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Abstract—Machine learning service API allows model owners to monetize proprietary models by offering prediction services to

third-party users. However, existing literature shows that model parameters are vulnerable to extraction attacks which accumulate

prediction queries and their responses to train a replica model. As countermeasures, researchers have proposed to reduce the rich API

output, such as hiding the precise confidence. Nonetheless, even with response being only one bit, an adversary can still exploit

fine-tuned queries with differential property to infer the decision boundary of the underlying model. In this paper, we propose boundary

differential privacy (BDP) against such attacks by obfuscating the prediction responses with noises. BDP guarantees an adversary

cannot learn the decision boundary of any two classes by a predefined precision no matter how many queries are issued to the

prediction API. We first design a perturbation algorithm called boundary randomized response for a binary model. Then we prove it

satisfies ǫ-BDP, followed by a generalization of this algorithm to a multiclass model. Finally, we generalize a hard boundary to soft

boundary and design an adaptive perturbation algorithm that can still work in the latter case. The effectiveness and high utility of our

solution are verified by extensive experiments on both linear and non-linear models.

Index Terms—Model Defense, Boundary Differential Privacy, Model Extraction, Adversarial Machine Learning

✦

1 INTRODUCTION

THE pervasive application of artificial intelligent has
encouraged the boosting business of machine learning

services, such as Microsoft Azure Face API, Google Cloud
Speech-to-Text, and Amazon Comprehend. To train these
high-quality machine learning models, service providers
need to spend intense human labor and computation re-
sources to acquire a large well-labeled datasets and tune
training process. However, a prediction API call, which
consists of a query and its response, can be vulnerable
to adversarial attacks that disclose the internal states of
these models. Particularly, a model extraction attack [1] is
able to restore important model parameters using the rich
information (e.g., model type, prediction confidence) pro-
vided by the prediction API. Once the model is extracted,
an adversary can further apply model inversion attack [2]
to learn the proprietary training data, compromising the
privacy of data contributors. Another follow-up attack on
the extracted model is evasion attack [3], [4], which avoids a
certain prediction result by modifying its query. For exam-
ple, a hacker modifies the executable binaries of a malware
or the contents of a phishing email in order not to be
detected by an antivirus or spam email filter.

Countermeasures against model extraction attacks have
received increased attention but are still inadequate. One
of them is to restrict rich information in the prediction API,
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for example, by rounding the prediction confidence value
to a low granularity. However, even if the service provider
completely eliminates this value in the prediction API, that
is, to offer prediction label only, an adversary can still
defeat this protection by issuing large number of fine-tuned
queries and train a replica of the original model with great
similarity [1], [3], [5]. The other countermeasure is to detect
malicious extraction by monitoring feature coverage [6] or
query distribution [7], and stop the service when a certain
threshold is reached. However, since we cannot preclude
user collusion, all queries and responses must be considered
aggregately, which leads to significant false positive cases
and eventually the early termination of service.

To address the disadvantages, in this paper we propose
a new countermeasure that obfuscates the output label of
a prediction response. There are three main concerns when
designing this obfuscation mechanism. First, the accuracy
of prediction API is highly correlated with the degree of
obfuscation — if obfuscation needs to be applied to most
queries, the utility of the machine learning service will de-
grade severely. Second, the obfuscation mechanism should
be independent of the underlying machine learning models
and can tackle a category of boundary-probing attacks.
Third, the obfuscation mechanism should be customizable.
That is, it should allow user-defined parameters that can
trade utility for model privacy or vice versa.

Our key observation is that many model extraction at-
tacks exploit fine-tuned queries near the decision boundary
of a machine learning model achieve optimal extraction per-
formance [8], [9]. We treat decision boundary probing as an
abstract and necessary condition of high-quality extraction
attacks. The responses of these queries disclose the details of
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model parameters and therefore should be obfuscated with
priority. To this end, we propose a boundary differentially
private layer (BDPL) for machine learning services. BDPL
provides a parameterized approach to obfuscate responses
whose queries fall in a predefined boundary-sensitive zone.
The notion of differential privacy guarantees the responses
of all queries in the boundary-sensitive zone are indistin-
guishable from one another. As such, adversary cannot learn
the decision boundary no matter how many queries are
issued to the prediction API. On the other hand, the majority
perturbation falls within boundary-sensitive zone and out-
of-zone query is less affected from obfuscation. In this way,
we can make the best use of the obfuscation and retain high
utility of the machine learning service. To summarize, our
contributions in this paper are as follows.

• We propose a new protection mechanism, namely,
boundary differential privacy, against model extrac-
tion with fine-tuned queries while balancing service
utility and model protection level.

• We develop an efficient method to identify queries
in the boundary-sensitive zone, and design a per-
turbation algorithm called boundary randomized
response for binary model to guarantee boundary
differential privacy.

• We generalize binary defense to multiclass model
and develop corresponding perturbation algorithm
in a pairwise manner.

• We design an alternative defense layer with soft mar-
gin to extend the scope of protection and implement
an adaptive perturbation algorithm.

• We conduct extensive empirical study on both bi-
nary and multiclass, linear and non-linear machine
learning models to evaluate the effectiveness of our
solution.

The rest of the paper is organized as follows. Section
2 introduces the preliminaries for machine learning, model
extraction and differential privacy. Section 3 elaborates on
the threat model and problem definition with boundary-
sensitive zone and boundary differential privacy. Section
4 presents the details of boundary differentially private
layer. Section 5 introduces evaluation metrics and shows
the experimental results of BDPL against model extractions.
Section 7 reviews the related literature, and Section 8 con-
cludes this paper and discusses future work.

2 PRELIMINARIES

2.1 Supervised Machine Learning Model

A dataset X contains samples in a d-dimensional feature
space. Each sample has a membership in a set of predefined
classes called labels. Supervised machine learning trains a
statistical model by such sample-label pairs to make predic-
tions of labels on unknown samples. In this paper we focus
on classification models which have K possible outputs.

Formally, a classification model f produces a response y to
a query sample x as follows.

y = f(x) =



















“class 1” label

“class 2” label

...

“class K” label

Classification models have been widely adopted in many
machine learning applications, such as activity categoriza-
tion, face recognition and speaker identification. Depending
on the nature of these applications, the model f can be either
linear (e.g., logistic regression) or non-linear (e.g., neural
network).

2.2 Model Extraction With Only Labels

In a model extraction attack, a malicious party attempts to
replicate a model from the original one by continuously
exploiting the prediction API. Technically any queries can
constitute such an attack. However, the more queries the
more likely this malicious attack will be exposed. As such,
in the literature most model extraction attacks fabricate fine-
tuned queries by differential techniques such as line search
[1], [5] and Jacobian augmentation [3]. These queries are
carefully selected to capture the information about decision
boundary where prediction results vary drastically.

Formally, a model extraction attack selects a set of fine-
tuned queries Xdiff and obtains their responses Ydiff to
train a replica model f ′.

Xdiff = {x1,x2, . . . ,xn}, x ∈ R
d,

Ydiff = {y1, y2, . . . , yn}, y ∈ R
1,

∃x, x′ ∈ Xdiff , dist(x,x′) = δ ∧ y 6= y′,

where dist(·)1 measures the distance between two queries
and δ is the unit distance adopted in the differential tech-
niques when searching for boundary, i.e., where two corre-
sponding responses y 6= y′.

2.3 Differential Privacy

Differential privacy [10] is proposed to bounds data sanita-
tion with a measurable budget so that sensitive information
can be released with a strong privacy guarantee. In central-
ized sanitation, all sensitive data are processed in one place
and it is primarily defined in terms of adjacent datasets that
differ on one data point with each other.

A perturbation algorithm A(·) probabilistically modifies
the original data to other values in the same domain. It
achieves ǫ-differential privacy, if and only if for any two
adjacent datasetsD,D′ and any possible output τ of the per-
turbation algorithm, the following inequality always holds.

e−ǫ ≤ Pr
[

A(D) = τ
]

Pr
[

A(D′) = τ
] ≤ eǫ

Intuitively, privacy budget ǫ controls how close the sanitized
data is to the original one. A larger privacy budget will
induce a higher degree of similarity as well as utility.

1. In general, this notation can be any distance metrics (e.g., Manhat-
tan distance, Euclidean distance). The implications of distance metrics
to detailed algorithms will be discussed in Section 4.1.1.
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Fig. 1. Motivation and Threat Model

3 PROBLEM DEFINITION

3.1 Motivation and Threat Model

A machine learning service provides a prediction result
using a proprietary model as shown in Fig. 1. An adversary
wants to produce a replica of this model by continuously
querying it through the provided prediction API. We as-
sume he can perform a typical two-stage extraction attack:
1) The adversary generates a set of fine-tuned real/synthetic
queries normalized in [-1,1] and interacts with API under a
large query budget. 2) He can store all responses, i.e., labels
and reconstruct a replica model by training on the fine-
tuned query-response pairs (e.g., minimize the empirical
risk of an objective function). The success replication will
results in intellectual property loss for the original provider
and induce other attacks. The attack is semi-whitebox2, i.e.,
he can extract a replicated model using the same model type
(e.g., convolutional neural network) and hyperparameters
as the original one. Apart from public knowledge of model
and defense settings, we assume the adversary has no
apriori information of the decision boundary.

3.2 Boundary-Sensitive Zone

Our problem is to protect against model extraction attacks
by obfuscating query responses. Before we formally define
the security model, we first introduce the notion of decision
boundary and boundary-sensitive zone. For most supervised
models, a decision boundary is a critical borderline in the
feature space where labels are different on both sides. Fig. 2
illustrates the hypothetical decision boundaries in four com-
bination cases in a 2D feature space. In a multi-dimensional
feature space, a line boundary becomes a hyperplane, and a
curve boundary becomes a hypersurface.

Our key idea is to protect the query responses near the
decision boundary against most model extraction attacks.
To this end, we introduce the notion of boundary-sensitive
zone.

Definition 1. (Boundary-Sensitive Zone) Given feature space
Z , a model f and a parameter ∆ chosen by the model

2. The semi-whitebox assumption is based on the fact that state-of-
the-art models in specific application domains, such as image classifica-
tion, are usually public knowledge. Nonetheless, our solution can also
work against black-box attacks where such knowledge is proprietary.

owner, all feature vectors adjacent to the decision bound-
ary of f constitute a subspace Z∆ of Z , where

Z∆ = {x ∈ R
d | dist(x, f) < ∆},

where dist(·) measures the distance between a feature vec-
tor x and the decision boundary of f . All queries in this zone
Z∆ are considered particularly sensitive and have high risk
of revealing the decision boundary of this model.

3.3 Boundary Differential Privacy

All queries in the boundary-sensitive zone need obfuscation,
whose objective is to perturb the responses of any two
sensitive queries so that they are indistinguishable for the
adversary to determine the true decision boundary within
this zone. To this end, we adopt the notion of differential
privacy and formally define boundary differential privacy as
follows.

Definition 2. (ǫ-Boundary Differential Privacy) A pertur-
bation algorithm A(·) achieves ǫ-boundary differential
privacy, if and only if for any two queries x1, x2 in the
boundary-sensitive zone Z∆, the following inequality
always holds for the true responses y1 and y2 and the
perturbed ones A(y1) and A(y2).

e−ǫ ≤ Pr
[

y1 = y2
∣

∣A(y1), A(y2)
]

Pr
[

y1 6= y2
∣

∣A(y1), A(y2)
] ≤ eǫ

The above inequality guarantees that an adversary can-
not deduce whether two perturbed responses A(y1) and
A(y2) originate from the same (y1 = y2) or different labels
(y1 6= y2) with high confidence (controlled by ǫ). As such,
the adversary cannot use fine-tuned queries, no matter how
many they are, to find the decision boundary within the
granule of boundary-sensitive zone.

4 BOUNDARY DIFFERENTIALLY PRIVATE LAYER

In this section, we present our solution to protect against
model extraction attacks with respect to ǫ-boundary dif-
ferential privacy (ǫ-BDP) by appending a BDP layer to
the model output. According to Definition 2, this layer
consists of two major steps — identifying query sensitivity,
and perturbing the responses of sensitive queries to satisfy
BDP. In what follows, we first introduce the implement
of binary defense with a technique to identify sensitive
queries with the notion of corner points and a perturbation
algorithm called boundary randomized response to guarantee
ǫ-BDP. Then we generalize it to multiclass model with a
technique to identify counter class for developing its per-
turbation algorithm multiclass boundary randomized response.
Finally, we introduce a zone-less variant with soft margin to
globalize the defense while retaining majority of obfuscation
inside boundary sensitive zone, where the perturbation is
provided by adaptive boundary randomized response.

4.1 Binary Defense

We start from binary models which have only two labels
— positive and negative, which are particularly popular in
spam filtering, malware detection, and disease diagnosis.
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Fig. 2. Illustration of Hypothetical Decision Boundary and Boundary-Sensitive Zone in 2D

4.1.1 Identifying Sensitive Queries In Binary Model

A query is identified as sensitive if it falls in the boundary-
sensitive zone according to Definition 1. However, in prac-
tice the decision boundary may not have a closed form
(especially for complex models such as neural networks).
In this subsection, we propose a method to determine if
a query xq is sensitive without deriving the boundary-
sensitive zone. The idea is to test if a ball centered at xq

with radius ∆ intersects with the decision boundary3. In
theory, this is equivalent to finding if there exists a flipping
point x′ in the ball that has a different label from that of the
query point xq . Formally,

Definition 3. (Query Sensitivity) A query xq is sensitive, if
and only if:

∃x′ ∈ B(xq,∆), s.t., f(x′) 6= f(xq),

where B(xq,∆) = {x ∈ R
d |dist(x,xq) ≤ ∆} is the ball

centered at xq with radius ∆.

The above definition needs to test infinite number of
points in the ball, which is infeasible. Nonetheless, we
observe that if the ball is convex and small enough,4 a
sufficient condition of query xq being sensitive is that at
least one of the corner points in each dimension of this ball
B(xq,∆) is a flipping point. As such, the sensitivity of query
xq can be approximated by testing the labels of 2d corner
points of xq without false negatives. Furthermore, if the
distance metric is the L1 distance (i.e., Manhattan distance),
this is also a necessary condition, which means that testing
corner points leads to the exact sensivitity. For example,
given a two-dimensional query [a,b] and L1 radius ∆, if
corner points [a±∆, b] and [a, b±∆] have flipping events,
query [a,b] is sensitive. The following theorem proves this.

Theorem 1. (Flipping Corner Theorem) A sufficient condi-
tion of query xq being sensitive is that,

∃ ∆i ∈ ∆ · I, f(xq ±∆i) 6= f(xq),

where I is the identity matrix, ∆i is the projected inter-
val on some dimension i, and xq ±∆i denotes the two
corner points in dimension i. If the distance metric is the
L1 distance, this equation is also a necessary condition.

3. The case of tangency is rarely reached in real life given that the
feature space is usually continuous. For simplicity, we mainly consider
intersection.

4. If ∆ is small, the decision boundary near the ball can be treated as
a hyperplane.

Proof: Let xi be one of the corner points in dimension i.

• (Sufficient Condition) For any xi, the decision bound-
ary must exist between xi and xq where f(xi) 6=
f(xq). It intersects line xixq at point bi. As xi, xq
and bi are on the same straight line, we have

dist(xi, bi) + dist(xq, bi) = dist(xi,xq) = ∆.

Since dist(xq ,f ) is the minimum distance between xq

and any point on the decision boundary, we have

dist(xq, f) ≤ dist(xq, bi) = ∆− dist(xi, bi) < ∆.

According to Definition 1, query xq is sensitive and
this proves the sufficient condition.

• (Necessary Condition for L1 Distance) If xq is a sensi-
tive query, an L1-ball centered at xq with radius ∆
will be given by

B(xq,∆) = {x ∈ R
d
∣

∣ distL1(x,xq) ≤ ∆}. (1)

Let bm be the point which is the closest to xq on the
decision boundary of f . According to Definition 3,
we have

distL1(xq, bm) = distL1(xq, f) < ∆.

Since xq is sensitive, bm must be inside this L1-ball:

bm ∈ B(xq,∆).

This means that the decision boundary must intersect
the ball at bm. As such, at least one convex vertex of
the ball is on a different side of the decision boundary
than point xq . Since the convex vertices of an L1-ball
are exactly those corner points, there exists at least
one corner point xi such that f(xi) 6= f(xq). And
this proves the necessary condition.

Therefore, flipping corner point is a sufficient condition for
query xq being sensitive and a necessary condition under
the L1 distance metric.

4.1.2 Perturbation Algorithm: Boundary Randomized Re-

sponse

Randomized response [11] is a privacy-preserving survey
technique developed for surveying sensitive questions. A
randomized boolean value is given to the answer and pro-
vides plausible deniability. As the perturbation algorithm
defined in boundary differential privacy has exactly two
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Algorithm 1 Boundary Differentially Private Layer For Bi-
nary Model

Input: Boundary-Sensitive Zone Parameter ∆
Boundary Privacy Budget ǫ
Query xq ∈ Rd

Model f
Output: Original Response yq or Perturbed Response y′

q

Procedure:

1: if xq is not cached then
2: yq = f(xq)
3: CornerPoints = getCornerPoints(∆,xq)
4: for xi in CornerPoints do
5: if xi is a flipping point then
6: y′

q = BRR(yq , ǫ)
7: Cache(xq , y′

q)
8: return y′

q

9: return yq
10: else
11: return getCached(xq)

output choices, we design the following BRR algorithm
based on randomized response to satisfy ǫ-BDP.

Definition 4. (Boundary Randomized Response, BRR) Given
query sample xq and its true response yq ∈ {0, 1}, the
boundary randomized response algorithm A(yq) per-
turbs yq by the following:

A(yq) =











yq, w.p. 1
2 +

√
e2ǫ−1

2+2eǫ

1− yq, w.p. 1
2 −

√
e2ǫ−1

2+2eǫ

Theorem 2. The boundary randomized response algorithm
A(yq) satisfies ǫ-BDP.

Proof: See Appendix A.

4.1.3 Summary for Binary Defense

Algorithm 1 summarizes the detailed procedures of BDP
layer that can be tapped to the output of any binary ma-
chine learning model f . When a new query xq arrives,
if it has already been queried before, the layer directly
returns the cached response y′q to prevent attacker from
learning multiple perturbed responses of the same query
response, which can lead to a less private BDP. Otherwise,
the layer first obtains the real result yq from model f . Then
it determines whether xq is in the boundary-sensitive zone
by checking all corner points. As long as one corner point
is as a flipping point, the query is identified as sensitive,
and the boundary randomized response algorithm BRR(·)
with privacy budget ǫ will be invoked. The layer will thus
return the perturbed result y′q and cache it for future use.
Otherwise, if xq is not sensitive after checking all corner
points, the real result yq will be returned. As for time
complexity for identifying sensitive queries if they are not
cached, since we only need to check two corner points
in each dimension for an m-dimensional query, the upper
bound time complexity will be O(mT ) where T is the time
cost of each model prediction. Nonetheless, the average
time cost can be much smaller as the process can terminate
early as long as one flipping corner is found and we also
propose n-shot sampling to speed up this process. As for
T , in our evaluation environment we find the average of T

over a variety of models is 70− 90µs for logistic regression,
400 − 500µs for shallow neural network, and 600 − 700µs
for convolutional neural network.

4.2 Generalization to Multiclass Model

We now consider the case where the prediction domain of
a model has more than two classes. To adapt the current
algorithm to multiclass model and retain ǫ-BDP guarantee,
we observe that the decision boundary in a multiclass model
is essentially a union of binary boundaries, each of which
separates two classes. As such, we can extend the definition
of sensitive query in a multiclass model in terms of its
nearby decision boundary. Formally,

Definition 5. (Multiclass Query Sensitivity) A query xq

is sensitive to the decision boundary of classes u, v ∈
Domain(f), if and only if:

∃x′ ∈ B(xq,∆), s.t., f(x′) = u, f(xq) = v, u 6= v,

where u is called the counter class to the true response v
and Domain(f) contains all possible output classes.

In this way, one class (i.e., true response) can be treated as
the “positive” label and the other as the “negative” one (i.e.,
the counter class). The multiclass case is thus reduced to
the same problem of protecting binary decision boundaries
except that there are boundaries for each pair of classes.

4.2.1 Identifying Counter Class

The key idea of avoiding multiple decision boundaries from
a variety of candidate counter classes for u is to only
associate sensitive query with its nearest decision boundary
and identify the corresponding class on the other side as
the counter class. To identify this class, we use the majority
vote from all flipping corner points. However, a full scan
of all these points is not practical particularly in a high
dimensional dataset with hundreds or even thousands of
corner points. To strike a balance between accuracy and
efficiency, we perform an N -shot sampling over the flipping
corners. Formally,

Definition 6. (N-shot Flipping Corner) An estimate of query
xq being sensitive to the decision boundary of classes
u, v ∈ Domain(f) is that,

∀ ∆i∈N ∈ ∆ · I, V (f(xq ±∆i) 6= f(xq)) = u,

where ∆i∈N denotes flipping corner points in N sam-
pling dimensions with flipping corners and V (·) finds
the class with the highest flipping rate from the compar-
ison results of provided corner points.

4.2.2 Multiclass Boundary Randomize Response

Now that we can detect a sensitive query in the multiclass
case, given its true response and counter class, we use
the following Multiclass Boundary Randomized Response
(MBRR) algorithm to achieve ǫ-BDP.

Definition 7. (Multiclass Boundary Randomized Response,
MBRR) Given a query sample xq , its true response yq
and counter class yq (yq , yq ∈ {u, v}), the multiclass
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Algorithm 2 Boundary Differentially Private Layer For
Multiclass Model

Input: Flipping Corner Shot N
Boundary-Sensitive Zone Parameter ∆
Boundary Privacy Budget ǫ
Query xq ∈ Rd

Model f
Output: Original Response yq or Perturbed Response y′

q

Procedure:

1: if xq is not cached then
2: yq = f(xq)
3: cPoints = getCornerPoints(∆,xq, N)
4: for xi in CornerPoints do
5: if xi is a flipping point then
6: CounterClass = getCounterClass(cPoints)
7: y′

q = MBRR(yq , ǫ, CounterClass)
8: Cache(xq , y′

q)
9: return y′

q

10: return yq
11: else
12: return getCached(xq)

boundary randomized response algorithm A(yq) per-
turbs yq by the following:

A(yq) =











yq, w.p. 1
2 +

√
e2ǫ−1

2+2eǫ

yq, w.p. 1
2 −

√
e2ǫ−1

2+2eǫ

Theorem 3. The multiclass boundary randomized response
algorithm A(yq) provides ǫ-BDP to each binary decision
boundary fu,v in the model.

The proof is similar to that of Theorem 2 and is thus omitted.

4.2.3 Summary for Multiclass Defense

Algorithm 2 summarizes the detailed procedures of BDP
layer for a multiclass machine learning model f . Similar
to the binary model, the layer directly returns a cached
response to retain privacy guarantee if query xq has been
processed before. In addition to zone parameter ∆ and
privacy budget ǫ, the number of samplesN to determine the
counter class can be tuned between efficiency and accuracy.
After the counter class is determined, the multiclass bound-
ary randomized response algorithmMBRR(·) with privacy
budget ǫ is invoked. The layer then returns the perturbed
result y′q and caches it for future use.

4.3 Zone-less Boundary Differentially Private Layer

In the previous section, the decision boundary is formulated
as a zone with a hard margin controlled by ∆ — a query is
either inside this zone (i.e., sensitive) or outside of it (i.e.,
non-sensitive). ǫ-BDP can be achieved in the former case
but no privacy is provided in the latter case. This makes the
choice of ∆ a crucial and challenging task for the user —
a small value leaves some decision boundary unprotected
and yet a large value introduces unnecessary noise to non-
boundary area where no protection is needed. To make ∆
less influential, in this section we propose a soft margin
approach as an alternative to the hard margin.

4.3.1 Soft Query Sensitivity

The soft margin is essentially defined through the notion
of soft query sensitivity, in which a query is no longer a
hard “0” (non-sensitive) or “1” (sensitive). Instead, it is 1
on the soft margin and is larger than 1 when inside the
margin. Then the degree of perturbation depends on the
query sensitivity. The rationale behind a soft sensitivity of
a query is three-folded. First, it must have a negative corre-
lation with its distance to the nearest decision boundary,
because query results reveal more information about the
boundary and thus are more sensitive when they are closer
to it. Second, how much the sensitivity depends on the
distance should be controlled by the model owner. Third,
the soft and hard sensitivity should be a unified notion.
That is, the perturbation protocol for the hard sensitivity,
Boundary Randomized Response (BRR), must still work
with minimum adaptation. The following is a definition that
satisfies all three rationales.

Definition 8. (Soft Query Sensitivity) Given a model f and
a zone parameter ∆ chosen by the model owner, the
sensitivity of a query xq is a fractional function as:

s(xq) =
∆

dist(xq, fu,v)
, (2)

where dist(xq, fu,v) measures the distance between
query xq and the nearest decision boundary fu,v .

To derive the distance without a closed form of the
decision boundary, we can still adopt the flipping-corner-
point method. The idea is to perform a binary search with
an initial distance guess. If flipping corner points occur, the
distance must be smaller, so we reduce the current guess to
half and repeat the search; otherwise we double the guess.
The final distance is obtained when a precision threshold or
a maximum number of iterations is reached.

4.3.2 Adaptive Boundary Randomized Response

Given the above definition of query sensitivity, the perturba-
tion algorithm, Adaptive Boundary Randomized Response
(ABRR), is exactly the same as BRR, except for the expo-
nents. In BRR, the exponent is ǫ which is implicitly ǫ

s(xq)

where s(xq) is always 1. ABRR uses the same formulae
where s(xq) is defined in Eqn. 2.

Definition 9. (Adaptive Boundary Randomized Response,
ABRR) Given query sample xq normalized to [-1,1],
query sensitivity s(xq) , its true response yq and counter
class yq (yq , yq ∈ {u, v}), the adaptive boundary ran-
domized response algorithm A(yq) perturbs yq by the
following:

A(yq) =















yq, w.p. 1
2 +

√
e2ψ−1

2+2eψ

yq, w.p. 1
2 −

√
e2ψ−1

2+2eψ

where ψ = ǫ
s(xq)

.

Theorem 4. The adaptive boundary randomized response
algorithm A(yq) satisfies ψ-BDP to each binary decision
boundary fu,v , where ψ ≤ 2

∆ǫ.

Proof: We assume p1, p2 are the probabilities of retaining true
responses for two queries x1,x2. According to ABRR, for
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any two responses y1, y2 ∈ {u, v}, the four possible cases to
derive the BDP inequality are:

Pr[y1 = y2|A(y1) = u,A(y2) = u]

Pr[y1 6= y2|A(y1) = u,A(y2) = u]
, or

Pr[y1 = y2|A(y1) = v,A(y2) = v]

Pr[y1 6= y2|A(y1) = v,A(y2) = v]
=

p1p2 + (1− p1)(1− p2)

p1(1− p2) + p2(1− p1)
,

and

Pr[y1 = y2|A(y1) = u,A(y2) = v]

Pr[y1 6= y2|A(y1) = u,A(y2) = v]
, or

Pr[y1 = y2|A(y1) = v,A(y2) = u]

Pr[y1 6= y2|A(y1) = v,A(y2) = u]
=

p1(1− p2) + p2(1− p1)

p1p2 + (1− p1)(1− p2)
.

Since p1, p2 ∈ [ 12 , 1), the partial derivatives to p1 and p2
of the right-hand side term in the former two cases are

∂ p1p2+(1−p1)(1−p2)
p1(1−p2)+p2(1−p1)

∂p1
=

2p1 − 1

(−2p1p2 + p1 + p2)2
≥ 0,

∂ p1p2+(1−p1)(1−p2)
p1(1−p2)+p2(1−p1)

∂p2
=

2p2 − 1

(−2p1p2 + p1 + p2)2
≥ 0.

As such, the right-hand side term in the former two
cases are monotonically increasing. Similarly, that term
in the latter two cases are monotonically decreasing. Let
pmax = max{p1, p2}. Then the two terms are bounded as
follows.

p1p2 + (1− p1)(1− p2)

p1(1− p2) + p2(1− p1)
≤ pmax

2 + (1− pmax)
2

2pmax(1− pmax)
, (3)

p1(1− p2) + p2(1− p1)

p1p2 + (1− p1)(1− p2)
≤ 1. (4)

Furthermore, since p1, p2 ∈ [ 12 , 1), the right-hand side
term of Eqn. 3 also serves as the upper bound of the right-
hand side term of Eqn. 4. That is,

pmax
2 + (1− pmax)

2

2pmax(1− pmax)
≥ 1.

According to ABRR, we can derive pmax as

pmax =

√
e2ψmax − 1

2 + 2eψmax
.

By replacing pmax in the right term of Eqn. 3 with it, we
have

pmax
2 + (1− pmax)

2

2pmax(1− pmax)
= eψmax .

Finally, since the sensitivity s(xq) is in the range [ 2
∆ ,

+∞], we derive the bound of ψmax as

ψmax ≤ ǫ

s(xq)
≤ ∆

2
ǫ. (5)

Due to the monotonicity of exponential function, we have

eψmax ≤ e
2

∆
ǫ. (6)

Therefore, for any two queries, the algorithm satisfies ψ-
BDP where ψ ≤ 2

∆ǫ.

Notably, for queries inside the margin of ∆, sensitivity is
equal or greater than 1. As a result, we can prove that a min-
imum of ǫ-BDP is always achieved, same as the requirement

Algorithm 3 Zone-less Boundary Differentially Private
Layer for Multiclass Model

Input: Query xq ∈ Rd

Model f
Soft Margin ∆
Boundary Privacy Budget ǫ

Output: Perturbed Response y′

q

Procedure:

1: if xq is not cached then
2: yq = f(xq)
3: sq = getSensitivity(f,xq,∆)
4: CounterClass = getCounterClass(f,xq)
5: y′

q = ABRR(yq , ǫ, sq , CounterClass)
6: Cache(xq , y′

q)
7: return y′

q

8: else
9: return getCached(xq)

for boundary-sensitive zone in BDPL. In other words, ABRR
essentially provides stronger non-uniform ǫ-BDP than BRR
in ∆ boundary-sensitive zone. We summarize this property
as follows.

Corollary 4.1. For any query xq inside the margin of ∆,
the adaptive boundary randomized response algorithm
A(yq) satisfies ψ-BDP where ψ ≤ ǫ

Proof: Since query xq now has s(xq) in the range [1,+∞], ,
we can prove the following by Eqn. 5 and 6.

eψmax ≤ eǫ

4.3.3 Summary for Zone-less Defense

Algorithm 3 summarizes the detailed procedures of zone-
less BDP layer with soft margin. Caching policy is still
carried out for any historical query. If xq is a new query,
the sensitivity of xq to nearest decision boundary is first
measured using a binary search with the corner-point tech-
nique. Then the counter class is calculated for a multiclass
model. Finally, the adaptive boundary randomized response
algorithm ABRR(·) is invoked to perform perturbation
with BDP protection.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of boundary
differentially private layer (BDPL) against model extrac-
tion attacks. Specifically, we implement those motivating
extraction attacks using fine-tuned queries as in [1], [5] and
compare the success rates of these attacks with and without
BDPL.

5.1 Setup

5.1.1 Datasets and Machine Learning Models

We evaluate three datasets and two models used in the
literature [1] — a Botany dataset Mushrooms (113 attributes,
8124 records), a census dataset Adult (109 attributes, 48842
records) and a general social survey dataset GSS (101 at-
tributes, 16127 records). The former two datasets are ob-
tained from UCI machine learning repository [12] while
the last one is from NORC [13]. All categorical items are
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Fig. 3. Overall Protection Effect by BDPL: Extraction Rate and Utility

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
1K 15K 20K

UR

5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(a) Mushrooms w/ LR

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
1K 15K 20K

UR

5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(b) Mushrooms w/ NN

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
1K 15K 20K

UR

5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(c) GSS w/ LR

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
1K 15K 20K

UR

5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(d) GSS w/ NN

Fig. 4. Overall Protection Effect by Zone-less BDPL: Extraction Rate and Utility

processed by one-hot-encoding [14] and missing values are
replaced with the mean value of this attribute. We adopt
min-max normalization to unify all feature domains into [-
1,1]. Data augmentation is not used for all the experiments,
in accordance with the configuration of the original attacks.

For the evaluation of binary defense, Mushrooms dataset
is trained on the label that shows whether a mushroom is
poisonous or edible, and Adult dataset is trained on the label
that shows whether the annual income of an adult exceeds
50K (Adult-b). As for multiclass defense, GSS dataset is used
to train a model to predict level of happiness while Adult
dataset is used to predict the race of the participants (Adult-
m).

We train both a linear model, namely, logistic regres-
sion (LR), and a non-linear model, namely, 3-layer neural
network (NN), to predict unknown labels on the above
datasets. Logistic regression is implemented using cross-
entropy loss with L2 regularizer. Neural network is imple-
mented using TensorFlow r1.12 [15]. The hidden layer con-
tains 20 neurons with tanh activation. The output layer is
implemented with a sigmoid function for binary prediction
and a softmax function for multiclass prediction.

5.1.2 Attack and Evaluation Metrics

We implement the extraction attack defined in Section 2
using original attack code of line-search technique in [1].
Specifically, the attacker first creates a seed set of pairwise
queries with opposite or different response labels, and then
searches for new samples that lie on the line segment
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Fig. 5. BDPL vs. Uniform Perturbation

connecting this pair to approach the decision boundary.
This process is repeated until either a searching threshold
or query limit is reached. The size of a seed set is 4 and
the searching threshold is 0.05. It is a white-box attack
which produces an extracted model f ′ with the same hy-
perparameters and architectures as the original model f . To
compare f and f ′, we adopt extraction rate [1], [6] to measure
the proportion of matching predictions (i.e., both f and f ′

predict the same label) in an evaluation query set. Formally,

• Extraction Rate (R). Given an evaluation query set
Xe, the extraction rate

R =
1

|Xe|
∑

xi∈Xe

1(f(xi) = f ′(xi)),
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Fig. 6. Impact of Varying ∆ in BDPL with ǫ = 0.01
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Fig. 7. Impact of Varying ǫ in BDPL with ∆ = 1/8

where 1(·) is an indicator function that outputs 1
if the input condition holds and 0 otherwise. The
extraction rate essentially measures the similarity of
model outputs given the same inputs.

• Utility (U). This second metric is evaluated on the
test data points and measures the proportion of
responses that are perturbed (i.e., flipped) by BDPL.
It indicates how useful these responses are from a
normal user’s perspective. Formally, given the entire
queries Xq issued from test set by clients, and the
set of (perturbed) responses Yq from the service
provider,

U =
1

|Xq|
∑

xi∈Xq,yi∈Yq

1(f(xi) = yi).

We follow the same evaluation setting as the original
works. In the classic attack (Tramer’s [1]) of Section 5.2-5.5,
training set sample are used for the construction of victim
model, whereas test set samples and uniformly sampled

points are applied in the evaluation of utility and extraction
rate respectively. In the advanced attack (ActiveThief [8])
of Section 5.6, the configuration is similar, except that the
extraction rate is evaluated against test set samples.

5.2 Overall Evaluation

To evaluate how well the decision boundary can be pro-
tected by our solution, we launch extraction attacks on a
number of model/dataset combinations and plot the extrac-
tion rate R of sensitive queries in Figs. 3 and 4 in terms of
the number of queries.

Evaluation of BDPL. In this experiment, we set ∆ = 1/8,
and ǫ = 0.01 for all models. As shown in Fig. 3, except for
the initial extraction stage (query size less than 5K), BDPL
exhibits a significant protection effect for all 8 combinations
— up to 12% drop on R — compared with no defense. The
drops in GSS w/ NN and Adult-m w/ NN are smaller (around
5% − 6%) because these two models are the most compli-
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Fig. 8. Utility vs. ∆ and ǫ in BDPL

cated (multiclass neural networks) and the least vulnerable
to label perturbation.

The secondary axis of Fig. 3 also plots the utility of BDPL
using bar chart. We observe that the utility saturates at over
80% after 20K queries in all combinations (among which
4 can achieve nearly 90% utility) except for Adult w/ LR.
This model has the fewest parameters and feature inputs,
so BDPL has to perturb more sensitive queries to retain the
same BDP level as the others. The impact on utility by ∆
and ǫ will be further discussed in Section 5.4.

It is noteworthy that 1% reduction of extraction rate
is more significant in later attack stage than earlier stage
where the attackers need to increase the amounts of
queries tremendously. For example, in Fig.6(e), the adver-
sary spends 15K queries to improve extraction rate from
90% to 97%, which is canceled off by BDPL using after 15K

queries with only 11% utility loss. Obviously, 7% drop on
extraction rate is more significant than an 11% utility loss
because the former costs 15K queries whereas the latter costs
only about 1.5K queries.

Evaluation of Zone-less BDPL. In this experiment, we
set ∆ = 1/8 and increase ǫ to 0.16 so that the overall utility
is similar to the previous experiment (i.e., over 80%). The
experiment results on Mushrooms and GSS are plotted in
Fig. 4. Zone-less BDPL provides even better protection in all
4 combinations than BDPL, particularly at the initial stage
(query size less than 5K) with a much lower extraction
rate. Furthermore, all extraction rates saturate even earlier
(after 10k of queries) than BDPL. Overall, we observe that
zone-less BDPL performs particularly well with logistic
regression models, where we witness an extra drop of 4%
on R compared with BDPL. The impact on R and U by ∆
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and ǫ will be shown in Section 5.5.

5.3 BDPL vs. Uniform Perturbation

In this experiment, we compare BDPL on binary model
(single decision boundary) with a uniform perturbation
mechanism that randomly flips the response label by a
certain probability, whether the query is sensitive or not.
To have a fair comparison, we use trial-and-error5 to find
this probability so that the overall extraction rates of both
mechanisms are almost the same. In Fig. 5, we plot the ex-
traction rates of both mechanisms for Mushrooms w/ LR with
∆ = 1/8 and ǫ = 0.01. We observe that BDPL outperforms
uniform perturbation by 5%-7% extraction rate, which is
very significant as this leads to an increase of misclassi-
fication rate by 30%-50%. As such, we can conclude that
BDPL is very effective in protecting the decision boundary
by differentiating sensitive queries from non-sensitive ones,
and therefore it retains high utility for query samples that
are faraway from the boundary.

5.4 Impact of ǫ and ∆ in BDPL

In this subsection, we evaluate BDPL performance with
respect to zone parameter ∆ and privacy budget ǫ. In Fig. 6,
we fix ǫ and vary ∆ from 1/64 to 1/8 for all 8 model/dataset
combinations. In Fig. 7, we fix ∆ and vary ǫ from 0.01 to 0.64
for all 8 model/dataset combinations.

Impact on Extraction Rate When ∆ increases from 1/64
to 1/8, the extraction rate is significantly reduced in both
logistic regression (up to 12% drop) and neural network (up
to 10% drop). Nonetheless, for neural networks, the extract
rate does not change much when ∆ increases from 1/64 to
1/32, which indicates that if the boundary-sensitive zone
is too small, BDPL may not provide effective protection,
especially when the decision boundary is non-linear. As
for privacy budget ǫ, its impact is not as significant as ∆.
We only observe up to 4% drop of extraction rate when ǫ
decreases from 0.64 to 0.01 for all 8 model/dataset combi-
nations.

Last but not the least, the extraction rates under all these
settings saturate as the query size increases. In most cases,
they start to saturate before 5K queries, and in the worst
case, they saturate at 15K or 20K . This indicates that BDPL
imposes a theoretical upper bound on the extraction rate no
matter how many queries are issued.

Impact on Utility In this part, we evaluate BDPL perfor-
mance regarding utility under similar varying settings. In
Fig. 8, we plot the final utility with respect to ∆ and ǫ after
20K queries for all model/dataset combinations. Except for
Adult w/ LR, all utilities are higher than 80% and most of
them are above 90%, which means that BDPL does not
severely sacrifice the accuracy of a machine learning service.
As expected, the utility reaches peak when ∆ = 1/64 (the
smallest zone size) and ǫ = 0.64 (the least probability of per-
turbation). Furthermore, as is coincided with the extraction
rate, the utility is more sensitive to ∆ than to ǫ. For example,
an increase of ∆ from 0.01 to 0.1 leads to a drop of utility by

5. To do this, we start with 1 random flip out of all responses and
measure its overall extraction rate. We then repeatedly increment this
number by 1 until the overall extraction rate is very close to that of
BDPL.
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Fig. 9. Impact of Varying ∆ in Zone-less BDPL
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Fig. 10. Impact of Varying ǫ in Zone-less BDPL

10%, whereas a decrease of ǫ from 0.1 to 0.01 leads to only
5% drop.

To conclude, BDPL permanently protects decision
boundary of both linear and non-linear models with moder-
ate utility loss. The changes of ∆ and ǫ (particularly the
former) have modest impact on the extraction rate and
utility.

5.5 Impact of ǫ and ∆ in Zone-less BDPL

In this subsection, we evaluate zone-less BDPL performance
with respect to ∆ and ǫ. In Fig. 9, we fix ǫ and vary ∆ from
1/64 to 1/8. In Fig. 10, we fix ∆ and vary ǫ from 0.01 to
0.64. Due to space limitation, we only plot the results on
2 dataset/model combinations, i.e., GSS w/ LR and GSS w/
NN.
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TABLE 1
Recent Advances in Model Extraction Attacks

Features
Attacks

Papernot et al. [3] Juuti et al. [7] Orekondy et al. [9] Yu et al. [16] Pal et al. [8]

Victim Model
CNN X X X X X

RNN X

Adversary Knowledge

Problem Data X X

Non-problem Data X

Non-problem Data without Labels X X

Main Query Strategy

Passive Query X X X

Reinforce-based Probing X

Adversarial-based Probing X X X X

API Output Level
Probability X X X X

Label X X X X
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Fig. 12. Overall Protection Effect by BDPL on ATRS: Extraction Rate and
Utility

Impact on Extraction Rate. Both parameters maintain
effectiveness in protecting decision boundary and saturat-
ing the extraction rate. Particularly, compared to the hard
margin solution, when ǫ decreases from 0.64 to 0.01, zone-
less BDPL draws significant drop over extraction rate (up to
25% drop in logistic regression and 15% in neural network).
This coincides with Corollary 4.1 in Section 4.3 that zone-
less BDPL achieves better ǫ-BDP protection than BDPL.
Meanwhile, varying zone parameter ∆ has less eminent
effect than in the hard margin case. This coincides with our
zone-less design to protect the decision boundary with a soft
margin.

Impact on Utility. We evaluate zone-less BDPL in terms
of utility after 20K queries. In Fig. 11, we observe that
the change of ǫ leads to 35% change of utility while the
change of ∆ only leads to 10%. This can be explained by
the fact that zone-less BDPL adopts ABRR which obfuscates
results in the global feature space . In addition, utility is still
independent of model types and remains over 80% when ǫ
is greater than 0.15. As expected, utility reaches peak when
∆ = 1/64 (when soft margin is the most concentrated near
a decision boundary) and ǫ = 0.64 (the least probability of
perturbation).

To conclude, zone-less BDPL provides strong protection
for decision boundary in the global feature space. Privacy
budget ǫ brings more control over the extraction rate than
∆.

5.6 Evaluation of BDPL on Advanced Attack

Recent study has shown that the extraction attacks are
becoming threatening on complex models such as convo-
lutional neural network. In this subsection, we turn to these
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Fig. 13. Overall Protection Effect by BDPL on ATHS: Extraction Rate and
Utility

emerging attacks which substantially scale both the input
dimensions and model complexity. We expect these to be
bigger challenges for BDPL as these attacks allow attackers
to draw natural data as query from the same domain such
as images.

In Table.1, we review those high-quality extraction at-
tacks on complex model from peer-reviewed papers. To
precisely address the feature of recent attacks, we list out
whether the attacks support two of the most predominant
advanced models, i.e., convolutional neural network (CNN)
and recurrent neural network (RNN). Adversary knowledge
is leveraged to illustrate adversary capability on data ac-
quisition, specifically whether they can access any problem
domain dataset. They are divided into three levels with an
increasingly stringent requirement on dataset knowledge.
We also categorize query strategy based on the nature
of query such as reinforce-based probing (e.g., reinforce
learning) and adversarial-based probing (e.g., adversarial
samples). Detailed techniques can be found in the related
works.

Due to space limitation, we select state-of-the-art Ac-
tiveThief [8] as the attack scheme for evaluation because
it is the most recent and advanced attack. Activethief is a
model extraction framework for neural networks using non-
problem domain datasets and pool-based active learning
strategies. We adopt the same configuration of the original
paper and implement it on a convolutional neural network
with various image datasets.
Datasets and Machine Learning Models. We evaluate two
datasets for training victim models — a hand-written digits
image dataset MNIST (28 ∗ 28 resolution, 1 channel, 60k
records) and a colorful general objects dataset CIFAR10
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(32∗32 resolution, 3 channels, 60k records). The two datasets
are obtained from their official repository respectively [17]
[18]. Compared to previous evaluation, feature size has
scaled to 7x and 30x respectively. As for adversary query
database, we use the downsampled and unannotated subset
of the ILSVRC2012-14 dataset from ImageNet [19]. In each
experiment, images from ImageNet are resized to fit the
input size of the victim model.

With regards to the model architecture, we adopt the
same CNN design in [8] for evaluation, which has 3 blocks
of convolution. In each block, there are 2 repeated units of
2 convolution layers using a 3 × 3 kernel, followed by 1
pooling layer using 2 × 2 kernel. The stride length is 1 and
2 for convolution kernel and pooling kernel respectively.
ReLU is adopted as the activation function for each con-
volution layer. The last pooling layer is attached to a fully
connected layer which produces a final prediction using
softmax function.
Attack and Evaluation Metrics. The attack is performed as
follows. A random subset of initial seed images are selected
from the adversary database. Then the attacker queries
these images against the victim model and obtains a set of
responses. A basic replica model is developed by training
on these query-response pairs. The attacker then queries the
remaining images using a designated strategy.

We evaluate one non-probing and one probing strategy
regarding decision boundary. The non-probing strategy is
ActiveThief Random Strategy (ATRS) where a subset of im-
ages are selected uniformly at random. The probing strategy
is ActiveThief Hybrid Strategy (ATHS) where k-center and
DeeplFool are combined for subset selection and it is the
strongest attack in ActiveThief. This process is repeated for
a fixed number of iterations. In each iteration, the replica
model is retrained from all accumulated query-response
pairs. Strategy hyperparameters such as number of seed
samples and iteration numbers are the same in [8]. Previous
evaluation metrics are adopted, that is, extraction rateR and
utility U . To be consistent with original attack, the extraction
rate is evaluated against test set samples in the following
experiments.

5.6.1 Effectiveness of BDPL on Advanced Attack

We launch two extraction attacks (ATRS and ATHS) on 2
models and plot the extraction rate R in Figs. 12 and 13 in
terms of the budget of queries. BDPL parameters ∆ = 1/7
and ǫ = 0.01 are set for all models in this experiment.
Effectiveness on ATRS. Fig. 12 presents the evaluation
results on the non-probing attack. Despite the significant
growth of attack complexity, our defense still draws a 1.5%
drop over extraction rate on both models. The decrease is
small because BDPL is focused on queries neighboring deci-
sion boundary whereas ATRS draws queries uniformly from
normal image distribution and ratios of sensitive queries
may be low. The mismatch leads to smaller perturbation
as expected. Nevertheless, BDPL still maintains a decreased
and saturated upper bound for model extraction.

From the secondary axis of Fig. 12, we observe that
the utility trend stabilizes at over 90% after 20K queries
for both models. Particularly, the utility remains over 95%
before 10K for CIFAR-10 w/ CNN. This is consistent with the
small drop of extraction rate given that perturbation is light.
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Fig. 15. Impact of Varying ǫ in BDPL on MNIST w/ CNN

The impact on utility by ∆ and ǫ will be further discussed
in Section 5.6.2.
Effectiveness on ATHS. Fig. 13 presents the evaluation
results on the probing attack. Notably, the extraction is
reduced by 4% and 2.7% respectively for two models,
which is more significant compared to that in ATRS. This
corresponds to the nature of probing strategy that leverages
k-center (diversifying classes) and DeepFool (approaching
decision boundary). BDPL demonstrates stronger capability
against such attack. The drop of extraction rate is smaller in
CIFAR-10 w/ CNN given that it has great complexity (over
3000 input dimensions) and low risk in current extraction
attack.

As for the utility trend, both models are saturated at over
90%. The perturbation stays obviously light which inhibits
further drop of extraction rate. We conjecture that current
defense is not entirely on its optimal performance due to
high-dimensionality and great model complexity. Section 6
will further identify the limitations of BDPL and areas of
improvement.

5.6.2 Impact of ǫ and ∆ on Complex Model

In this subsection, we evaluate BDPL performance with
respect to zone parameter ∆ and privacy budget ǫ. In Fig.
14, we fix ǫ and vary ∆ from 1/32 to 1/4 in BDPL. In Fig. 15,
we fix ∆ and vary ǫ from 0.01 to 0.64 in BDPL. We mainly
plot the results on MNIST w/ CNN under non-probing and
probing attacks.

The extraction rate is reduced more significantly on
ATHS when ∆ increases from 1/32 to 1/4. As coincided
with the design of BDPL, it has bigger impact on probing
strategy. Moreover, the drop of extraction rate is obviously
greater on ∆ = 1/4 than the other 3 parameters, which in-
dicates that a large ∆ is required for effective defense on the
current model. As for ǫ, when decreasing to 0.01, the change
is less significant compared to that in ∆. This indicates
that complex model is less sensitive against the change of
perturbation (privacy budget). Overall, the extraction rates
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Fig. 16. Utility vs. ∆ and ǫ On Complex Models

are consistently bounded and saturate as the query size
increases. ǫ-BDPL still imposes a theoretical upper bound on
the extraction rate and prevent full extraction. Furthermore,
BDPL displays flexible control over the extraction in probing
strategy.

We also evaluate the utility distribution on the same
varying settings on both models. The results are reported in
Fig.16 after 20K . The utility is saturated at over 80% under
both models, which shows that BDPL has not severely
degraded service quality given the significant growth of
model complexity. Consistently, the peak utility is achieved
when ∆ = 1/32 (the smallest zone size) and ǫ = 0.64 (the
least probability of perturbation).

To conclude, BDPL alleviates the threat of extraction
rate in spite of the significant growth of victim complexity
and strong attack. The change of ∆ takes dominant control
over the extraction rate. We will discuss the limitations and
improvements in the following section.

6 DISCUSSION

In this section, we review the evaluation of BDPL and
identify areas of future improvement.

First, for attacks that only support probability-level ex-
traction, our BDPL, which is at label-level, cannot protect
against it. On the other hand, we’d argue that BDPL can
still protect against attacks extraction using natural data.
First, normal and natural data can also be close to decision
boundary, although the ratio of sensitive queries in these
attacks is lower than that in the fine-tuned ones. Second,
the optimal strategy in recent studies [7], [8] leverages
adversarial techniques which implicitly perform fine-tuned
probing on the decision boundary. This means our BDPL
can effectively protect against them, as indicated in our new
experimental results against [8] in Section 5.6. Nonetheless,
extraction using natural data is limited on specific model
types, such as images and text, where same domain data
can be easily obtained and used as query set. If the victim

is a genetic model, it would be difficult to perform such
extraction since genetic data is usually proprietary.

Second, we identify two core components that can be
further improved for better performance in complex model.
One is distance metrics and the other is perturbation mech-
anism.

Distance Metrics. In the current version, we adopt
flipping-corner-point technique on two essential assump-
tions: modular design and generality. The first one allows
plug-in feature for practical deployment, where service
providers can tap in BDPL with the same API for users. The
second one ensures compatibility with both parametric (e.g.
neural network) and non-parametric models (e.g., decision
tree). Unlike the classical models, deep neural networks
such as image models may have high model complexity and
thousands of input dimensions. Our intuition for flipping-
corner technique, which comes from the L-norm ball, may
have unexpected behavior in such space [20].

To improve the scalability, we can start by relaxing
the first assumption and access the internals of provider’s
model. As such, a straightforward remedy becomes fea-
sible by performing flipping-corner detection in the mid-
dle part of model, such as a bottleneck layer [21]. The
dimensionality is greatly reduced after the intermediate
representation compared to the raw input. Apart from the
high-dimensionality, the manifold assumption discussed in
adversarial robustness of complex model may also ren-
der flipping-corner-point technique unstable. Corner points
may not flip properly when samples fall out of the man-
ifold. As a result, L-norm distance metrics may degrade
the accuracy of detection process. By relaxing the second
assumption, we can leverage the gradient from parametric
model to propose gradient-based distance metrics, which is
more suitable under the manifold assumption. We believe
it is a viable and practical solution for future improvement
as complex parametric models are prevailing in machine
learning services.

Perturbation Mechanism. As motivated by binary de-
fense, randomized response is adopted as the basic frame-
work for multiclass defense. We perform a one-vs-one ap-
proximation for each class and treat multiclass defense as
a combination of binary defense. This assumption may
incur imbalanced noises since only one counter class is
considered. Perturbation may be concentrated on specific
pairs of classes. To resolve this, a natural framework capable
of categorical-value perturbation, such as k-ary random-
ized response [22], can be adopted for multiclass defense.
Furthermore, if we extend the mechanism to be numeric-
value suitable, probability-level defense becomes feasible.
Nonetheless, these existing mechanisms will still need sig-
nificant adaptation to satisfy ǫ-BDP before applying it to our
defense. We plan to implement them in future work.

7 RELATED WORKS

There are three streams of related works, namely, machine
learning model extraction, defense, and differential privacy.

Model Extraction. Machine-learning-as-a-service
(MLaaS) has furnished model extraction attacks through
the rich information available from prediction API. Tramer
et al. [1] proposed extraction methods that leveraged
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the confidence information in the API and managed to
extract the full set of model parameters using equation-
solving. Papernot [3] et al. introduced a Jacobian-based
data augmentation technique to extend queries and to
train a substitute DNN. Similarly, Juuti et al. [7] leveraged
both optimal hyperparameters and Jacobian-based data
augmentation to extract models under their generalized
framework. Orekondy et al. [9] proposed a knockoff
model to steal the functionality of an image classifier and
developed reinforce-based query strategy using multi-
armed bandits problem. Pal et al. [8] further improved the
extraction attack on image model without annotated data.
Their hybrid strategy combines greedy clustering with
adversarial samples. Yu et al. [16] proposed new adversarial
samples generation technqiue named FeatureFool using
feature-based optimization algorithm and performed
model extraction on MLaaS platform. Besides extracting
model parameters, Wang et al. [23] also extracted the
hyperparamters of a fully trained model by utilizing the
zero gradient technique. Oh et al. [24] developed a model-
of-model to infer internal information of a neural network
such as layer type and kernel sizes.

Model extraction without confidence is similar to learn-
ing with membership query [25], [26], which learns a concept
through querying membership on an oracle. This technique
has been exploited by Lowd et al. to extract binary classifiers
[5]. They used line search to produce optimized queries
for linear model extraction. This technique was extended
by Tramer et al. [1] to non-linear models such as a polyno-
mial kernel support vector machine. They adopted adaptive
techniques such as active learning to synthesize fine-tuned
queries and to approximate the decision boundary of a
model. Pal et al. [8] further improved the extraction attack
using only top-1 label on image model.

Model Extraction Defense. Confidence rounding and
ensemble model were shown effective against equation-
solving extractions in [1]. Lee et al. [27] proposed pertur-
bations using the mechanism of reverse sigmoid to inject
deceptive noises to output confidence, which preserved the
validity of top and bottom rank labels. Kesarwani et al. [6]
monitored user-server streams to evaluate the threat level of
model extraction with two strategies based on entropy and
compact model summaries. The former derived information
gain with a decision tree while the latter measured feature
coverage of the input space partitioned by source model,
both of which were highly correlated to extraction level.
Juuti et al. [7] adopted a different approach to monitor
consecutive queries based on the uniqueness of extraction
behavior. A warning would be generated when queries de-
viated from a benign distribution due to malicious probing.
Quiring et al. [28] adopted the notion of closeness-to-the-
boundary in digital watermarking and applied it to protect
against extraction attacks on decision trees. The defense
strategy was devised from protection of watermark detector
and it monitored the number of queries that fell into security
margin.

Differential Privacy. Differential privacy (DP) was first
proposed by Dwork [10] to guarantee the privacy of a cen-
tralized dataset with standardized mathematical notation.
Duchi et al. [29] extended this notation to local differential
privacy (LDP) for distributed data sources. Randomized

response proposed by Warner et al. [11] is the baseline
perturbation algorithm for LDP, which protects binary an-
swers of individuals. Although differential privacy has not
been used in model extraction and defense, it has been
applied in several adversarial machine learning tasks. For
example, Abadi et al. [30] introduced differentially private
stochastic gradient descent to deep learning, which can pre-
serve private information of the training set. Lee et al. [31]
further improved its effectiveness using an adaptive privacy
budget. Their approaches are shown effective against model
inversion attack [2] or membership inference attack [32].

8 CONCLUSION AND FUTURE WORK

In this paper, we propose boundary differentially private
layer to defend machine learning models against extrac-
tion attacks by obfuscating the query responses. This layer
guarantees boundary differential privacy in a user-specified
boundary-sensitive zone. To identify sensitive queries that
fall in a zone, we develop an efficient approach that uses cor-
ner points as indicators. We design boundary randomized
response as the building block for perturbation algorithm,
followed by a generalization to multiclass model and an
adaptive version that can protect a soft margin of decision
boundary. We prove such perturbation algorithm satisfies
ǫ-BDP. Through extensive experimental results, we demon-
strate the effectiveness and flexibility of our defense layer on
protecting decision boundary while retaining high utility of
the machine learning service.

For future work, we plan to propose defense more
suitable for complex model and consider strong adversary
with evasion. We also plan to extend our defense layer
to protect against other machine learning attacks such as
model evasion and inversion.
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