

Protecting Data from Malicious Software

Matthew Schmid & Frank Hill

Cigital, Inc.
{mschmid, fhill}@cigital.com

Anup K. Ghosh

DARPA
aghosh@darpa.mil

Abstract

Corruption or disclosure of sensitive user documents

can be among the most lasting and costly effects of
malicious software attacks. Many malicious programs
specifically target files that are likely to contain important
user data. Researchers have approached this problem by
developing techniques for restricting access to resources
on an application-by-application basis. These so-called
“sandbox environments,” though effective, are
cumbersome and difficult to use. In this paper, we
present a prototype Windows NT/2000 tool that addresses
malicious software threats to user data by extending the
existing set of file-access permissions. Management and
configuration options make the tool unobtrusive and easy
to use. We have conducted preliminary experiments to
assess the usability of the tool and to evaluate the effects
of improvements we have made. Our work has produced
an intuitive data-centric method of protecting valuable
documents that provides an additional layer of defense
beyond existing antivirus solutions.

1. Introduction

Despite the efforts of the antivirus community,
malicious software continues to be a major threat to
businesses and to individuals. Malicious software
commonly appears innocuous and carries on its true
purpose unbeknownst to its victim. A particularly
dangerous form of malicious software (malware) is that
which remains undetected while it continues to perform
malicious actions. Viruses may attach themselves to
ordinary programs without any noticeable effect on the
original software. Trojans may stealthily steal valuable
information and transmit it anywhere on the Internet.
Malicious mobile code may surreptitiously destroy or
steal files while a person browses the World Wide Web.

For the typical user, the greatest threat that malware
poses is its ability to steal, modify, or destroy important
data. The costs associated with damage to the operating
system or other software is negligible when compared
with the value of the information that a person has labored

to produce. After all, the computer and its software are
simply tools being used to aid in the creation of this data
in the first place. While corporations may be legitimately
concerned with side effects such as system availability
and the resources required to eradicate an out-of-control
virus, users are ultimately concerned with the integrity
and confidentiality of the data contained in their files.

The Windows NT / 2000 security model provides users
with the ability to protect sensitive documents from
access by other users. The type of access control
provided by Windows is known as discretionary access
control (DAC) because the owner of a file is given
discretion in determining the access permissions for that
file. This is in contrast with mandatory access control
(MAC) where file permissions are much more tightly
controlled [16]. Figure 1 shows the Windows NT 4.0
dialog box that enables a user to select file permissions
for a document.

Figure 1. Discretionary access control on
Windows NT

While this security model protects sensitive data from

nosy or ill-intentioned colleagues, it does nothing to
defend against most malicious software. The reason for
this disparity is that malicious software is actually
executed by the user himself. The consequence of a DAC

system is that once a person runs a program, that program
has the ability to change the access permissions on any of
that user’s files. Malicious code therefore has the ability
to do anything that the user could do, including the
reading of, writing to, or destruction of any documents
that belong to the compromised user.

In this paper we introduce the FileMonster; a prototype
tool for extending Windows discretionary access control
to better protect important files from damage or snooping
by all forms of malicious software. The FileMonster
shares some characteristics with prior research into
application sandboxing (see the Related Work section),
yet we believe that its unique approach to this problem
solves many of the usability issues that have plagued
earlier systems. This prototype provides an additional
level of protection from malicious software with a
minimal impact on the normal work environment.

2. A data-centric protection mechanism

Existing access control mechanisms do little to protect
your files from malicious software. To make matters
worse, the Windows operating system makes it difficult
or impossible to observe how an application is using the
file system without the help of a third-party monitoring
tool (see www.sysinternals.com for several useful system
monitoring tools). The prototype described here works by
increasing the visibility of access to important documents
on your computer. Essentially we provide two new file
system permissions: confirm on read and confirm on
write. These permissions indicate that when a program
performs either a read or write operation on a protected
file, the user must provide a confirmation before this
operation can proceed. This eliminates the possibility that
a malicious program can read or alter a protected file
without first getting permission from the user. The
confirm on read permission should be used on files whose
contents are considered confidential. This will require a
confirmation from a user if any program attempts to read
data from the file. The confirm on write permission
should be used on files whose valuable contents must not
be damaged. This permission requires a confirmation
when a program tries to write to or delete the file. These
permissiond may also be combined (confirm on access).
We have developed a prototype, named FileMonster,
which enforces these permissions on the Windows
NT/2000 operating system.

In addition to supporting permissions on a per file
basis, the FileMonster also allows users to set permissions
based on file types (extensions). This provides broad
protection to a group of files. For example, a user might
decide that all of his Microsoft Excel files (identified by
the XLS file extension) should be protected with confirm
on read permission. The FileMonster would then require
confirmation whenever a program accessed a file with the

extension of XLS. Individual file permissions always
override group permissions, allowing someone to tailor
file permissions to fit current needs.

We refer to our system as being data-centric to
distinguish it from other research efforts that have
investigated techniques of protecting resources against
malicious software that have been largely application-
centric. An application-centric approach to malicious
software prevention focuses on restricting the capabilities
of applications that a user believes may attempt malicious
behavior. The Java sandbox is a well-known commercial
example of a security model that is designed to restrict the
behaviors of untrusted software. The Janus prototype,
described in [9; 17], is one of the better-known research
efforts that investigated performing application
sandboxing. This and other systems of defending against
malicious software are further described in the Related
Work section.

In contrast, a data-centric approach to malicious
software prevention focuses on better protecting resources
from misuse by any application executing on the system.
In the case of the FileMonster, the emphasis is on
providing users with an extended set of file permissions
that can be used to further safeguard important files. In a
data-centric approach, the user chooses to protect
important data from tampering or snooping. In an
application-centric model the user must decide whether an
application should be run in a restricted environment and
how that application should access system resources. Our
prototype is more limited in the type of resources that are
protected (focusing only on the file system) however we
believe that this results in a tool that is much easier to
configure and use, and focuses on the resources that are
most important to protect. We believe that a data-centric
approach is not only easier to manage and understand, but
that it is inherently safer than an application-centric model
because protections is placed around the sensitive
resource, not around the untrusted application. This paper
will describe the data-centric malicious software defense
prototype that we built and will discuss its various
strengths and weaknesses.

3. Security vs. usability

As with almost any security mechanism there is
generally a trade-off between security and usability. The
FileMonster allows a user to vary a number of security
settings that balance security with usability until an
acceptable compromise has been reached. Here we
explain FileMonster features that can be configured by a
user and how these features affect the security and
usability of the system.

3.1. Handling user confirmations

When a user marks a file such that confirmation is
required, the FileMonster prototype can request this
confirmation in one of two ways. The first confirmation
method, which we will refer to as simple file
confirmation, will simply block file access from
occurring, then pop up a dialog box that asks the user to
confirm or deny the action. As shown in Figure 2, this
dialog box lists the file that is being accessed, the type of
access (read or write) that is being requested, and the
application that has issued the request. The user may
either elect to allow the operation to continue as requested
or to reject the request.

Using a simple dialog box to receive a confirmation
from a user may be sufficient in most situations, however
there is a security weakness in this approach that makes it
unsuitable for some high security environments. The flaw
is due to the ability of a hostile application to send
windowing messages directly to the confirmation dialog
box without any input from the user. If a piece of
malicious code were designed specifically to thwart the
FileMonster’s protections, the code could attempt to
access a protected file, wait for the confirmation window
to pop up, and then send a confirmation message to that
window that appeared to come from the user.

Figure 2. FileMonster confirmation window

Our solution to this problem is to provide users with
the option of using a secure file confirmation method.
This technique leverages Windows NT’s built-in support
for multiple desktops and the ability to secure these
desktops. A desktop is “an on-screen work area that uses
icons and menus to simulate the top of a desk” (Microsoft
Visual Studio Help). An example of where Windows
uses multiple desktops is the screen change that occurs
when a user presses Ctrl-Alt-Del. Regardless of what you
are working on, the screen is changed to reflect a new
desktop with only a dialog box that presents options such
as Shutdown, Lock Workstation, etc.

When an application creates a desktop it can control a
variety of security settings for that desktop. When the
FileMonster performs a secure file confirmation it creates
a desktop that only the FileMonster program itself can
manipulate. No other program is capable of sending
messages to this desktop or using it to display windows.
To perform a file confirmation, a user must switch to this

desktop and then choose to allow or deny the requested
operation. The FileMonster system can be sure that the
confirmation comes directly from the user because no
other programs can pass messages to the dialog box
displayed on the secure desktop.

Providing both a simple file confirmation method and a
secure file confirmation method allows users to choose
their desired level of security. The simple file
confirmation is vulnerable to attacks specifically targeting
FileMonster’s protection mechanism, however for a more
secure environment a user can choose the secure file
confirmation method. The simple file confirmation is
slightly easier for someone to use because it does not
necessitate switching desktops to perform a confirmation.
Secure file confirmation ensures that even a piece of
malicious code specifically designed to attack the
FileMonster cannot bypass the security we have put in
place.

3.2. Application file associations

Another feature that provides some trade-off between
security and usability is the association of file types with
applications. This feature enables the FileMonster to treat
protected files differently depending on the application
that is accessing them. To make an association, you first
select either an individual file or file type and the
application with which it is to be associated. Then you
choose what permissions, if any, should be used when
that application attempts to access the file or file type. At
the time of the check the FileMonster uses MD5 hashing
to verify that the application is indeed the program that
was originally associated with the file or file type, and to
see that this program has not since been modified.

For example, FileMonster could be configured such
that all files with the TXT extension are treated with
confirm on write permission regardless of which
application is accessing it. You could use application
associations to make an exception to this rule, stating that
TXT files should not require any type of confirmation
when access by the Notepad application. If any
application other than Notepad attempted to write to a
TXT file then a confirmation would be required, however
when Notepad wrote to a TXT file the FileMonster would
not interfere. Note that the method we are using to
identify writing to a file will also identify an attempt to
change the name or extension of that file. This prevents
the simple attack of changing a file’s extension before
attacking its contents.

The security weakness that application associations
introduce is in providing a path that bypasses
FileMonster’s own security permissions. In the example
above, if the Notepad application contained some
malicious logic that overwrote all of the TXT files on a
hard drive there would be nothing in place to stop it.

Furthermore, a malicious program could take advantage
of Notepad’s file type association and perform its
malicious actions through the Notepad application.
Similarly, if an application that supports macros, such as
Microsoft Word, were associated with a file or file type,
then a malicious macro could control the host application
and take advantage of the association to damage protected
files.

Application associations are a double-edged sword.
They help to reduce the number of confirmation dialogs
that FileMonster generates, but could conceivably open
up a hole in the prototype’s armor. They must be used
carefully, with the understanding that their convenience is
paid for by the introduction of potential security
weaknesses.

3.3. Session caching

The FileMonster allows users to enable a feature called
session caching that will remember a user’s response to a
confirmation dialog box for as long as the application
continues to run. If, for example, a user confirms that
Microsoft Word is allowed to write to the file MyFile.doc,
then until Microsoft Word is exited it will be allowed to
write to that file without requiring another confirmation.
This is very useful when someone is editing a protected
document and will be saving the document frequently. If
a different application tries to access the MyFile.doc file
after a response has been cached it will still require the
user to confirm the action.

It is possible that a malicious program might perform a
malicious action at some point after the user has already
cached a confirmation. This is a not a very significant
threat because the user has already chosen to trust this
application the first time. Additionally, there would be
little to distinguish the first attempt to access a file as
benign and a subsequent attempt as malicious.

3.4. Evaluating the FileMonster

For the FileMonster to be a useful tool it must provide
protection against malicious software while maintaining a
low profile. If the user is frequently asked to confirm
actions then they will quickly begin to ignore FileMonster
dialog boxes or to turn the tool off entirely. This has been
demonstrated before with security features such as
Microsoft Internet Explorer’s warnings about accepting
cookies. Though a potentially useful security feature, the
frequency of the warnings causes most users to turn it off.

The goal of our work is to tune the FileMonster to the
point where it produces a minimum number of false
alarms, while still maintaining its effectiveness against
malicious threats. We consider a false alarm to be a
confirmation request that is caused by normal benign
system use. To achieve this goal we instrumented the

prototype with some basic logging capabilities. The
FileMonster records its uptime and logs the date and time
that every user confirmation is requested. A small set of
users was selected as a test set and a standard
configuration policy was used. These users were given
basic training in the use of the FileMonster, and were
taught to distinguish between common false alarms and
likely malicious threats. The application associations and
file type permissions used during this evaluation are
shown in Table 1.

Table 1. FileMonster evalutation configuration

File Extension Permissions Application
Associations
(Ignore on Access)

.DOC Confirm on
Write

Microsoft Word
Microsoft Outlook

.PPT Confirm on
Write

Microsoft
PowerPoint

.EXE Confirm on
Write

(Microsoft Visual
Studio Linking
utilities)

.XLS Confirm on
Access

Microsoft Excel

.SKR
(PGP Secret
Key Ring
Files)

Confirm on
Access

(PGP Utilities)

This policy protects many of the basic file types that a

Microsoft Windows user encounters on a daily basis. It
assumes that the Microsoft applications listed are trusted,
and that they are not being manipulated by malicious
software. Throughout the test we employed the usability
features described above (such as session caching).
During this test phase users were asked not to adjust the
configuration from its initial setting.

We logged FileMonster activity across our test set of
users for approximately two months. Test subjects
continued to use their computers for normal day-to-day
activities. During this time period we found that the
FileMonster resulted in an average of 1½ dialogs during a
24-hour period. We assume all of these confirmation
requests to be false alarms because neither our corporate
antivirus solutions nor the test users identified a malicious
attack during this time frame (it would be ideal to test for
false alarms in sterile environment, but the duration of
these tests made this difficult).

It is difficult to quantify an acceptable number of
spurious confirmation requests, but the results we were
getting (about 1½ alerts per day) seemed too numerous
for the FileMonster to be truly unobtrusive. Discussions
with test candidates indicated that the FileMonster tended
to seek user confirmation during web browsing sessions
using Internet Explorer. Further examination narrowed

this down to sessions where Microsoft Word, Excel, and
PowerPoint files were being viewed within the Internet
Explorer browser. The dialog boxes were triggered when
a new IE instance attempted to overwrite or delete
temporary files created by a previous instance.

A quick fix was made to the FileMonster to ignore
Internet Explorer’s temporary files. This could be done
easily because these files are always stored in the same
location. A better solution to this problem is extending
the FileMonster to allow users to specify rules such as
these on-the-fly. After making these changes we resumed
our evaluation. This simple change had a dramatic effect
on the number of false alarms. During a test period of
similar length we found that the number of dialogs was
reduced to an average of one per week. This is a
significant improvement over the original results and we
believe that we can continue to push this number even
lower by determining the cause of other false alarms.

4. How FileMonster works

To implement FileMonster’s file access confirmation
feature we need a way of detecting when a process is
about to read from or write to a file. One way this could
be done is to examine each function call that is made to
WriteFile and ReadFile. Although this would give us
very fine-grained control over a process’s file
manipulation, it would result in our having to intercept a
very large number of function calls (these are two
extremely heavily used functions).

An alternative to intercepting the individual attempts
to read and write to a file is to regulate the type of access
that is permitted when a process gets a handle to a file.
On the Windows NT/2000 operating system all file access
occurs through kernel file system objects that are
manipulated from user-space through file handles. When
a user-level application requests a file handle it must
specify at that time whether it wants permission to read
from or write to that file.

A user-level application has access to many functions
in the Win32 API that will return a file handle or result in
data being written to a file. For example the user-level
functions CreateFile, OpenFile, and _open all return file
handles. Identifying all of the user-level functions that
can access files could be rather difficult, but fortunately it
is completely unnecessary. All file handles correspond to
file system objects within the kernel, and access to these
objects is controlled by the Windows NT/2000 kernel
system call ZwCreateFile. Any user-level applications
that want to manipulate files are transparently routed
through this function within the kernel. Note that despite
its misleading name, this function is not simply for
creating new files. The ZwCreateFile function is used
whenever a process needs to get a handle to a file for

future read or write operations. The ZwCreateFile system
call will be invoked prior to any type of file I/O.

One of the parameters that must be passed to
ZwCreateFile indicates the type of access that the process
is requesting. Valid access types include read, write, and
query. By looking at the ZwCreateFile file function call
we can determine what file an application is about to use
and how it intends to use it.

4.1. System call interception

Having determined the function that will allow us to
implement the FileMonster’s file access confirmation
feature we will now discuss how to go about intercepting
this function call. For our prototype to be successful in
protecting against malicious code it must be non-
bypassable. This means that there cannot be any way for
malicious code to circumvent or remove our function
interception mechanism. We are also interested in
intercepting file access from all processes running on the
system, not just from select applications. All of these
requirements indicate that the correct location for us to
place our interception mechanism is within the Windows
NT/2000 kernel.

The Windows NT/2000 kernel can only be modified
through the installation of device drivers. Device driver
installation is tightly regulated by the operating system
and is restricted to administrative users. This ensures that
as long as an administrator is not executing the malicious
code, it will be unable to interfere with any kernel
modifications that we make. Additionally the use of a
device driver provides us access to internal operating
system functions and data structures not accessible from
user mode.

In Windows NT, user applications invoke system
services by executing an interrupt instruction. Code in the
kernel takes control of the machine in response to the
interrupt and performs some activity for the calling
process before relinquishing control. A kernel entity
known as the dispatcher initially responds to the interrupt
request, determines the nature of the interrupt, and calls a
function to handle the request. Two tables in kernel
memory describe the locations and parameter
requirements of all functions available to the dispatcher.
One table specifies handlers for user requests; the other
specifies handlers for requests originating within the
kernel. The calling process places information about the
requested system service on the stack along with any
parameters required for completing the operation.

Our method of controlling file manipulation relies on
our ability to instruct the dispatcher to call a function that
we have written when a user process invokes certain
system services. This approach requires constructing a
device driver that is loaded into the kernel either
dynamically or as part of the boot sequence. When our

driver is loaded it modifies an entry in the table that the
dispatcher relies on for handling interrupt instructions. In
our case, we are interested in intercepting calls to the
ZwCreateFile function. The modification of the
dispatcher’s table results in a call to our function instead
of the intended call to ZwCreateFile. Our function will
be called whenever a user-mode application tries to get a
handle to a file. The signature of our function is identical
to that of ZwCreateFile, so the kernel interface exported
to applications is not altered.

Once the dispatcher calls our function the FileMonster
determines whether or not user confirmation will be
required. If confirmation is not required, or if
confirmation is granted, then we invoke the original
ZwCreateFile with the same parameters as the calling
process. If the user elects to deny the request, then we
return a value indicating that the function call has failed
and set our flags to indicate that access has been denied.
The application will not be able to differentiate between a
function failure produced by the FileMonster and a
normally occurring error. It will handle this error the
same way that it would handle an attempt to access a file
by a user that does not have permission to do so. In some
cases this results in an application that attempted to open
a file with read/write permission to default to trying to
open it as a read only file.

4.2. Configuration

FileMonster’s configuration settings are protected
through the use of secure desktops as discussed in section
3.1. This is necessary to prevent malicious code from
changing the configuration itself. If the configuration
program were not run on a secure desktop, then malicious
code could send messages to the configuration program
tricking it into making unwanted policy changes. The
settings are passed from the user-level configuration
program to our kernel-level device driver through our
device driver’s interface. We can leverage Windows
NT’s own security mechanisms to ensure that only a
process running with administrative privileges is allowed
to pass information to our device driver. The FileMonster
configuration program is implemented as a Windows NT
service that runs with administrative privileges. Figure 3
is a screen shot of one of the FileMonster configuration
windows.

Figure 3. Configuring the FileMonster

To aid users in configuring the FileMonster we provide
a mechanism for assigning default policies. The current
incarnation of this tool enables users to choose one of
three initial policies: secure policy, basic policy, or no
policy. The secure policy establishes confirm on read and
confirm on write policies for some of the most common
Windows file formats. The basic policy extends the
secure policy to include associations for commonly
trusted applications. These applications are located using
information stored in the registry and the policy is
automatically built for the user. The final option is to
begin with no policy and to build one from scratch. In all
cases the policies can be fully modified from their default
settings. Keep in mind that we are only concerned with
protecting files that will be storing important user data.
This is a small subset of the file types actually used in the
Windows environment. To get an idea of how many file
types are included in a typical policy, think of how many
applications you use to create data that you would like to
protect against damage or disclosure. For the users in our
test environment we found this number to be below a
dozen file types.

5. Related work

During the last decade there has been a lot of interest
in the implementation and application of system call and
function wrapping technologies. Some of this research
has focused on providing flexible frameworks that
facilitate the construction of systems such as the
FileMonster. Other research has produced prototype
systems that address the problems of controlling
malicious software within a Discretionary Access Control
environment. This section will examine this body of
research and identify where the FileMonster fits into this
collection of related work.

5.1. Wrapping techniques

Intercepting function calls or system calls is commonly
known as wrapping. The basic idea of a wrapper is to
provide functionality that will be called in place of the
original target. This wrapper can perform any function
including calling the original target function.

There are many potential uses for wrappers including
extending the capabilities of an application, providing
facilities for auditing, and restricting resource usage. One
of the key difficulties in wrapping is developing a system
that will work with applications without requiring the
recompiling or relinking of this software. In [2] and [10]
the authors present user-level wrapping techniques for
Microsoft Windows operating systems. Hunt et al.
describe a library that facilitates the wrapping of
Windows API calls through the injection of trampoline
code that redirects function calls at run-time. Balzer
describes a similar system that has been additionally
hardened against potential attackers. The goal of Balzer’s
work was to develop non-bypassable wrappers. This
means that a malicious program cannot remove or
circumvent a wrapper even if it is aware that it is present.
Correctly implementing a user-level wrapping facility that
cannot be bypassed by malicious code is extremely
complex due to the myriad of ways that a file can be
accessed (these are all reduced to the ZwCreateFile
system call at the kernel level). We chose to implement
our system at the kernel level because it provides us with
the greatest degree of control over the file system.

In [15, 8, and 6] the authors build non-bypassable
wrapper systems by intercepting system calls from within
the Linux, Solaris, and FreeBSD/Solaris operating system
kernels respectively. Like our approach, these techniques
rely on the operating system’s own security to protect the
wrappers from tampering by user-level processes.
Mitchem et al. discuss the usefulness of their system for
secure auditing or to provide a fine-grained access control
mechanism, but at this time they have not concentrated on
the building of either of these systems. Unfortunately our
decision to target the Windows NT/2000 platform
eliminated the possibility of reusing these prototypes
directly, however the work that they performed was
helpful in designing our own interception mechanism.

5.2. Application Sandboxes

An application sandbox is an environment that restricts
a process’s resource usage. The resources that might be
limited include the file system, network access, and even
CPU and memory utilization. Sandboxing is a powerful
technique for confining untrusted and potentially
malicious software. Sandboxing systems are typically
built around some sort of wrapping technology that gives

them the fine-grained level of control necessary for them
to be effective.

One of the most common examples of a sandbox is in
the security built into the Java virtual machine. In [14]
the authors discuss Java’s sandbox security model and
describe various attacks against it. Sandboxes are
particularly useful for containing programs that have a
high likelihood of containing malicious code because they
can be used to severely restrict an application’s
capabilities. Mobile code is often considered to be
untrustworthy, and is therefore an excellent candidate for
sandboxing.

Unlike Java, most operating systems do not natively
support application sandboxing. A number of research
projects have investigated the use of sandboxes for
restricting applications on UNIX and Windows operating
systems. In [17] and [9], Wagner et al. introduce the
Janus prototype that can be used to sandbox applications
on the Linux operating system. While Janus focuses on
restricting access to file system and network resources, in
[5] the authors concentrate on limiting access to memory
and CPU resources.

The work performed by Berman et al in [1] bears some
similarity to our own. In this paper the authors present a
process-specific file protection mechanism that they have
implemented for the UNIX operating system. Their
motivation for the development of this system is very
similar to our own, however like most other sandbox
efforts they focus their attention on applications, not on
the data that is to be protected. In each of the sandboxing
approaches that we have described, untrusted applications
must explicitly be executed within a protection
environment and file/directory permissions must be
specified at the time of execution. In our opinion the
extra effort required to run an application within these
environment makes it unlikely that a user would
consistently choose to do so.

Though it was never developed, in [13] Karger
describes a system for controlling potentially malicious
software in an operating system that supports
discretionary access control. His proposal was to build a
system that would use a file name translation mechanism
to identify and prevent anomalous resource access.
Similar to our approach, Karger recommended involving
the user in arbitrating security decisions that the system
itself could not make. As it was written, the proposed
system was more appropriate for command-line driven
operating systems, as of course was appropriate for this
date of publication.

Macintosh users may be familiar with the GateKeeper
utility written by Chris Johnson and described at [11].
This tool was intended to be a generic virus
detection/protection mechanism that worked by
monitoring an application’s access to system resources.
Whenever it detected an access that was considered

suspect it would query the user for confirmation before
continuing. The approach that this tool takes is very
similar to our own, however the resources that it monitors
are rather different. The GateKeeper tool was concerned
mainly with the protection of system files from viruses,
not with the defense of user’s documents. In a similar
manner as the FileMonster, this utility functioned more as
an additional access control mechanism for certain
resources than as an application sandbox.

5.3. Where does the FileMonster fit it?

As we have discussed, a great deal of research has
gone into the development of sandboxes and the
underlying wrapping technology. It has been shown that
wrapping can be performed on many different operating
systems, and that it can be done in a secure manner.
There is little question as to the potential of sandboxing as
a defensive mechanism, however to this day it remains an
under-utilized technology. The authors of this paper
believe that the reason that sandboxing is not more
popular is because although it is effective, the sandboxing
mechanisms we described are often very difficult to
configure and use. The FileMonster has been designed
with these problems in mind.

We are not the first to recognize the need for more
usable sandboxing technology. Recent work described in
[4] presents a tool called WindowBox that provides a
simplified sandboxing mechanism. This tool provides a
form of sandbox separation between applications that run
on different virtual desktops. The only way that
information can be transferred from one desktop to
another is with the explicit approval of the user. Belfanz
et al. believe that this model provides users with an
intuitive way to separate their applications and to protect
them from each other. A potential problem with this
approach is that all applications on a single desktop have
full access to any data associated with that desktop. If a
user is tricked into running a malicious program, this
program will be able to damage whatever data it can
access. To reap the benefits of this model it requires that
users change how they go about their work, as well as
necessitates that they concern themselves with the issue of
how to group of applications on desktops. Though we
take a different approach to the problem, this paper does
represent a good effort to provide users with an easier to
use sandbox environment and unfortunately we have not
had the benefit of exploring it first-hand.

Though it shares some characteristics with application
sandboxes, the FileMonster differs from most of the
approaches described above in its focus on defending a
user’s documents rather than encapsulating untrusted
applications. In this sense the FileMonster is closer to an
extension of an operating system’s access control
mechanisms. We believe that our prototype protects file

resources in a manner that is intuitive to the user and is
significantly easier to manage. The data-centric model of
protection allows a user to associate confirm on read and
confirm on write permissions directly with the file or file
type that is to be protected, rather than to have to decide
which applications are dangerous enough to be
sandboxed. By default all applications are subject to the
restrictions set up by the FileMonster, making this an
ideal system for protecting against malicious software that
a user may not even realize is executing. Furthermore,
the ability to require a secure file confirmation gives the
FileMonster a security advantage over any application
sandboxes that we have seen.

6. Discussion

The prototype described in this paper provides a
unique solution to the established problem of controlling
malicious software within a discretionary access control
environment. Other research efforts in the areas of
function wrapping and application sandboxing have
provided the building blocks necessary to implement a
solution to this problem, but have not produced a system
that is both secure and easy to use. We hope that the
FileMonster can help to fill this gap, and provide a much-
needed layer of protection against damage or snooping by
malicious software of all types.

The FileMonster provides confirm on read and confirm
on write permissions to increase a user’s awareness of an
application’s access to critical documents. The scope of
our prototype’s protection is more limited than that
implemented by many application-centric protection
measures that attempt to protect all types of resources.
The FileMonster does not attempt to protect against
nuisance attacks like denial of service attacks or email
floods. Rather than being a disadvantage, we believe that
this is critical to the success of the FileMonster. We have
concentrated our protective measures on that which we
believe is most important to defend. The FileMonster is
most effective and least obtrusive when restricted to
protecting important user documents. To this end we
have provided a number of features including session
caching and application associations that make it simple
for a user to configure the tool to provide an appropriate
level of additional security without interfering with
normal work habits.

Because this prototype relies on the user to make
security decisions the user must have a certain degree of
security awareness. He must be able to distinguish
between an ordinary file operation and a potentially
malicious file operation. Usually the context of the
operation provides enough data to make a sensible
decision. For example, when a user elects to save the
document titled MyDocument.doc, he should expect the
FileMonster to present a confirm on write dialog box that

indicates that Microsoft Word is attempting to write to the
file MyDocument.doc. In our experience using the
FileMonster, we have found that most users do not have
trouble making the requisite decisions. There will
undoubtedly be situations that are not as straightforward,
and the burden of making the correct decision will
unfortunately fall on the shoulder of the user. We have
yet to be able to explore this further in a larger test
environment, but hope to make the FileMonster available
for broader use in the near future and to leverage this
experience to improve upon the current concept.

7. Future work

We will continue to improve the FileMonster by
reducing the number of unnecessary confirmation
requests and improving the user interface. The
benchmarking that is discussed in section 3.4 will help us
to quantify the improvements that we make to the system,
but ultimately the success or failure of this prototype will
depend on its ease of use and its unobtrusiveness. The
usability studies that we have conducted so far have
focused on reducing the number of spurious confirmation
requests. This is an important element of usability
because frequent dialog boxes will result in the user
turning the FileMonster off, or not paying enough
attention to catch actual attacks. Reducing the number of
confirmations that a user has to respond to will increase
the relative importance of each one. We hope to further
evaluate usability in the near future by releasing a version
of this tool that can be explored by the public at large.

One possible improvement to the security and usability
of the tool is to introduce the use of hardware as a method
of accepting user confirmations. A device driver could be
written that would distinguish the difference between the
user pressing a key on the keyboard and an application
sending a “keystroke” to another application. This would
enable the FileMonster to accept a confirmation request
on the insecure user desktop without the need to switch to
the secure FileMonster desktop. This would provide the
security of using the secure file confirmation mode with
the convenience of the simple file confirmation mode.

A known weakness in the protection that the
FileMonster offers is the possibility of a malicious attack
that manipulates a trusted application to read or damage
protected files (this is discussed in section 3.2). We have
not yet addressed this difficult problem, other than to
caution against the use of application associations in high-
security environments. One possible solution is to trap
Windows system calls that relate to the passing of
messages between applications. This would enable us to
restrict the messages that are being sent to trusted
applications. We could use this capability to prevent
malicious software from manipulating trusted programs
and attacking protected files.

The next property that needs to be evaluated is whether
a user can easily differentiate between a benign
confirmation request and one caused by malicious
software. The FileMonster might be improved to actually
help a user evaluate the seriousness of a confirmation
dialog box. As an example of how this could be done, a
high importance could be given to confirmation requests
that originate from applications that are not part of a set of
trusted applications. The easiest method of establishing
this trusted code base would be to simply include all
executables that were on the system at the time the
FileMonster was installed, or to include all programs that
have been configured as application associations.

Testing a user’s ability to differentiate between
malicious requests and benign requests necessitates a
fairly involved experiment because we need to ascertain
user’s reactions to malicious software when they are not
expecting to be attacked. Our experiments to this point
have not included any actual malicious software attacks.
In the future we hope to conduct a more comprehensive
experiment; perhaps through a large-scale evaluation
within the computer security community.

8. References

[1] A. Berman, V. Bourassa, E. Selberg, “TRON: Process-
specific file protection for the UNIX operating system.” In
Proceedings of the 1995 USENIX Winter Technical Conference,
pages 165--175. USENIX Association, 1995.

[2] R. Balzer, N. Goldman, “Mediating Connectors: A non-
bypassable process wrapping technology.” In Proceedings of
the 2000 DARPA Information Survivability Conference and
Exposition, pp. 361-368, 1999.

[3] M. Blaze, “A Cryptographic File System for Unix.” In
Proceedings of 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, November 1993,
pp. 9--16.

[4] D. Balfanz, D. Simon, “WindowBox: A Simple Security
Model for the Connected Desktop.” In Proceedings of the 2000
Windows System Symposium, August, 2000

[5] F. Chang, A. Itzkovitz, V. Karamcheti, “User-level
resource-constrained sandboxing.” In Proceedings of 4th
USENIX Windows Systems Symposium, 2000.

[6] T. Fraser, L. Badger, and M. Feldman, “Hardening COTS
Software with Generic Software Wrappers.” In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, 1999.

[7] C. Friberg, A. Held, “Support for Discretionary Role Based
Access Control in ACL-oriented Operating Systems,” In
Proceedings of 2nd ACM Workshop on Role Based Access
Control, pages 83--94. ACM, Fairfax, VA, November 6-7 1997.

[8] D. Ghormley, D. Petrou, Anderson, T. “SLIC: An
Extensibility System for Commodity Operating Systems”. In
USENIX 1998 Annual Technical Conference, June 1998.

[9] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A
Secure Environment for Untrusted Helper Applications ---
Confining the Wily Hacker.” In Proceedings of the 1996
USENIX Security Symposium, 1996.

[10] G. Hunt, D. Brubacher, “Detours: Binary interception of
Win32 Functions.” In Proceedings of the 3rd USENIX Windows
NT Symposium, July, 1999.

 [11] C. Johnson, “GateKeeper Version 1.3 Documentation.”
From http://gargravarr.cc.utexas.edu/gatekeeper/gatekeeper.html
(May 29, 2001).

[12] T. Jeaeger, A. Prakash, and A. Rubin, “Building systems
that flexibly control downloaded executable context.” In
Proceedings of the 6th USENIX Security Symposium, 1996.

[13] P. Karger, “Limiting the Damage Potential of
Discretionary Trojan Horses.” In Proceedings of the 1987 IEEE
Symposium on Security and Privacy, pp. 27-29, April 1987.

[14] G. McGraw, E. Felten. Securing Java: Getting Down to
Business with Mobile Code. John Wiley and Sons, 1999.

[15] T. Mitchem, R. Lu, R. O’Brien, “Using Kernel
Hypervisors to Secure Applications.” In Proceedings of the
1997 Annual Computer Security Application Conference,
December 1997.

[16] C. Pfleeger. Security in Computing,. Prentice Hall, NJ,
1997, p. 270.

[17] D. Wagner. “Janus: an approach for confinement of
untrusted applications.” Master’s Thesis, UC Berkeley,
Computer Science Division, 1996.

* This article reflects the views of the authors only and
does not necessarily reflect the views of the Department
of Defense or the Defense Advanced Research Projects
Agency.

Approved for Public Release, Distribution Unlimited

