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Online image sharing in social platforms can lead to undesired privacy disclosure. For example, some enterprises may detect these
large volumes of uploaded images to do users’ in-depth preference analysis for commercial purposes. And their technology might
be today’s most powerful learning model, deep neural network (DNN). To just elude these automatic DNN detectors without
a�ecting visual quality of human eyes, we design and implement a novel Stealth algorithm, which makes the automatic detector
blind to the existence of objects in an image, by cra	ing a kind of adversarial examples. It is just like all objects disappear a	er
wearing an “invisible cloak” from the view of the detector.�en we evaluate the e�ectiveness of Stealth algorithm through our newly
de
ned measurement, named privacy insurance. �e results indicate that our scheme has considerable success rate to guarantee
privacy compared with other methods, such as mosaic, blur, and noise. Better still, Stealth algorithm has the smallest impact on
image visual quality. Meanwhile, we set a user adjustable parameter called cloak thickness for regulating the perturbation intensity.
Furthermore, we 
nd that the processed images have transferability property; that is, the adversarial images generated for one
particular DNN will in�uence the others as well.

1. Introduction

With the pervasiveness of cameras, especially smartphone
cameras, coupled with the almost ubiquitous availability of
Internet connectivity, it is extremely easy for people to capture
photos and share them on social networks. For example,
according to the statistics, around 300 million photos are
uploaded onto Facebook every day [1]. Unfortunately, when
users are eager to share photos online, they also hand over
their privacy inadvertently [2]. Many companies are adept at
analyzing the information fromphotos which users upload to
social networks [3].�ey collect massive amounts of data and
use advanced algorithms to explore users’ preferences and
then perform more accurate advertising [4]. �e owner’s life
behind each photo is like being peeped.

Recently, we may shudder at a news report about 
n-
gerprint information leakage from the popular two-
ngered
pose in photos [5]. �e researchers are able to copy 
nger-
prints according to photos taken by a digital camera as far as
three metres away from the subject. Another shocking news
is that a new crop of digital marketing 
rms emerge. �ey

aim at searching, scanning, storing, and repurposing images
uploaded to popular photo-sharing sites, to facilitate mar-
keters to send targeted ads [6, 7] or conduct market research
[8].�ese behaviors of large-scale continuous accessing users’
private information will, no doubt, make the photo owners
very disturbed.

Moreover, shared photos may contain information about
location, events, and relationships, such as family members
or friends [9, 10]. �is will inadvertently bring security
threats to others. A	er analyzing more than one million
online photos collected from 9987 randomly selected users
on Twitter, we 
nd that people are fairly fond of sharing
photos containing people’s portrait on social platforms, as
shown in Table 1. We test on 9987 users and take 108.7
images on average from each person. �e result shows that
about 53.4% of the photos contain people’s portrait and
97.9% of the users have shared one or more photos con-
taining people’s portrait, which shows great risks of privacy
disclosure. In addition to portrait, photos containing other
objects may reveal privacy as well, such as road signs and air
tickets.
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Table 1: Some statistics on photos from Twitter.

Number of randomly collected users 9987

Number of collected photos per user 108.7

Photos containing people’s portrait 53.4%

Users sharing photos containing portrait 97.9%

Traditional methods of protecting personal information
in images aremosaic, blur, partial occlusion, and so on [11, 12].
�ese approaches are usually very violent and destructive.
A more elegant way is to use a 
ne-grained access control
mechanism, which enforces the visibility of each part of an
image, according to the access control list for every access-
ing user [13]. More �exibly, a portrait privacy preserving
photo capturing and sharing system can give users, who are
photographed, the selection to choose appearing (select the
“tagged” item) in the photo or not (select the “invisible” item)
[14].

�ese processing methods can be good ways to shield
people’s access. But for many companies which push large-
scale advertising, they usually use automated systems rather
than manual work to detect user uploaded images. For
instance, Figure 1 shows the general process of obtaining
privacy through online photos. First, a user shares a photo on
the social network unguardedly. �en this photo is collected
by astute companies and put into their own automatic
detection system. Based on the detection results from a
simple photo, the user’s privacy informationmight be at their

ngertips. �e traditional processing methods (mosaic, blur,
etc.) will not only greatly reduce image quality undesirably,
but also not work well to the automatic detection system
based on DNN, as shown in the later experimental results
(Figure 6). Users’ purpose of sharing photos is to show their
life to other people, but not to give detection machine any
opportunity to pry into their privacy. �erefore, we need a
technique to deal with images, so that the automatic detection
system is unable to work well, but humans cannot be aware of
the subtle changes in images.

From Figure 1, we can see, whether for commercial
or wicked purposes, the basic model of infringing image
privacy follows the same patterns: 
rst, the system gives
object proposals, that is, to 
nd where objects may exist
in the picture and outline bounding boxes of all possible
objects; then the system identi
es the speci
c category of each
proposal.

With regard to the detection process, the most advanced
algorithm is based on deep neural networks.�e unparalleled
accuracy turns them into the darling of arti
cial intelligence
(AI). DNNs are able to reach near-human-level performance
in language processing [15], speech recognition [16], and
some vision tasks [17–19], such as classi
cation, detection,
and segmentation.

Although they dominate the AI 
eld, recent studies have
shown thatDNNs are vulnerable to adversarial examples [20],
which are well designed tomisleadDNNs to give an incorrect
classi
cation result. But, for humans, the processed images
still remain visually indistinguishable with the original ones.
Since adversarial examples have a great deal of resistance on

the classi�cation task, then for the more complex detection
task, can we produce adversarial examples with a similar
e�ect? Even if the classi
cation result is incorrect, knowing
the existence of an object (not knowing its speci
c category)
is a kind of privacy leakage to some extent. So disenabling
the detectionmachine to see anything is bothmeaningful and
challenging.

As we mentioned above, the detection process is divided
into two steps, region proposal and proposal box clas-
si
cation. If we can successfully break through either of
these two and visual quality of the original image does
not deteriorate, then we are able to produce a new kind
of adversarial examples speci
cally for detection task. A
successful resistance involves two cases. One is failing in
object proposal, that is, proposing nothing for the next step;
and the other is going wrong in recognition on the given right
proposal boxes. Our work focuses on the 
rst case. It makes
DNNs turn a blind eye to the objects in images; in other
words, DNNs will fail to give any boxes of possible objects.
Intuitively, our approach is implemented as if objects in an
image are wearing an “invisible cloak.” �erefore, we call it
Stealth algorithm. Furthermore, we de
ne cloak thickness to
evaluate the strength of perturbation and privacy insurance
to measure the capacity of privacy preservation, and their
interconnections are also discussed. In addition, we 
nd the
cloak can be shared; that is, adversarial examples which we
make specially for one DNN can also resist other DNN
detectors.

In previous work, adversarial examples were usually used
to attack various detection systems, such as face recognition
[21, 22], malicious code detection [23], and spam 
ltering
[24], all of which are aggressive behaviors out of malice. But,
in our work, adversarial examples are made to protect users’
privacy. It is an unusually positive and helpful use. Overall,
this paper makes the following contributions:

(i) We realize the privacy protection for image content by
means of resisting automatic detectionmachine based
on deep neural networks.

(ii) We propose the Stealth algorithm of manufacturing
adversarial examples for detection task. And this
algorithm makes the DNN detection system unable
to give object bounding boxes.

(iii) We put forward two new de
nitions, cloak thickness
and privacy insurance. Measured by them, our exper-
iment shows that Stealth algorithm far outdoes several
common methods of disturbing image, no matter in
e�ectiveness or in image visual quality.

(iv) We conduct some experiments to show that adver-
sarial examples produced by Stealth algorithm have
satisfactory transferability property.

�e rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we introduce
several DNN-based detectors and highlight the Faster RCNN
detection framework, which we use in our algorithm. In
Section 4, we illustrate the approach we design to process an
image into an adversarial one for eluding a DNN detector.
�en, in Section 5, we evaluate our approach in multiple



Security and Communication Networks 3

User uploaded photo Object proposal result

Result

Consequences

Object
proposal

Recognition

Person
Dog

Sunglasses: Ray-Ban
Necklace: Gorjana

Bag: Zac Posen
Jeans: Blank NYC 

Shoes: Adidas

Push noti�cations for shopping
Surveillance

�e�
Other evil attempts

Privacy leakage

Figure 1: �e general process of obtaining privacy through online photos.

aspects. Finally, in Section 6, we make conclusions and
discuss the future work.

2. Related Work

Over the past few years, many researchers are committed
to studying the limitation of deep learning and it is found
to be quite vulnerable to some well-designed inputs. Many
algorithms spring up in classi
cation tasks to generate this
kind of adversarial input. Christian et al. [25] 
rst discovered
that there is a huge di�erence between DNN and human
vision. Adding an almost imperceptible interference into the
original image (e.g., a dog seen in human eyes) would cause
DNN to misclassify it into a completely unrelated category
(maybe an ostrich). �en the fast gradient sign method was
presented by Ian Goodfellow et al. [20], which can be very
e�cient in calculating the interference to an image for a
particular DNN model. An iterative algorithm of generating
adversarial perturbation by Papernot et al. [26] followed
it, which is based on a precise understanding of the map-
ping between inputs and outputs of DNNs by constructing
adversarial saliency maps, and the algorithm can choose any
category as the target to mislead the classi
er. Nguyen et al.
[27], along the opposite line of thinking, synthesized a kind of
“fooling images.” �ey are totally unrecognizable to human
eyes, but DNNs classify them into a speci
ed category with
high con
dence. More interestingly, Moosavi-Dezfooli et al.
[28] found that there exists a universal perturbation vector
that can fool a DNN on all the natural images. Adversarial
examples have also been found by Ian Goodfellow et al. [20]
to have the transferability property. It means an adversarial
image designed tomislead onemodel is very likely tomislead
another as well. �at is to say, it might be possible for
us to cra	 adversarial perturbation in circumstance of not
having access to the underlying DNN model. Papernot et al.

[29, 30] then put forward such a black-box attack based on
cross-model transfer phenomenon. Attackers do not need to
know the network architecture, parameters, or training data.
Kurakin et al. [31] have also shown that, even in the physical
world scenarios, DNNs are vulnerable to adversarial exam-
ples. Followed by an ingenious face recognition deceiving
system by Sharif et al. [32], it enables the subjects to dodge
face recognitionwhen they justwear printed paper eye glasses
frame.

It can be seen that most of the previous studies on the
confrontation againstDNNs are usually for classi
cation task.
Our work is about the detection task, which is another basic
task in computer vision. It is quite distinct from classi
cation,
since the returned values of detection are usually both
several bounding boxes indicating object positions and labels
for categories. Also, its implementation framework is more
complicated than classi
cation. Higher dimensions of the
result, continuity of the bounding box coordinates, and
more complex algorithmmake deceiving DNNs on detection
become more challenging work.

Viewed from another aspect, Ilia et al. [13] proposed
an approach that can prevent unwanted individuals from
recognizing users in a photo. When another user attempts to
access a photo, the designed system determines which faces
the user does not have permission to view and presents the
photo with the restricted faces blurred out. Zhang et al. [14]
presented a portrait privacy preserving photo capturing and
sharing system. People who do not want to be captured in
a photo will be automatically erased from the photo by the
technique of image inpainting or blurring.

Previous work is to protect the privacy on the level
of human vision, whereas these methods have proven less
e�ective for computer vision. In this article, we attempt to
design a privacy protection method for computer vision, and
meanwhile it ensures human visual quality. �is method can
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Figure 2: Faster RCNN detection architecture.

be applied in conjunction with the above-mentioned photo-
sharing system by Zhang et al. [14] in the future work. And
it will allow users to choose whether their purpose of privacy
protection is against computer vision or human vision.

3. Object Detectors Based on DNNs

Object detection frameworks based on DNNs have been
emerging in recent years, such as RCNN [33], Fast RCNN
[34], Faster RCNN [18], Multibox [35], R-FCN [36], SSD
[37], and YOLO [38]. �ese methods generally have excel-
lent performance, many of which have even been put into
practical applications. In order to avoid the practitioners
hesitating to choose detection frameworks, some researchers
have made some detailed test and evaluation on the speed
and accuracy of Faster RCNN, R-FCN, and SSD, which are
prominent on detection task [39]. Results re�ect, in general,
that Faster RCNNexhibits optimal performance on the trade-
o� between speed and accuracy. So we choose to resist the
detection system employing the Faster RCNN framework, as
shown in Figure 2.

Technically, it integrates RPN (region proposal network)
and Fast RCNN together. �e proposal obtained by RPN is
directly connected to the ROI (region of interest) pooling
layer [34], which is an end-to-end object detection frame-
work implemented with DNNs. First of all, images are pro-
cessed to extract features by one kind of DNN (ZF-net, VGG-
net, ResNet, etc.). And then the detection happens in the
following two stages: region proposal and box classi�cation.
At the stage of region proposal, the features are used for
predicting class-agnostic bounding box proposals (object or
not object). At the second stage, which is box classi
cation,
the same features and corresponding box proposals are used
to predict a speci
c class and bounding box re
nement.

Here, we do some explanation of the notations. X ∈
R
� is an input image composed of � pixels, and � is the

number of classes that can be detected. �e trained models

of the two processes in detection, region proposal, and box
classi
cation are �rp and�cl, respectively. And of course there
is a feature extraction process �feat before both of them at the
very beginning.

In the process of feature extraction, some translation-
invariant reference boxes, called anchors, are generated based
on the extracted features, denoted by

�feat (X) =(��1 ��1 	�1 ℎ�1��2 ��2 	�2 ℎ�2... ... ... ...��� ��� 	�� ℎ��)= A (X) . (1)

�e value � represents the number of anchors. ���, ���, 	��, ℎ��
( = 1, 2, . . . , �) are, respectively, the vertical and horizontal
coordinates of the upper le	 corner of the anchors and its
width and height. Each anchor corresponds to a nearby
ground truth box, which can be denoted by

�gt (X) =((
�gt1 �gt1 	gt1 ℎgt1�gt2 �gt2 	gt2 ℎgt2... ... ... ...�gt� �gt� 	gt� ℎgt�

)
)

. (2)

�en, in the region proposal stage, �rp predict � region
proposals, which are parameterized relative to � anchors.

�rp (X) =( �1 �1 	1 ℎ1 �1�2 �2 	2 ℎ2 �2... ... ... ... ...�� �� 	� ℎ� ��)= ( B (X) P (X) ) .
(3)



Security and Communication Networks 5��, ��, 	�, ℎ� ( = 1, 2, . . . , �) are, respectively, the vertical
and horizontal coordinates of the upper le	 corner of the
region proposal and its width and height. �e value ��
is the probability of it being an object (only two classes:
object versus background). For convenience, we let B(X) be
the 
rst four columns, which contain the location and size
information of all the bounding boxes and let P(X) be the last
column containing their probability information.

�e region proposal function is followed by a function for

box classi
cation �cl:R� ×R�×5 → R
�×(4+�). Here, except the

imageX, the above partial result B(X) is also as one of inputs.
�cl (X,B (X))

=(
(

�̃1 �̃1 	̃1 ℎ̃1 �11 �12 ⋅ ⋅ ⋅ �1��̃2 �̃2 	̃2 ℎ̃2 �21 �22 ⋅ ⋅ ⋅ �2�... ... ... ... ... ... d
...�̃� �̃� 	̃� ℎ̃� ��1 ��2 ⋅ ⋅ ⋅ ���
)
)= ( B̃ (X,B (X)) P̃ (X,B (X)) ) .

(4)

�e value � is the number of 
nal bounding boxes results

(� ≤ �). And similarly, �̃�, �̃�, 	̃�, ℎ̃� ( = 1, 2, . . . , �)
represent their location and size information. ��1, ��2, . . . , ���
are, respectively, the probability of each box result belonging

to each class (� classes in total). We also let B̃(X,B(X))
and P̃(X,B(X)) be the two parts of the result matrix. In

short, Faster RCNN framework is the combination of region
proposal and box classi
cation.

4. Stealth Algorithm for Privacy

4.1. Motivation and Loss Function. Our Stealth algorithm is
aimed at the 
rst stage, region proposal. �e processing
method which directs at the 
rst stage could be the simplest
and most e�ective, because if the detector does not give any
proposal boxes, the next stage (box classi
cation) will be even
more impossible to succeed. In a word, we deceive a DNN
detector from the source.

Our aim is to 
nd a small perturbation �X,Xst = X+�X,
s.t.

Pr [P (Xst) < (thrp)� | P (X) ≥ (thrp)� , �X < !] > #rp
where, (thrp)� = thrp ×(11...1)�×1 .

(5)

Here thrp is a threshold, according to which the detection
machine decides each box to be retained or not. Formula (5)
expresses that we want to add some small perturbations, so
that in region proposal stage any object proposals cannot be
detected with considerable probability #rp. In other words, at
this stage, all the boxes with low scores (probability of being
an object) will be discarded by the system.

Likewise, we can also interfere with the subsequent box
classi
cation stage, which can be expressed as

Pr [max (P̃ (Xst,B (Xst))) < (thcl)� | max (P̃ (X,B (X))) ≥ (thcl)� , �X < !] > #cl,
where, (thcl)� = thcl ×(11...1)�×1 , max (P̃ (X,B (X))) ≜(max {�11, �12, . . . , �1�}

max {�21, �22, . . . , �1�}...
max {��1, ��2, . . . , ���}) . (6)

Some other bounding boxes will be discarded, because the
probability that they belong to any class among the � classes
is less than the threshold thcl with great probability.

On the surface, formula (5) and formula (6) are two
modi
cationmethods. But in the detection framework Faster
RCNN, its two tasks (region proposal and box classi
cation)
share the convolution layers; that is, the two functions (�rp
and �cl) regard the same deep features as their input. We
modify the image for purpose of resisting either of the two
stages, which may mislead the other function inadvertently.
�erefore, we just choose to deal with the image as formula
(5). �is operation will obviously defeat the region proposal
stage, and it will be even very likely to defeat the following box
classi
cation process in formula (6). A more straightforward

explanation is that, in the view of the detection machine, our
algorithmmakes the objects in the image no longer resemble
an object, let alone an object of a certain class.�e image seems
to be wearing an invisible cloak. So, in the machine’s eyes,
an image including a lot of content looks completely empty,
which lives up to our expectation.

We are more concerned about the region proposal stage,
and its loss function in Faster RCNN framework is

L (T (A (Xi) ,B (Xi)) ,T (A (Xi) , �gt (Xi)) ,P (Xi) ,' (Xi) ; *) = - ⋅ P (Xi) ℓbox (T (A (Xi) ,B (Xi)) ,
T (A (Xi) , �gt (Xi))) + 0 ⋅ ℓprb (P (Xi) , ' (Xi)) . (7)
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Figure 3: Region proposal process in the training phase and in our algorithm.

Here T(A(Xi),B(Xi)) represents a certain distance between
anchors and the predicted region proposals, and T(A(Xi),�gt(Xi)) is that between anchors and ground truth boxes (in
Figure 3, we represent it as a vector). In training phase,
the goal of the neural network is to make T(A(Xi),B(Xi))
closer to T(A(Xi), �gt(Xi)), as shown in Figure 3(a). More
speci
cally,

T (A (X) ,B (X))
=((((((
(

(�1 − ��1)	�1 (�1 − ��1)ℎ�1 log( 	1	�1) log( ℎ1ℎ�1)(�2 − ��2)	�2 (�2 − ��2)ℎ�2 log( 	2	�2) log( ℎ2ℎ�2)... ... ... ...(�� − ���)	�� (�� − ���)ℎ�� log( 	�	��) log( ℎ�ℎ��)
))))))
)≜ ((x − x�)

w�

(y − y�)
h�

log( w

w�
) log( h

h�
)) .

(8)

Similarly,

T (A (X) , �gt (X))≜ ((xgt − x�)
w�

(ygt − y�)
h�

log(wgt

w�
) log(hgt

h�
)) . (9)

And '(Xi) in the loss function is the probability of the ground
truth object labels ('(Xi) ∈ {0, 1}: 1 represents the box is
an object and 0 represents not). * is the parameter of the
trained model. At the region proposal stage, the total lossL
is composed of two parts, box regression loss ℓbox (smooth C1
loss) and binary classi
cation loss ℓprb (log loss). - and 0 are
the weights balancing the two losses.

4.2. Algorithm Details. Here we elaborate on our Stealth
algorithm of generating adversarial examples in our experi-
ment. Algorithm 1 shows our Stealth idea. It takes a benign
image X, a trained feature extraction and detection model

�feat and �rp, iteration number Γ, and a user-de
ned cloak
thickness E as input. Users can control how much privacy to
protect as needed, by adjusting the parameter E to change
the interference intensity added to an image. It outputs a
new adversarial exampleXst against detection. In general, the
algorithm employs two basic steps over multiple iterations:
(1) Get the anchors A(Xi) on the basis of the features
extracted from DNN. Xi is the temporary image in the th
iteration. (2) Compute the forward prediction �rp(Xi). �is
indicates the position of the prediction boxes. (3) Get the
adversarial perturbation �Xi based on backpropagation of the
loss. �e loss functionL is the same as that of Faster RCNN,
but we change one of its independent variables. In other
words, we replaceT(A(Xi), �gt(Xi))with−T(A(Xi),B(Xi)), as
shown in Figure 3(b).We compute the backpropagation value
of the total loss function:∇Xi

L (T (A (Xi) ,B (Xi)) ,− T (A (Xi) ,B (Xi)) ,P (Xi) , ' (Xi) ; *) (10)

as the perturbation �Xi in one iteration.�e role of backprop-
agation and loss function in the training process is to adjust
the network so that the current output moves closer to the
ground truth. Here we substitute the reverse of the direction
towardswhich the box should be adjusted (−T(A(Xi),B(Xi)))
for the ground truth �gt. An intuitive understanding is that
we try to track the adjustment on region proposal by DNN
detector. If it is found that the DNN wants to move the
proposals in a certain direction, then we add some small
and well-designed perturbations onto the original image.
�ese perturbations may cause the proposals to move in
the opposite direction and consequently counteract their
generation.

�e original image and that processed by the Stealth
algorithm will have totally di�erent results through the DNN
detector, as shown in Figure 4. �e original image can be
detected and labeled correctly, while as for the processed
image no objects are detected by theDNNdetector; that is, no
information has been perceived at all. Even better, in human
eyes, there is little di�erence between the adversarial image
and the original image.
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Input: Image X, model �feat, �rp, iteration number Γ, invisible cloak thickness E.
Output: Adversarial image Xst.
Initialize: X0 ⇐ X,  ⇐ 0.
while  < � do

A(Xi) ⇐I �feat(Xi),(B(Xi),P(Xi)) ⇐I �rp(Xi),�Xi ⇐I −E� ⋅ (∇Xi
L(T(A(Xi),B(Xi)), −T(A(Xi),B(Xi)),P(Xi), '(Xi); *)),

Xi+1 ⇐I Xi + �Xi, ⇐I  + 1,
end while
Xst ⇐I Xi,
return Xst.

Algorithm 1: Stealth algorithm for detection system.
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Figure 4: �e original and processed image through a DNN detector.

4.3. Privacy Metric. Tomeasure the e�ectiveness of our algo-
rithm quantitatively, we de
ne a variable PI, named privacy
insurance. It can be interpreted as how much privacy the
algorithm can protect. We let J� be the total number of
bounding boxes of the Kth class (1 ≤ K ≤ �), which are
detection results based on all original images, including both
correct and wrong results. And we let L� be the number of
just correct boxes of each class detected on adversarial ones
and PI be the average of all PI� values.

PI� = {{{1 − L�J� J� ̸= 00 J� = 0, 1 ≤ K ≤ �
PI = ∑��=1 PI�∑��=1 � (J�, 0) ,

where, � (J�, 0) = {{{1 J� ̸= 00 J� = 0, 1 ≤ K ≤ �.
(11)

We can observe from the above de
nition that PI means the
success rate of our detection resistance actually, and it also
indicates howmuch privacy owned by users can be preserved.

Normally, mAP (mean average precision) is usually used
to measure the validity of a detector. But here our PI value

is a more appropriate evaluation index. Suppose there are� classes in the dataset, each with an independent privacy
insurance value PI� (K = 1, 2, . . . , �), because the model itself
has some errors when detecting original images; that is, the
accuracy is not 100%. And the major concern of our algo-
rithm is to resist the detection model. Consider such a case:
the machine’s judgment itself on the original image is wrong.
And a	er dealing with it by the algorithm, the judgment is
still wrong, but it has two di�erent wrong forms. �en this
processing of resisting detection is successful theoretically.
But calculating the di�erence of mAP value between pre- and
postprocessing cannot re�ect that this case is a successful one.
On the contrary, PI can evaluate the validity of our work at all
cases, of course including the above one.

5. Experiment and Evaluation

In order to illustrate the e�ectiveness of our Stealth algorithm,
we will evaluate it from four aspects: (i) We clarify whether
the processed images by our algorithm can resist DNNs
e�ectively. We show the result of performing on nearly 5000
images in PASCAL VOC 2007 test dataset to con
rm that.
(ii) We compare our algorithm with other ten methods of
modifying images for resisting detection. Results indicate
that our method works best and has minimal impact on
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(a)

car : 0.996
car : 0.995

car : 0.975car : 0.961car : 0.847car : 0.752
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diningtable : 0.667

person : 0.991

person : 0.990
person : 0.983

person : 0.976
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person : 0.931
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person : 0.997

(b) (c) (d)

bird : 0.824

(e)

Figure 5: (a) Original images; (b) original results; (c) adversarial perturbations (×20 to show more clearly); (d) processed images; (e) new
results.

image visual quality. (iii) We explore the relations among
cloak thickness, visual quality, and privacy insurance in the
algorithm. (iv) We illustrate the transferability of our Stealth
algorithm on di�erent DNNs.

5.1. Some Experimental Setups. We test our algorithm on the
PASCALVOC2007 dataset [40].�is dataset consists of 9963
images and is equally split into the trainval (training and val-
idation) set and test set. And it contains 20 categories, which
are common objects in life, including people, several kinds
of animals, vehicles, and indoor items. Each image contains
one or more objects, and the objects vary considerably in
scale. As for DNNs, we use two nets trained by Faster RCNN
on the deep learning framework Ca�e [41]. One is the fast
version of ZF-net [42] with 5 convolution layers and 3 fully
connected layers, and the other is thewidely usedVGG-16 net
[43] with 13 convolution layers and 3 fully connected layers.
In addition, our implementation is completed on a machine
with 64GB RAM, Intel Core i7-5960X CPU, and two Nvidia
GeForce GTX 1080 GPU cards.

5.2. E�ectiveness and Comparison. Here we 
rst illustrate the
e�ectiveness through several samples and comparewith other
trivialmethods. In the next subsection,wewill then introduce
the results of larger-scale experiments. As shown in Figure 5,
one can observe that images processed by our algorithm
can dodge detection successfully. And humans can hardly
notice the slight changes. Consequently, we have generated a
kind of machine-harm but human-friendly images. For most
images in our experimental dataset, the machine cannot see
where objects are (the 
rst two rows in Figure 5), let alone
identifying what speci
c category they belong to. For a small
number of images, even if the machine is really aware that

there may be some objects in the image, it cannot locate them
exactly or classify them correctly (the last row in Figure 5). In
short, in the vast majority of cases, the machine will give the
wrong answer. To give a quantitative analysis, we introduce a
newmeasurement, cloak thickness, which will be explained in
detail in Section 5.3.

In addition, we show the other ten trivial but interest-
ing ways of modifying images to interfere with detection
machines in Figure 6. We use PSNR (Peak Signal to Noise
Ratio) to evaluate the visual quality of the processed images.
�ese methods include both global and local modi
cation.
Local processing here is on the location of objects, rather than
a random location.

(i) Whether global mosaic in Figure 6(b), local mosaic
in Figure 6(c), global blur (Gaussian blur here) in
Figure 6(d), or local blur in Figure 6(e), compared
to other ways, their PSNR value is a bit larger.
�is indicates that although the perturbation is not
very considerable, the image gets disgustingly murky.
People usually cannot endure viewing such images
on the Web. Sadly, although people cannot bear it,
the machine can still detect most objects correctly.
�us some smoothing 
lters (like mosaic or Gaussian
blur) are unable to resist DNN-based detector. We
think DNNs could compensate for the homogeneous
loss of information; that is, once a certain pixel is
determined, a small number of surrounding pixels are
not very critical.

(ii) As shown in Figures 6(f) and 6(g), an image with
large Gaussian noise has poor quality judged by its
low PSNR value. But the machine is also able to
draw an almost correct conclusion. �is shows that
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Figure 6: Images processed by diverse methods of disturbing are detected by the detection framework based on Faster RCNN. Each two
horizontal images compose a pair, respectively, representing processed images and the results from the detector.
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adding Gaussian noise is not a good way to deceive
the detector, either.

(iii) As for a large area of occlusion on key objects,
whether black occlusion in Figure 6(h) or white
occlusion in Figure 6(i), they both make the quality
deteriorate drastically. In spite of a large amount of
information loss, the detection result is still almost
accurate surprisingly.

(iv) From Figure 6(j), we can see that adjusting the image
brightness to a fairly low level cannot resist the
detector, either. It causes the greatest damage to the
image simultaneously so that human eyes cannot see
anything in the image at all. But the detector gives
rather accurate results.

(v) In order to make the machine unaware of the exis-
tence of objects in the image, another natural idea is
to make objects become transparent in front of the
machine. So we try to change its transparency and
hide it in another image, as shown in Figure 6(k). And
yet it still does not work.

(vi) On the contrary, from Figure 6(l), we can see that
our Stealth algorithm substantially has the smallest
damage to image quality and it is also resistant to
detection e�ectively. In order to better illustrate its
e�ectiveness, we have carried out other larger-scale
experiments which will be described next.

5.3. Privacy Insurance. In order to depict the degree of
privacy protection in our algorithm, we de
ne a parameter,
cloak thickness E, to weight the trap-door between privacy and
visual quality. Users can tune this parameter to determine the
adversarial disturbance intensity on each pixel. For a speci
cE, the modi
cation to each pixel is obviously uneven. What
we need to do is multiplying E by the gradient value of DNN
backpropagation.�is is equivalent to expanding the gradient
of each pixel by E times simultaneously, and it is considered
as the 
nal modi
cation added to the image. Greater gradient
value of pixel means further distance away from our target, so
we need to add more adversarial interference on this pixel.
Certainly, di�erent E values also in�uence the results. �e
added interference is proportional to E value. �e greater E,
the thicker the cloak the image is wearing, and the machine
will be more blind to it. But, of course, the visual quality will
go down.

We test on nearly 5000 images and calculate the PI using
ZF-net and VGG-net, and the results can be found in Table 2.
�e 20 classes include airplane, bicycle, bird, boat, bottle,
bus, car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train, and tvmonitor. Except
for very few classes, the PI values of the vastmajority are fairly
high.�is roughly means that we have successfully protected
the users’ most information in images.

Assume that a user shares many pictures and then tries to
protect his privacy by using di�erent methods of perturbing
images. We test the PI values of all these methods, as shown
in Figure 7. We can see from it that our Stealth algorithm
can protect most privacy, and mosaic comes second, but it

nevertheless has destructive e�ects on image. Other methods
not only fail to protect privacy, but also cause terrible visual
quality of images that users cannot put up with. Of course,
users can get more insurance for their privacy by increasing
the cloak thickness E, but they may have to face the risk of
image quality deteriorating, as shown in Figure 8. From this


gure, we can 
nd E = 0.3×103 could be an appropriate value,
at which we can not only get a satisfactory privacy insurance
but also ensure the visual e�ects. Even if the value of cloak
thickness is fairly large (e.g., E = 1.2 × 103), the PSNR is
still greater than any other methods. �e Stealth algorithm’s
modi
cation to a pixel is related to the current value of the
pixel, so it does not seem so abrupt a	er the processing.

From the above experimental results, we can see our
algorithm works well, but the fact that there exist classes with
low PI value (e.g., Class 8 “cat,” Class 12 “dog,” and Class 14
“motorbike”) is worth thinking about. Here we present some
illustrations and thoughts on this question. �e extracted
feature of each region proposal corresponds to a point in
a high dimensional space. �e correctness of the judgment
is related to the classi
cation boundary. Our work is to
change positions of these corresponding points by adding
perturbation to an image, so that the points can cross the
boundary and jump to another class (from be-object class to
not-object class).

Our algorithm is independent of the speci
c class of the
object. �at is to say, to o�set the generation of region pro-
posal, we use the same number of iterations (Γ) and multiple
times (E) when we superimpose the gradient disturbance for
all classes. In the abstract high dimensional space, features
of di�erent classes occupy di�erent subspaces, which are
large or small. So perturbations with the same iterations and
multiple times are bound to cause a problem where features
of some classes are successfully counteracted, while some
few other classes may fail. �e reason for failure may be
that the number of iterations is insu�cient or the magnitude
of modi
cation is not enough for these classes. For each
region proposal feature in the detector, Figure 9 gives a vivid
illustration of the following four cases.

Case 1. �e region proposal features of some classes are
successfully counteracted a	er the image is processed. In
other words, the corresponding feature point jumps from
be-object subspace to not-object subspace. In this case, our
algorithm can be deemed a success.

Case 2. Region proposal features of some classes are coun-
teracted partly. So the feature point jumps to a be-object
subspace, but features in this subspace are not strong enough
to belong to any speci
c class. �at is to say, these proposals
will be discarded in the following classi
cation stage for their
scores of each class are lower than our set threshold. In this
case, the 
nal result is that objects cannot be detected, so it is
an indirect success.

Case 3. �e feature point jumps from one object class to
another. Result is that the detector will give a bounding box
approximately, but its label might be incorrect. �is case is
just a weak success.
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Figure 7: Di�erent ways of fooling detection machine. Assume that the user shares many pictures and then tries to protect their privacy by
di�erentmethods of image scrambling. Obviously our veil algorithm can protect themost privacy.Mosaic comes second, but it has destructive
e�ects on image itself.
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Figure 8: Privacy insurance versus PSNR with di�erent cloak thickness.

Case 4. �e feature point only jumps within an object
class subspace. Its range might be larger than others or its
position is farther away from the boundary of not-object
class subspace. It is kind of equivalent to saying that the
trained detector has better robustness for this speci
c class.
An adversarial algorithm may fail when encountering this
case.

�e classes with low PI value a	er our Stealth algorithm
may fall into Case 4. �e iteration and multiple times which
we set are not enough to make the proposal feature jump out
of its original subspace. However, in order to ensure a good
vision quality, we should not set them very high. It is a trade-
o� between human vision and machine vision.

5.4. Transferability of Cloak. �e Stealth interference gener-
ated for one particular DNN also has an impact on another
DNN, even if their network architectures are quite di�erent.
We call it the transferability of di�erent cloaks. When we put

the adversarial images generated for ZF-net, which is with a
slightly larger cloak thickness, onto theVGG-net for detection,
we can calculate that its privacy insurance, PI, is 0.66. And, at
this time, the visual quality is still satisfactory.�eremay exist
some subtle regular pattern only when seeing it from a very
close distance, but it is much better than mosaic, blur, and
other methods for human eyes. Likewise, we detect the VGG
adversarial images on ZF-net, and the PI value is 0.69.

So far we have been focusing on the white-box scenario:
the user knows the internals, including network architecture
and parameters of the system. To some extent, the trans-
ferability here leads to the implementation of a black-box
system. We do not need to know the details of network.
What we only need to know is that the detection system we
try to deceive is based on some kind of DNN. �en we can
generate an adversarial example for the image to be uploaded
against our local DNN. According to the above experimental
results, the generated images on local machine are very likely
to deceive the detection system of online social network.
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Case 1

Cases 2, 3, 4

(a)

Case 2

Case 3

Case 4

(b)

Figure 9: An intuitive understanding of adversarial images for detection task in the high dimensional space. (a) Di�erent cases that feature
point moves between the be-object class and not-object class in the high dimensional feature space. (b) Di�erent cases that feature point
moves among di�erent speci
c classes. Each subspace with a color represents a speci
c class. �e subspace in the be-object region but not
belonging to any speci
c class represents its score of belonging to any class which is lower than our set threshold.

6. Conclusion and Future Work

In this paper, we propose the Stealth algorithm of elaborating
adversarial examples to resist the automatic detection system
based on the Faster RCNN framework. Similar to misleading
the classi
cation task in previous work, we also add some
interference to cheat the computer vision of ignoring the
existence of objects contained in images. Users can process
images to be uploaded onto social networks through our
algorithm, thus avoiding the tracking of online detection
system, so as to meet the goal of minimizing privacy dis-
closure. In e�ect, it is like objects in images wearing an
invisibility cloak and everything disappearing in machine’s

view. As a comparison, we conduct experiments ofmodifying
images with several other trivial but intriguingmethods (e.g.,
mosaic, blur, noise, low brightness, and transparency). �e
result shows our Stealth scheme is the most e�ective and has
minimal impact on image visual quality. It can guarantee both
high image 
delity to human and invisibility to machine with
high probability. We de
ne a user adjustable parameter to
determine the adversarial disturbance intensity on each pixel,
that is, cloak thickness, and a measurement to indicate how
much privacy can be protected, that is, privacy insurance.
And we have further explored the relation between them.
In addition, we 
nd the adversarial examples cra	ed by our
Stealth algorithm have transferability property; that is, the
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interference generated for one particular DNN also has an
impact on another DNN.

One of our further researches will be a theoretical analysis
about the transferability property between di�erent network
models. And, according to it, we will try to 
nd a method
of cra	ing adversarial examples with good generalization
performance on many di�erent DNNs. Even if its fooling
performance on any one of DNN models will not be as
good as the speci
c adversarial example, it can maximize
the average performance on all models. Furthermore, it is
evident that our algorithm is a global processing on images.
So another ongoing study should be conducted to only add
partial adversarial perturbation to achieve the same deceiving
e�ect. �at is to say, we try to modify only part of pixels,
instead of processing the image globally. But this requirement
may lead to signi
cant changes on a few pixels, which will
cause an uncomfortable visual e�ect. So we should try to

nd out some ways to make the processed image look more
natural.
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