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As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced
to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from
academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy
for spatial data. But su	cient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an
indexmodi
cationmethod for SHC (SHC∗) and a density-based space 
lling curve (DSC) to improve the security of SHC; they can
partially violate the distance-preserving property of SHC, so as to achieve better security.We formally de
ne the indistinguishability
and attack model for measuring the privacy disclosure risk of spatial transformation methods. �e evaluation results indicate that
SHC∗ and DSC are more secure than SHC, and DSC achieves the best index generation performance.

1. Introduction

�e widespread use of location-aware devices promotes the
development of various successful location-based services
[1], and the amount of spatial information has grown at an
exceptional speed over the past decade.�is enormous spatial
information should bemaintained andprocessed by powerful
data management system, which exceeds the capabilities of
small business and individuals. Cloud computing adaptively
allocates the resources and e�ectively reduces the manip-
ulating and maintaining expenses for data owner (DO).
�erefore, data outsourcing becomes a prevailing pattern and
has earned widespread attentions from academia [2]. In this
pattern, DO delegates the management of its data to a third-
party cloud storage provider (SP), which maintains the data
of DO and responses to the queries of authorized user (AU).
However, as the data is outsourced to SP, DO cannot know
where the data is stored and thus loses the direct control
over the fate of their data. �erefore, protecting location
privacy of outsourced spatial data is a big challenge with the
development of spatial data outsourcing and location-based
services [3].

In spatial data outsourcing pattern, spatial queries such as� nearest neighbor (KNN) or range queries are commonly
issued by AU; in order to perform spatial queries, AU needs
to share the location of the query point (query window) with
SP [4]. However, the AU’s location is highly sensitive infor-
mation that, once compromised, can lead to various threats
of privacy disclosure. For instance, malicious SP might sell
commercially valuable information to the DO’s rivals or
can speculate the users’ state of health based on the users’
spatial queries.

For the privacy preserving of spatial data outsourcing,
one simple solution is that DO 
rst applies conventional
encryption (e.g., AES) to the data locally and then outsources
the encrypted data to SP. However, once the data is encrypted,
traditional plaintext query techniques become invalid, and
the AU cannot query or use the encrypted data e�ectively.
�is solution is ine	cient for queries that only require a
small fraction of the data. Applying computable encryption
techniques [5, 6] will result in limitations when processing
spatial queries. For example, if AU needs to 
nd � nearest
neighbor points of interest (POIs) to the query point �,
although computable encryption techniques can calculate
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the encrypted Euclid distances between encrypted point �
and each POI, it cannot sort these encrypted distances in
ascending or descending order. �erefore, these encrypted
distances should be sent back to AU who can decrypt them
and 
nd the top� results. By analyzing the process, we know
that, in order to get correct query result, SP needs to compute
the encrypted distances and send them back to AU, so the
computation and communication complexity for SP is �(�),
where � is the size of the outsourced dataset. As data explodes
nowadays, this straightforward approach is not applicable
in such scenario. Meanwhile, privacy information retrieval
(PIR) [7] assures that no information about AU queries
will be exposed to the untrusted SP; thus, it can achieve
strong privacy-preserving level. But it will result in massive
computation and communication cost and is not suitable
for spatial data outsourcing.

To guarantee thatDOandAUcan query encrypted spatial
data e�ectively while protecting the location privacy of out-
sourced spatial data, Hilbert curve is employed to transform
the locations of both AU and POIs [8–12]. However, standard
Hilbert curve (SHC) builds indexes of POIs using the same
granularity in the spatial domain. If POIs densely distribute,
its indexes generated by SHCwill contain a lot of index values
without the corresponding POIs; we call these values null
value segments, which is easy for malicious SP to analyze and
speculate the distribution of POIs in the transformed space.
It will increase the location privacy disclosure risk of the
outsourced spatial data. In this paper, we propose two index
generation methods for outsourced spatial data and analyze
the security and e	ciency of these methods quantitatively.
Our major contributions are summarized as follows.

(1) We propose an index modi
cation method for SHC
(SHC∗) to improve its security, while a density-
based space-
lling curve (DSC) is also proposed for
e	ciency concerns.

(2) A metric for measuring the privacy disclosure risk
of the spatial transformation methods (e.g., SHC) is
proposed, namely, indistinguishability �. Additionally,
we formally de
ne an attack model for these spatial
transformation methods; this model quanti
es the
attacker’s background knowledge and applies a modi-

ed general attack method to reconstruct the original
spatial dataset.

(3) �e evaluation results conducted on real-world
datasets show that our spatial transformation meth-
ods can achieve better security than SHC.

�e remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 proposes our spatial
transformation methods. Section 4 presents the indistin-
guishability and attack model for security analysis. An empir-
ical evaluation is presented in Section 5. Section 6 concludes
and discusses future research directions.

2. Related Work

2.1. Spatial Query Privacy Protection. Con
dentiality has
been addressed in the context of spatial queries. Mobile users

issue spatial queries (e.g., range or KNN queries), which are
answered by the service provider (e.g., Google Maps). Users
do not want to reveal their exact location to the SP. In order
to protect the spatial query privacy, the user location should
be 
rst generalized by a trusted location anonymizer [13],
which processes the query and generates the anonymizing
spatial region instead of the exact user location. Much of
the work regarding spatial query privacy protection derives
from �-anonymity model which is 
rst proposed by Sweeny
in database [14]. Gruteser and Grunwald [15] 
rst proposed
location �-anonymity on the basis of thismodel to protect the
spatial query privacy. Based on location �-anonymity, Gedik
and Liu [16] proposed a scalable architecture which supports
location �-anonymity for a wide range of mobile clients
with context-sensitive privacy requirements. Bamba et al.
[17] proposed a framework for supporting anonymous
location-based queries, which divides the geographical area
of interest into grid cells and achieves �-anonymity by the
grid.

Taking the anonymization policy into consideration,
Deutsch et al. [18] proposed policy-aware location �-
anonymity, which could defend against more realistic policy-
aware attackers. As most of the location �-anonymity algo-
rithms cannot e�ectively prevent location-dependent attacks
when users’ locations are continuously updated, Pan et al. [19]
proposed an incremental clique-based cloaking algorithm to
solve this problem. In addition to the location �-anonymity,
a number of other query privacy-preserving methods were
proposed. For example, Beresford and Stajano [20] intro-
duced the mix zone to map the problem of spatial query
privacy onto that of anonymous communication. By building
mix zones at road network, Palanisamy and Liu [21] present
a framework to protect location privacy of mobile users
travelling on road networks.

�e spatial query privacy-preserving methods hide the
query users’ location from the SP but do not protect the data
being queried. �erefore, it is orthogonal to our problem.

2.2. Spatial Data Outsourcing Privacy Protection. Hacigümüs
et al. [22] 
rst introduced the idea of outsourcing database
services to a third-party service provider. �en, they pro-
vided a solution for outsourced data privacy protection, by
constructing index based on encrypted data and additional
bucketing information, to support encrypted data query [23].
Later, aiming at one-dimensional numeric values, Agrawal
et al. [24] have proposed an order-preserving encryption
scheme (OPES)which supports e	cient processing of queries
at the SP. A�erwards, Huang et al. [25] have presented an
outsourced data privacy-preserving approachwhich supports
fuzzy query of encrypted string. All the above approaches are
suitable for string or one-dimensional numeric values and
they cannot be directly applied to privacy protection of spatial
data.

Wong et al. [26] have studied KNN computation of
encrypted tuples stored at untrusted SP and propose a
method supporting SP to calculate the relative distance
between two encrypted data points. As virtual dimension has
been introduced, this method cannot build up index of
encrypted data points e	ciently. �erefore, when dealing
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Figure 1: (a) A�22 pass of the 2D space and (b) Hilbert curves with various orders.

with query request, SP needs to traverse all encrypted data
points, which leads to relatively poor query e	ciency.

In order to support query services on outsourced private
spatial data, some researchers have employed space 
lling
curves to transformPOIs, which can support range andKNN
query in the transformed space. In practice, SHC is applied in
most circumstances. By using SHC, Ni et al. [8] have reduced
extra work load due to setting users’ parameters. Meanwhile,
the computation and communication cost of range query has
been reduced since the clustering and distance-preserving
properties of SHC are superior. Khoshgozaran et al. [9] use
SHC to map data points and query request to Hilbert trans-
formed space and enable query services on encrypted spatial
data. In addition, they introduce dual Hilbert curve tech-
nique, which improves the accuracy and e	ciency of query.
Ku et al. [10] study the query integrity assurance scheme.
Based on SHC, the data points are encrypted with a symmet-
ric key and indexed by Hilbert value. �e original database
and a sample of it are encrypted with di�erent space encryp-
tion keys. �en the two encrypted datasets are combined
and stored at SP for integrity veri
cation.

According to the current research, SHC does not take the
distribution of POIs into consideration when transforming
the original space. In fact, it divides the space using the same
granularity and generates Hilbert values so as to construct
the indexes of POIs. In order to guarantee the security and
query e	ciency, a large enough curve order is needed tomake
sure that there are not two POIs with the same Hilbert value.
Khoshgozaran et al. [9] pointed out that without the knowl-
edge of Hilbert curve parameters, malicious SP can still 
nd
out the dense area of POIs in the transformed space by ana-
lyzing the number of POIs with the same or similar Hilbert
values, which increases the location privacy disclosure
risk of outsourced spatial data.

3. Spatial Transformation Methods

In order to protect the location privacy of spatial data, we
need to transform the original locations of POIs. An ideal

space transformation method should be a one-way function,
which is easy to compute but di	cult to invert. Meanwhile,
to maintain the query e	ciency of encrypted spatial data,
the space transformation method should respect the spatial
proximity of the original space. In this section, we 
rst
introduce the standard Hilbert curve, which is a represen-
tative spatial transformation method. �en, we propose two
improved spatial transformation methods, which achieve
better security than SHC.

3.1. Standard Hilbert Curve (SHC). Space 
lling curves [27]
have the above features and can be applied in spatial data
transformation to protect location privacy for outsourced
spatial data. Space 
lling curve passes through every partition
of a closed space and has no intersection with itself. In this
way, each point in multidimensional space will be mapped as
a value to one-dimensional space. 	 curve [28], Gray curve
[29], and Hilbert curve are all space 
lling curves, which can
be used for space transformation.

Compared to 	 curve and Gray curve, Hilbert curve is
widely applied due to its superior clustering and distance-
preserving properties [11, 28–30, 34]. Similar to [11], we use��� to denote Hilbert curve with order 
 in �-dimensional
space, where 
 ≥ 1 and � ≥ 2. In this way, �-dimensional

integer space [0, 2� − 1]� can be mapped to a one-

dimensional integer set [0, 2�� − 1], which means that,
for any POI  in �-dimensional space, there is a function� satisfying �� = �(), where �� ∈ [0, 2�� − 1]. As one
partitioned region may contain multiple POIs, di�erent POIs
may have the same index value for a given Hilbert curve.

Since the main goal of this paper is to protect the location
privacy of POIs, we focus on the spatial transformations in
two-dimensional space. Figure 1(a) illustrates the process of
transforming a two-dimensional space into Hilbert values.
All POIs are traversed by a second orderHilbert curve and are
indexed based on the sequence they are visited by the curve.
So, in this example the POIs �, �, �, and � are represented
by their Hilbert values 7, 9, 3, and 13, respectively. Figure 1(b)
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Figure 2: Visualization of POIs’ indexes.

depicts Hilbert curve with order 1, 2, 4, and 6. From the 
gure
we can see that the larger the order is, the more 
ne-grained
the Hilbert curve is.

3.2. Index Modi	cation Method for SHC (SHC∗). As real-
world spatial datasets show aggregate distribution, the POIs’
indexes generated by SHC contain many null value segments,
which increase the privacy disclosure risk. Malicious SP has
the whole indexes and may passively obtain some mappings
between the POIs and indexes. By scanning the indexes,
the attacker can easily 
nd the continuous segments and
null value segments. He can focus on this information and
apply his background knowledge to estimate the location of
unknown POIs.

We study the distribution characteristics of the indexes
generated by SHC. And the distribution of the indexes is
depicted in Figure 2.

In Figure 2, the le� picture represents the original dataset
and the corresponding histogram represents the visualization
of POIs’ indexes. In histogram, the black lines represent the
continuous segments and the gray parts denote the null value
segments. If we compress these gray parts, the distribution
of the indexes will become equilibrium. So it will be more
di	cult for the attackers to analyze, and the privacy disclo-
sure risk will decrease. Based on this concept, we present
an index modi
cation algorithm to improve the security
of SHC, denoted as SHC∗.

In Algorithm 1, based on the POIs’ indexes �� generated
by SHC and user parameter max gap�, which denotes the
max gap value between two indexes in the modi
ed POIs’
indexes �∗, we compare the di�erence between two neighbor
indexes; if the di�erence is beyond the max gap�, then the
latter index should be modi
ed using the forward index and�. �e modi
ed POIs’ indexes �∗ should be updated with
the new tuple, which contains the index � and encrypted POI.
�e time complexity of this algorithm is �(|��|), where |��|
represents the cardinality of ��.

A�er applying Algorithm 1 to modify the POIs’ indexes,
the length of gray parts in Figure 2 will decrease dramatically,
and the outsourced spatial datasets are more di	cult for the
malicious SP to attack.

3.3. Density-Based Space Filling Curve (DSC). As SHC∗ starts
executing a�er the indexes have been generated by SHC,
SHC∗ takesmore time to generate the POIs’ indexes. Inspired
by the idea that SHC can partition and transform the original

Input: POIs’ indexes ��, max gap�
Output: A modi
ed POIs’ indexes �∗
(1) � = 
rst index in ��;
(2) for each index � ∈ �� do
(3) if � − � > � then

(4) � = � +�;
(5) �∗ = �∗ ∪ (�, encrypted POI);
(6) � = �;
(7) else

(8) � = �;
(9) end if

(10) end for

(11) return �∗

Algorithm 1: Index modi
cation algorithm for SHC.

space, we propose a density-based space 
lling curve (DSC),
which takes the distribution of POIs into consideration.
DSC partitions the spatial domain according to the capacity,
which is the maximum number of POIs a partitioned region
contains, denoted as�. It uses fractal rules of Hilbert curve to
determine the visiting sequence of each partitioned region.

Two steps are involved in the DSC generation. (1)
According to the capacity, the spatial domain is partitioned
by quad tree structure [31]. And the generated partitioned
regions will be represented as quad tree nodes. (2) Based on
the curve orientation, starting point, and scaling factor given
by DO, each partitioned region is traversed sequentially in
accordance with the fractal rules of Hilbert curve, then the
sequence number of each partitioned region is generated, and
we call this numberDSC value, which is used to build indexes
of POIs.

Quad Tree-Based Space Partition. In DSC, the spatial domain
is partitioned by quad tree structure. �e granularity is
decided by capacity �, which means that, under current par-
tition, if the number of POIs in region� exceeds�, we should
continue to partition�, until the number of POIs in each par-
titioned region does not exceed �. Figure 3 shows the di�er-
ent partitions using various �. From Figure 3 we can see that
the smaller the � is, the more 
ne-grained the partition is.
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Figure 3: �e quad tree partition: (a) � = 3, (b) � = 2, and (c) � = 1.

Input: quad tree root node �, starting point �0, curve orientation �
Output: updated quad tree root node �
(1) �� ← �;�� ← �0;
(2) PUSH(�, �); � ← 0;
(3) while � ̸= 0 do

(4) 	 ← POP(�);
(5) if 		 ̸= 0 then

(6) for � ← 3 to 0 do

(7) 	(�)� ←  �(	�, 	�, �); 	(�)� ←  �(	�, 	�, �);
(8) PUSH(	(�), �);
(9) end for

(10) else

(11) 	
 ← �; � ← � + 1;
(12) end if

(13) end while

Algorithm 2: Index generation algorithm for DSC (IGD).

DSC partitions the space and generates quad tree nodes
corresponding to partitioned regions on the basis of POI
dataset and capacity.

Index Generation for DSC. A�er partitioning spatial domain
and generating quad tree nodes, it is necessary to generate
the leaf nodes’ DSC value and intermediate nodes’ subcurve
orientation and starting point according to the preset curve
orientation and starting point of DSC, shown in Algorithm 2.
Meanwhile, the index value of each POI is set the same as the
DSC value of the partitioned region that the POI belongs to.
�is algorithm employs Hilbert curve fractal rules shown in
Figure 4.

�ere are eight types of Hilbert curve fractal rules.
Sequence number of subregion is assigned by the number in
the quad. According to the rules in Figure 4, each subregion
can be further partitioned to generate curves with higher
order.

In Algorithm 2, �� is the subcurve orientation of node�, �� is the subcurve starting point of node �, � is a stack
which stores quad tree nodes, 	
 is the DSC value of node	, and	(�) is the �th child node of	. Algorithm 2 depth-
rst
traverses quad tree � according to preset curve orientation� and starting point �0 and generates index value of each
partitioned region based on the visiting sequence of leaf
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Figure 4: Fractal rules of Hilbert curve.

nodes. From the root node, we set the orientation and starting
point of each intermediate node level by level according to
the fractal rules in Figure 4 (lines 6–9).  �(	�, 	�, �) and �(	�, 	�, �) represent the subcurve orientation and starting
point of node 	’s �th child node, respectively.

Assuming the size of POI dataset is �. On average,

Algorithm 2 needs to visit ∑log4(�/	)
�=0 4� = (4� − �)/3� nodes,

and each node will be visited only once. So the complexity of
Algorithm 2 is �(�).
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4. Security Analysis

In this section, we 
rst analyze the security of SHC and
propose indistinguishability for measuring the privacy disclo-
sure risk of the space 
lling curves. �en we formally de
ne
the attack model, which quanti
es the attacker’s background
knowledge and measures the security of space 
lling curves.

4.1. Privacy Disclosure Risk. As we know, malicious SP can
identify the dense area of POIs in the transformed space by
analyzing the number of POIs with similar or the same index
values. In order to prevent multiple POIs from allocating the
same index value, we need to increase the curve order of SHC.
In practice, POIs densely distribute in most cases, and apply-
ing SHC to generate indexes of POIsmay introducemany null
value segments. In this way, malicious SP can analyze these
null value segments and then 
nd out the dense areas in the
transformed space. Although using dummy values to reduce
the null value segments [9] can explicitly eliminate these
segments, by analyzing the query log, malicious SP can still
discover the index values with low query frequency and then
con
rm the dummy values. In order to quantify the privacy
disclosure risk, we employ the idea of information entropy
and de
ne indistinguishability � as follows:

� = − ∑
�=1

#� log2
#� − �∑
�=1

$� log2
$� , (1)

where #� represents the length of a null value segment in
the POIs’ indexes; % represents the number of null value
segments; $� represents the length of a continuous segment
in the POIs’ indexes; & represents the number of continuous
segments;  represents the total length of the POIs’ indexes.
Indistinguishability measures how null value segments and
continuous segments a�ect the privacy disclosure risk. It is
di	cult for malicious SP to analyze the uniformly distributed
indexes. According to the characteristics of information
entropy, we learn that the more unevenly the null value
segments and continuous segments distribute, the lower
the indistinguishability is, and thus the higher the privacy
disclosure risk is.

4.2. Attack Model. Because malicious SP may analyze the
encrypted spatial data to estimate the original locations, DO
wants to know the security level of spatial transformation
methods. �e malicious SP may obtain some background
knowledge, for example, a subset of mappings between the
original dataset ' and transformed dataset '�. �en, he
can employ some attack methods to estimate the original
locations of the objects in '� and get the estimated dataset'∗. We use estimation distortion * (', '∗) [4] to measure
the average error between the original dataset ' and the
estimated dataset '∗ as follows:

* (', '∗) = AVG�⋅��=�∗⋅��,�∈�,�∗∈�∗
5555 − ∗5555 , (2)

where ‖ − ∗‖ represents the Euclidean distance between and ∗. Obviously, a high * (', '∗) value means that
the spatial transformation method is di	cult to attack. �e

estimation distortion * (', '∗) could be used to measure
the security level of a spatial transformation method.

We assume the attacker may obtain prior background
knowledge of the outsourced spatial dataset. For example,
an attacker may know some mappings between original
locations and corresponding indexes. Due to the superior
clustering and distance-preserving properties of SHC, the
attacker can estimate the original locations of the indexes by
the known mappings. For the sake of discussion, we assume
that the attacker passively knows the following information.

(1) A subset 7 ⊂ ' of � POIs, 7 = {�1, �2, . . . , ��}, where�� is the location of POI.

(2) �e corresponding subset 7� ⊂ �� of POIs’ indexes,7� = {��1, ��2, . . . , ���}, where ��� is the index of location��.
As the attacker can only obtain 7 and 7� in a passive

manner, he cannot actively choose them as he wishes.
Although the attacker knows the POIs’ indexes in �� − 7�,
he does not know the location of any POI in ' − 7. So the
attacker tries to estimate the original location of each index in�� − 7�. �e spatial transformation method should make this
estimation with a high* (', '∗) value.

Yiu et al. [4] de
ne the general attack model and pro-
pose a heuristic-based general attack method that allows
the attacker to estimate a reasonable approximation of the
original location, by exploiting his limited knowledge of the
known mappings. Similarly, for an index �� ∈ �� − 7�, we
de
ne its feature vector over 7� as follows:

V (��, 7�) = (?????�� − ��1????? , ?????�� − ��2????? , . . . , ?????�� − ���?????) , (3)

where |�� − ��� | represents the absolute di�erence between�� and ��� . As we know, there are null value segments in the

POIs’ indexes ��, and the clustering and distance-preserving
performance of SHC is superior.�us, the attacker should not
compute the absolute di�erence for each index ��� ∈ 7�. For
index ��, the attacker will only compute the absolute di�er-
ence for the indexes close to �� and these indexes should be
continuous. �ese indexes constitute a subset of 7�, denoted
as @�, which varies with ��. So the feature vector of index�� ∈ �� − 7� should be revised as follows:

V (��, @�) = (?????�� − ��1????? , ?????�� − ��2????? , . . . , ?????�� − ���?????) , (4)

where @� = {��1, ��2, . . . , ���} represents a subset of7�, andA <�. For a location  in the original spatial domain, its feature
vector is

V (, @) = (5555 − �15555 , 5555 − �25555 , . . . , 5555 − ��5555) , (5)

where @ = {�1, �2, . . . , ��} represents a subset of 7, and this
subset is corresponding with {��1, ��2, . . . , ���}. By choosing the
candidate location C and then comparing the coherent pattern
of feature vectors V(��, @�) and V(C, @), the attacker can
identify the original location of index �� with low estimation
error. For the direct comparison, the feature vectors should
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be normalized by their magnitudes, and we use dissimilarity
[4] to measure the di�erence between C and �� as follows:

D (C, ��) = &1( V (��, @�)????V (��, @�)???? ,
V (C, @)|V (C, @)|) , (6)

where &1 is the Manhattan distance. So the attacker can
estimate the original location of index �� as C∗, which is the
candidate location C with the smallest dissimilarity value,

C∗ = arg min
�

D (C, ��) . (7)

Obviously, the computation of C∗ results in an in
nite
number of candidate locations in the original spatial domain.
We assume the attacker employs a randomized numerical
method to obtain an approximation of C∗ within acceptable
time. By estimating each index �� ∈ �� − 7�, the attacker can
obtain an estimated dataset '∗,

'∗ = {arg min
�

D (C, ��) | �� ∈ ��} . (8)

In Section 5, we empirically study the security level of
SHC, SHC∗, andDSC by applying the abovemodi
ed general
attack model.

5. Evaluation Results

We evaluate the performance and security of SHC, SHC∗,
and DSC using four real spatial datasets [32]: North East
USA (NE: 123, 593 POIs), San Joaquin County (TG: 18, 263
POIs), San Francisco (SF: 174, 956 POIs), and North America
(NA: 175, 813 POIs). �ese datasets match well the private
spatial data outsourcing mentioned in Section 1. �e domain

of each dataset is normalized to the unit square [0, 1]2 and
the experiments are carried out on Intel i5-2400 3.1 Ghz with
8GBRAM.�e start point, curve orientation, and curve scale
factor are preset to (0, 0), D1, and 1, respectively.

5.1. Parameter Selection. When applying SHC or DSC to
transform the spatial domain, each partitioned region will
be allocated with a value. POI is assigned the same value as
the partitioned region that it belongs to, and this value can
be employed to build index of the POI set. When two POIs
are in the same partitioned region, they will be assigned the
same value. Let I represent the average number of POIs with
the same index value; using SHC andDSC for indexing POIs,
wemeasure I for each value of
 and� in all datasets. Ideally
wewantI to be in
nitely close to 1,meaning that there are not
two POIs with the same index value.

SHC∗ has the same I as SHC, so we only study the rela-
tionship between curve parameters and I for SHC and DSC
to guarantee that the following experiments are conducted
under the same conditions. Figure 5 shows the I of SHC for
di�erent curve order 
. �e I of SHC drops drastically as
curve order increases. When 
 = 12, I approaches 1 in NE,
TG, and SF, but NA needs 
 = 13. Figure 6 depicts the I
of DSC for di�erent capacity �. �e I of DSC rises slowly
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Figure 5: Average number of POIs versus curve order.
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Figure 6: Average number of POIs versus capacity.

as capacity increases. When � = 1, I = 1. So we apply this
setting to SHC (SHC∗ applies the same setting as SHC) and
DSC in the remaining experiments.

As a user parameter, the max gap� for SHC∗ could take
any value. We study the relationship between indistinguisha-
bility and � for SHC∗ and 
nd out that the indistinguisha-
bility of SHC∗ remains steady when � ∈ [5, 55] and drops
when � > 60. For the sake of discussion in this paper, we
set � = 10 in the following experiments, which e�ectively
compress the null value segments and reduce the computation
overhead.

5.2. Index Generation Comparison. �e computation cost of
index generation is an important metric for evaluating the
spatial transformationmethods.We setI = 1 for SHC, SHC∗,
and DSC and compare their e	ciency of generating index in
di�erent datasets. EDHO [33] and BIA [34] are index genera-
tion algorithms for SHC, while IGD proposed in this paper is
the index generation algorithm forDSC. Because SHC∗ starts
executing a�er EDHO or BIA, we use SHC∗-E and SHC∗-B
to denote the di�erent sequences of execution, respectively.
�e experiment is performed for 100 times and the index
generation time (ms) is averaged.
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Table 1: Index generation time (ms).

Dataset EDHO BIA SHC∗-E SHC∗-B IGD

NE 1115 863 1125 866 493

TG 154 111 156 113 65

SF 1585 1202 1610 1218 696

NA 1727 1315 1743 1326 998

Table 2: Indistinguishability.

Dataset SHC SHC∗ DSC

NE 10.6195 17.1513 16.7995

TG 10.1360 14.5252 13.9729

SF 9.1522 17.5486 17.2900

NA 9.7709 17.5766 17.3802

Table 1 shows the index generation time of SHC, SHC∗,
and DSC over di�erent datasets. BIA generates index faster
than EDHO, and SHC∗-B is faster than SHC∗-E, but they
are all slower than IGD. Because SHC∗-E is consist of EDHO
and SHC∗, it takes a little more time than EDHO. And the
explanation for the result of SHC∗-B is similar with SHC∗-E.
On average, the time cost by IGD is only 49.2%, 64.5% of that
by EDHO and BIA, respectively. Sine DSC takes the distribu-
tion of POI dataset into consideration and chooses di�erent
curve orders in regions with di�erent density, which enables
sparse POI regions to use relatively low curve order and
thus improves the computation e	ciency.

5.3. Indistinguishability Comparison. Weapply the parameter
setting in Section 5.1 and calculate the indistinguishability of
these spatial transformation methods when building POIs’
indexes. Because only index values corresponding to POIs are
used as POIs’ indexes, which are continuous segments, we
could sequentially scan the POIs’ indexes and 
nd out the
gaps between the continuous segments, and these gaps are
null value segments. Table 2 shows the indistinguishability of
SHC, SHC∗, and DSC for di�erent datasets.

�e indistinguishability of SHC∗ and DSC is signi
cantly
higher than that of SHC in all datasets. On average, SHC∗

and DSC are 68.4% and 64.9% higher than SHC, respectively.
It implies that SHC∗ and DSC can maintain a very low
privacy disclosure risk. By analyzing the characteristics of
these spatial transformation methods, we can learn that,
when SHC builds index on real spatial dataset, there will be a
large amount of null value segments, and the average length
of the continuous segments is quite di�erent from that of
null value segments. While DSC partitions the spatial domain
according to the density, the number and length of null value
segmentswill be far less than those of SHC, and the null value
segments and continuous segments distribute equilibrium,
making indistinguishability of DSC greatly larger than that of
SHC.

In order to compare the distributions of null value
segments and continuous segments when employing di�er-
ent spatial transformation methods, we illustrate the POIs’
indexes built by SHC, SHC∗, and DSC in Figure 7, where

Table 3: Estimation distortion.

Dataset SHC SHC∗ DSC

NE 0.2547 0.3315 0.3236

TG 0.2835 0.4140 0.4079

SF 0.2103 0.3561 0.3418

NA 0.2473 0.3943 0.3706

(a.1), (b.1), (c.1), and (d.1) denote the NE, TG, SF, and NA
datasets, respectively. And 2, 3, and 4 represent POIs’ indexes
built by SHC, SHC∗, and DSC, respectively. As described
in Section 3.2, the black lines of the histogram represent
the continuous segments and the gray parts denote the null
value segments. We can see that the length of the gray parts
decreases dramatically a�er applying Algorithm 1 to modify
the POI’s indexes built by SHC. Because SHC∗ compresses
null value segments, the total length of null value segments is
far less than SHC, and the distribution of null value segments
and continuous segments is much more equilibrium than
SHC, which makes indistinguishability of SHC∗ much larger
than that of SHC, leading to lower privacy disclosure risk.
From this 
gure, we also 
nd out that the distributions of the
POIs’ indexes built by SHC∗ and DSC are similar, and that is
why the indistinguishability of SHC∗ is similar to that of DSC.

5.4. Attacks against SHC, SHC∗, and DSC. We apply the
parameter setting in Section 5.1 and set the ratio of known
set7 to 1% based on the assumption that the attackers obtain
limited background knowledge and the number of neighbor
reference POIs to 15which is the best value for POI estimation
in our experiments.�e attackmethod described in Section 4
is applied to reconstruct the original datasets.

Figure 8 depicts the estimated datasets reconstructed by
the attack method over the POIs’ indexes generated by SHC,
SHC∗, and DSC, where a, b, c, and d denote the NE, TG, SF,
and NA datasets, respectively, while 1, 2, 3, and 4 represent
the original datasets, the estimated datasets over SHC, the
estimated datasets over SHC∗, and the estimated datasets
over DSC, respectively. From Figure 8, we can easily 
nd
out that the POIs’ indexes generated by SHC∗ and DSC are
more di	cult to attack, because the estimated datasets are less
similar to the original datasets. On the contrary, the estimated
datasets reconstructed over the indexes built by SHC retain
more details. It means that SHC∗ and DSC are more secure
than SHC.

For further analysis, we calculate the estimation distortion
of SHC, SHC∗, and DSC, and Table 3 shows the estimation
distortion of SHC, SHC∗, and DSC for all datasets.

Because the estimation distortion represents the average
error between the original and estimated datasets, larger
metric value means more secure method. In Table 3, we can
see that the estimation distortion of SHC is smaller than
that of SHC∗ and DSC, and the estimation distortion of
DSC is slightly smaller than that of SHC∗. It means that
SHC∗ and DSC are more secure than SHC. As the clustering
and distance-preserving performance of SHC is superior, the
estimated datasets are more close to the original datasets, and
the estimation distortion value is smaller. SHC∗ and DSC
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Figure 7: Visualization of POIs’ indexes built by SHC, SHC∗, and DSC.
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Figure 8: Visualization of attacks.
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Figure 9: SHC over TG (
 = 6).

compress the null value segments, the distance-preserving
property is somewhat violated, and malicious SP cannot
speculate the location distribution of the original datasets by
simply analyzing the POIs indexes, so SHC∗ and DSC are
more secure.

6. Conclusion

In this paper, we propose SHC∗ and DSC for the index
generation of outsourced spatial data and propose the indis-
tinguishability for measuring the privacy disclosure risk of
spatial transformation methods. �e attack model is also
de
ned, in the experiments, the estimated datasets are visu-
alized for explicitly studying, and the estimation distortion
shows that SHC∗ and DSC are more secure than SHC.
�e proposed methods can partially violate the distance-
preserving property of SHC, so as to achieve better security.
�e index generation time shows that DSC is more e	cient
than SHC and SHC∗, so DSC achieves good security and e	-
ciency performance. In the future, wewill further conduct the
security analysis of more spatial transformationmethods and
propose more e�ective metrics for the quanti
cation of
security.

Appendix

Figures 9 and 10 show the di�erent space partitions over
dataset TG of SHC andDSC, respectively.�e blue line repre-
sents the space 
lling curves. We can see that SHC partitions
the spatial domain using the uni
ed granularity, while DSC
partitions the spatial domain according to the density of
POIs. For convenience of observation, we set
 = 6 for SHC
and set � = 1 for DSC.
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