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Abstract. Because personal information can be inferred from associations with friends, privacy 
becomes increasingly important as online social network services gain more popularity. Our re-
cent study showed that the causal relations among friends in social networks can be modeled by 
a Bayesian network, and personal attribute values can be inferred with high accuracy from 
close friends in the social network. Based on these insights, we propose schemes to protect pri-
vate information by selectively hiding or falsifying information based on the characteristics of 
the social network. Both simulation results and analytical studies reveal that selective altera-
tions of the social network (relations and/or attribute values) according to our proposed protec-
tion rule are much more effective than random alterations. 

14.1   Introduction 

With the increasing popularity of Web 2.0, more and more online social networks 
(OSNs) such as Myspace.com, Facebook.com, and Friendster.com have emerged. 
People in OSNs have their own personalized space where they not only publish their 
biographies, hobbies, interests, blogs, etc., but also list their friends. Friends or visi-
tors can visit these personal spaces and leave comments. OSNs provide platforms 
where people can place themselves on exhibit and maintain connections with friends, 
and that is why they are so popular with the younger generation. However, as more 
people use OSNs, privacy becomes an important issue. When considering the multi-
tude of user profiles and friendships flooding the OSNs (e.g., Myspace.com claims to 
have about 100 million membership accounts), we realize how easily information can 
be divulged if people mishandle it [8]. One example is a school policy violation iden-
tified on Facebook.com. In November 2005, four students at Northern Kentucky Uni-
versity were fined when pictures of a drinking party were posted on Facebook.com. 
The pictures, taken in one of NKU’s dormitories, were visual proof that the students 
were in violation of the university’s dry campus policy. In this example, people’s pri-
vate activities were disclosed by themselves. 

There is another type of privacy disclosure that is more difficult to identify and 
prevent. In this case, private data can be indirectly inferred by adversaries. Intuitively, 
friends tend to share common traits. For example, high school classmates have similar 
ages and the same hometown, and members of a dance club like dancing. Therefore, 
to infer someone’s hometown or interest in dancing, we can check the values of these 
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attributes of his classmates or club mates. In another example, assume Joe does not 
wish to disclose his salary. However, a third party, such as an insurance company, 
uses OSNs to obtain a report on Joe’s social network, which includes Joe’s friends 
and office colleagues and their personal information. After looking carefully into this 
report, the insurance company realizes that Joe has quite a few friends who are junior 
web developers of a startup company in San Jose. Thus, the insurance company can 
deduce that most likely Joe is also a programmer (if this information is not provided 
by Joe himself). By using the knowledge concerning a junior programmer’s salary 
range, the insurance company can then figure out Joe’s approximate salary and adver-
tise insurance packages accordingly. Therefore, in this example, Joe’s private salary 
information is indirectly disclosed from Joe’s social relations. 

Information privacy is one of the most urgent research issues in building next-
generation information systems, and a great deal of research effort has been devoted 
to protecting people’s privacy. In addition to recent developments in cryptography 
and security protocols [1, 2] that provide secure data transfer capabilities, there has 
been work on enforcing industry standards (e.g., P3P [21]) and government policies 
(e.g., the HIPAA Privacy Rule [19]) to grant individuals control over their own pri-
vacy. These existing techniques and policies aim to effectively block direct disclosure 
of sensitive personal information. However, as we mentioned in the previous exam-
ples, private information can also be indirectly deduced by intelligently combining 
pieces of seemingly innocuous or unrelated information. To the best of our knowl-
edge, none of the existing techniques are able to handle such indirect disclosures. 

In this chapter we shall discuss how to protect the disclosure of private information 
that can be inferred from social relations. To preserve the inference properties from 
the social network characteristics, we encode the causability of a social network into a 
Bayesian network, and then use simulation and analysis to investigate the effective-
ness of inference on private information in a social network. We have conducted an 
experiment on the Epinions.com that operates in a real environment to verify the per-
formance improvements gained by using the Bayesian network for inferring private 
information. Based on the insights obtained from the experiment, a privacy protection 
rule has been developed. Privacy protection methods derived from the protection rule 
are proposed, and their performance is evaluated. 

The chapter is organized as follows. After introducing the background in Sect. 
14.2, we propose a Bayesian network approach in Sect. 14.3 to infer private informa-
tion. Sect. 14.4 discusses simulation experiments for studying the performance of 
Bayesian inference. Privacy protection rules, as well as protection schemes, are pro-
posed and evaluated in Sect. 14.5. In Sect. 14.6 we use analysis to show that based on 
our protection rules, selective alterations of the social network (social relations and/or 
attribute values) yield much more effective privacy protection than the random altera-
tions. We present some related work on social networks in Sect. 14.7. Finally, future 
work and conclusions are summarized in Sect. 14.8. Sect. 14.8 is followed by several 
questions related to the discussion in this chapter. 

14.2   Background 

A Bayesian network [9, 10, 7, 22] is a graphic representation of the joint probability 
distribution over a set of variables. It consists of a network structure and a collection 
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of conditional probability tables (CPT). The network structure is represented as a di-
rected acyclic graph (DAG) in which each node corresponds to a random variable and 
each edge indicates a dependent relationship between connected variables. In addi-
tion, each variable (node) in a Bayesian network is associated with a CPT, which enu-
merates the conditional probabilities for this variable given all the combinations of its 
parents’ value. Thus, for a Bayesian network, the DAG captures causal relations 
among random variables, and CPTs quantify these relations. 

Bayesian networks have been extensively applied to fields such as medicine, image 
processing, and decision support systems. Since Bayesian networks include the con-
sideration of network structures, we decided to model social networks with Bayesian 
networks. Basically, we represent an individual in a social network as a node in a 
Bayesian network and a relation between individuals in a social network as an edge in 
a Bayesian network. 

14.3   Bayesian Inference Via Social Relations 

In this section we propose an approach to map social networks into Bayesian net-
works, and then illustrate how we use this for attribute inference. The attribute infer-
ence is used to predict the private attribute value of a particular individual, referred to 
as the target node Z, from his social network which consists of the values of the same 
attribute of his friends. Note that we do not utilize the values of other attributes of Z 
and Z’s friends in this study, though considering such information might improve the 
prediction accuracy. Instead, we only consider a single attribute so that we can focus 
on the role of social relations in the attribute inference. The single attribute that we 
study can be any attribute in general, such as gender, ethnicity, and hobbies, and we 
refer to this attribute as the target attribute. For simplicity, we consider the value of 
the target attribute as a binary variable, i.e., either true (or t for short) or false (f). For 
example, if Z likes reading books, then we consider Z’s book attribute value is true. 

People are acquainted with each other via different types of relations, and it is not 
necessary for an individual to have the same attribute values as his friends. Which at-
tributes are common between friends depends on the type of relationship. For exam-
ple, diabetes could be an inherited trait in family members but this would not apply to 
officemates. Therefore, to perform attribute inference, we need to filter out the non-
related social relations. For instance, we need to remove Z’s officemates from his so-
cial network if we want to predict his health condition. If the types of social relations 
that cause friends to connect with one another are specified in the social networks, 
then the filtering is straightforward. However, in case such information is not given, 
one possible solution is to classify social relations into different categories, and then 
filter out non-related social relations based on the type of the categories. In Sect. 14.4, 
we show such an example while inferring personal interests from data in Epin-
ions.com. For simplicity, in this section we assume that we have already filtered out 
the non-related social relations, and the social relations we discussed here are the ones 
that are closely related to the target attribute.  

The attribute inference involves two steps. Before we predict the target attribute 
value of Z, we first construct a Bayesian network from Z’s social network, and then 
apply a Bayesian inference and obtain the probability that Z has a certain attribute 
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value. In this section we shall first start with a simple case in which the target attribute 
values of all the direct friends are known. Then, we extend the study by considering 
the case where some friends hide their target attribute values. 

14.3.1   Single-Hop Inference 

Let us first consider the case in which we know the target attribute values of all the di-
rect friends of Z. We define Zij as the jth friend of Z at i hops away. If a friend can be 
reached via more than one route from Z, we use the shortest path as the value of i. 
Therefore, Z can also be represented as Z00. Let Zi be the set of Zij (0 ≤ j < ni), where ni 
is the number of Z’s friends at i hops away. For instance, Z1 = {Z10, Z11, ... Z1(n1-1)} is 
the set of Z’s direct friends who are one hop away. Furthermore, we use the corre-
sponding lowercase variable to represent the target attribute value of a particular per-
son, e.g., z10 stands for the target attribute value of Z10.  

An example of a social network with six friends is shown in Fig. 14.1(a). In this 
figure, Z10, Z11 and Z12 are direct friends of Z. Z20 and Z30 are the direct friends of Z11 
and Z20 respectively. In this scenario, the attribute values of Z10, Z11, Z12 and Z30 are 
known (represented as shaded nodes). 

   
  (a)              (b)                       (c) 

Fig. 14.1. Reduction of a social network (a) into a Bayesian network to infer Z from his friends 
via localization assumption (b), and via naïve Bayesian assumption (c). The shaded nodes rep-
resent friends whose attribute values are known. 

Bayesian Network Construction 

To construct the Bayesian network, we make the following two assumptions. 
Intuitively, our direct friends have more influence on us than friends who are two 

or more hops away. Therefore, to infer the target attribute value of Z, it is sufficient to 
consider only the direct friends of Z1. Knowing the attribute values of friends at mul-
tiple hops away provides no additional information for predicting the target attribute 
value. Formally, we state this assumption as follows. 

Localization Assumption  
Given the attribute values of the direct friends Z1, friends at more than one hop away 
(i.e., Zi for i > 1) are conditionally independent of Z. 

Based on this assumption, Z20 and Z30 in Fig. 14.1(a) can be pruned, and the infer-
ence of Z only involves Z10, Z11 and Z12 (Fig. 14.1(b)). Then the next question is how 
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to decide a DAG linking the remaining nodes. If the resulting social network does not 
contain cycles, a Bayesian network is formed. Otherwise, we must employ more so-
phisticated techniques to remove cycles, such as the use of auxiliary variables to cap-
ture non-causal constraints (exact conversion) and the deletion of edges with the 
weakest relations (approximation conversion). We adopt the latter approach and make 
a naive Bayesian assumption. That is, the attribute value of Z influences that of Z1j (0 
≤ j < n1), and there is a direct link pointing from Z to each Z1j. By making this assump-
tion, we consider the inference paths from Z to Z1j as the primary correlations, and 
disregard the correlations among the nodes in Z1. Formally, we have: 

Naïve Bayesian Assumption 
Given the attribute value of the target node Z, the attribute values of direct friends Z1 
are conditionally independent of each other. 

This naïve Bayesian model has been used in many classification/prediction appli-
cations including textual-document classification. Though it simplifies the correlation 
among variables, this model has been shown to be quite effective [14]. Thus, we also 
adopted this assumption in our study. For example, a final DAG is formed as shown 
in Fig. 14.1(c) by removing the connection between Z10 and Z11 in Fig. 14.1(b). 

Bayesian Inference 

After modeling the specific person Z’s social network into a Bayesian network, we 
use the Bayes decision rule to predict the attribute value of Z. For a general Bayesian 

network with maximum depth i, let Z  be the maximum conditional (posterior) prob-
ability for the attribute value of Z given the attribute values of other nodes in the net-
work, as in Eq. 14.1: 
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where z and z1j are the attribute values of Z and Z1j respectively (0 ≤ j < n1, z, z1j ∈  
{t, f}) and the value of each z1j is known. 

To compute Eq. 14.2, we need to further learn the conditional probability table 
(CPT) for each person in the social network. In our study we apply the parameter  
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estimation [7] technique on the entire network. For every pair of parent X and child Y, 
we obtain Eq. 14.3: 
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where x, y∈{t, f}. P(Y = y | X = x) is the CPT for every pair of friends Z1j and Z in the 
network. Since P(Z1j | Z) is the same for 0 ≤ j < n1, Z1j becomes equivalent to one an-
other, and the posterior probability now depends on N1t, the number of direct friends 
with attribute value t. We can rewrite the posterior probability P(Z = z | Z1) as P(Z = z 
| N1t = n1t). Given N1t = n1t, we obtain: 
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where z ∈ {t, f}. 
After obtaining P(Z = t | N1t = n1t) and P(Z = f | N1t = n1t) from Eq. 14.4, we predict Z 

has attribute value t if the former value is greater than the latter value, and vice versa. 

14.3.2   Multi-hop Inference 

In single-hop inference, we assume that we know the attribute values of all the direct 
friends of Z. However, in reality, not all of those attribute values may be observed 
since people may hide their sensitive information, and the localization assumption in 
the previous section is no longer valid. To incorporate more attribute information into 
our Bayesian network, we propose the following generalized localization assumption. 

Generalized Localization Assumption  
Given the attribute value of the jth friend of Z at i hops away, Zij (0 ≤ j < n1), the at-
tribute of Z is conditionally independent of the descendants of Zij. 

 

  
(a)        (b) 

Fig. 14.2. Reduction of a social network (a) into a Bayesian network to infer Z from his friends 
via generalized localization assumption (b). The shaded nodes represent friends whose attribute 
values are known. 
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This assumption states that if the attribute value of Z’s direct friend Z1j is unknown, 
then the attribute value of Z is conditionally dependent on those of the direct friends 
of Z1j. This process continues until we reach a descendent of Z1j with known attribute 
value. For example, the network structure in Fig. 14.2(a) is the same as in  
Fig. 14.1(a), but the attribute value of Z11 is unknown. Based on the generalized local-
ization assumption, we extend the network by branching to Z11’s direct child Z20. 
Since Z20’s attribute value is unknown, we further branch to Z20’s direct friend Z30. 
The branch terminates here because the attribute value of Z30 is known. Thus, the in-
ference network for Z includes all the nodes in the graph. After applying the naive 
Bayesian assumption, we obtain the DAG shown in Fig. 14.2(b). Similar to single-
hop inference, the resulting DAG in multi-hop inference is a tree rooted at the target 
node Z. One interpretation of this model is that when we predict the attribute value of 
Z, we always treat Z as an egocentric person who has strong influences on his/her 
friends. Thus, the attribute value of Z can be reflected by the attributes of friends. 

For multi-hop inference, we still apply the Bayes decision rule. Due to additional 
unknown attribute values such as Z11, the calculation of the posterior probability be-
comes more complicated. One common technique for solving this equation is variable 

elimination [19]. In this chapter, we use this technique to derive the value of Z  in 
Eq. 14.1. 

14.4   Experimental Study of Bayesian Inference 

In the previous section we discussed the method for performing the attribute inference 
in social networks. In this section we study several characteristics of social networks 
to investigate under what condition and to what extent the value of a target attribute 
can be inferred by Bayesian inference. Specifically, we study the influence strength 
between friendship, prior probability of target attributes, and society openness. We 
use simulations and experiments to evaluate their impact on inference accuracy, 
which is defined as the percentage of nodes predicted correctly by the inference.  

14.4.1   Characteristics of Social Networks 

Influence Strength 

Analogous to the interaction between inheritance and mutation in biology, we define 
two types of influence in social relations. More specifically, for the relationship be-
tween every pair of parent X and child Y, we define P(Y = t | X = t) (or Pt|t for simpli-
fication) as inheritance strength. This value measures the degree to which a child in-
herits an attribute value from his/her parent. A higher value of Pt|t implies that both X 
and Y will possess the attribute value with a higher probability. On the other hand, we 
define P(Y = t | X = f) (or Pt|f) as mutation strength. Pt|f measures the potential that Y 
develops an attribute value by mutation rather than inheritance. An individual’s at-
tribute value is the result of both types of strength. 

There are two other conditional probabilities between X and Y; i.e., P(Y = f | X = t) 
(or Pf|t) and P(Y = f | X = f) (or Pf|f). These two values can be derived from Pt|t and Pt|f 
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respectively (Pf|t = 1 – Pt|t and Pf|f = 1 - Pf|f). Therefore, it is sufficient to only consider 
inheritance and mutation strength. 

Prior Probability 

Prior probability P(Z = t) (or Pt for short) is the percentage of people in the social 
network who have the target attribute value as t. When no additional information is 
provided, we can use prior probability to predict attribute values for the target nodes: 
if Pt ≥ 0.5, we predict that every target node has value t; otherwise, we predict that it 
has value f. We call this method naive inference. The average naive inference accu-
racy that can be obtained is max(Pt, 1 - Pt). In our study, we use it as a base line for 
comparison with the Bayesian inference approach. 

It is worth pointing out that when Pt|t = Pt, people in a society are in fact independ-
ent of each other, thus Pt|t = Pt. Hence, having additional information about a friend 
provides no contribution to the prediction for the target node. 

Society Openness 

We define society openness OA as the percentage of people in a social network who 
release their target attribute value A. The more people who release their values, the 
higher the society openness, and the more information observed about attribute A. Us-
ing society openness, we study the amount of information needed to know about other 
people in the social network in order to make a correct prediction. 

14.4.2   Data Set 

For the simulation, we collect 66,766 personal profiles from an online weblog service 
provider, Livejournal [12], which has 2.6 million active members all over the world. 
For each member, Livejournal generates a personal profile that specifies the mem-
ber’s biography as well as a list of his friends. Among the collected profiles, there are 
4,031,348 friend relationships. The degree of the number of friends follows the power 
law distribu tion (Fig. 14.3). About half of the population has less than ten direct 
friends. 
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Fig. 14.3. Number of direct friends vs. number of members in Livejournal on a log-log scale 
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In order to evaluate the inference behaviors for a wide range of parameters, we use 
a hypothetical attribute and synthesize the attribute values. For each member, we as-
sign a CPT and determine the actual attribute value based on the parent’s value and 
the assigned CPT. The attribute assignment starts from the set of nodes whose in-
degree is zero and explores the rest of the network following friendship links. We use 
the same CPT for each member. For all the experiments, we evaluate the inference 
performance by varying CPTs. 

After the attribute assignment, we obtain a social network. To infer each individ-
ual, we build a corresponding Bayesian network and then conduct Bayesian inference 
as described in Sect. 14.3. 

14.4.3   Simulation Results 

Comparison of Bayesian and Naive Inference 

In this set of experiments, we compare the performance of Bayesian inference to na-
ïve inference. We shall study whether privacy can be inferred from social relations. 
We fix the prior probability Pt to 0.3 and vary inheritance strength Pt|t from 0.1 to 
0.9.1 We perform inference using both approaches on every member in the network. 
The inference accuracy is obtained by comparing the predicted values with the  
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Fig. 14.4. Inference accuracy of Bayesian vs. naive inference when Pt = 0.3 

corresponding actual values. Fig. 14.4 shows the inference accuracy of the two  
methods as the inheritance strength, Pt|t, increases. It is clear that Bayesian inference 
outperforms naïve inference. The curve for naïve inference fluctuates around 70%, 
because with Pt = 0.3, the average accuracy we can achieve is 70%. The performance 
of Bayesian inference varies with Pt|t. We achieve a very high accuracy, especially at 
high inheritance strength. The accuracy reaches 95% when Pt|t = 0.9, which is much 
higher than the 70% accuracy of the naïve inference. Similar trends are observed be-
tween these two methods for other prior probabilities as well. 

                                                           
1 In an equilibrium state, the value of Pt|f can be derived from Pt and Pt|t. When Pt is fixed, in-

creasing Pt|t results in a decrease in Pt|f. 
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Effect of Influence Strength and Prior Probability 

Fig. 14.5 shows the accuracy of Bayesian inference when the prior probability Pt is 
0.05, 0.1, 0.3 and 0.5, and the inheritance strength Pt|t varies from 0.1 to 0.9. As Pt 
varies, the inference accuracy yields different trends with Pt|t. The lowest inference 
accuracy always occurs when Pt|t is equal to Pt. For example, the lowest inference ac-
curacy (approximately 70%) at Pt = 0.3 occurs when Pt|t is 0.3. At this point, people in 
the network are independent of each another. The inference accuracy increases as the 
difference between Pt|t and Pt increases. 
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Fig. 14.5. Inference accuracy of Bayesian inference for different prior probabilities 

Society Openness 

In the previous experiments, we assumed that society openness is 100%. That is, the 
attribute values of all the friends of the target node are known. In this set of experi-
ments, we study the inference behavior at different levels of society openness. We 
randomly hide the attribute values of a certain percentage of members, ranging from 
10% to 90%, and then perform Bayesian inference on those members. 

Fig. 14.6 shows the experimental results for the prior probability Pt = 0.3 and the 
society openness OA = 10%, 50% and 90%. The inference accuracy decreases as the 
openness decreases (i.e., the number of members hiding their attribute values in-
creases). For instance, at inheritance strength 0.7, when the openness is decreased 
from 90% to 10%, the accuracy reduces from 84.6% to 81.5%. However, the reduc-
tion in inference accuracy is relatively small (on average less than 5%). We also ob-
serve similar trends for other prior probabilities. This phenomenon reveals that ran-
domly hiding friends’ attribute values only results in a small effect on the inference 
accuracy. Therefore, we should consider selectively altering social networks to im-
prove privacy protection. 

Robustness of Bayesian Inference on False Information 

To evaluate the robustness of Bayesian inference when people provide false informa-
tion, we control the percentage of members (from 0% to100%) who can randomly set 
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Fig. 14.6. Inference accuracy of Bayesian inference for different society openness when Pt = 0.3 

their attribute values (referred to as randomness). Fig. 14.7 shows the impact of ran-
domness on the inference accuracy at prior probability Pt = 0.3 and inheritance 
strength Pt|t = 0.7. At low randomness, we note that the Bayesian inference clearly has 
a higher accuracy than the naïve inference. For example, when the randomness is 0.1, 
the inference accuracy of Bayesian and naïve inferences is 79.7% and 72.9% respec-
tively. However, the advantage of Bayesian inference decreases as the randomness in-
creases. This is especially so when the randomness reaches 1.0. At that point, there is 
almost no difference in the inference accuracy between Bayesian and naïve infer-
ences. This is because their attribute values no longer follow the causal relations be-
tween friends when they randomly negate their attribute values. As a result, Bayesian 
inference behaves similar to naive inference. Thus, from a privacy protection point of 
view, falsifying personal attribute values can be an effective technique. Based on 
these characteristics, we will propose several schemes for privacy protection and 
evaluate their effectiveness in Sect. 14.5. 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

In
fe

re
n
ce

 A
cc

u
ra

cy

Randomness

Naive Inference
Bayesian Inference

 

Fig. 14.7. Inference accuracy of Bayesian inference for different randomness when Pt = 0.3 and 
Pt|t = 0.7 
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14.4.4   Experiments on Epinions.com 

To evaluate the performance of Bayesian inference in a real social network, we con-
duct some experiments on Epinions.com [6]. Epinions is a review website for prod-
ucts including digital cameras, video games, hotels, restaurants, etc. Epinions divides 
these products into 23 categories and hundreds of subcategories. We consider that 
people have interests in a particular category if they write reviews on products in this 
category. In addition, registered members can also specify members in Epinions that 
they trust. Thus, a social network is formed where people are connected by trust rela-
tions. In this trust network, if person A trusts person B, it is very likely that A also 
likes the products that B is interested in. In this experiment, we use Bayesian infer-
ence to predict people’s interests in some categories from the friends that they trust, 
and then compared the prediction with the actual categories of their reviews published 
on Epinions. The higher the percentage of the matches, the better the prediction.  

We collect 66,390 personal profiles from Epinions. Each profile represents an in-
dividual with his product reviews and the people he trusts. We remove people who 
have no review and have no friend at all, which reduces the collection to 44,992 per-
sonal profiles. On average, each person writes 17 reviews, and has reviews in four 
categories. Among all categories, the most popular ones are movies, electronics and 
books. In terms of trust relations, each individual trusts 17 persons on average, and 
the distribution of the trust relations per user falls into a power law distribution again 
(as shown in Fig. 14.8).  

Before we perform Bayesian inference on Epinions, we need to further prune the 
social network by filtering out social relations that are not related to the target attrib-
ute. Although people in Epinions are connected by trust relations, the persons that an 
individual trusts may be different from category to category. Since this information is 
not given in Epinions, we apply a heuristic assumption that friends with similar types 
of common interests have similar types of relations. We perform a K-means clustering 
[15] over 23 categories in Epinions. Each cluster represents a group of similar inter-
ests. Several examples of clusters are shown in Table 14.1. For example, electronic 
and computer hardware are clustered together, online store & services is clustered 
with music and books, etc. Once we have the clusters, we filter out the social relations  
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Fig. 14.8. Number of direct friends vs. number of members in Epinions on a log-log scale 
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Table 14.1. Examples of the clustered interests in Epinions 

Cluster 
Health, Personal Finance, Education 
Online Store & Services, Music, Books 
Restaurants & Gourmet, Movies 
Electronics, Computer Hardware 

Table 14.2. Inference accuracy comparison between Bayesian and naïve inferences  

Accuracy Target Attribute Pt Pt|t 
Naïve Inference Bayesian Inference 

Health 0.461 0.734 53.9% 63.8% 
Online Store & Services 0.522 0.735 52.2% 60.6% 
Restaurants & Gourmet 0.432 0.667 56.8% 64.2% 
Electronics 0.766 0.833 76.6% 76.5% 

 
if connected people have no common interests with others in the cluster. In other 
words, when predicting the target attribute values of health, we only consider the so-
cial relations where connected persons have a common interest in at least one cate-
gory in the health cluster, i.e., personal finance, education or health categories. This 
filtering process reduces the original social network into a more focused social net-
work. Once the social network is pruned, we perform Bayesian inference. 

Table 14.2 compares the inference accuracy of Bayesian and naïve inferences. 
Note that the openness used in this experiment is 100%. As we can see from this ta-
ble, Bayesian inference achieves higher predictions than the naïve inference. For the 
health category, the inference accuracy of naïve inference is 53.9%, and the corre-
sponding accuracy of Bayesian inference is 63.8%. The results of other attributes 
show a similar trend, except for the electronics categories. This is because electronics 
is a very popular interest with prior probability Pt 0.766. Thus, most people will have 
this interest themselves, and the influence from friends is not comparatively strong 
enough.  

14.5   Privacy Protection 

We have shown that private attribute values can be inferred from social relations. One 
way to prevent such inference is to alter an individual’s social network, which means 
changing his social relations or the attribute values of his friends. For social relations, 
we can either hide existing relations or add fraudulent ones. For friends’ attributes, we 
can either hide or falsify their values. Our study on society openness suggests that 
random changes on a social network have only a small effect on the result of Bayesian 
inference. Therefore, an effective protection method requires choosing appropriate 
candidates for alteration. 

In this section we shall study privacy protection schemes. We first present a  
theorem that captures the causal effect between friends’ attribute values in a chain to-
pology. We then apply this theorem to develop our protection schemes. We conduct 
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experiments on the Livejournal network structure and evaluate the performance of the 
proposed protection schemes. 

14.5.1   Causal Effect between Friends’ Attribute Values 

As mentioned earlier, children’s attribute values are the result of the interaction be-
tween the inheritance strength Pt|t and the mutation strength Pt|f of their parents. For 
example, in a family where the inheritance strength is stronger than the mutation 
strength, children tend to inherit the same attribute value from their parents; thus, the 
evidence of a child having the attribute value t increases our belief that his/her parent 
has the same attribute value t. On the contrary, when the inheritance strength is 
weaker than the mutation strength, parents and children are more likely to have oppo-
site attribute values, and the evidence of a child having an attribute value t reduces 
our belief that his/her parent has the same attribute value t. Inspired by this observa-
tion, we derive a theorem to quantify the causal effects between friends’ attribute  
values. 

Theorem: Given a social network with a chain topology, let Z be the target node, Zn0 
be Z’s descendant at n hops away. Assuming the attribute value of Zn0 is the only evi-
dence observed in this chain, and the prior probability Pt satisfies 0 < Pt < 1, we have 
P(Z = t | Zn0 = t) > P(Z = t) iff (Pt|t - Pt|f)

n > 0, and P(Z = t | Zn0 = f) > P(Z = t) iff (Pt|t 
- Pt|f)

n < 0, where Pt|t and Pt|f are the inheritance strength and mutation strength of the 
network respectively. 

Proof: see Appendix. 

This theorem states that when Pt|t > Pt|f, the posterior probability P(Z = t | Zn0 = t) is 
greater than the prior probability P(Z = t). Thus, the evidence of Zn0 = t increases our 
prediction for Z = t. On the other hand, when Pt|t < Pt|f, whether P(Z = t | Zn0 = t) is 
greater than P(Z = t) or not also depends on the value of n, i.e., the depth of Zn0. 
When n is even, the evidence that Zn0 = t will increase our prediction for Z = t. How-
ever, when n is odd, the evidence that Zn0 = t will decrease our prediction for Z = t. 

14.5.2   A Privacy Protection Rule 

Based on the above theorem, we propose a privacy protection rule as follows. Assume 
the protection goal is to reduce others’ belief that the target node has the attribute 
value t. We alter the nodes in the social network with attribute value t when Pt|t > Pt|f. 
The alteration could be: 1) hide or falsify the attribute values of friends who satisfy 
the above conditions, or 2) hide relationships to friends who satisfy the above condi-
tions, or add fraudulent relationships to friends who do not. On the other hand, when 
Pt|t < Pt|f, we alter nodes with attribute value t when that node is even hops away from 
the target node; otherwise, we alter nodes with attribute value f. To mislead people 
into believing the target node possesses an attribute value t, we can apply these tech-
niques in the opposite way.  

Based on the protection rule, we propose the following four protection schemes: 

• Selectively hiding attribute value (SHA). SHA hides the attribute values of appro-
priate friends. 
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• Selectively falsifying attribute value (SFA). SFA falsifies the attribute values of 
appropriate friends. 

• Selectively hiding relationships (SHR). SHR hides the relationship between the 
target node and selected direct friends. When all the friend relationships of this in-
dividual are hidden, the individual becomes a singleton, and the prediction will be 
made based on the prior probability. 

• Selectively adding relationships (SAR). Contrary to hiding relationships in SHR, 
based on the protection rule, SAR selectively adds fraudulent relationships with 
people whose attribute values could cause inccorrect inference to the target node  

14.5.3   Performance of Privacy Protection  

In this section we conduct a set of controlled experiments to evaluate different 
schemes for privacy protection. To provide privacy protection on an individual’s at-
tribute value (target node), we incrementally alter this individual’s social network un-
til the attribute value from inference predication changes its value and becomes con-
trary to its original value. The protection is considered a failure if it fails to change the 
attribute value prediction and no further alteration can be made. 

We use a randomly hiding attribute value (RHA) as a baseline to evaluate the per-
formance of the proposed protection schemes. RHA randomly selects a friend in the 
individual’s social network and hides his/her attribute value without following the 
protection rule. We repeatedly perform such operations with the individual’s direct 
friends. If protection fails after we hide all the direct friends’ attribute values, we pro-
ceed to hide attribute values of indirect friends (e.g., at two hops away from this indi-
vidual) and so on. 

We have performed simulation experiments on 3000 individuals (nodes) in the 
Livejournal data set. For each node, we apply the above protection schemes and com-
pare their performance. The two metrics used are: the percentage of individuals whose 
attribute values are successfully protected and the average number of alterations 
needed to reach such protection. 

Fig. 14.9 displays the percentage of successful protection for different inheritance 
strengths Pt|t at Pt = 0.3. We note that the effectiveness of the selected schemes fol-
lows the order: SAR > SFA > SHR > SHA > RHA. We shall now discuss the behav-
ior of theses schemes to explain and support our experimental findings. For RHA, 
SHA, SHR and SFA, the maximum number of alterations is the number of descen-
dants (e.g., for RHA and SHA) and the number of direct friends (e.g., for SFA and 
SHR) of the target node. Since SAR can add new friend relationships and support the 
highest number of alterations to the social network, SAR provides more privacy pro-
tectionto the target node. The performance of SFA and SHR follows SAR. We can 
view SFA as a combination of SHR and SAR, i.e., hiding a friend relationship fol-
lowed by adding a fraudulent relationship. Therefore, the performance of SFA is bet-
ter than that of SHR. SHA does not perform as well as SFA and SHR because friends 
at multiple hops away still leave clues for privacy inference. Finally, RHA does not 
follow the protection rule to take advantage of the properties of the social network, so 
it yields the worst performance. 

Fig. 14.10 presents the performance based on the average number of alterations re-
quired to successfully protect the attribute value of a target node. We noted that RHA 
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Fig. 14.9. Performance comparison of selected schemes based on the percentage of successful 
protection for Pt = 0.3 
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Fig. 14.10. Number of alterations required to successfully protect the attribute value of a target 
node at Pt = 0.3 

has the worst and SFA has the best performance among the proposed schemes. The 
average number of alterations of SHR and SAR are comparable for most cases. Note 
that the average number of required changes for SAR is higher than that of SHR at Pt|t 
= 0.2. This is because at the low inheritance strength region, SAR can protect many 
cases that other schemes cannot protect by adding a large number of fraudulent friend 
relationships. Finally, SHA performs better than RHA but not as good as the other 
schemes. 

Figs. 14.9 and 14.10 reveal the effectiveness of using the protection rule for deriv-
ing privacy protection schemes. Furthermore, SFA can provide successful protection 
for most cases, yet does not require an excessive number of alterations to the original 
social network. 

14.6   Analysis of RHR and SHR 

In the previous section we demonstrated that selective social network alterations 
based on the protection rule are more effective than the method that does not follow 
the protection rule. We shall now use analysis to compare the difference between  
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randomly hiding friend relationships (RHR) and selectively hiding friend relation-
ships (SHR). Specifically, we use the frequency of posterior probability variation after 
hiding friend relationships as a metric. A hiding scheme that has a high frequency of 
posterior probability variation is considered more effective in privacy protection than 
that of the low frequency ones. 

14.6.1   Randomly Hiding Friend Relationships (RHR) 

Hiding friend relationships means removing direct friends of the target node. The so-
cial network can be represented as a two-level tree with the target node Z as the root 
and n1 direct friends Z10, ..., Z1(n1-1) as leaves. We want to derive the probability distri-
bution of the posterior probability variation due to randomly hiding friend relation-
ships, i.e., the difference between the posterior probability after hiding their attribute 
values and the corresponding probability of this occurrence. 

Let random variables N1t and N’1t be the number of friends having attribute value t 
before and after hiding h friend relationships, where 0 ≤ h ≤ n1 and max(0, N1t - h) ≤ 
N’1t ≤ min(N1t, n1 - h). If N1t = n1t and N’1t = n’1t, we can compute the posterior prob-
abilities P(Z = t | N1t = n1t) and P(Z = t | N’1t = n’1t) from Eq. 14.4 respectively. 
Therefore, the posterior probability variation caused by hiding h friend relationships 
is (Eq. 14.5): 
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Now we want to derive the probability that each possible value of Δ P(Z = t | N1t = 
n1t, N’1t = n’1t) occurs. In other words, we want to compute the probability of the joint 
event N1t = n1t and N’1t = n’1t (before and after hiding friend relationships), which is 
equal to (Eq. 14.6): 
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Initially, if we know Z’s attribute value is Z (z ∈{t, f}), the probability that N1t = n1t 
follows the Binomial distribution (Eq. 14.7): 
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 (14.7)

By un-conditioning on Z, we obtain (Eq. 14.8): 
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We define ht and hf as the numbers of removed nodes (i.e., hidden friend relation-
ships) with attribute value t and f, respectively (ht = n1t – n’1t and hf = h - ht). Then we 
can compute the conditional probability that N’1t = n’1t given N1t = n1t as (Eq. 14.9): 
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In this equation, the numerator represents the number of ways to remove ht nodes 
with value t and hf nodes with value f, and the denominator represents the number of 
combinations when choosing any h nodes from a total of n1 nodes. 

Substituting Eq. 14.8 and Eq. 14.9 into Eq. 14.6, we obtain P(N1t = n1t, N’1t = n’1t). 

14.6.2   Selectively Hiding Friend Relationships (SHR) 

We perform a similar analysis for selectively hiding friend relationships in a two-level 
tree. Unlike random selection which randomly selects nodes with attribute values t or 
f, this method follows the protection rules and selects all the nodes with the same at-
tribute values to hide. Thus, we can compute Δ P(Z = t | N1t = n1t, N’1t = n’1t) as in the 
previous section. However, the distribution of posterior probability variation needs to 
be computed differently. 

Given h, the number of nodes to remove, n’1t is deterministic. For example, if we 
remove nodes with attribute t, then n’1t = m - h; otherwise n’1t = m. Consequently, in 
the former case (Eq. 14.10), 
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whereas in the latter case (Eq. (11)), 

⎩
⎨
⎧ =

===
,0

),(
)'',( 11

1111
tt

tttt

nNP
nNnNP  (14.11) 

where P(N1t = n1t) can be obtained from Eq. 14.8. 

14.6.3   Randomly vs. Selectively Hiding Friend Relationships 

We first compute the average variation in the posterior probability of both RHR and 
SHR, as shown in Fig. 14.11. We fix n1 to be ten and vary h from one to nine. The x-
axis is the number of friends that we hide, and the y-axis is the posterior probability 
variation based on Eq. 14.5. Clearly, SHR has higher posterior probability variation 
than RHR, especially for the case of a large number of hidden friends. 

We also plot the histogram of the posterior probability variation Δ P(Z = t | N1t = 
n1t, N’1t = n’1t). We divide the range of posterior probability variation into ten equal 
width intervals. Then we compute the probability that the posterior probability varia-
tion falls in each interval. 

if n’1t = m - h 

if n’1t = m 

otherwise 

otherwise 
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Fig. 14.12 shows the histogram of the posterior probability variation for RHR and 
SHR, when the prior probability is 0.3 and the influence strength is 0.7. The x axis 
represents the intervals and the y axis represents the frequency of the posterior prob-
ability variation within the interval. The frequency is derived from Eq. 14.6 for RHR 
and from Eqs. 14.11 and 14.12 for SHR. For SHR, we remove friends with attribute 
value t. The maximum number of removed friends k cannot exceed N1t. As a result, 
we do not consider the cases when n1t < k, and we normalize the frequency results for 
selectively hiding friends based on the overall probability that n1t ≥ k. 
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Fig. 14.11. Average posterior probability variation for selectively and randomly hiding friend 
relationships 

For RHR, we observe that the variation is less than 0.1 for 70% to 90% of the cases 
in Fig. 14.12(a). Thus, the posterior probability is unlikely to be varied greatly. In 
contrast, the posterior probability variation in Fig. 14.12(b) is widely distributed, 
which means there are noticeable changes in the posterior probability after hiding 
nodes selectively. This trend is more pronounced when increasing the number of re-
moved friends. For example, when h = 8, the frequency of the variation lying between 
0.9 and 1.0 is about 28.8% as compared to 1.9% in Fig. 14.12(a). These results show 
the effectiveness of using the protection rule for privacy protection. 
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Fig. 14.12. Frequency of posterior probability variation for (a) randomly hiding friend relation-
ships, and (b) selectively hiding friend relationships 
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14.7   Related Work 

Social network analysis has been widely used in many areas such as sociology, geog-
raphy, psychology and information science. It primarily focuses on the study of social 
structures and social network modeling. For instance, Milgram’s classic paper [16] in 
1967 estimates that every person in the world is only six hops away from one another. 
The recent success of the Google search engine [3] applies social network ideas to the 
Internet. In [17] Newman reviews the relationship between graph structures and the 
dynamic behavior of large networks. The Referral Web project mined social networks 
from a wide variety of publicly available information [11]. In sociology, social net-
works are often modeled as an autocorrelation model [5]. In this model, individuals’ 
opinions or behaviors are influenced not only by those of others, but also by various 
other constraints in social networks. It uses a weight matrix to represent people’s in-
teractions; however, it is still not very clear how to choose the weight matrix. Leend-
ers suggested building the weight matrix based on network structure information like 
node degrees [13]. Our work, on the other hand, models interpersonal relations using 
conditional probabilities; this depends on both structure information and personal at-
tributes. Furthermore, Domingos and Richardson think that an individual’s decision to 
buy a product is influenced by his friends, and they propose to model social networks 
as Markov random fields [4]. Because the social networks that they studied are built 
from a collaborative filtering database, each person is always connected to a fixed 
number of people who are most similar to him, which in turn forms a structure of stars 
with a regular degree. In contrast, we collect social networks directly from real online 
social network service providers. The number of friends of each individual varies. For 
the reasons of scalability and computational cost, we model social networks with 
Bayesian networks.  

In terms of privacy protection, a great deal of effort has been devoted to develop-
ing cryptography and security protocols to provide security data transfer [1, 2]. Addi-
tionally, there are also models that have been developed for preserving individual 
anonymity in data publishing. Sweeney proposes a K-anonymity model which  
imposes constraints wherein the released information for each person cannot be re-
identified from a group smaller than k [16]. In our study we assume that all the per-
sonal information released by the owners can be obtained by anyone in the social 
network. Under this assumption, we propose techniques to prevent malicious users 
from inferring private information from social networks. 

14.8   Conclusion 

We have focused this study on the impact of social relations on privacy disclosure and 
protection. The causal relations among friends in social networks can be effectively 
modeled by a Bayesian network, and personal attribute values can be inferred via 
their social relations. The inference accuracy increases as the influence strength in-
creases between friends. Experimental results with real data from Epinions.com vali-
date our findings that Bayesian inference provides higher inference accuracies than 
naïve inference.  
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Based on the interaction between inheritance strength and mutation strength, and 
the network structure, a protection rule is developed to provide guidance via selective 
network alterations (social relations and/or attribute values) to provide privacy protec-
tion. Experimental results show that alterations based on the protection rule are far 
more effective than random alterations. Because large variations of alterations can be 
provided by falsifying attribute values, this yields the most effective privacy protec-
tion among all the proposed methods. 

For future study, we plan to investigate the use of multiple attributes to improve in-
ference and protection. For example, diet and life style can reduce the risk of heart 
disease. Such multi-attribute semantic relationships can be obtained via domain ex-
perts or data mining. We can exploit this information to cluster target interests for  
inference. 
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Questions for Discussions 

1. What are the reasons that the Bayesian network is suitable for modelling social 
networks for data inference?  

2. What are the challenges in using Bayesian networks to model social networks?  
3. Why can social networks improve the accuracy of information inference?  
4. How does the privacy protection rule protect private attributes in social networks?  
5. How can Bayesian inference accuracy be improved using multiple personal  

attributes?  

Appendix 

Theorem: Casual Effect Between Friends’ Attribute Values in a Chain Network 
Given a chain topology, let Z be the target node, Zn0 be Z’s descendant at n hops 
away. Assuming that the attribute value of Zn0 is the only evidence observed in this 
chain, and the prior probability Pt satisfies 0 < Pt < 1, we have P(Z = t|Zn0 = t) > P(Z 
= t) iff (Pt|t - Pt|f)

n > 0, and P(Z = t | Zn0 = f) > P(Z = t) iff (Pt|t - Pt|f)
n < 0, where Pt|t 

and Pt|f are the inheritance strength and mutation strength of the network, respectively. 

Proof: 
Let us consider a chain topology shown in Fig. 14.13. The target node Z00 is the root 
node and each descendant (except the last one) has exactly one child. Consider the 
simplest example when n=1 (i.e., the target node Z has only one direct child Z10) as 
shown in Fig. 14.13(a). In this example, the attribute value of Z10 is known. 

 

   
          (a)                                           (b) 

Fig. 14.13. The chain network structure: (a) the target node with one descendant; (b) the target 
node with n descendants 
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Assuming Z10=t, from Eq. 14.1, the posterior probability P(Z00 = t | Z10 = t) is: 
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Thus, 
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Similarly, when Z10=f, we can prove P(Z00 = t | Z10 = f) > P(Z00 = t) iff Pt|t - Pt|f < 0 
for Pt ≠ 1. 

Now we extend this example to show how the attribute value of a node at depth n 
affects the prediction for Z. In Fig. 14.13(b), we show a network of n + 1 nodes. In 
this figure, only Zn0, Z’s descendent at depth n, has a known value. Fig. 14.14 shows 
the corresponding conditional probability table for these n+1 nodes. 

 

Fig. 14.14. Conditional probability table for nodes in Fig. 14.13(b) 

Let Ptt
n, Pft

n, Ptf
n and Pff

n be the joint distributions of Z and Zn0: 
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for Pt ≠ 1 
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For example, Ptt
1 = P(Z00=t, Z10=t) = P(Z00=t) P(Z10=t|Z00=t) = Pt Pt|t and so on. 

We know, 

.1)(

,)(

00

00

t
n
ff

n
ft

t
n

tf
n

tt

PfZPPP

PtZPPP

−===+

===+
 

(14.15) 

Further, from Fig. 14.14, we have the following relations: 
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When Zn0=t, the posterior probability is: 
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Therefore, 
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Based on Eq. 14.16, 
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Substituting Eq. 14.15 into Eq. 14.19, we have 
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Recursively, we have 
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Since Ptt
1 = Pt Pt|t, and Pft

1 = (1- Pt) Pt|f, we obtain 
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Combining Eq. 14.18 and Eq. 14.22, P(Z00=t | Zn0=t) > Pt is equivalent to (Pt|t - 
Pt|f)

n > 0 (when 0 < Pt < 1). Similarly, we can show that P(Z00=t | Zn0=f) > Pt is 
equivalent to (Pt|t - Pt|f)

n < 0. 
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