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ABSTRACT

The smart grid introduces concerns for the loss of consumer pri-
vacy; recently deployed smart meters retain and distribute highly
accurate profiles of home energy use. These profiles can be mined
by Non Intrusive Load Monitors (NILMs) to expose much of the
human activity within the served site. This paper introduces a new
class of algorithms and systems, called Non-Intrusive Load Lev-
eling (NILL) to combat potential invasions of privacy. NILL uses
an in-residence battery to mask variance in load on the grid, thus
eliminating exposure of the appliance-driven information used to
compromise consumer privacy. We use real residential energy use
profiles to drive four simulated deployments of NILL. The simula-
tions show that NILL exposes only 1.1 to 5.9 useful energy events
per day hidden amongst hundreds or thousands of similar battery-
suppressed events. Thus, the energy profiles exhibited by NILL are
largely useless for current NILM algorithms. Surprisingly, such
privacy gains can be achieved using battery systems whose storage
capacity is far lower than the residence’s aggregate load average.
We conclude by discussing how the costs of NILL can be offset by
energy savings under tiered energy schedules.
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1. INTRODUCTION
Smart meters are being aggressively deployed in homes and busi-

nesses as part of a move to global smart grids [23]. This digitization
of grid systems offers substantial benefits for society; increased
efficiencies and information availability can enable cheaper and
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greener energy generation, less loss in energy storage and transmis-
sion, better fault isolation and recovery, and support for alternative
energy sources, e.g., consumer generated wind and solar energy.

The move to digital grid control systems also introduces con-
cerns about security [19, 24, 27]. The smart grid is a complex
system of sensors, networks, and computing resources. Attacks
against the smart-grid networks and computing elements can range
from fraud, to denial of service, to privacy loss [27]. While some
regulatory agencies have begun to explore security concerns, no
comprehensive system has emerged to address these threats.

One area of particular concern is the loss of consumer privacy.
Replacements for the antiquated in-home electromechanical me-
ters, smart meters are embedded systems that use power and volt-
age sensors to collect and report load profiles. Load profiles are
histories of energy usage collected at a configured granularity, e.g.,
seconds or minutes. While instrumental to managing energy use
at the local and regional levels, such profiles are also sufficient to
determine occupant behavior in residential settings [22, 21, 11].
Depicted here, this behavioral inference is made possible by a class
of algorithms known as Non-Intrusive Load Monitoring (NILM):
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To simplify, NILM algorithms decompose load profiles into com-
posite appliance profiles based on known or learned signatures. For
example, traces of discrete changes in energy use can be mapped
directly to ON/OFF events associated with identifiable appliances.
The profile is a detailed description of appliance use and indirectly
a surprisingly accurate model of human activity [22].

The concerns surrounding potential invasions of privacy via en-
ergy profiles appear to be more than hypothetical [15, 6]. Reuse
of data by direct marketers, criminals, or law enforcement with-
out prior approval or notification is often in conflict with privacy
regulations, but may be occurring anyway [22]. Undercutting ex-
isting regulatory structures is a maze of often conflicting laws and
court decisions relating to consumer privacy. For example, the 1939
Supreme Court United State v. Miller decision indicates that there
is no reasonable expectation of privacy for information shared with
third parties. State and regional agencies have built legal and reg-
ulatory structures to buttress privacy in the face of such decisions,
but consumer rights remain, at best, murky.

The potential exposure of living conditions, occupancy, and fam-
ily routines, through energy profiles warrants vigilance [15]. This
prompts the goal of this work: we aim to protect consumer privacy
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Figure 1: Idealized non-invasive load leveling (NILL).

in the face of profile-exposing smart meters while acknowledging
two practical constraints of the current grid environment:

• Energy usage must always be accurately reported. Any mod-
ification of usage data would undermine grid management,
and introduce inaccuracies in billing and grid controls.
• The privacy solution must not require any modification to the

meters, appliances, grid control systems, or provider opera-

tion. The metering infrastructure, which is not under the con-
trol of the consumer, is assumed to be untrusted. Moreover,
with millions of smart meters already installed and many
more in deployment,1 any solution requiring new grid sys-
tems will not be logistically and economically viable [27].

We address threats to electricity consumer privacy through Non-

Intrusive Load Leveling (NILL), a novel technique to mask appli-
ance features in a home’s net load. Illustrated in Figure 1, NILL
is conceptually simple; a consumer places a battery and control
system between the smart meter and the circuit breaker of their
residence. The load observed by the meter is smoothed by offset-
ting spikes and dips in usage by charging or discharging the bat-
tery. Hence, NILL removes the information content that reveals
appliance usage. Because we make no assumptions about adver-
sary motivations, NILL aims to smooth all appliance features in a
house. However, because of the physical limits and structure of
electrical systems, this is a more challenging task than one might
initially surmise. Note that NILL is currently not designed to mask
longer term energy usage such as day/night diurnal energy patterns,
but only the instantaneous energy transitions that expose minute-to-
minute human behavior exploited by NILM algorithms. However,
we do explore the challenges and countermeasures posed by cur-
rently undeveloped NILM techniques that use more sophisticated
learning and inference techniques in Appendix A.

NILL is an algorithm and control system that attempts to remove
the fine-grained appliance signal represented by changes in the re-
ported load. The control system directs the battery charges and
discharges to obscure energy usage. This is conceptually similar to
queue delay perturbation countermeasures that prevent networking
timing analysis [5]. By de-correlating both the timing and ampli-
tude of ON/OFF events in the load profile, we remove the signal
that NILM algorithms use to identify behavior.

The idea of using a battery to provide “best effort” privacy pro-
tection is not new. For example, one short paper [16] has suggested
the use of a power router to allow a battery to offset appliance loads,
though the existing technology in this area limits the battery to han-
dling one appliance at a time. Furthermore, none of the physical
challenges of introducing a battery into a residential setting were
evaluated. Ours is the first work to perform a rigorous physical

1$4.3 billion dollars has been allocated by the U.S government for
the smart grids [28], with similar programs in progress in Asia and
the EU.

Table 1: Commodity smart meters [29].

Epoch Product(s) Deployed

monthly electromechanical meters N/A
(no data) Sensus iCon [34] 7.6 million
15 min Elster REX 2 [8] 4.0 million
5 min Echelon NES echelon 4.4 million
1 min Itron Centron [14] 14.4 million
1 s TED 5000 [37] (no data)

simulation of such a system under substantial real-word data. The
NILL approach presented here attempts to provide privacy for all
appliances under all battery states. Our analysis also extends be-
yond previous results by examining NILL’s effect on the basic unit
of load monitoring, the feature pair, and by measuring the amount
of privacy afforded over time due to changes in battery states.

The remainder of this paper identifies and evaluates a candidate
NILL algorithm. A simulation of NILL is built on the widely-used
SimPowerSystems [26] platform. We simulate four homes using
energy profile data collected from real residential use. These exper-
iments show that NILL exposed 1.1 and 5.9 identifiable appliance
events per day. Such features reside amongst hundreds or thou-
sands of battery-suppressed events, making reliable recovery of ap-
pliance profiles virtually impossible under current NILM. Further,
we showed that such privacy can be achieved in the tested environ-
ments using only a moderately priced 50 amp-hour battery system–
far smaller than the aggregate loads of protected residences.

2. BACKGROUND

2.1 Load Profiles
Conventional electromechanical watt-hour meters do not record

instantaneous demand, only net energy consumed over time. Thus,
they act as memoryless accumulators whose readouts are physically
spinning dials. Energy use is measured by computing dial position
changes since the last reading (typically by a human meter reader
once a month). In contrast, smart meters generate load profiles,
time series of electric demand, that are delivered to the provider
at or near real time. The level of detail in load profiles is useful
for load forecasting and fraud detection [23]. Common low cost
meters measure epochs at 15 minutes, but more sophisticated mod-
els can generate profiles at a second or lower granularity. Table 1
summarizes the capabilities of several market-leading meters with
different capabilities.2

The three-day load profile for a large 5-bedroom home is shown
in Figure 2. A diurnal pattern is observable: peaks are felt in the
morning, mid-day, and evening. The drop-out box shows an event
occurring about 7pm on the 18th. A plasma television connected
to a home theater system was turned on and then off about 5 sec-
onds later using a master switch. The initial large spike represents
the power-hungry television, followed by the theater receiver and
speaker system powering on. The OFF event shows a symmet-
ric decrease in power draw. NILM algorithms match these sister

features (ON/OFF features of equal amplitude) against known ap-
pliance profiles to uncover in-residence behavior.

2.2 Non-Intrusive Load Monitoring
NILM algorithms extract appliance profiles from load profiles.

It is considered “non-intrusive” because it does this at the elec-
tric meter without instrumenting individual appliances. An appli-

2Note that TED identified in the table is not a smart meter, but a
in-home device used to monitor energy usage (see Section 4.1).



Basic Definitions

t A time variable (t0 is used for an initial time when needed.)
d(t) The net demand from all appliances in the house over time
u(t) The load measured by the smart meter (This includes battery charging)
c(t) The battery’s state of charge over time
b(t) The battery’s rate of charging over time

b(t) > 0 The battery is charging
b(t) < 0 The battery is discharging

H The upper safe limit on the battery’s state of charge
L The lower safe limit on the battery’s state of charge
KSS The target constant load value for u(t)

Relations

u(t) = d(t) + b(t) (utility observable profile)

c(t) =
R t

t0
b(t) dt + c(t0) = KSS [t− t0]−

R t

t0
d(t) dt + c(t0) (state of charge)

NILL Constraints

u(t) = KSS for some constant KSS (leveled load)
L < c(t) < H (safe state of charge)

Figure 3: Summary of the house and battery model used for NILL.
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Figure 2: Three-day load profile for large home taken in

September 2010. The drop-out box shows a higher resolution

view of a television power ON and OFF.

ance profile consists of the types of appliances and the times dur-
ing which each is operational during the day. Load profiling tech-
niques classify devices by the changes in steady state load caused
by their being turned ON and OFF [18]. The approach is to de-
compose the load profile into a composite of individual appliances
features, i.e., representative pairs of ON/OFF events. For exam-
ple, periodic spikes in energy use are visible in homes with electric
furnaces during cold weather. NILM algorithms can extract the ex-
pected furnace load from the load profile to expose other, possibly
smaller, appliance loads. These techniques use appliance models
and information learned about a residence over time to reconstruct
behavior from a single aggregate signature. Such techniques have
been shown to be highly accurate in practice [25, 21, 33, 22]. We
discuss other classes of NILM that are not relevant to residential
smart meters in Section 5.3.

2.3 Energy Storage
NILL requires one of a particular class of deep-cycle batteries.

Deep cycle batteries are designed to be able to operate adequately
during long cycles of charging and discharging without signifi-
cantly reducing their lifetime. Such batteries are frequently used
in recreational vehicles such as RVs and boats. There are several
types of deep cycle batteries that support highly variable load pro-
files (at short timescales) present in home energy consumption. The
Absorbed Glass Mat (AGM) battery (which has a lead-acid chem-
istry) has several properties that make it ideal for home use; they
work well at extreme temperatures, have low internal resistance,
can be charged at high voltages, and are designed to prevent leak-

age. To avoid sulfation (inability to hold charge due to crystalliza-
tion of the lead sulfate), deep cycle batteries should not be allowed
to discharge below 20% of their total capacity, and staying above
50% is optimal. When a battery is to be charged beyond 90%, its
charger should switch to a lower constant voltage than what was
used for previous charging [13].

For our evaluation of NILL, we model a 50 Ah3 lead-acid battery
operating at a nominal voltage of 120V. This is achievable by con-
necting typical 50 Ah sealed DC batteries, which typically retail for
approximately $100 [2], in series. One of the most common volt-
ages for these types of batteries is 12V, requiring 10 such batteries
(approx. $1,000) to achieve the necessary characteristics. We use a
60 ampere (A) maximum discharge current system as available in
modern home solar setups [1].

3. Non-Intrusive Load Leveling
The goal of a NILL system is to level the load profile to a con-

stant target load, thus removing appliance features. To achieve this,
NILL relies on a battery to offset the power consumed by appli-
ances. When an appliance turns ON, it will exert a load beyond the
target load. Thus, NILL will discharge the battery to partially sup-
ply the load created by the appliance, maintaining the target load.4

Similarly, if an appliance enters the OFF state, the load profile will
decrease below the target load. These opportunities are used to
charge the battery while restoring the target load. The NILL sys-
tem presented here consists of two parts: a battery and a control
system that regulates the battery’s charge and discharge based on
the present load and battery state. The controller attempts to main-
tain a steady state target load KSS , but will go into one of two
special states KL or KH if the battery needs to recover from a low
or high state of charge. This section describes the NILL runtime
control system and the calculation of the initial system parameters.

3.1 Run Time Control
In a perfect NILL implementation, there would be no runtime

control as the battery would have sufficient capacity for maintain-
ing the target load. For any reasonably sized battery, there will be
times when the state of charge is insufficient to maintain the target
load under a heavy load. We call this a low recovery state because
the battery’s SOC has become too low to maintain the target load.

3Ah stands for amp-hours, which is a measure of the battery charge
capacity.
4The battery is only used to supply appliances in the house. It is
never discharged back into the grid as is done in net metering.



Similarly, in times of light load, the battery will draw from the util-
ity to maintain the constant load. If however, the load remains light,
eventually the battery will reach its maximum SOC. We call this a
high recovery state.

We use the model shown in Figure 3 in describing the control
system and bootstrapping phase in the next section. The model
captures both the actual load profile of the house d(t), as well as
the load under the influence of NILL as perceived by the electric
meter u(t). The essence of NILL is described by the equation,
u(t) = d(t) + b(t), where b is the battery’s rate of charge over
time. If b(t) > 0, the battery is charging, otherwise b(t) < 0
and the battery is discharging. Finally, c(t) is used to represent the
battery’s state of charge (SOC).5 The NILL controller must main-
tain the target load and respond to low and high recovery states.
The controller sits next to the battery at the service-panel or elec-
tric meter. A sensor placed on the same line as the meter is used
to monitor d, and one on the battery to monitor c. Using these two
parameters, the controller selects b to maintain a constant u within
the battery’s operational constraints.

KSSKL KH

c(t) > H

d(t) < KSS

d(t) - KH > 5 A

c(t) > 80%

c(t) < L

d(t) > KSS

Update 

KSS

Update 

KSS

Figure 4: The transitions between the steady state target load

and the high and low recovery loads. In state Ki, the battery

output is calculated using Ki − d.

If the controller enters one of two recovery states, the target load
will be altered to allow the battery to reach a safe state while still
attempting to mask features present in the load profile. We denote
the target load during steady state operation as KSS , and the targets
for the low and high recovery states as KL and KH respectively.
Because entering a recovery state is a sign that the target load was
either too high or too low to maintain, it is adjusted each time the
controller transitions to a recovery state. Figure 4 illustrates the
conditions under which the controller changes states and adjusts
KSS . While in state Ki, the battery is controlled using b = Ki−d.

In a low recovery state, a new target load KL is chosen to al-
low the battery to recharge while still hiding the majority of load
events. Thus, KL is set equal to the battery’s maximum sustained
charge amperage, masking all load events with amperages less than
or equal to this maximum. To reduce the frequency of recovery
states over time, the controller will adapt KSS each time a low
or high recovery state occurs. This is done using the exponential
weighted moving average of the instantaneous demand since the
last recovery state at tr: KSS ← α D

t−tr
+(1−α)KSS .6 Once the

battery reaches 80% SOC, the system returns to steady state. The
effects of low recovery states in our experimental results are shown
in Section 4.4.

In a high recovery state, the battery is at its maximum SOC, and
the load is below KSS . Once in this state, the only choices are

5Some literature uses Depth of Discharge (DOD), the complemen-
tary quantity to SOC.
6Note that this is not an EWMA over continuous time samples, but
over discrete steady state periods.

idling the battery, which allows all events to appear in the load
profile, or discharging the battery. Because NILL’s goal is to cancel
appliance level features, we choose the latter. The only question
left is the choice of KH . For this, the controller uses the most
recent load samples to guess at a KH that will be just below the
current load (by approximately 1 to 5 amperes). If this guess is not
successful after the first few seconds, a more conservative guess is
made. With KH < d, the battery can discharge minimally while
producing a flat area in the load profile. If the load increases by 5 or
more amps, the system returns to steady state. An example of a low
recovery state in our experimental results is shown in section 4.3.

3.2 Determining Initial Target Loads

A NILL system requires an initial value for KSS to bootstrap
normal operation. A good target load is one that can be sustained
with little variation over time. Target load selection is also useful
for battery sizing, i.e., if there is no feasible target load for a given
battery capacity, a larger battery should be used. For the remainder
of this section, we refer to the initial KSS as simply K to distin-
guish from the steady state target load during run time operation.
Two constraints must be satisfied for the target load K to be consid-
ered feasible. First, the utility observable profile should be leveled
to K at all times. Second, the battery charge and discharge required
to achieve u(t) = K must not cause the battery to exceed its safe
capacity limits L and H . Under these constraints, the equation for
battery SOC can be rewritten in terms of d and K as shown in the
RHS of the state of charge relation. This rewriting is used in the
algorithm for finding a minimal target load.

Algorithm 1 FindMinTargetLoad

1: Given demand d(t), start time t0, end time t and initial charge
c(t0)

2: D ←
R t

t0
d(t) dt

3: dmax ← max[t0,t] d(t)
4: Binary search K ∈ [0, dmax]
5: Check that L ≤ K[t− t0]−D + Hc(t0) ≤ H over [t0, t]
6: Output minimal satisfactory K

We use Algorithm 1 to find the minimal target load for a given
battery capacity. The minimal feasible K is chosen to put the least
stress on the battery when coming on line. The input d(t) is a
sample of a load profile from the residence hosting the NILL in-
stallation. The output is the initial target K. In practice, we select
c(t0) = 50% SOC, L = 20% SOC, and H = 90% SOC to model
the safe bounds on battery charge.

4. EVALUATION

4.1 Source Data Collection
The data used in the experiments was collected from devices

installed in four homes in the Northeast United States. A TED
5000 [37] measuring transmitting unit (MTU) device was installed
in each monitored location and collected real power (kW) and volt-
age data. TEDs passively measure power and voltage crossing the
main circuit between the meter and the circuit panel. Energy read-
ings are transmitted to a TED gateway over the house electrical cir-
cuits via power line communications. The gateway is connected via
a wired network to a personal computer, which can access readings
via HTTP. The TEDs were polled at half-hour intervals to collect
per-second load profiles.
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Table 2: Experimental data sources - energy usage traces col-

lected from residences in spring of 2010

Residence H1 H2 A1 T1

Start 3/1 9am 4/17 12am 3/15 12am 4/18 11:15am
End 5/1 9am 5/16 12am 4/14 12am 5/17 11am

Length 61 days 30 days 30 days 29 days
Bedrooms 5 2 3 2
Residents 4 3 3 2
Init. KSS 4.64 kW 4.08 kW 3.85 kW 8.20 kW

The experiments in the following section use load profiles col-
lected in the spring of 2010 in the four residences, as described in
Table 2. We refer to the data sets as H1, H2, A2, and T1 throughout
(homes 1 and 2, apartment 1 and townhouse 1, respectively). The
data collection process introduced a small number of sample out-
ages in which no data was collected. This was due to brief power
cycles of the TED or lost communication between the TED col-
lector and usage sensor. We repair these gaps by placing repeated
samples of the constant average of the surrounding 100 seconds.
The H1 data contained two such gaps (1 hour, 3 minutes), H2 con-
tained one gap (19 minutes), A1 contained no outages, and T1 had
2 gaps (11 minutes, 13 minutes). Given their relatively small size,
these gaps have little influence on our experimental results.

Figure 5 illustrates energy use over different time scales for one
residence, H1. The month profile highlights the relatively constant
rate of use over time. Note that during the week of March 3rd, the
usage drops off substantially. The occupants left for a spring break
during this period, turned down the thermostat, and unplugged ap-
pliances throughout the house. The daily energy use exhibits sim-
ilar diurnal patters as described in Section 2.1. The periodic usage
spikes observed in the day-scale data was the result of the home’s
furnace turning ON and OFF blower motors to force heat in the
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Figure 5: Residence monthly, daily, and hourly profiles.

gas-heated house. Finally, the hourly readings show the enormous
sensitivity of these devices to internal use; while spikes caused by
starting dryers and heat pump blowers are very clear, small changes
caused by appliances such as lamps are also visible.

4.2 Full System Simulation
The NILL system simulation answers the question of how effec-

tively the battery and controller can remove appliance features from
a metered load profile. To achieve a realistic battery model, we im-
plemented the simulation in Simulink with the SimPowerSystems
extension [26]. This was necessary, as using an oversimplified bat-
tery model, e.g. one with linear discharge characteristics, would
lead to an inaccurate assessment of NILL’s capabilities.
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Our simulation is shown in Figure 6. At the heart of the system
is a circuit with three elements: a net load exerted by appliances,
a voltage source for the utility, and a battery. The appliance load
is supplied by demand data collected from the TEDs. It is injected
into the system as a real valued signal, and converted to an elec-
trical load by a variable resistor in the programmable load. (Like
several other residential NILM studies [10, 4, 22], we focus on real
power consumption.) The programmable load is supplied by the
utility and potentially the battery, which sit in parallel on the cir-
cuit. The part of the net load not supplied by the battery will be sup-
plied by the utility voltage source according to Kirchhoff’s circuit
laws. Battery charging is controlled by the switching connecting
the battery to the rest of the circuit. To avoid severe performance
slowdowns in our simulation, we implement the battery switching
using variable resistance and voltage sources in place of simulat-
ing non-linear power electronics. When the battery is discharging,
a variable resistance is used to draw current from the battery, and
a current source supplies the load proportionally. This process is
reversed during charging.

With regards to timing in the circuit, the load profile data is in-
serted at the rate of one sample per second, the same rate at which
it was recorded. The metrology unit on the utility meter decimates
the signal to have 1/4 the resolution of the control unit. In reality,
control units with MHz clocks can have orders of magnitude higher
resolution than solid state metering, giving a full implementation a
greater advantage. Forcing sampling at these rates however would
have made the simulation run prohibitively slow. Finally, the mem-
ory block placed before the control serves to add a one-step delay
between the propagation of the sensor signals to the simulator, and
the propagation of the resulting control signals to the circuit.

The battery model used in the simulator was originally designed
for SimPowerSystems in [38]. It maintains only a single state vari-
able, the state of charge, as well as several other parameters to
model voltage during the two phases of battery discharge: the ex-
ponential and nominal zones. The additional parameters, including
internal resistance, are derived from the battery type, nominal volt-
age, and capacity. The model has been shown to accurately produce
the original manufacturer voltage curves for lead acid batteries, as
well as several other basic battery types.

The control unit receives two variables, the net demand and the
battery’s state of charge. Based on the control model presented in
section 3.1, these are used to calculate the charge state and rate of
charge for the target KSS . The control also checks the conditions
for entering a recovery state and adjusts KSS using EWMA. The
control system is implemented in just under 900 lines of Matlab
code.

4.2.1 Simulation Procedure

We ran the simulator on each of the four load profile data sets.
The runs for H2, A1, and T1 lasted for approximately 3 hours each,
and H1 ran for 6 hours. The initial target load KSS for each sim-
ulation was calculated by running Algorithm 1 over one week of
sample data occurring prior to the load profiles used in the sim-
ulation. The initial KSS for each residence is shown in Table 2.
Though the initial values are not closely aligned with the longer
term run-time steady states, they err on the side of caution due to
the strict SOC constraint on line 5 of Algorithm 1. In each case,
KSS was either close to the immediate load at the beginning of the
trace, or led to a high recovery state with no leaked features. Along
with the metered power under NILL u(t), the SOC over time c(t)
was included in the output of each simulation.

The results report below were collected using a simulated 50
Ah battery with a 60 A maximum discharge. The α value for the
EWMA used to adjust KSS was calibrated experimental to 0.5.
Methods for choosing an optimal α and other parameters are cov-
ered in Section 5.2. The lower bound on charge was chosen to be
20% SOC. The initial state of the battery was set to 80% SOC.

4.3 Simulation Results
A two-week example of the load profile witnessed by the elec-

tric meter (u) compared with the total load (d) is shown in Figure 7.
From this example, several things are apparent. First, there are ex-
tended periods of hours to days during which no appliance features
are visible in u. Second, the majority of features that do occur in
u have high amplitudes, and are among the largest present in d.
Third, periods of light load in d are accompanied by periods of
very light or nearly zero load in u. And finally, the emergent shape
of the load profile remains the same for both d and u, and the area
under the two curves is approximately the same. We now inspect
each of these facets in detail.

Steady state loads comprise the majority of the NILL load pro-
file. During these periods, the controller is able to maintain the tar-
get steady state load KSS without depleting or fully charging the
battery. Thus, the better the choice of KSS , the longer the steady
state can be maintained. Following several high amplitude loads at
the beginning of the trace, the steady state converges to durations
of half a day or more by Apr. 22nd.

A number of large features appear in u outside of the steady state.
These features tend to appear at the peaks of comparatively steady
high-amplitude loads. Examples of such events occur on Apr. 18th

and 28th. These features, which are also some of the largest in d,
either cause or occur during low recovery state. When the battery is
recharging, the target load KL is set to allow the maximum rate of
charge, causing the large yet steady load below the visible features.



Table 3: NILL feature reduction

Residence Non-NILL NILL Change

Total Features

H1 1047099 61793 -94.10%
H2 286960 20713 -92.78%
A1 430214 24893 -94.21%
T1 384847 33413 -91.32%

Features per hour

H1 358 21 -94.10%
H2 199 14 -92.79%
A1 289 16 -94.21%
T1 277 24 -91.32%

Sister feature pairs

H1 340986 10552 -96.91%
H2 110994 4735 -95.73%
A1 176540 6030 -96.58%
T1 147982 8120 -94.51%

After sustained periods of steady state operation or light loads in
d, a sharp decrease will occur in u as NILL enters a high recovery
state. This happens when the battery has reached full charge while
maintaining KSS . In this state, the target load KH is chosen to be
just below some of the recently sampled demand values, so as to
allow the battery to discharge at a low rate. As can be seen, in the
majority of cases, the choice of KH is correct on the first try. On a
few occasions, most notably after mid day on Apr. 18th, the initial
guess is too high, and KH is lowered by 0.6 kW to allow the battery
to discharge. In several instances (such as just prior to Apr. 26th)
the NILL controller chose KH to be slightly below zero, meaning
that the battery is effectively discharging to the grid. This is only a
concern if the meter can detect reverse power flows, in which case
the NILL system can be configured to never set KL below zero.

Having now covered how NILL reacts to loads, it should not
be surprising that on the larger scale of days to weeks, the NILL
graph looks similar to the original load. This is result of both the
limited capacity batteries afforded by current technology, and typ-
ical weather and occupant behavioral patterns. While these larger
trends reveal information about customers, most notably the likeli-
hood of human presence in the house, they do not reveal the more
fine-grained details such as how many occupants are at home or
what their activities are. Thus, we now turn our analysis to quan-
tifying NILL’s effectiveness in removing individual appliance fea-
tures from load profiles.

4.4 Countering NILM
NILM algorithms exploit the amplitude changes in load pro-

files. These “features” are indicative appliance ON/OFF events
(and appliance-internal state changes that effect energy consump-
tion, e.g., washing machine cycles [3]). Features exploited by NILM
are represented by (time, amplitude). Here, amplitude is not the
absolute metric of energy, but the relative change in energy use
from the last sample. For example, a system exhibiting a 5-second
load profile: {t0 : 0W, t1 : 100W, t2 : 200W, t3 : 200W, t4 :
200W, t5 : 100W}would yield features: {(t1, +100W), (t2, +
100W), (t3, 0W), (t4, 0W), (t5,−100W)}. Samples with ampli-
tude with no change are not features, and are ignored for analysis.

Table 3 shows the feature reduction for the simulated environ-
ments. The original TED profile data (Non-NILL) contains just
over 1 million features on the 60 day profile of the large house
H1, down to the 380 thousand features in the 29 day profile for the
small townhouse T1. When the load profile is simulated in NILL-
enabled residences (NILL), the number of features drops signifi-
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Figure 8: Relative feature mass over two day simulation for H1

(top) and A1 (bottom).

cantly (around 95% or more). This reduces the number of features
from several hundred an hour to as few as 16 in the case of T1.

A key question asks if the residual features left after NILL are
useful for the NILM analysis. Recall from Section 2 that NILM rely
on pairs of symmetric ON/OFF “sister” features to infer appliance
usage. We performed a sister matching algorithm that would match
all events of greater than 10 W –about 1/6th the draw of a light
bulb–as a pairing of positive charge increase and decrease (with a
tolerance of 5 W). The matching algorithm linearly scans forward
in the trace for the equal and opposite OFF event for each ON event.
Table 3 shows that each simulated environment experienced 94% or
greater reduction in identifiable sister features.

Raw feature reduction sketches the aggregate behavior of NILL,
but only provides a crude estimate of privacy-preservation over
time. A feature mass (FM(w, D)) is the number of non-zero fea-
tures from over a discrete sample set D = (d0, d1, . . . , dw), e.g.,
the number of features over a given time window of size w. In this
work, the feature mass is the number of non-zero energy transitions
occurring within a time-series interval sample D of length w:

FM(w, D) =
w
P

i=0

(di 6= 0)

The relative feature mass (RFM) for an interval w is the ratio of the
feature mass for two sample sets (in this case NILL over non-NILL)
over w, e.g.:

RFM(w, D) = FM(w,DNILL)
FM(w,DNON_NILL)

RFM measures the relative number of features of the original and
NILL data. Intuitively, as RFM approaches zero, there is very little
signal relative to the original profile for a NILM algorithm to oper-
ate on. Figure 8 shows the RFM computed at ten minute intervals
with a one hour sliding window, i.e., w = 1 hour, over two days
at A1 (11 days into the trace) and H1 (29 days into the trace).

The most visible characteristic in Figure 8 is the oscillation of
RFM. Most of the trace shows the RFM at 1% or less, and at zero
for some of the time (note that the Y axis is on a log scale). The
reason for this is the nature of the battery system. When the battery
is in the low recovery state, it is unable to suppress most appliance
features, and they become visible in the load profile. (We investi-
gate the impact of features occurring during low recovery state in
the next section). RFM increases in this off state, peaking in the
case of H1 at almost 0.5 RFM for a few minutes. T1 has fewer and
less pronounced increases in RFM. Note that the prolonged RFM
of zero represents perfect privacy.

To get a sense for the behavior of steady state NILL, consider
the normal steady state. We arbitrarily define the system to be in
a NILL-effective state when the RFM is less than 0.1–which repre-



Table 6: Residual Features
Residence Features Sisters Residual Features (%) Residual Sisters (%)

H1 1047099 340986 35969 (3.4%) 5526 (1.6%)
H2 286960 110994 13230 (4.6%) 3112 (2.8%)
A1 430214 176540 15556 (3.6%) 3648 (2.0%)
T1 384847 147982 30861 (8.0%) 7640 (5.1%)

Table 4: Feature reduction during NILL-effective (RFM <

0.1) state in simulated environments.
Residence Non-NILL NILL Change

Total Features

H1 879054 6808 -99.23%
H2 225088 1176 -99.48%
A1 354102 1508 -99.57%
T1 265400 1262 -99.52%

Features per hour

H1 354 3 -99.09%
H2 186 1 -99.12%
A1 279 1 -99.32%
T1 260 2 -99.25%

Sister feature pairs

H1 291718 561 -99.81%
H2 89558 118 -99.87%
A1 148446 128 -99.91%
T1 104012 161 -99.99%

Table 5: Simulated time in NILL-effective state

Residence Non-NILL (sec) NILL (sec) % of sim.

H1 10527597 8928597 84.81%
H2 5183997 4345199 83.82%
A1 5356797 4570797 85.33%
T1 5009397 3255535 64.99%

sents 10% residual features resulting from NILL. Table 4 shows
the features present during intervals when the system is NILL-
effective. In all experiments the features, features per hour, and
sister features are reduced by over 99%. Table 5 shows that this
state is the norm–where between 65% to over 85% of the simulated
time was in this state in the simulated environment. One might
(incorrectly) attribute the success of in these instances to periods
when the load is quiescent. Quite the contrary, the majority of total
features in the original data are present during these periods. 83%
of the original features for H1 are observed during a NILL effective
state, 78.5% of H2, 82% of A1, and 90% of T1.

Figure 9 shows RFM as a CDF–the Y-axis indicates the simu-
lated time in which the system encounters a RFM (X-axis) or less.
For all traces the feature mass is zero for 65% to over 80% of the
time. Trace time rises steadily until around an RFM of 50%, which
is around 2% of the trace for all simulated environments.

4.5 Residual Features
A residual feature is any feature that appears in the original pro-

file that also appears in the NILL trace, e.g., an energy transition
that appears at (or about) the same time with similar amplitude
(within few watts). Because they precisely reflect appliance activ-
ities, these are the only features that are of value to current NILM
algorithms. Such features slip through the NILL control system
and are observable by the adversary. Table 6 shows the residual
features occurring in the simulated environments.

One reason for the presence of residual features is the low re-
covery state, hereafter called simply low state for brevity, during
which the battery is recharging. Table 7 describes NILL behavior
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Table 7: Feature Exposure in the Low Recovery State

Time in Residual Residual
Res.

Low State (%) Features (%) Sisters (%)

H1 891913 (8.5%) 18292 (50.8%) 3363 (60.8%)
H2 340685 (6.6%) 5248 (39.6%) 1414 (45.3%)
A1 435090 (8.1%) 8814 (56.6%) 2524 (69.1%)
T1 390279 (7.8%) 7456 (24.1%) 2172 (28.4%)

in low battery states. Here, we see only 24-56% of the residual fea-
tures are present in the low state (which occurs less than 10% of the
time). Thus, while low state charging explains some of the residual
features, many are present in the also steady (non-charging) state.

One can partition residual features into three classes. The first
class of features contains very small changes, e.g., less than 60
W, about the load of a typical light bulb. Such loads, the most
common in load profiles, are driven by numerous causes including
small lighting fixtures, appliance state changes, and small electron-
ics requiring standby power. Because they reside in the band on
the smaller end of the power spectrum, it would not be difficult for
a NILL system to mimic their arrivals and departures using small
variations in the battery charge and discharge rate. We thus do not
consider them for the remainder of this analysis.

A second class of features contains large transitions caused by
often short-lived heavy loads, e.g., kitchen microwave. The aggre-
gate draw of the large loads combined with ongoing draws exceeds
the target load (KL) plus the maximum output of the battery (60
A for the simulated battery we tested). There is little NILL can do
about these loads because it simply cannot safely supply the nec-
essary current. The last class are legitimate loads that are not man-
aged by NILL because of low state. Table 8 provides a breakdown
of the residual features present in the simulated environment. Inter-
estingly, 70-85% of the features and 92-98% of the sister features
are of the small variety.

Regardless of the reason for their presence, the features usable
by NILM to correctly uncover are the large and medium residual
sister features. To summarize:



Table 8: Classification of residual features

Features Sister Features

Residence Small (%) Medium (%) Large (%) Small (%) Medium (%) Large (%)

H1 25334 (70.4%) 6257 (17.4%) 4378 (12.1%) 5167 (93.50%) 214 (3.87%) 145 (2.62%)
H2 11319 (85.5%) 1193 (9.0%) 718 (5.4%) 3079 (98.94%) 21 (0.67%) 12 (0.39%)
A1 13139 (84.4%) 1249 (8.0%) 1168 (7.5%) 3555 (97.45%) 45 (1.23%) 48 (1.32%)
T1 25823 (83.7%) 4717 (15.3%) 321 (1.0%) 7512 (98.32%) 118 (1.54%) 10 (0.13%)

Residence Sister features Per Day

H1 359 (0.11%) 5.9
H2 33 (0.03%) 1.1
A1 93 (0.05%) 3.1
T1 128 (0.09%) 4.4

Fewer than ten and as little as one true feature per day that are
available to NILM algorithms in our simulated environment. This
represents about 3 to 11 out of a thousand features exposed, a mi-
nuscule exposure of privacy.

One of the challenges a NILM algorithm might have in the pres-
ence of NILL is that it must identify which of the features out of
the total trace are legitimate. For example, there are 473 true sister
features hidden in 10,552 for H1. Unless there is a clear marker
identifying a true feature in the timing/amplitude, then it would be
virtually impossible to separate the real and synthetic transitions.

4.6 Entropy Analysis
In addition to comparing the number of features between the load

seen by the battery and that seen by the utility, comparing the em-
pirical entropy of two loads is also useful. As in the above discus-
sion, distinguishing information about which appliance or type of
appliance was just turned ON (or OFF) lies not in the d and u time
series of aggregate load versus time but rather lies in the features
(i.e., non-zero impulses) that. Define δd(t) = d(t)− d(t− 1) and
δu(t) = u(t)−u(t−1) as the time series of impulses generated by
the appliances and seen by the utility, respectively. For each time
series we define a probability mass function, Pδd and Pδu, respec-
tively, which takes a bin size b as a parameter. For concreteness
define the ith bin as being the range [ib, (i + 1)b) in units of watts.
Pδd(i|b) is just the fraction of the values of δd that are in bin i.
Pδu is defined similarly. Given an empirical probability mass func-
tion P (i) we calculate the empirical entropy using base 2 in the
standard way:

H(P ) = −
1

|I|

X

i∈I

P (i) log2 P (i),

where I is the support of P , i.e., I = {i|P (i) > 0}.
Here, H(Pδd) can be interpreted as an upper bound on the num-

ber of bits of information a NILM algorithm could extract on av-
erage for each impulse sample in δd (if it had access to δd, as it
would in the case that our NILL hardware and software were not
deployed). Likewise, H(Pδu) can be interpreted as upper bound on
the number of bits of information a NILM algorithm could extract
on average for each impulse sample in δu, i.e., after the signal has
been smoothed by our NILL algorithm. Table 9 reports the empiri-
cal entropies for our four data sets, computed using a bin size of 1
W. The bin size was chosen this small to allow for the potential of
higher entropy due to higher precision but not any smaller in order
to mitigate the introduction of undue noise.

As noted above, the empirical entropy is an upper bound on the
information extractable by a NILM algorithm from a time series.
Strictly speaking, showing a gap between an upper bound on the
information extractable from d and an upper bound on the infor-

mation extractable from u does not prove that the NILL algorithm
decreases the information content of d. That is, the actual informa-
tion content extractable from d may be below the upper bound on
the information extractable from u. However, this would require
that the information content of the two signals have significantly
different characteristics. In the event that the sequences have simi-
lar characteristics, the ratio between the upper bound and the actual
information extractable should be similar for each time series.

Note that if a time series is highly correlated, the empirical en-
tropy will overestimate the information in the series. (For example,
a series of 100 1’s followed by 100 2’s will have empirical entropy
of 1 bit per time step although the series clearly does not contain
200 bits of information.) There are clearly examples of correla-
tions in our time series. As mentioned above, when a home theatre
system was turned on in H1 and H2, several features occurred in
succession over a short period of time. In addition to such intra-
appliance correlations, some home loads have quasi-periodic be-
havior. Examples of such loads include refrigerator compressors
and home furnace systems.

To understand the extent of these time correlations we computed
the autocorrelation function (Pearson variant) of δd and δu. The
autocorrelation on input k of an n element times series s compares
s(i) with s(i + k) for all 1 ≤ i ≤ n − k. The autocorrelation
is always at most 1 and at least -1, with values near 1 implying a
high degree of correlation, values near -1 implying a high degree
of anti-correlation, and values near 0 implying a high degree of in-
dependence. The autocorrelation of δd had absolute value less than
0.02 for all values of the lag k. Thus, in spite of the fact that there
are some correlated impulses in the data set, the vast majority of
impulses appear to be uncorrelated. The non-zero impulses of δu

essentially constitute a subsequence of δd. (That is, if at time t,
δu(t) is non-zero then at the same time δd(t) is non-zero as well.
If fact, the size of the impulse is often the same in this case.) Since a
subsequence of a sequence of independent events is itself indepen-
dent, it follows that the impulses of δu are largely uncorrelated as
well. Indeed, the autocorrelation of the δu time series was similarly
small. This argues against the introduction of a systematic bias in
empirical entropy of one series versus the other due to differences
in time correlations between the two series.

In Table 9, the entropy is computed in two ways: one in which
zero values of the respective time series are included when calcu-
lating a probability mass function for the time series, and one in
which the zero values are excluded. Including the zero values has
intuitive appeal as the fact that there are many more zeroes in the
NILL time series does reflect that fact that the NILL time series
conveys less information to a NILM algorithm. However, to en-
sure that the number of zeroes in the NILL time series were not
biasing the results unduly, we also calculated the entropy of the
various time series without the zeroes included. As the entropy
represents the average amount of information per sample, and as
there are more samples in the Non-NILL time series, we have in-



Table 9: Empirical Entropy

Residence Non-NILL NILL Ratio Non-NILL w/o zeroes NILL w/o zeroes Normalized Ratio

H1 0.633267 0.054265 0.085690 5.663782 7.519812 0.078346

H2 0.235150 0.029554 0.125681 4.516394 6.340144 0.101323

A1 0.363826 0.038459 0.1057071 4.468669 6.526919 0.039289

T1 0.360635 0.019137 0.0530647 5.114588 6.460732 0.084519

Table 10: NILL Cost Reduction per Month in Simulated Envi-

ronments

Residence
O&R Ont. PG&E

H1 $8.94 (2.09%) $11.11 (2.00%) $18.67 (1.81%)

H2 $2.49 (5.16%) $3.78 (4.27%) $6.17 (4.28%)

A1 $3.41 (3.37%) $4.96 (3.81%) $10.22 (4.67%)

T1 $2.67 (2.53%) $3.72 (2.97%) $6.92 (2.62%)

cluded a ratio which normalizes for this fact. The numerator of the
ratio represents the total information available in the NILL time se-
ries (i.e., the entropy times the number of terms in the NILL series
without zeroes) and the denominator represents the total informa-
tion available in the Non-NILL time series (i.e., the entropy times
the number of terms in the Non-NILL series without zeroes).

Table 9 reports the empirical entropies for our four data sets.
When including the zeroes of the time series, the ratio of the NILL
to Non-NILL entropies varies from 0.53 on the low side for data set
T1 to 0.126 on the high side for data set H2. When the zeroes are
included, the normalized ratio varies from 0.039 on the low side for
data set A1 to 0.101 on the high side for data set H2.

5. DISCUSSION

5.1 Energy Efficiency and Consumer Cost
Because the cost of energy generation increases substantially

with mid-day demand, the Time of Use (TOU) pricing scheme is
being introduced to shave demand during peak hours [17]. TOU
creates a cost schedule that is tied to the demand curve observed by
the provider. Energy costs rise with expected demand. For exam-
ple, Orange and Rockland power in New York charges 1.280¢/kWh
for off-peak use (9:00pm-10:00am year round), and 7.17¢/kWh for
peak use (10:00am-9:00pm) October through May. During June
through September, peak charges increase to 7.17¢/kWh for shoul-
der peak use (10:00am-noon and 7:00pm-9:00pm) and 19.899¢/kWh
for high peak use (noon-7:00pm) [30]. TOU is touted as a way to
control costs by creating incentives for customers to use energy
during non-peak hours.

NILL may positively or negatively impact consumer cost under
a TOU schedule. Consider a simplified model of consumer cost
in a NILL and non-NILL household. Assume that the total kWh
usage for the home is U , the percentage of use at peak is Up, and
the provider costs for peak and off-peak are Cp and Co per kWh,
respectively. The total monthly bill for the home is:

T = (U ∗ Up) ∗ Cp + (U ∗ (1− Up)) ∗ Co

According to the U.S. Energy Information Administration, the av-
erage home uses 920 kWh per month [39]. Using this figure, we
can bound on the cost or savings observable by an average res-
idence under Orange and Rockland TOU cost schedule. In the
extreme cases, the costs of using NILL can increase by $24.84
(where the home uses no energy during peak hours) or decrease
by as much as $29.35 (where the home no energy during off-peak
hours). Based on usage statistics, the load of the average home

will use slightly more energy during peak hours (Up > %50), with
more pronounced peak loads in the summer months (due to air con-
ditioning).

Table 10 shows the energy costs in the simulated environments
under three time-of-use pricing schemes including Orange and Rock-
land, Ontario Power Generation [9] (Ontario, Canada), and Pacific
Gas and Electric [31] (California). The simulated environments ob-
served cost savings ranging from 1.8% to 5.2%. This reflects the
smoothing of load by the battery, where some amount of the peak
load is shifted into the off-peak hours. Note that the price of energy
is significantly higher in California than the other simulated envi-
ronments, and thus the costs are about double that of the upper-mid
Atlantic and Ontario regions. The costs savings of $2 to $10 may
partially offset the costs of the NILL system.

Also contributing to the long-term cost of a NILL scheme is the
cost of battery maintenance and replacement as a function of bat-
tery lifetime. Under a NILL scheme that exercises a lead-acid bat-
tery to between 50 to 80% DOD, the battery can be expected to last
between 500 to 1,000 cycles [7], which equates to one or two years.
One way to extend battery lifetime is to only use NILL when occu-
pants are at home. Additional measures to reduce cycle frequency
are the primary goal of future work for this project.

5.2 Optimizing NILL Parameters
The NILL system simulated in this paper relies on a number of

important parameters for its operation. While some guidance has
been given for parameter choice, such as the calculation of KSS ,
others were chosen using expert knowledge. In practice, set rules
should be used to choose KH , KL, and the EWMA parameter α.

The KL value chosen in a low recovery state allows the battery
to recharge quickly to just below a maximum SOC (80% in our
experiments). For many lead acid batteries, optimal lifetime and
performance can be achieved by recharging to between 50% and
80% SOC at a high rate, and then throttling back to charge to be-
tween 90% to 100% [13]. KH was chosen using the previous few
data points from the net load. While this results in a low discharge
from the battery, it is not guaranteed to be minimal. As lead-acid
batteries tend to perform best at a high SOC, KH should be chosen
to maximize efficient performance. The EWMA was used to adapt
KSS over time as the net load caused recovery states. The better
the choice of KSS , the longer a steady state may be maintained.
While we achieved good results with α = 0.5, this heuristic is not
guaranteed to work under arbitrary conditions. Instead, a full im-
plementation should consider techniques such as minimizing Mean
Squared Error (MSE).

5.3 Power Signatures and Disaggregation
Two NILM techniques under research that may pose a challenge

to NILL are power signature analysis and load disaggregation. Power
signature based NILMs collect high-resolution data to detect unique
appliance signatures. One example of a device power signature is
the turn on transient in demand when starting a motor [35, 41].
Similarly, power signatures can be found in loads with a small ca-



pacitance such as fluorescent lighting and electronic devices [40].
This technique can be highly accurate, but requires equally accu-
rate measurements with a sampling rate of at least 600 samples
per second and a resolution of tenths of amps. In the most extreme
case a signature-based NILM can characterize the line noise caused
by different appliances during transitional phases using MHz sam-
pling rates [32]. As modern residential smart meters simply do not
support the sampling rate or computation needed for detecting load
signatures, we do not consider them further here.

Load disaggregation techniques attempt to find the set of appli-
ance loads contributing to a net load by solving a discrete knapsack
problem. Though this technique was originally considered to be
computationally impractical [12], it has recently been demonstrated
as feasible for residential loads [20]. In this scenario, the NILL bat-
tery represents an unknown quantity in the knapsack problem. At
one-watt resolution, there are thousands of possible values for the
battery quantity, many of which will have valid solutions to the
knapsack fitting. Thus, we believe that load disaggregation based
NILMs are not a significant threat to the privacy afforded by NILL.

6. CONCLUSIONS
We have introduced a new class of privacy-preserving algorithms

called non-intrusive load leveling (NILL). NILL blinds privacy-
exposing NILM algorithms by removing the majority of useful en-
ergy use transitions sensed by recently introduced smart meters.
Simulations of NILL over real usage profiles in four homes showed
that between 1.1 and 5.9 meaningful events were exposed to NILM
algorithms per day. Such features reside amongst hundreds or thou-
sands of false events, making recovery of appliance profiles virtu-
ally impossible under current algorithms. Future efforts will ex-
pand on the analysis to explore tradeoffs between different battery
systems and the integration with existing in-home alternative en-
ergy generation technology.
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APPENDIX

A. FUTURE NILM ALGORITHMS
The analysis discussed in the previous section only considered

currently available NILM algorithms. Future approaches will apply
more powerful machine learning and data mining techniques. Con-
sider the threat models of as-yet-unknown NILM algorithms that
may use features more profitably or exploit knowledge of NILL to
expose energy usage. In particular, the NILM algorithms consid-
ered thus far have been oblivious to the potential presence of NILL.
This raises the question, could a NILM aware of the operations of a
NILL algorithm recover more information about the actual demand
d from the observed demand u than a basic feature-based NILM?
While the answer to this question is almost certainly yes, it is cur-
rently unclear how this inference could be done, or how it could be
countered.

A.1 Feature Correlation
In the evaluation, we saw that there are features in u that do not

overlap with those visible in d, i.e., the non residual features. To
a basic steady state NILM, these features reveal little to nothing
about the appliance that caused the feature. An adversarial NILM,
however, may be able to learn a mapping from some of the features
present only in u to those in d. This may be done under three sepa-
rate circumstances. First, the NILL system may have been installed
before the NILM. When this is the case, there is no non-NILL
data available for training, forcing the NILM to first cluster fea-
tures from the NILL load profile. If a correlation is found between
the NILL clustering and clusters for known appliance features, a
mapping may potentially be found between the two sets.

In the second scenario, NILL is installed some time after NILM,
revealing both NILL and non-NILL load profiles over mutually ex-
clusive time span–thus allowing a differential analysis of the pre-
and post-NILL data. Similar to the previous case, the NILM must
find the clustering of the NILL data that most closely matches that
of the non-NILL data. Any assumption about the significance of
such a correlation, however, can be further leveraged NILL algo-
rithms to cause false inference by the adversary. In the final sce-
nario, which is both the least likely yet most advantageous for the
adversary, there may be temporally overlapping NILL and non-
NILL samples. If the non-identical features in these two sample
sets are highly correlated, a linear mapping from NILL to non-
NILL would give a fair approximation of the mapping between fea-
tures. Once again, a NILM’s reliance on any such mapping could
be leveraged by NILL to cause false positive appliance classifica-
tions by adding random noise or phantom features.

A.2 Inference from NILL Internal State
It has been previously shown that the high level behavior of

cyber-physical systems can be determined based on their low level
signaling [36]. Similarly, adversarial NILMs may attempt to infer
properties of the NILL system’s internal state based on features in
the NILL load profile. For example, a sudden spike in feature mass
is likely indicative of a low recovery state. A low recovery state
in turn reveals the state of the battery, i.e. that the state of charge
c ≤ L and rate of charge b(t) > 0. Once the state is known at a
point in time, it is possible to determine the state at any future time
by observing transitions in the target load. The question that re-
mains is whether or not an adversarial NILM can infer more about
d from knowing the internal system state and u, than from knowing
u alone.

To infer anything about d beyond the features already overlap-
ping with u, the NILM must know something about b, because
u − b = d. But can anything be implied about b from knowing
NILL’s internal state? The previous example demonstrated that in
the low recovery scenario it is known that b > 0 and likely close
to the battery’s maximum safe charge rate. However, as was shown
experimentally in Section 4.4, there is already a high RFM during a
low recovery state, making the overlap between d and u fairly sub-
stantial. Whether the remainder of features in u reveal information
about d during a recovery scenario is left to future analysis.

If the NILL is in steady state, then b may be either positive or
negative depending completely on KSS − d. Thus it seems highly
unlikely that a NILM can make inferences based on knowing that
the NILL is in steady state. Finally, in a high recovery scenario,
KH is chosen to be slightly below the most recent several d values,
allowing the battery to discharge at a low rate. In this case, it is
known that b < 0, and that KH − d is fairly small. While this is an
indication that d is a light load for the duration of the high recovery
state, it reveals only the general size of appliances, but not specific
information as to which appliances or whether they are automatic
or manually operated.


