2
has high input locality, namely it accesses the input bits a large number of times.

6.1 A New Circuit Transformation against Noisy Leakage

We construct a new circuit transformation against noisy leakage. The transfor-
mation proceeds in the same way as in Section 3, except for the construction of
the multiplication gadget �̂. The new construction of the multiplication gadget
avoids the attack outlined below, and is constructed using a new opaque gate
that we call M (in addition to the opaque gate O). We stress that the opaque
gate M that we design and use, inherits the main characteristics of the opaque
gate O in that it is stateless, and independent of the computation. In other words,
M simply produces samples from a fixed distribution.

In what follows, we describe the specification of the opaque gate M as well
as the construction of the �̂ gadget.
The Opaque Gate M. The opaque gate M is probabilistic, takes no in-
puts and operates in the following way: Sample 2t uniformly random 0-sharings
r1, . . . , rt ← O and s1, . . . , st ← O. Let R and S be the following two t × t
matrices:

R =



r1

...⊕i
j=1 rj

...⊕t
j=1 rj


and S =



s1

...⊕i
j=1 sj

...⊕t
j=1 sj


Let Ri,j (resp. Si,j) denote the (i, j)th entry of the matrix R (resp. S). Define

R⊗ S to be the “inner product of the matrices R and S”, when written out as
bit-strings. That is,

R⊗ S =
⊕
i,j

Ri,jSi,j

The output of the opaque gate M is the tuple (r1, . . . , rt, s1, . . . , st, u) where
u = R⊗ St, the inner product of the matrices R and the transpose of S.
The new Multiplication Gadget �̂. The operation of the multiplication
gadget �̂ proceeds in two stages.

19

– The first stage uses a gadget m̂ult that takes as input two encodings a =
(a(1), . . . , a(t)) and b = (b(1), . . . , b(t)), and outputs a longer encoding q =
(q(1,1), . . . , q(t,t)) of size t2.

– The second stage “compresses” this longer encoding into an encoding c =
(c(1), . . . , c(t)), using a gadget ̂compress.

We first describe how the (sub-)gadget m̂ult works.

1. First, generate (r1, . . . , rt, s1, . . . , st, u)←M.
2. Define a0 := a and b0 := b. Compute the encodings ai and bi iteratively as

follows. For 1 ≤ i ≤ t, set

ai = ai−1 ⊕ ri, and bi = bi−1 ⊕ si

3. Let a(j)
i (resp. b(j)i) denote the jth bit of the vector ai (resp. bi). Output

q = (q(1,1), . . . , q(t,t)) defined as follows:

q(i,j) =

{
a
(1)
1 ∧ b

(1)
1 ⊕ u if (i, j) = (1, 1)

a
(j)
i ∧ b

(i)
j otherwise

(Note the asymmetry in the evaluation, namely the bit a(j)
i is multiplied

with the bit b(i)j , where the subscript and the superscript are switched; this
asymmetry is intentional, and indeed, crucial to the correctness).

4. Generate z← Ot2 (thus, z is a uniformly random t2-bit string whose entries
xor to 0). Output w := q ⊕ z.

Now, we invoke the ̂compress gadget on the output of the m̂ult gadget. The
̂compress gadget takes t2 bits (q(1,1), . . . , q(t,t)) and outputs t bits (c(1), . . . , c(t))

such that
⊕

i,j q
(i,j) =

⊕
i c

(i). The construction of the ̂compress gadget proceeds
in the following way.

1. Split the bits q(i,j) into t blocks of t bits each.
2. Construct a tree of ⊕̂ gadgets that takes as input t blocks of t bits each,

and outputs one block of t bits. (The structure of the tree can be arbitrary.)
Apply the tree to the bits q(i,j) and call c = (c(1), . . . , c(t)) the output.

The correctness of the �̂ gadget can be verified by a simple computation,
and is omitted. The efficiency of implementation is practically the same as that
in 3. Namely, the transformation converts a circuit of size s into another circuit
of size O(s ·t2), where t is the security parameter. We now outline the main ideas
behind the proof of security of the new transformation against noisy leakage.
Outline of the Security Proof. As in Section 3, the proof proceeds in two
steps. First, we show that the gadgets are re-randomizing and reconstructible.
In other words, this says that the internals of a gadget reveal no more useful
information than its inputs and output. Secondly, we apply a general version
of the Composition Lemma (Lemma 3) to conclude that since each individual

20

gadget is re-randomizing and reconstructible, the entire circuit transformation
is leakage-resilient. We describe these two steps in a little more detail below.

It is easy to see that the gadgets are re-randomizing. The key difference from
Section 3 is that in the proof of reconstructibility, we are not concerned about
the computational efficiency of the reconstructor, but rather the number of times
the reconstructor accesses its input. This is a consequence of the fact that the
larger the number of noisy copies of an encoding e (with independent binomial
noise) the observer sees, the easier it is for him to tell if e is an encoding of
0 or 1. Thus, the bulk of the effort in the design of the circuit transformation
as well as the reconstructor is in ensuring that the inputs and the intermediate
values are “touched” as few times as possible. The technical heart of the proof
(similar to the theorems of [13,18,10] for the AC0 case) is a lemma which states
that for any constant c and any fixed vectors f1, . . . ,f c, the distribution of
(Np(e ⊕ f1), . . . ,Np(e ⊕ f c)) when e is an encoding of 0 or 1 are statistically
close. We refer the reader to the full version for the design of the reconstructors
and the formal proof.
Acknowledgments. We thank Debajyoti Bera, Shafi Goldwasser, Yuval Ishai,
Moni Naor, Ran Raz and Ronen Shaltiel for helpful discussions, and the anony-
mous Eurocrypt reviewers for their detailed comments.

References

1. Miklos Ajtai.
∑1

1-formulae on finite structures. Annals of Pure and Applied Logic,
24(1):48, 1983.

2. Miklós Ajtai. Approximate counting with uniform constant-depth circuits, 1993.
3. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore

bits and cryptography against memory attacks. In TCC, pages 474–495, 2009.
4. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryp-

tography in the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.
5. Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.

html#cachetiming, 2005.
6. G.R. Blakley. Safeguarding cryptographic keys. 48:313–317, 1979.
7. David Brumley and Dan Boneh. Remote timing attacks are practical. Comput.

Netw., 48(5):701–716, 2005.
8. Francesco Dav̀ı and Stefan Dziembowski. Leakage-resilient storage. Cryptology

ePrint Archive, Report 2009/399, 2009. http://eprint.iacr.org/.
9. Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with

auxiliary input. In STOC ’09, pages 621–630. ACM, 2009.
10. Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling.

In STOC ’06, pages 711–720. ACM, 2006.
11. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In

FOCS ’08, pages 293–302. IEEE Computer Society, 2008.
12. Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-

resilient signatures. In TCC, pages 343–360, 2010.
13. Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the

polynomial-time hierarchy. In SFCS ’81: Proceedings of the 22nd Annual Sym-
posium on Foundations of Computer Science, pages 260–270, Washington, DC,
USA, 1981. IEEE Computer Society.

21

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/

14. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

15. Oded Goldreich. Towards a theory of software protection and simulation by obliv-
ious rams. In STOC, pages 182–194, 1987.

16. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, 1996.

17. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In CRYPTO, pages 39–56, 2008.

18. Johan H̊astad. Almost optimal lower bounds for small depth circuits. In STOC,
pages 6–20, 1986.

19. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In CRYPTO’03, pages 463–481, 2003.

20. Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Com-
plexity Theory Conference, pages 102–111, 1993.

21. Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leak-
age resilience. In ASIACRYPT, pages 703–720, 2009.

22. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, pages 388–397, 1999.

23. Markus G. Kuhn. Compromising emanations: eavesdropping risks of computer
displays. PhD thesis, University of Cambridge, 2003. Technical Report UCAM-
CL-TR-577.

24. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In TCC’04, pages 278–296, 2004.

25. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
CRYPTO, pages 18–35, 2009.

26. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In CT-RSA, pages 1–20, 2006.

27. Colin Percival. Cache missing for fun and profit. presented at
BSDCan 2005, Ottawa, 2005; see http://www.daemonology.net/

hyperthreading-considered-harmful, 2005.
28. Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal Malkin, and Moti

Yung. A block cipher based pseudo random number generator secure against side-
channel key recovery. In ASIACCS, pages 56–65, 2008.

29. Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages
462–482, 2009.

30. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In E-smart, pages 200–210, 2001.

31. Alexander Razborov. Lower bounds for the size of circuits of bounded depth with
basis and, xor. Math. Notes of the Academy of Science of the USSR 41, 1987.

32. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

33. Adi Shamir and Eran Tromer. Acoustic cryptanalysis: on nosy people and noisy
machines. presented at the Eurocrypt 2004 rump session; see http://tromer.org/

acoustic, 2004.
34. Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean

circuit complexity. In STOC, pages 77–82, 1987.
35. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for

the analysis of side-channel key recovery attacks. In EUROCRYPT, pages 443–461,
2009.

22

http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
http://tromer.org/acoustic
http://tromer.org/acoustic

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Overview of the Techniques

	2 Preliminaries and Definitions
	2.1 Leakage-Resilient Circuit Transformation

	3 Circuit Transformation from Linear Secret-Sharing
	3.1 The Transformation for Stateless Circuits

	4 Proof of Security
	4.1 Reconstructors for Single Gadgets
	4.2 Security of Full Circuit Transformation

	5 Security against Constant Depth Leakage
	5.1 AC0 Leakage
	5.2 ACC0 [q] leakage

	6 Security against Noisy Leakage
	6.1 A New Circuit Transformation against Noisy Leakage

	References

