
Protecting Security-Sensitive Data Using Program
Transformation and Trusted Execution Environment
Anter Abdu Alhag Ali Faree (anterfaree@stu.xidian.edu.cn)

Xidan University School of Electronic Engineering https://orcid.org/0000-0002-9356-3827
Yongzhi Wang

Park University

Research Article

Keywords: Cloud Computing, Con�dentiality, Program Partitioning, Program Transformation, Program
Analysis, Sensitive data, Trusted Execution Environment TEE, Intel SGX

Posted Date: April 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-462176/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-462176/v1
mailto:anterfaree@stu.xidian.edu.cn
https://orcid.org/0000-0002-9356-3827
https://doi.org/10.21203/rs.3.rs-462176/v1
https://creativecommons.org/licenses/by/4.0/

Anter Faree and Yongzhi Wang Journal of Cloud Computing:

Advances, Systems and Applications

Protecting security-sensitive data using program

transformation and trusted execution environment

Anter Faree1 and Yongzhi Wang2

Abstract

Cloud computing allows clients to upload their sensitive data to the public cloud and perform sensitive computations in those

untrusted areas, which drives to possible violations of the confidentiality of client sensitive data. Utilizing Trusted Execution

Environments (TEEs) to protect data confidentiality from other software is an effective solution. TEE is supported by

different platforms, such as Intel’s Software Guard Extension (SGX). SGX provides a TEE, called an enclave, which can be
used to protect the integrity of the code and the confidentiality of data. Some efforts have proposed different solutions in

order to isolate the execution of security-sensitive code from the rest of the application. Unlike our previous work, CFHider,

a hardware-assisted method that aimed to protect only the confidentiality of control flow of applications, in this study, we

develop a new approach for partitioning applications into security-sensitive code to be run in the trusted execution setting

and cleartext code to be run in the public cloud setting. Our approach leverages program transformation and TEE to hide

security-sensitive data of the code. We describe our proposed solution by combining the partitioning technique, program

transformation, and TEEs to protect the execution of security-sensitive data of applications. Some former works have shown

that most applications can run in their entirety inside trusted areas such as SGX enclaves, and that leads to a large Trusted

Computing Base (TCB). Instead, we analyze three case studies, in which we partition real Java applications and employ the

SGX enclave to protect the execution of sensitive statements, therefore reducing the TCB. We also showed the advantages

of the proposed solution and demonstrated how the confidentiality of security-sensitive data is protected.

Keywords: Cloud Computing, Confidentiality, Program Partitioning, Program Transformation, Program

Analysis, Sensitive data, Trusted Execution Environment TEE, Intel SGX.

Introduction

Applications have grown enormously in the public cloud, the

total number of applications developed over the cloud has

raised intensely over the past few years. However, the

security problems that threaten the public cloud are very

serious. This threat poses a significant risk to application

security in the public cloud. This also has a major impact on

application security and privacy [1]. In general, the user’s
application is required to be uploaded to and performed on

the public cloud. However, public clouds are not as enough

protected as users imagine. Security violation incidents and

vulnerabilities found by researchers [2, 3, 5] appear most

commonly. As a result, this can lead to violations of the

confidentiality and integrity of security-sensitive data.

Revealed incidents including the loss of confidentiality or

integrity of data [8, 13] increase these concerns. Under such

a circumstance, a key solution to protect cloud users’
program confidentiality and integrity in the public cloud

setting is required. One of the most important parts of the

program is to protect the confidentiality of its sensitive data,

__

 *Correspondence: ywang@park.edu

2Park University, Parkville, MO, USA

Full list of authors’ information is available at the end of the article.

which determines the important component in the program

that must be protected its data against unintentional,

unlawful, or unauthorized access, disclosure, or theft.

To address this concern, server works such as [4, 6] have

utilized different Trusted Execution Environments (TEEs)

technologies to protect security-sensitive data in applica-

tions. In comparison to a cryptographic co-processor, the

TEEs are an execution environment from the rest of the

applications using the hardware abilities of the platform.

Moreover, TEEs protect their data from being accessed from

outside the TEEs. The code in TEE is known as a trusted

code while the other code is considered an untrusted code.

Even though TEE provides security guarantees against

strong attacks, few applications employ this technology. One

common approach to protect the confidentiality of the

security-sensitive data in the code is to annotate some

variables (sources) by the developer, which is considered to

be very helpful in protecting the confidentiality of the

program. Therefore, several studies have investigated

protecting data confidentiality in order to achieve a sufficient

program’s confidentiality protections. The sensitive data in
the program including the set of security-sensitive functions,

global variables, and local ones are a significant component

of the program that needs first to be protected. The work in

[7] aimed to extract the control flow and deploy it into a

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 2 of 24

trusted environment. Some other efforts on protecting

control flow and data flow confidentiality mainly leverage

program transformation or distributed architectures. The

results from the previous studies have limitations in the

aspect of security [7, 9, 51]. Therefore, current works in this

track either failed to grant high confidentiality guarantees or

incurred high-performance overheads. We claim that our

proposed solution is suitable for most TEEs. Despite all

those different technologies, we plan to implement the

proposed solution based on Intel’s Software Guard
eXtension (SGX) technology [10, 11] due to its novelty and

popularity in its field.

In this paper, we present and analyze our approach based

on a fresh direction for securing applications using trusted

execution technologies offered by modern CPUs such as

SGX. SGX provides a TEE, called an enclave, that protects

the integrity of the code and the confidentiality of the data

inside it from other software, including the operating system

and hypervisor. This paper provides a novel approach to

program partitioning for TEE-secured applications. It

describes the architecture of the proposed solution and the

different phases that lead to the partitioning. In general, our

approach can be used for partitioning critical Java

applications into security-sensitive code to be run in a trusted

execution environment and cleartext code to be run in the

public cloud setting. It uses a case study a binary search

application to validate the proposed solution. The results of

the experimental verification are shown using concrete

examples to show how the confidentiality of security-

sensitive data is protected.

Our goal in this paper is to propose a security solution that

is compatible with all TEE systems and applicable to most

Java applications. Our proposed solution analyzes,

partitions, and transforms existing Java applications for

deployment of the security-sensitive parts and performs the

necessary computations in a trusted area such as an SGX

enclave.

In general, our proposed solution goes through four main

stages as follows.

I. Data Annotation Stage. In this stage, a developer first

annotates interest variables in the source code of a Java

application that contains security-sensitive data and

whose confidentiality should be protected. In other

words, the developer provides information about the

sources (inputs) of sensitive data by annotating variables

whose values must be protected in terms of

confidentiality.

II. Data Analysis Stage. Based on the annotation stage, our

approach will use static program analysis to find data

and control dependencies on security-sensitive data. Our

approach will also use static forward slicing to observe

a sub-graph with all statements in the program

dependence graph (PDG) [12] on which statements in

source annotated contain a control and data dependence.

III. Program Partitioning Stage. Based on stages (1) and (2),

our solution will generate the partition details (PD) that

will define the set of security-sensitive functions and the

set of security-sensitive variables. It will also define

which part of the code must be placed inside the enclave

to protect the confidentiality of its data. PD will also

define the transformed program (untrusted code) that

will be performed in the public cloud while the sensitive

data will be transmitted to an SGX enclave.

IV. Code Generation Stage. In this stage, our solution will

demonstrate the computations of the security-sensitive

statements inside the enclave based on the output of PD.

Moreover, this stage shows how we will return data

from the enclave to the user environment. We also show

how our approach will react with the security-sensitive

and insensitive data that will be deployed to the trusted

and untrusted areas, respectively.

 Our contributions can be summarized as follows.

• We propose a general solution, that protects the

confidentiality of sensitive data on most user-level

programs that can be performed on TEE systems such as

SGX-supported CPU.

• We analyzed our proposed solution using concrete

examples to show how the confidentiality of security-

sensitive variables and functions is protected.

• In our case studies, we leverage the program analysis,

program partitioning, and SGX technology to hide only

the security-sensitive statements of Java code inside an

SGX enclave.

Paper Organization

The rest of this paper is organized as follows. In section 2,

we give a brief background on TEE systems, SGX

technology, and the trusted execution environment. Section

3 introduces the system design of this work. In Section 4, we

discuss three case studies that can be applied to our proposed

system. Section 5 describes the proposed implementation. In

Section 6, we compare the proposed system to the two most

related works in the field. Section 7 provides related work.

The last section concludes this paper and discusses future

work.

Background

Trusted execution environment (TEE)

There are hardware-based solutions such as Intel SGX, ARM

TrustZone [40], and software-only approaches, e.g., Virtual

Ghost [25] and SKEE [41]. Software-based approaches apply

compiler instrumentation or kernel deprivileging to isolate the

TEE memory from the kernel memory. TEE provides secure

execution of permitted software called Trusted Applications

(TAs). The TA is composed of TEE Commands that

cooperatively offer secure services to the TA’s clients;
meanwhile, it forces confidentiality, integrity and access rights

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 3 of 24

to the code, data, and resources. Each TA is isolated and

protected against illegitimate access from other TAs,

providing an ecosystem of application vendors.

TEE system such as ARM TrustZone technology offers a

system-wide security solution, partitioning the hardware and

software resources, therefore, they reside in one of two

scenarios, secure scenario for the security subsystem and

normal one for everything else. Several Android applications

utilize this technology because of the standardization’s lack.
This subject is addressed by Global Platform [42, 43] that

established the standard for managing applications on secure

chip technology and a set of specifications for the TEE system

architecture.

Intel SGX
Intel SGX grants developers to move their sensitive parts of

applications into a protected execution environment, called an

enclave, to protect the code confidentiality and data integrity.

Code and data of the enclave live in a protected memory

region (i.e., the enclave) page cache (EPC). Only the code of

application executing inside the enclave is authorized to access

the EPC. The confidentiality of enclave memory is secured by

transparent memory encryption achieved by the CPU. Enclave

calls (ecalls) can be used to enter an enclave and outside calls

(ocalls) can be used to call out of the enclave. Therefore, any

interaction between the enclave and the OS via system calls,

such as network, must execute outside of the enclave. SGX

supports local attestation mechanisms which allow an enclave

to prove to another enclave that it has a particular digest and

runs on the same processor. This privileged mechanism

enables the deployment of enclaves that support remote

attestation.

In Intel SGX, the size of the TCB contains the enclave code

and trusted hardware. Thus, only some portions of an

application that require access to sensitive data should be

implemented inside the enclave. Some studies [4, 31] have

resulted that increasing the code size leads to increasing the

number of software bugs. As a result, increasing potential

security vulnerabilities. To overcome this problem, it is

important to minimize the size of the TCB. However, some

factors impact the security of enclave data and code such as

the complexity of the enclave interface. For instance, the

security-sensitive code inside the enclave needs to interact

with the non-enclave environment to call or return some data

from/to the enclave.

The Security Model

The security objective is to protect the confidentiality of

sensitive statements in the untrusted area, preventing an

attacker from reading or modifying the stored sensitive data.

To this end, we assume the attackers are interested in obtaining

the sensitive data of the program uploaded by the user, i.e.,

compromising the data confidentiality. However, the attackers

are not interested in compromising computation integrity,

such as tampering with the computation results. For the

environment setting, we assume that the user’s zone is free of
attacks. However, the public cloud is untrusted. On the public

cloud, we assume the processors support SGX. Yet the

software stacks on the public cloud host, such as the

hypervisor and the OS, are untrusted.

To facilitate our description, we call the enclaves the trusted

area and call the software stacks on the public cloud the

untrusted area. The attackers can be outside attackers,

malicious and cloud vendor employees, or malicious users

who are co-hosted with benign cloud users. We do not have

special restrictions on the programs to be protected. As long

as the program itself does not reveal its sensitive data

intentionally (e.g., explicitly printing out the annotated data or

other sensitive information), our solution will work well.

System design

Architecture

The architecture of our proposed solution is shown in Fig. 1.
For the original Java program P that the user aims to perform
on the public cloud, our proposed solution must know which
data is security-sensitive in the code of P. Therefore,
developers are required to annotate at least one variable in
the program (stage 1 in Fig. 1) to provide cues to the
partitioning phase. Once the source(s) (variable(s)) are
marked in the program, our proposed solution will perform
static dataflow analysis (stage 2 in Fig. 1). Based on the
output of the dataflow analysis, the proposed solution will
use the PDG to performs forward slicing to isolate the
security-sensitive data from the code in the program, we call
this process the Partition Details (PD). PD defines which
part of the code must be protected by the enclave. In other
words, it will partition the original program P into a
transformed program PT and the Sensitive Extracted Data
Matrix (SEDM). The latter includes all security-sensitive
variables and functions (stage 3 in Fig. 1). After the
partitioning, PT will be uploaded to and performed in the
public cloud (i.e., non-enclave area). SEDM will be
transmitted to and executed in an SGX enclave. Notice that
the user necessarily needs to transmit the SEDM to the
enclave in an encrypted manner marked as E(SEDM). In the
enclave, we perform necessary computations for all security-
sensitive statements inside the enclave based on SEDM
(stage 4 in Fig. 1). We provide further discussion about each
stage in the following section.

System design

In this section, we present our proposed solution, a new
approach for securing applications using TEEs. This solution
is built upon hiding the security-sensitive data of
applications in terms of code confidentiality. Our approach
starts with static dataflow analysis supported by data
annotation. Then, we will classify the annotated statements
and capture a bunch of the statements that will generate a
secure partition to be deployed to an SGX enclave. For the

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 4 of 24

partitioning goal, we will define all the statements that
deliver confidential data from a certain variable to another
one in a given context across reachable paths. To this end, we
will apply static dataflow analysis and expand it to accurately
capture contextual information by annotating statements that
propagate variables from sources to sinks. We will follow
standard dataflow analysis algorithms in [44] and [45] to
capture sensitive information for a propagating variable
statement in a tag t < source, successor >, where the source
is an incoming security-sensitive variable (predecessor flow),
a successor is a security-sensitive variable propagating
further (successor flow). The four stages of the proposed
solution can be explained as follows.

Data annotation stage

In this stage, our proposed solution must know which

variables are security-sensitive in the program. In other

words, the developer should provide information about

the source(s) of security-sensitive data by annotating

variables whose values must be protected in terms of
confidentiality. These annotated variables are marked as SA.

To clearly understand how a developer marks security-

sensitive data in a program, we consider a piece of Java code

in Fig. 2. Only variable x at line 3 is annotated as a security-

sensitive variable, indicating that all the variables at line

6,9,11,16,20 and 21 become sensitive variables due to the

information flow from the annotated variable x to those

statements. Therefore, the annotated variable and all its

related security-sensitive statements must be stored and

executed inside a special SGX enclave.
Although there is information flow from variable z to c at

line 13, it is considered as normal data, because neither
variable z nor c has an interaction with the annotated variable
x. Meaning that variables z and c are cleartext. Thus, they
will be executed in the untrusted area including all other
statements that have no interactions with the annotated
variable.

1. public class AnotationEx {

2. public static void main(String args[]) {

3. @int x = 0; // Sensitive source – Marked by the developer
4. int y = 4;

5. int z= 2;

6. x = y + 3; // Sensitive statement – Marked by the algorithm
7. float total = (float) 0.0;

8. boolean flag;

9. if (x < y) // Sensitive statement – Marked by the algorithm
10. {
11. total += x; // Sensitive statement – Marked by the algorithm
12. flag = true;
13. return;
14. }
15. int c = z++;
16. int summation = Sum(x , y); // Sensitive statement – Marked by the algorithm
17. System.out.println("the summation of x and y is:" +summation);
18. }
19. public static int Sum(int x, int y) {// Sensitive – Marked by the algorithm
20. int sum= x+y; // Sensitive statement – Marked by the algorithm
21. return sum; // Sensitive statement – Marked by the algorithm
22. }

23. }

Fig. 2 The annotation process and sensitive information flow in a simple Java program.

Code
Annotation

@Sensitive Source

The original Program P

Data Flow Analysis
Forward
Slicing

Partition
Details
(PD)

Annotated Data

Transformed
Program PT

User’s Zone

E(SEDM)

PT

Sensitive
Extracted Data
Matrix (SEDM)

Partition Deployed

The SOOT Framework

E(SRDM)

Java Program (.java)

Enclave Area

Transformation process

PDG

Untrusted PT code

Public cloud area

User Environment
D(E(SRDM)) → SRDM

① Data Annotation Stage ② Data Analysis Stage ③ Program Partitioning Stage ④ Code Generation Stage

SEDM

Fig. 1 The Architecture of the proposed solution Engine

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 5 of 24

Data analysis stage

Based on the annotated source(s) code SA, our approach

will distinguish a part of the code that will be considered as

a sensitive statement from the one that is considered as
insensitive ones. Therefore, the data analysis stage will

identify all security-sensitive statements in the program that

possess dependencies on the set of all annotated statements

SA. The proposed solution will use static dataflow analysis to

examine all security-sensitive statements. Static dataflow

analysis is workload independent and therefore conservative

decisions must be made about dependencies.

To extract all security-sensitive variables in a Java code,

we will transform the original code into another

representation. Based on the standard approaches’ analysis,
we will also use the standard PDG. Where in the standard

PDG, vertices represent statements and edges are both data
and control dependencies between statements. Therefore, we

will use a partition technique mainly based on the graph

reachability problem over the PDG. PDGs are considered

efficient representations for program partitioning [46]. The

program slicing technique was instructed as a sequence of

dataflow analysis problems. Using a standard dataflow

analysis algorithm and the PDG, our approach will obtain

the set of all security-sensitive statements as follows.

Firstly, in term of Static dataflow analysis and by given SA

and PDG, our approach will use graph-reachability to

observe a subgraph PC of PDG which contains all statements
with a transitive control or data dependence on statements in

PDG (i.e., vertices reachable from statements in SA via edges

in PDG). For statements in SA that are annotated as security-

sensitive data in the program, our approach will use an

encryption method [47] to perform encryption on the

sensitive data before placing it inside the enclave (i.e.,

E(SEDM)), see Fig 3.

Secondly, given SA and PDG, our approach will use static

forward slicing to observe a subgraph PF with all statements

in PDG on which statements in SA contain a control /data

dependence (i.e., all vertices from which statements in SA are

reachable via PDG).
Thirdly, the set of all security-sensitive statements ST is

taken by combining PC and PF As a result, our proposed
solution constructs a new step, we call this step the partition
details PD.

Program partitioning stage

In this stage, we define which part of the code must be placed

inside the enclave to protect the confidentiality of data. Based

on static program analysis, we will define the code that will be

performed in the enclave. As a result, this will define the

enclave boundary interface of the sliced code which includes

ecall and ocall to the untrusted area. Our approach will

construct the partition details (PD) from ST with the set of
security-sensitive functions and variables, these sensitive data

will be stored in the SEDM in order to transmit them to the

enclave area in an encrypted manner. The PD contains all

statements’ functions and variables that include at least one

variable in ST. It also includes the transformed program PT.

Moreover, it provides a special function ecall to the non-

enclave code to retrieve these security-sensitive variables
when needed. Therefore, our proposed solution will generate

a tuple for each security-sensitive statement inside the SEDM,

marked as L(s).

In General, PD contains two main components; SEDM, which

will be deployed to the trusted area (i.e., the enclave), and the

transformed program PT that the user aims to execute on the

public cloud. The transformation will be achieved at the user’s
zone inside PD. In the whole process, the insensitive functions

and variables remain in the user’s zone or the untrusted area.
Only the security-sensitive statements in the program will be

transmitted to the enclave. As a result, this will create an

enclave boundary interface that will establish all security-
sensitive statements transmitted to enclave functions and

perform all necessary computations inside the enclave and

finally return the results outside the enclave (i.e., to the user

environment). In general, our proposed solution will check

each security-sensitive statement in the SEDM to know

whether the statement is a function call, expression statement,

or a control flow statement. In other words, we classify each

security-sensitive statement in the SEDM into one of the

following three types.

Expression statement. For this kind of statement, a tuple
will be created, recording some information about that

statement. This means, during the transformation

process, the proposed solution will replace each security-

sensitive expression statement in the program with bracket

(1), where bracket (1) includes two functions, i) the

stmtextract() function and ii) the stmtreturn() function. The
function stmtextract() will be used to extract all variables from
each sensitive expression statement in the program and store
them in the SEDM. For each statement in the stmtextract(), a
tuple will be created, called L(stmt) represented by the
bracket (2), records the statement id stmtid that will be used
to pick up the proper statement during the execution of the
program inside the enclave, statement type sttype that will be
used to determine the type of statement (either expression or
control flow statement), variable type vartype that determines
the data type of each variable in the security-sensitive
statement based on its index in Table 1, the left operand
leftop, the right operand rightop, and the operator of the
statement stmtop. The tuple L(stmt) can be seen in bracket
(2).

< 𝑠𝑡𝑚𝑡𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝐿(𝑠𝑡𝑚𝑡),𝑠𝑡𝑚𝑡𝑖𝑑), 𝑠𝑡𝑚𝑡𝑟𝑒𝑡𝑢𝑟𝑛(𝐿(𝑒𝑛𝑐𝑠𝑡𝑚𝑡),𝑠𝑡𝑚𝑡𝑖𝑑)> (1)

In Table 1, we assume different encoding for each primitive
data type in Java (i.e., byte, short, int, long, float, double,
boolean, char), plus the object type. After that, we indexed
all the data types starting with ‘00’ until ‘08’. Similarly, these
indexes can be used to determine the data type of the returned
value by a Java method, for instance, the ‘09’ index can be
used when the method does not return a value. In our solution,
for each boolean type, we will convert true and false to 1 and

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 6 of 24

Table 1 Primitive data types indexes

Data type 𝑖𝑛𝑡 𝑑𝑜𝑢𝑏𝑙𝑒 𝑓𝑙𝑜𝑎𝑡 𝑙𝑜𝑛𝑔 𝑏𝑦𝑡𝑒 𝑠ℎ𝑜𝑟𝑡 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑐ℎ𝑎𝑟 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑜𝑖𝑑

Index 00 01 02 03 04 05 06 07 08 09

0, respectively. We will also use the hash code (an integer
value) to represent each object type. The function stmtreturn()
will be used to retrieve the return values of each statement
that will be computed inside the enclave based on our scheme
in Fig 4. For each statement inside the enclave, there will be
return values; those return values will be generated based on
the switch-case statement code in each function (i.e., stmtexp
function and stmtcf function inside the enclave). A special
function will be executed inside the enclave. The idea of the
special function is as follows. Based on the statement id
stmtid and statement type stmttype, it will look up the SEDM,
identifying the proper tuple and choose the required
variables from L(s) based on the variable type vartype and its
index in Table 1, and then return the evaluation result of a
certain statement to the user environment (see Fig 3). Based
on bracket (1) and bracket (2), the proposed solution will
store the sensitive statements of the simple code listed in Fig
2. Table 2 shows the stored sensitive statements of the simple
program. The first column in Table 2 represents the statement
id that will be generated sequentially for each security-
sensitive statement in Fig 2; this means, we will generate a
sequence unique number for each security-sensitive
statement. The second column represents statement type; for
each security-sensitive statement, we use 0 and 1 to assign
the expression statement and the control flow statement,
respectively. For instance, the statement at line 9 in Fig 2 is
a control flow statement, thus we will encode it with 1 as it
is shown in Table 2, where the other statements in Fig 2 are
expression statements, thus we encode them all with 0. The
third column represents the variable type vartype which stores
the data type of each statement; therefore, we pick up the
proper data type from Table 1 based on its definition in Fig
2. The fourth and fifth columns represent the left and right
operand for each security-sensitive statement in Fig.2,
respectively.

< 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑣𝑎𝑟𝑡𝑦𝑝𝑒 , 𝑙𝑒𝑓𝑡𝑜𝑝, 𝑟𝑖𝑔ℎ𝑡𝑜𝑝, 𝑠𝑡𝑚𝑡𝑜𝑝 > (2)

Notice that if the value of the left or the right operand is

constant, we will store the actual value in the tuple, otherwise,

we will retrieve its position from the corresponding array that

will be generated inside the enclave (see Table 5). The last

column in Table 2 stores the actual operator of each security-

sensitive statement in Fig 2. Table 2 shows all security-

sensitive statements in Fig 2, where the stmtid(0), stmtid(1),
stmtid(2), stmtid(3), stmtid(4), stmtid(5), stmtid(6), represent

lines 3,4,6,7,9, 11 and 14, respectively.

Control flow statement: For this kind of statement, we will

apply the same solution that will be used in the expression

statements above. The control flow statement differs from

the expression statement in that the value is stored in the

statement type, where 1 and 0 indicate a control flow

statement and the expression statement, respectively.

Function call statement: In our proposed solution, we
consider a function in a Java program as a security-sensitive
function if its body or its definitions contain at least one
statement in ST. In other words, any function that its body or
its definitions contain a statement related to the annotated
variable(s), will be considered as a sensitive function. For
each sensitive function, we replace the sensitive function in
a Java application with the bracket (3). Note that the function
call statement differs from the expression statement and
control flow statement in that the stored value in the
statement type parameter. Where 2 indicates a function call
statement, 0 and 1 indicate the expression statement and
control flow statement, respectively.

Where the function funextract() in bracket (3) will be used to
extract the statement based on the fun(list) and funid. Note
that the 𝑓𝑢𝑛(𝑙𝑖𝑠𝑡) is nothing but bracket (4). The tuple in
bracket (4) records the statement id (stmtid) which defines a

Table 2 The sensitive expression statements and control flow statements of Fig.2 inside the 𝑆𝐸𝐷𝑀. 𝑠𝑡𝑚𝑡𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑣𝑎𝑟𝑡𝑦𝑝𝑒 𝑙𝑒𝑓𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡𝑜𝑝 𝑠𝑡𝑚𝑡𝑜𝑝

0 00 00 00 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙
1 00 00 4 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙
2 00 0 01 3 +

3 00 2 00 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙
4 01 𝑛𝑢𝑙𝑙 00 01 <

5 00 2 20 00 +

6 00 2 20 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 7 of 24

unique Identifier for each security-sensitive statement, the
statement type (stmttype) which indicates the current
statement type, the function id (funid) states a function
modifier (funmodifire) defines the access type of unique
Identifier for each security-sensitive function, the
application), the function name (funname) which returns the
string name function, the function type (fuctype) which returns
the return type of the function, and finally the Parameter list
(parm(list[])) which stores the list of the input parameters,
preceded with their data types from the sensitive function
and list them in a data matrix as is shown in bracket (4) (i.e.,
from which it can be accessed in Java). < 𝑓𝑢𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑓𝑢𝑛(𝑙𝑖𝑠𝑡),𝑓𝑢𝑛𝑖𝑑) > (3)

In our solution, we will index the access modifiers parameter

(funmodifire) for each sensitive method based on its access

modifier in Table 3 and store the index in the enclave. The

function fun (return ()) in bracket (5) will be used to read the

return values that will be generated inside the enclave for
each security-sensitive function based on its statement id and

its function id. Note that, the list of the return value will be

created inside the enclave. For each return value, a tuple will

be created in the Sensitive Returned Data Matrix (SRDM)

which can be used to store the returned values from the

enclave to the user environment. 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒, 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒, 𝑓𝑢𝑛𝑛𝑎𝑚𝑒, 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 , 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] (4)

Meanwhile, we will encrypt the data matrix E(SRDM) before
we send it to the user environment. In the user environment,
we will decrypt the received data matrix D(E(SRDM)) during
program execution and pick a proper value for each function
based on its statement id and function id in the given tuple in
the bracket (6). < 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 (𝑓𝑢𝑛(𝑒𝑛𝑐𝑟𝑒𝑡𝑢𝑟𝑛)), 𝑓𝑢𝑛𝑖𝑑 > (5)

Table 3 records the return id (retid), the statement id (stmtid),
the statement type (stmttype), function id (funid), and

Table 3 The indexes of the access modifiers that will be used in our proposed
solution.

Public Protected Private Default

0 1 2 3

the return value of the function (funreturn). For the security-
sensitive function in the example in Fig 2, we replace line 16
with bracket (3). Where the function fun(extract()) in bracket (3)
will be used to extract all information from the target
function based on fun(list) (i.e., bracket (4)) and funid and
then list all the information in SEDM. The function funreturn()
in the bracket (5) will be used to read the return values that
will be generated inside the enclave for each security-
sensitive function based on its statement id, statement type,
and function id. Note that, the list of the return value will be
created inside the enclave. For each return value, a tuple will
be created in the Sensitive Returned Data Matrix (SRDM)
which can be used to store the returned values from the
enclave to the user environment. At that time, we will
encrypt the data matrix E(SRDM) before we send it to the
user environment. In the user environment, we will decrypt
the received data matrix D(E(SRDM)) during program
execution and pick a proper value for each function based on
its statement id, statement type and function id in the given
tuple in the bracket (6). Table 4 shows how our proposed
solution will store the actual values of the sensitive method
at line 16 in Fig 2 in the enclave based on bracket (4). < 𝑟𝑒𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 > (6)

Code generation stage

The code generation stage demonstrates the whole
computations of the security-sensitive statements inside the
enclave based on the Sensitive Extracted Data Matrix
(SEDM). Moreover, it illustrates the return values that will
be transmitted from the enclave to the user environment as is
shown in Fig 3. Fig 3 demonstrates the execution process of
the security-sensitive and insensitive statements of the
program in Fig 2. After the partitioning process, we obtain

Fig. 3 The partitioned statements of the Java program in Fig. 2 and their execution process inside the enclave

Partition process

E(sum)

The Transformed Program PT <untrusted area>

int z = 2;
boolean flag;
flag = true;
int c = z++;

The sliced code <the sensitive statements in the trusted area>
int x = 0;
int y = 4;
x = y + 3;
float total = 0.0;
if (x < y)
total += x;
int summation
int sum
return sum

User Environment
D(E(sum)) → sum → 11

The Original Program P

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 8 of 24

Table 4 Storing the actual values of the method sum at line 16 in Fig.2 inside the enclave.

𝑠𝑡𝑚𝑡𝑖𝑑 𝑓𝑢𝑛𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑓𝑢𝑛𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[]
7 0 02 0 "Sum" 0 [𝑥, 𝑦] → [7,4]

Table 5 The actual values of the program in Fig.2 inside the enclave.

two partitions, the sensitive one on the left side of Fig.3
which includes all security-sensitive variables and functions;
and the insensitive part on the right side of Fig 3 which
contains all cleartext statements. The statements in the
sensitive part will be transmitted to the enclave, where the
insensitive ones will be transmitted to the untrusted area.
After performing all the necessary computations inside the
enclave based on the scheme in Fig 4, the return values will
be encrypted inside the enclave using a proper encryption
method and returned value to the user environment. We
assume that the user environment is a secured area, therefore,
we will decrypt the return values in the user environment
using a corresponding decryption method to ensure that the
returned value will be accessed only by a trusted user and
thus cannot be leaked out to the attacker. As it is illustrated
in Fig 3, the return value is the function” sum”, thus, this

value will be encrypted E(sum) inside the enclave and then
transmitted to the user environment in an encrypted manner.

In the user environment, the return value will be decrypted

D(E(sum)) using the same encryption method that is used

inside the enclave. The main design scheme of our proposed
solution inside the enclave is shown in Fig 4. We define an

interface to create several arrays, where each array contains

values with the same type and different arrays have different

types as is shown in Table 5. We use these arrays to store the
actual values of sensitive variables, thus, we only store their
positions in the tuples instead of storing the actual values and
that is because we aim to secure the actual variables inside
the enclave. Therefore, we can read the actual sensitive
values using their positions in each matching array. In our
scheme, we read these arrays’ positions to obtain the actual
values of each sensitive value and then perform necessary
computations on it. In Fig 4, we show how we will compute

Sequence Data type Position-0 Position -1 Position -2 Position -3

0 int 0 4 11 …

1 double …

2 long …

Fig. 4 The scheme of the process execution sequence inside the enclave.

E(SRDM)

The encrypted data matrix E (SRDM) for return values

Sensitive Extracted Data Matrix (SEDM) for (stmtextract)
 < 2, 00,0, 01,3," + " > // for Exp_statement at line 6 in Fig.2 – based on bracket 2 < 3,01, null, 00,01,"<" > // for CF_statement at line 9 in Fig.2 - based on bracket 2 < 7,02,0, 0, "sum", 01,[x,y] > // for Exp _statement at line 19 in Fig.2 - based on bracket 4

Boolean main_stmtFn (stmt_type)
switch (stmt_type) {
 Case 1:

 𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id);

 Case 2:

 𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id);

 Case 3:

 𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id);

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id)

 return "sum", 01, [𝑥, 𝑦] Boolean 𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id)

 return sen_list[7] > sen_list[4];

Enclave area

Sensitive Returned Data Matrix (SRDM) for (stmtreturn)
 < 0, 2, 00, 7 > // return value of Exp_statement at line 6 in Fig.2 < 1, 3, 01, 𝑓𝑎𝑙𝑠𝑒 > // return value of CF_statement (at line 9 in Fig.2 < 3, 7,02,0,[7,4] > // return value of Exp_statement at line 19 in Fig.2

User Environment

The returned values
D(E(SRDM)) → SRDM

𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id)

 return sen_list[4] + sen_list[3];

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 9 of 24

lines 6, 9 and 19 in Fig 2. Moreover, we explore how we
achieve the return values for each. Thus, for each executed
statement inside the enclave, the return value will be
generated and sent back to the user environment. < 𝑟𝑒𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑠𝑡𝑚𝑡𝑟𝑒𝑡 > (7)

We use the switch-case statement inside the enclave to

determine which type of the statement will be executed

based on the statement type stmttype (i.e., either expression

statement, control flow statement or a function call

statement). After each execution, a tuple will be created in

(SRDM) based on bracket (7) for expression and control

flow statements, bracket (6) for function call statements,
those tuples will be used to store the returned values of each

executed statement. The SRDM will be signed and

encrypted inside the enclave and sent to the user

environment E(SRDM) (see Fig 4).

In the user environment, we will handle the corresponding

decryption operations. Thus, we decrypt the received data

matrix (i.e., D(E(SRDM)) in the user environment and pick

the proper return value for each statement based on the

statement id and statement type in the given matrix (SRDM).

Notice that both the user environment and enclave use the

same encryption method mentioned above. The tuple in

bracket (7) records the return id retid, the statement id

(stmtid), statement type stmttype, and the return value stmtret of

each expression and control flow returned statement. In our

scheme in Fig 4, we define three functions, one for executing

function call statements, referred to as funcall, for executing

the expression statement, referred to as stmtexp and the other

one for executing control flow statements referred to as

stmtcf. Based on the statement type stmttype, the three
functions can be invoked from a special function in the
enclave, called mainstmtFn. The difference between the

function stmtexp and the function stmtcf() is that in the function
stmtexp() we acquire return values that will be returned to the
user environment in an encrypted manner, called E(SRDM),
where the function stmtcf() ” returns a boolean value (either
true or false) to determine whether the condition of the
control flow statement is executed successfully. In the user
environment, we will use the stmtreturn function in bracket (1)
with its tuple in bracket (7) to retrieve the return values of
stmtcf and stmtexp functions from E(SRDM). Similarly, we
will use the funreturn function in bracket (5) with its tuple in
bracket (6) to retrieve the return values of the funcall function
from E(SRDM).

Case study

In this section, we analyze our approach and show its

experimental verification by applying it to three real java

applications, Binary Search application, Bubble Sort

application, and QuickSort application as follows.

Binary Search Application

The binary search application in Fig 5 is a real java
application which is a search algorithm that finds the position
of a target value within a sorted array.

Data annotation

In this section, we assume the search key at line 19 in Fig 5
is a security-sensitive variable, all other statements that
interact with the variable key are security-sensitive
statements. Thus, the annotation process at line 19 in Fig 5
marks the content of the variable key as security-sensitive
data. Note that the statements in the function binarysearch()
at lines 4,5,6,7,9,10, and 12 are become security-sensitive
statements due to the information flow.

1: class BinarySearch{

2: public static int binarySearch(int arrBS[], int low, int high, int key)

3: {

4: if (high >= low) {

5: int mid = low + (high - low)/2;

6: if (arrBS [mid] == key) {

7: return mid;

8: }

9: if (arrBS [mid] > key) {

10: return binarySearch (arrBS, low, mid-1, key);

11: } else {

12: return binarySearch (arrBS, mid+1, high, key);

13: }

14: }

15: return -1;

16: }

17: public static void main (String args[]) {

18: int arrBS[] = {3, 5, 6, 8, 11, 12, 14, 15, 17, 18};

19: @int key = 8; // Sensitive source – Marked by the developer
20: int last=arrBS.length-1;

21: int result = binarySearch(arrBS,0, last, key);

22: if (result == -1)

23: System.out.println("Element is not exist!");

24: else

25: System.out.println("Element is found at index: "+result);

26: }

27: }

 Fig. 5 The Original Binary Search Application.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 10 of 24

1: class BinarySearch {

2: public static int binarySearch(int arrBS[], int low, int high, int key)

3: {

4: if (high >= low) {

5: int mid = low + (high - low)/2;

6: if (arrBS [mid] == key) {

7: return mid;

8: }

9: if (arrBS [mid] > key) {

10: return binarySearch (arrBS, low, mid-1, key);
11: } else {
12: return binarySearch (arrBS, mid+1, high, key);
13: }
14: }
15: return -1;
16: }
17: public static void main (String args[]) {
18: int arrBS[] = {3, 5, 6, 8, 11, 12, 14, 15, 17, 18};
19: @int key = 8;
20: int last=arrBS.length-1;
21: int result = binarySearch(arrBS,0, last, key);
22: if (result == -1)
23: System.out.println("Element is not exist!");
24: else
25: System.out.println("Element is found at index: "+result);
26: }
27: }

 Fig. 6 The Partitioned Binary Search Application.

Dataflow analysis

Next, our proposed solution must recognize the annotation
variable(s) and PDG. In general, two main steps will be
performed as follows.
1. Static dataflow analysis

For analyzing and extracting security-sensitive variables in
Fig 5, we will follow standard dataflow analysis algorithms
to capture all the sensitive information based on the
annotated variable(s) in the program.
2. Static forward slicing

Then, we perform forward slicing to find a subgraph with all
statements in PDG on which statements in the variable key
(i.e., the annotated variable) have a control and data
dependence. As it is shown in Fig 6, the sliced statements are
highlighted in yellow colour, while the cleartext ones are
highlighted in yellow. We consider the highlighted
statements in yellow as sensitive statements, while the ones
in yellow are cleartext statements. Fig 5 and Fig 6 illustrate
the original binary search and the partitioned one,
respectively.

Program partitioning and transformation

In this part, we show how our proposed solution will store
sensitive variables that will be trans-mitted to the enclave
and the rest of the code that will be deployed to the untrusted
area. After performing partitioning on the binary search
application, we will perform a transformation process on the

code and we target the partitioned part in particular. For each

expression statement and control flow statement in the

partitioned part, we replace it with bracket (1) to extract all

the security-sensitive variables. For the function call

statement, we replace it with bracket (3) to extract all the

security-sensitive information. As a result, we store all the

security-sensitive variables based on bracket (1) and bracket

(3) in the SEDM. Based on the previous two stages (i.e., data

annotation and dataflow), our proposed solution will

construct the partition details (PD) which contain security-

sensitive variables and insensitive ones. Therefore, we will

use the function stmtextract() to extract all variables from each

security-sensitive statement in the partitioned part and store

them in the SEDM based on bracket (2).

Meanwhile, we will store the security-sensitive functions in
the SEDM by extracting their data using bracket 3(3). Table
6 shows how the security-sensitive statements (the
expression statements and control flow statements) in Fig 6
will be stored in the SEDM. Each statement id in Table 6
represents a single sensitive statement in the partitioned code.
It also shows all the executed statements of the partitioned
code in Fig 6. The stmtid(0), stmtid(1), stmtid(2), stmtid(3),
stmtid(4), and stmtid(5) record the expression statement at line
19, the control flow statement at line 4, the expression
statements at line 5, the control flow statement at line 6, the
expression statements at line 7, and the control flow
statement at line 9, respectively. Table 7 shows the
information of the binarySearch function in the SEDM.

Code generation

In this section, we show statements’ computations of the
binary search application that will be executed inside and
outside the enclave. As aforementioned in the program
partitioning stage, the security-sensitive data will be sent to

Sliced statements (sensitive statements). Cleartext statements.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 11 of 24

Table 6 The sensitive variables of binary search application inside the 𝑆𝐸𝐷𝑀.

𝑠𝑡𝑚𝑡𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑣𝑎𝑟𝑡𝑦𝑝𝑒 𝑙𝑒𝑓𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡𝑜𝑝 𝑠𝑡𝑚𝑡𝑜𝑝

0 00 0 8 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙

1 10 𝑛𝑢𝑙𝑙 01 00 > =

2 00 0 02 4 𝑛𝑢𝑙𝑙
3 10 𝑛𝑢𝑙𝑙 03 00 = =

4 00 0 02 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙
5 10 𝑛𝑢𝑙𝑙 02 3 >

Table 7 Storing the actual values of the binarySearch method at line 21 in Fig. 6 inside the 𝑆𝐸𝐷𝑀.

𝑠𝑡𝑚𝑡𝑖𝑑 𝑓𝑢𝑛𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑓𝑢𝑛𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[]
6 0 02 0 "binarySearch" 0 [𝑎𝑟𝑟𝐵𝑆, 0, 𝑙𝑎𝑠𝑡, 𝑘𝑒𝑦] → [{3, 5, 6, 8, 11, 12, 14, 15, 17, 18},0,18,8]

the enclave side in an encrypted manner (i.e., E(SEDM)).
Once the enclave receives the E(SEDM) and verifies the
execution environment, it will be able to decrypt
D(E(SEDM)) using a corresponding decryption method.
Following our security model scheme in Fig 4, we will define
an interface in the enclave that will generate several arrays,
where each array contains values with the same type and
different arrays have different types (see Table 8). For
expression and control flow statements, we use these arrays
to store actual values of each variable coming from (3) (1)
and 2 in the partitioned code, and bracket (3) and bracket (4)
for the functions call statements; next, we will store their
positions in tuples instead of storing their actual values. As a
result, we will pick up the actual variables using their
positions in each array. Table 8 shows that we only have
integer values in the binary search application, therefore, all
the values will be stored in the integer array (i.e., in sequence
0, first row). In Table 9, Position−0, Position−1, and
Position−2 store variables low, high, and mid, respectively.
Whereas Position-3 stores the value of the variable key. The
positions of the first three variables will keep on updating
until we find the required index of the search key element as
it appears in Table 9. Table 9 demonstrates the actual values
of low, high and mid variables according to their execution
sequence inside the enclave.

Eventually, we return the last row in Table 9 to the user
environment. To do so, we define three functions inside the
enclave (see Fig 4). Based on the statement type stmttype, both
functions stmtexp() and stmtcf() will be invoked from the main
function mainstmtFn() and return the proper results. We
compute all security-sensitive expression statements and
control flow statements in functions stmtexp() and stmtcf(),
respectively. After performing the necessary computations,
we will return all security-sensitive variables to the user
environment. In the user environment, we will use the
function stmtreturn() in bracket (1) with its tuple in bracket (7)
to retrieve all expression and control flow values from
E(SRDM). Meanwhile, we will use the funreturn() function in

bracket (5) with its tuple in bracket (6) to retrieve the
function call values from E(SRDM). Fig 8 shows how the
proposed solution will hide the security-sensitive function
(i.e., the binarySearch method at line 2 and line 21 in Fig 6).
Fig 7 shows the three-address code of the security-sensitive
method at line 2 in Fig 6 that will be transformed into a new
form (i.e., Jimple form). where r0 in Fig 7 refers to the
elements of the array arrBS[] in Fig 6; i0, i1, and i2 refer to
int low, int high, and int key, respectively. The function
statement at line 21 will be transformed into a Jimple form
as follows:
(i2=staticinvoke<BSClass:intbinarySearch

(int[],int,int,int)>(r1, 0, i1, b0);).

The above transformation includes the variable result and the
function call of the binarySearch method at line 21. For the
security-sensitive function in the binary search application,
we replace it with the bracket (3). Where the function
funextract() in bracket (3) will be used to extract fun(list) based
on funid. Notice that the fun(list) is the bracket (4) which
contains the statement id stmtid, the statement type stmttype,
the function id funid, the function modifier funmodifire, the
function name funname, the function type fuctype, and finally
the parameter list parmlist[] to list them all in a data matrix.
These values will be placed inside the enclave as it is shown
in Table 7. The function funreturn() in the bracket (5) will be
used to read the return values that will be generated inside
the enclave for each security-sensitive function based on its
statement id and function id. Note that, the list of the return
value will be created inside the enclave. For each return value,
a tuple will be created in the Sensitive Returned Data Matrix
SRDM which will be used to store the returned values from
the enclave to the user environment. At that time, we will
encrypt the data matrix E(SRDM) before transmitting it to
the user environment. In the user environment, we will
decrypt the received data matrix D(E(SRDM)) during
program execution and pick a proper value for each function
based on its statement id and function id in the given tuple in

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 12 of 24

Table 8 The Actual values of the binary search application inside the enclave.

Sequence Data type Position-0 Position -1 Position -2 Position -3

0 int 0 9 4 8

1 double …

2 float …

3 long …

Table 9 The execution sequence of low, high, mid, and key variables inside the enclave.

Statement Execution sequence Low High Mid Key

1 0 9 4 -

2 0 3 1 -

3 2 3 2 -

4 3 3 3 8

1. public static int binarySearch(int[], int, int, int)

2. {

4. int[] r0;

5. int i0, i1, i2, i3, $i4, $i5, $i6, $i7, $i8, $i9, $i10, $i11;

6. r0 := @parameter0: int[];

7. i0 := @parameter1: int;

8. i1 := @parameter2: int;

9. i2 := @parameter3: int;

 Fig. 7 The 3-address code of the sensitive method at line 2 in Fig. 6.

Sensitive Returned Data Matrix (SRDM) for (funreturn) < 0,02, 0, 0,8, > // return the function < 𝑟𝑒𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 >

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id)
 {
 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 𝑓𝑢𝑐𝑛𝑎𝑚𝑒 (𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[])
 }

E(SRDM)

User Environment side

The returned data matrix
D(E(SRDM)) → SRDM

Sensitive Extracted Data Matrix (SEDM) for (funexp) < 0, 02,0, 3, "binarySearch" , 00, 𝑟0, > // for binarySearch function < 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒, 𝑓𝑢𝑛𝑛𝑎𝑚𝑒, 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 , 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] >

Fig. 8 The process execution sequence of the binary search functions inside and outside the enclave.

Enclave side

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 13 of 24

the bracket (6). The tuple in bracket (6) records the return id

retid, the statement id stmtid, the statement type stmttype,
function id funid, and the return value of the function funreturn.
This tuple will be used to retrieve all the security-sensitive
functions in the program to the user environment.

Bubble sort application

The bubble sort application in Fig 9 is a real java application
that is considered as the simplest sorting algorithm that
works by repeatedly swapping the adjacent elements if they
are in the wrong order.

Data annotation

In this subsection, we assume the array arr[] at line 21 in Fig
9 is a security-sensitive statement, all other statements that
interact with the array arr[] are security-sensitive statement
Thus, the annotation process at line 21 in Fig 9 marks the
content of the array arr[]is security-sensitive data. Note that
the statements in the function bubbleSort() at lines 2, 3, 4, 5,
and 8 are become security-sensitive statements due to the
information flow from the annotated statement.

Data flow analysis

Next, our proposed solution must recognize the annotation
statement(s) and PDG. In general, two main steps will be
performed for this purpose as follows.
1- Static dataflow analysis

For analyzing and extracting the security-sensitive statement
in Fig 9, we will follow the standard dataflow analysis
algorithm mentioned in the first case study to capture all
sensitive information.

2- Static forward slicing

The binary search application in Fig 5 is a real java
application which is a search algorithm that finds the position
of a target value within a sorted array.
As aforementioned in the program partitioning stage, we
perform forward slicing to find a subgraph with all
statements in PDG on which statements in the annotated
variable have a control and data dependence. As it is shown
in Fig 10, the sliced statements are highlighted in yellow,
while the cleartext ones are highlighted in yellow. We
consider the highlighted statements in yellow as sensitive
statements, while the ones in yellow are cleartext statements.
Fig 9 and Fig 10 illustrate the original bubble sort and the
partitioned one, respectively.

Program partitioning and transformation

In this part, we show how our proposed solution will store
sensitive statements that will be transmitted to the enclave
and the rest of the code that will be deployed to the untrusted
area. After performing the partitioning task on the bubble
sort application, we will perform a trans formation process
on the code and we target the partitioned part in particular.
For each expression statement and control flow statement in
the partitioned part, we replace it with bracket (1) to extract
all the security-sensitive variables. For the function call
statement, we replace it with bracket (3) to extract all the
security-sensitive functions. As a result, we store all the
security-sensitive statements based on bracket (1) and
bracket (3) in the SEDM. Based on the two first stages (i.e.,
data annotation and dataflow), our proposed solution will
construct the partition details (PD) which contains security-
sensitive variables and insensitive ones.

1: public class BubbleSort{

2: void bubbleSort(int arr[]) {

3: int n = arr.length;

4: for (int i = 0; i < n-1; i++)

5: for (int j = 0; j < n-i-1; j++)

6: if (arr[j] > arr[j+1])

7: {
8: int temp = arr[j];

9: arr[j] = arr[j+1];

10: arr[j+1] = temp;
11: }
12: }
13: void printArray(int arr[]) {
14: int n = arr.length;
15: for (int i=0; i<n; ++i)
16: System.out.print(arr[i] + " ");
17: System.out.println();
18: }
19: public static void main(String args[]) {
20: BubbleSort ob = new BubbleSort();
21: *int arr[] = {64, 34, 25, 12, 22, 11, 90};
22: ob.bubbleSort(arr);
23: System.out.println("Sorted array");
24: ob.printArray(arr);
25: }
26: }

Fig. 9 The Original Bubble Sort Application.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 14 of 24

1: public class BubbleSort{

2: void bubbleSort(int arr[]){

3: int n = arr.length;

4: for (int i = 0; i < n-1; i++)

5: for (int j = 0; j < n-i-1; j++)

6: if (arr[j] > arr[j+1])

7: {
8: int temp = arr[j];

9: arr[j] = arr[j+1];

10: arr[j+1] = temp;
11: }
12: }
13: void printArray(int arr[]) {
14: int n = arr.length;
15: for (int i=0; i<n; ++i)
16: System.out.print(arr[i] + " ");
17: System.out.println();
18: }
19: public static void main(String args[]) {
20: BubbleSort ob = new BubbleSort();
21: *int arr[] = {64, 34, 25, 12, 22, 11, 90};
22: ob.bubbleSort(arr);
23: System.out.println("Sorted array");
24: ob.printArray(arr);
25: }
26: }

Fig. 10 The Partitioned Bubble Sort Application.

Table 10 The security-sensitive variables of the bubble sort application inside the 𝑆𝐸𝐷𝑀. 𝑠𝑡𝑚𝑡𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑣𝑎𝑟𝑡𝑦𝑝𝑒 𝑙𝑒𝑓𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡𝑜𝑝 𝑠𝑡𝑚𝑡𝑜𝑝

0 00 0 7 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙

1 01 𝑛𝑢𝑙𝑙 0 6 <

2 01 𝑛𝑢𝑙𝑙 0 7 <

3 01 𝑛𝑢𝑙𝑙 6 6 >

4 00 0 0 34 𝑛𝑢𝑙𝑙

Therefore, we will use the function stmtextract() to extract all

variables from each security-sensitive statement in the

partitioned part and store them in the SEDM based on

bracket (2). Meanwhile, we will store the security-sensitive
functions in the SEDM by extracting their data using bracket
(3). Table 10 shows how the security-sensitive statements
(the expression statements and control flow statements) in
Fig 9 will be stored in the SEDM. Each statement id in Table
10 represents a single sensitive statement in the partitioned
code. It also shows all the executed statements of the
partitioned code in Fig 9. The stmtid(0), stmtid(1), stmtid(2),
stmtid(3), stmtid(4) record the expression statement at line 3,
the control flow statement at line 4, the control flow
statement at line 5, and the control flow statement at line 6,
the expression statement at line 8, respectively. Table 10
shows the information on the bubbleSort function in the
SEDM.

Code generation

In this section, we show statements’ computations of the
bubble sort application that will be executed inside and
outside the enclave. As aforementioned in the program
partitioning stage, the sensitive data will be transmitted to the
enclave side in an encrypted manner (i.e., E(SEDM)). Once
the enclave receives the E(SEDM) and verifies the execution
environment, it will be able to decrypt D(E(SEDM)) using a
corresponding decryption method. Under our security model
scheme in Fig 4, we will define an interface in the enclave
that will generate several arrays, where each array contains
values with the same type and different arrays have different
types. For expression and control flow statements, we use
these arrays to store actual values of each variable coming
from bracket (1) and bracket (2) in the partitioned code, and
bracket (3) and bracket (4) for the functions call statements;

Sliced statements (sensitive statements). Cleartext statements.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 15 of 24

Table 11 Storing the actual values of the bubbleSort method at line 21 in Fig. 10 inside the 𝑆𝐸𝐷𝑀. 𝑠𝑡𝑚𝑡𝑖𝑑 𝑓𝑢𝑛𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑓𝑢𝑛𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[]
5 0 02 0 "bubbleSort" 0 [𝑎𝑟𝑟] → [11,12,22,25,34,64,90] // *sorted array

1: public static void main(java.lang.String[])

2: {

3: java.lang.String[] r0;

4: testbubblesort.BubbleSort $r1, r2;

5: int[] r3, $r4;

6: java.io.PrintStream $r5;

7: r0 := @parameter0: java.lang.String[];

8: $r1 = new testbubblesort.BubbleSort;

9: specialinvoke $r1.<testbubblesort.BubbleSort: void <init>()>();

10: r2 = $r1;
11: $r4 = newarray (int)[7];
12: $r4[0] = 64;
13: $r4[1] = 34;
14: $r4[2] = 25;
15: $r4[3] = 12;
16: $r4[4] = 22;
17: $r4[5] = 11;
18: $r4[6] = 90;
19: r3 = $r4;
20: virtualinvoke r2.<testbubblesort.BubbleSort: void bubbleSort(int[])>(r3);
21: $r5 = <java.lang.System: java.io.PrintStream out>;
22: virtualinvoke $r5.<java.io.PrintStream: void println(java.lang.String)>("Sorted array");
23: virtualinvoke r2.<testbubblesort.BubbleSort: void printArray(int[])>(r3);
24: return;

25: }

Fig. 12 The 3-address code form of the security-sensitive method at line 21 in Fig. 10.

next, we will store their positions in tuples instead of storing
their actual values. To return the proper values to the user
setting, we define three functions inside the enclave (see Fig
4). Based on the statement type stmttype, both functions
stmtexp() and stmtcf() will be invoked from the main function
mainstmtFn() and return the proper results. We will perform all
security-sensitive data of expression statements and control
fowl statements in functions stmtexp() and stmtcf(), respectively.

After that, we will return all security-sensitive variables to
the user setting. In the user setting, the function stmtreturn() in
bracket (1) with its tuple in bracket (7) will be used to
retrieve all expression and control flow values from
E(SRDM). Meanwhile, we will use the funreturn() function in
bracket (5) with its tuple in bracket (6) to retrieve the
function call values from E(SRDM).

Sensitive Returned Data Matrix (SRDM) for (funreturn) < 0,02, 0, 0, 𝑎𝑟𝑟[11,12,22,25,34,64,90] > // return the function as a sorted array < 𝑟𝑒𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 >

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id)
 {
 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 𝑓𝑢𝑐𝑛𝑎𝑚𝑒 (𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[])
 }

E(SRDM)

User Environment side

The returned data matrix
D(E(SRDM)) → SRDM

Sensitive Extracted Data Matrix (SEDM) for (funexp) < 0, 02,0, 5,3, "bubbleSort" , 00, 𝑎𝑟𝑟[], > // for binarySearch function < 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒, 𝑓𝑢𝑛𝑛𝑎𝑚𝑒, 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 , 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] >

Fig. 11 The process execution sequence of the bubbleSort functions inside and outside the enclave.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 16 of 24

1. public class QuickSort {

2. public static void main(String[] args) {

3. int[] x = { 9, 2, 4, 7, 3, 6, 10, 5 };

4. System.out.println(Arrays.toString(x));

5. int low = 0;

6. int high = x.length - 1;

7. quickSort(x, low, high);

8. System.out.println(Arrays.toString(x));

9. }

10. public static void QuickSort(int[] arr, int low, int high) {
11. if (arr == null || arr.length == 0)
12. return;
13. if (low >= high)
14. return;
15. int middle = low + (high - low) / 2;
16. @int pivot = arr[middle];
17. int i = low, j = high;
18. while (i <= j) {
19. while (arr[i] < pivot) {
20. i++;
21. }
22. while (arr[j] > pivot) {
23. j--;
24. }
25. if (i <= j) {
26. int temp = arr[i];
27. arr[i] = arr[j];
28. arr[j] = temp;
29. i++;
30. j--;
31. }}
32. if (low < j)
33. quickSort(arr, low, j);
34. if (high > i)
35. quickSort(arr, i, high);
36. }
37. }

Fig. 13 The Original QuickSort Application.

Fig 11 shows how the proposed solution will hide the bubble
sort function at line 21 in Fig 10. Fig .12 shows the 3-address
code of the security-sensitive method at line 21 in Fig 10 that
will be transformed into a Jimple form. The r3 in Fig 12
contains the elements of the array arr[] For the security-
sensitive function in the bubble sort application, we replace
it with the bracket (3). Where the function funextract() in
bracket (3) will be used to extract fun(list) based on funid.
Notice that the fun(list) is nothing but the bracket (4). These
security-sensitive statements will be placed inside the
enclave as it is shown in Table 11 for the bubbleSort function.
The function funreturn() in the bracket (5) will be used to read
the return values that will be generated inside the enclave for
each security-sensitive function based on its statement id and
function id. Note that, the list of the return values will be
created inside the enclave. For each return value, a tuple will
be created in the Sensitive SRDM which will be used to store
the returned values from the enclave to the user setting.
Meanwhile, we will encrypt the data matrix E(SRDM)
before transmitting it to the user environment. In the user
environment, we will decrypt the received data matrix
D(E(SRDM)) during program execution and pick a proper
value for each function based on its statement id and its
functionid in the given tuple in the bracket (6). The tuple in

bracket (6) will be used to retrieve all the security-sensitive
functions in the program to the user setting.

Quicksort application

The Quicksort application in Fig 13 is a divide and conquer
algorithm. It first divides a large list into two smaller sub-
lists and then recursively sorts the two sub-lists. Our
proposed solution can be applied to the Quicksort application
as follows.

Data annotation

In this section, we assume the variable “pivot” at line 16 in
Fig 13 is a sensitive variable, and all other statements that
interact with the variable “pivot” are security-sensitive
statements. Therefore, the annotation process at line 16 in
Fig 13 marks the content of the variable “pivot” as sensitive
data. Likewise, the QuickSort() method at line 10 is
considered as a sensitive statement due to the information
flow from the annotated variable to the other statements. For
the same reason, all statements in the main method at lines
3,4,5,6,7 and 8 are considered sensitive statements.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 17 of 24

1. public class QuickSort {

2. public static void main(String[] args) {

3. int[] x = { 9, 2, 4, 7, 3, 6, 10, 5 };

4. System.out.println(Arrays.toString(x));

5. int low = 0;

6. int high = x.length - 1;

7. quickSort(x, low, high);

8. System.out.println(Arrays.toString(x));

9. }

10. public static void QuickSort(int[] arr, int low, int high) {
11. if (arr == null || arr.length == 0)
12. return;
13. if (low >= high)
14. return;
15. int middle = low + (high - low) / 2;
16. @int pivot = arr[middle];
17. int i = low, j = high;
18. while (i <= j) {
19. while (arr[i] < pivot) {
20. i++;
21. }
22. while (arr[j] > pivot) {
23. j--;
24. }
25. if (i <= j) {
26. int temp = arr[i];
27. arr[i] = arr[j];
28. arr[j] = temp;
29. i++;
30. j--;
31. }
32. }
33. if (low < j)
34. quickSort(arr, low, j);
35. if (high > i)
36. quickSort(arr, i, high);
37. }

38. }

Fig. 14 The Partitioned QuickSort Application.

Table 12: Sensitive variables of the QuickSort application inside the SEDM.

stmtid stmttype vartype leftop rightop stmtop

0 00 0 0 7 +

1 00 0 7 null null

2 00 0 0 null null

3 00 0 7 null null

4 01 null 0 7 <

5 01 null 2 7 <

Data flow analysis

Following, our proposed solution will recognize the

annotation variable(s) as follows:

1- Static dataflow analysis

For analyzing and extracting sensitive variables in Fig 13, we
will utilize the standard dataflow analysis algorithm
mentioned in the first case study to extract all sensitive
information based on the annotated variable(s) in the

program.
2- Static forward slicing

In this phase, we perform forward slicing to find a subgraph
with all statements in PDG on which statements in the
variable key (i.e., the annotated variable) have a control and
data dependence. As it is shown in Fig 14, the sliced
statements are highlighted in yellow colour. We consider the
highlighted statements in yellow as security-sensitive
statements. Fig 13 and Fig 14 illustrate the QuickSort
application and the partitioned one, respectively.

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 18 of 24

Table 13: Storing actual values of the method quickSort in Fig 14 in the SEDM.

stmtid funid stmttype funmodifire funname funtype
parm(list[])

6 0 02 0 ”quickSort” 0 [arr[],low,high]ß[2,3,4,5,6,7,9,10,0,7]

1: public static void quickSort(int[], int, int){

2: int[] r0;

3: int i0, i1, i2, i3, i4, i5, i6, $i7, $i8, $i9, $i10, $i11, $i12;

4: r0 := @parameter0: int[];

5: i0 := @parameter1: int;

6: i1 := @parameter2: int;

7: if r0 == null goto label0;

8: $i7 = lengthof r0;

9: if $i7 != 0 goto label1;

10: label0:

11: return;

12: label1:

13: if i0 < i1 goto label2;

14: return;

15: label2:

16: $i8 = i1 - i0;

17: $i9 = $i8 / 2;

18: i2 = i0 + $i9;

19: i3 = r0[i2];

20: i4 = i0;

21: i5 = i1;

22: goto label7;

23: label3:

24: i4 = i4 + 1;

25: label4:

26: $i10 = r0[i4];

27: if $i10 < i3 goto label3;

28: goto label6;

29: label5:

30: i5 = i5 + -1;

31: label6:

32: $i11 = r0[i5];

33: if $i11 > i3 goto label5;

34: if i4 > i5 goto label7;

35: i6 = r0[i4];

36: $i12 = r0[i5];

37: r0[i4] = $i12;

38: r0[i5] = i6;

39: i4 = i4 + 1;

40: i5 = i5 + -1;

41: label7:

42: if i4 <= i5 goto label4;

43: if i0 >= i5 goto label8;

44: staticinvoke <QuickSort: void quickSort(int[],int,int)>(r0, i0, i5);

45: label8:

46: if i1 <= i4 goto label9;

47: staticinvoke <QuickSort: void quickSort(int[],int,int)>(r0, i4, i1);

48: label9:

49: return;

50: }

 Fig. 15 The 3-address code of the sensitive method at line 10 in Fig. 14

Program partitioning and transformation

In this phase, we show how our proposed solution will store

sensitive variables and the rest of the code that will be

deployed to the enclave and the untrusted area, respectively.

After performing partitioning on the binary search

application, we will perform a transformation process on the

code and we target the partitioned part in Fig 14. For each

expression statement and control flow statement in the

partitioned program, we replace it with the bracket (1) to

extract all the security-sensitive variables from the code. For

the function call statement, we replace it with the bracket (3)

in order to extract all security-sensitive information from the

method itself. Thus, we store all security-sensitive variables

that we extracted from the expression statements, control

flow statements, and function call statements based on the

bracket (1) and bracket (3) in the SEDM.

A
n
te

r F
a
re

e
 a

n
d
 Y

o
n
g
z
h
i W

a
n
g

: J
o
u
rn

a
l o

f C
lo

u
d
 C

o
m

p
u
tin

g
: A

d
v
a
n
c
e
s
, S

y
s
te

m
s
 a

n
d
 A

p
p
lic

a
tio

n
s

P
a
g
e
 1

9
 o

f 2
4

 T
ab

le 1
2
 reco

rd
s th

e first iteratio
n

 o
f th

e ap
p

licatio
n

 an
d

sh
o
w

s h
o

w
 w

e w
ill sto

re th
e secu

rity
-sen

sitiv
e statem

en
ts

(th
e ex

p
ressio

n
 statem

en
ts an

d
 co

n
tro

l flo
w

 statem
en

ts) in

F
ig

 4
. in

 th
e S

E
D

M
. E

ach
 statem

en
t id

 in
 T

ab
le 1

2
 rep

resen
ts

a sin
g

le sen
sitiv

e statem
en

t in
 th

e p
artitio

n
ed

 co
d
e. It also

sh
o

w
s all th

e ex
ecu

ted
 statem

en
ts o

f th
e p

artitio
n

ed
 co

d
e in

F
ig

 1
3
. T

h
e stm

t
id (0

), stm
tid (1

), stm
t
id (2

), stm
tid

(3
) , stm

tid
(4

) ,

an
d
 stm

tid
(5

) reco
rd

 th
e ex

p
ressio

n
 statem

en
t at lin

e 1
5
, th

e

E(SRDM)

The encrypted data matrix E (SRDM) for return values

Boolean main_stmtFn (stmt_type)
switch (stmt_type) {
 Case 1:
 𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id);
 Case 2:
 𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id);

 Case 3:
 𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id);

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id)
 return "quickSort", 01, 𝑎𝑟𝑟[] Boolean 𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id)

 return sen_list[0] < sen_list[7];

Enclave area

User Environment

The returned values

D(E(SRDM)) → SRDM

Sensitive Extracted Data Matrix (SEDM) for (stmtextract)
 0, 00, 0,3, 𝑛𝑢𝑙𝑙, null // for Exp_statement at line 15 in Fig.14 – based on bracket (2) 1,00, 0, 7, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙 // for CF_statement at line 16 in Fig.14 - based on bracket (2) 4,01, null, 0,7, " < " // for CF_statement at line 18 in Fig.14 - based on bracket (2) 6,02,0, 0, quickSort, 0, arr[] // for the function call statement at line 10 in Fig.14 - based on bracket (4)

Sensitive Returned Data Matrix (SRDM) for (stmtreturn)
 0, 0, 00, 3 // return value of Exp_statement at line 15 in Fig.14 – based on bracket (5) 1, 1, 00,7 // return value of Exp_statement at line 15 in Fig.14 – based on bracket (5) 2, 4, 01, 𝑓𝑎𝑙𝑠𝑒 // return value of CF_statement at line 18 in Fig.14 - based on bracket (5) 3, 6,02,0,[{2,3,4,5,6,7,9,10},0,7] // return value of the function call statement at line 10 in Fig.14 - based on bracket (5)

𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id)

return sen_list[0] + sen_list[7];
return sen_list[7];

Fig .16 Execution process of QuickSort application inside/outside the enclave

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 20 of 24

expression statement at line 16, the two variables at the

expression statements at line 17, the control flow statement

at line 18, and the control flow statement at line 19,
respectively. Table 11 displays the sorted elements of the”
quickSort” method in the SEDM.

Code generation

In this section, we show statements’ computations of the
QuickSort application that will be executed inside and
outside the enclave. As mentioned before in the program

partitioning stage, the sensitive data will be transmitted to

the enclave side in an encrypted manner (i.e., E(SEDM)).

Once the enclave receives the E(SEDM) and verifies the

execution environment, it will be able to decrypt the data

matrix (i.e., D(E(SEDM)) using the corresponding

decryption method. According to the scheme of the security

model in Fig 4, we will define an interface in the enclave that

will generate several arrays, where each array contains

values with the same type and different arrays have different

typesFor expression and control flow statements, we use
these arrays to store actual values of each variable retrieving
from bracket (1) and bracket (2) in the partitioned code, and
bracket (3) and bracket (4) for the functions call statements.
In order to return the proper values to the user setting, we
define three functions inside the enclave (see Fig. 4). Based
on the statement type stmttype, both functions stmtexp() and
stmtcf() will be invoked from the main function mainstmtFn()
and return the proper results. We will perform all security-
sensitive of expression statements and control flow
statements in functions stmtexp() and stmtcf(), respectively.
After that, we will return all security-sensitive variables to
the user setting. In the user setting, the function stmtreturn() in
bracket (1) with its tuple in bracket (7) will be used to
retrieve all expression and control flow values from
E(SRDM). Meanwhile, we will use the funreturn() function in
bracket (5) with its tuple in bracket (6) to retrieve the
function call values from E(SRDM). Fig 16 shows how the
proposed solution will hide the quickSort function at line 10
in Fig 14. The 3-address code of the security-sensitive
method at line 10 in Fig 14 is shown in Fig 15. The figure
shows the code after transforming it into the Jimple form.
The r0 in the statement at line 3 in Fig 15 contains the
elements of the array arr[]. For the security-sensitive
function in the QuickSort application, we replace it with the
bracket (3). Where the function funextract() in bracket (3) will
be used to extract fun(list) based on funid. Notice that the
fun(list) is nothing but the bracket (4). For the quickSort
method, these security-sensitive statements will be placed
inside the enclave as is shown in Table 13. The function
funreturn() in the bracket (5) will be used to read the return
values that will be generated inside the enclave for each
security-sensitive function based on its statement id and
functionid. Note that, the list of the return values will be
created inside the enclave. For each return value, a tuple will
be created in the SRDM which will be used to store the
returned values from the enclave to the user setting. Next,
we will encrypt the data matrix E(SRDM) before

transmitting it to the user environment. In the user
environment, we will decrypt the received data matrix
D(E(SRDM)) during program execution and pick the proper
value for each function based on its statement id and function
id in (6). This tuple will be used to retrieve all security-

sensitive functions in the program to the user setting. Fig 15

shows the 3-address code of the security-sensitive method at

line 10 of the QuickSort application represented in Fig 14.

Note that the 3-address code is an intermediate code used by

optimizing compilers to aid in the implementation of code-

improving transformations. Each 3-address instruction has

at most three operands and is typically a combination of

assignment and a binary operator.

The proposed implementation

In this section, we briefly describe our proposed

implementation and validation steps as follows. The

workflow of our proposed solution is shown in Fig 1. First,

users mark a certain variable(s) as security-sensitive sources

in the Java program to be analyzed. We will utilize the

FlowDroid [45] to perform this task, we will consider the

value tainted by the source as a slicing criterion. Figs 2 and
5 show how developers can mark a certain variable in the

code and consider it as a slicing criterion. Once the source(s)

will be marked in the program, the Soot framework [48] will

be used to analyze the original program and then transform

it into another representation (i.e., the 3-address form). The

Soot framework is an open-source Java-based compiler tool.

The program analysis and transformation can be performed

in the Jimple Transformation Pack (jtp) phase in the

execution of the Soot program. After this step, FlowDroid

will be used, a dataflow analysis tool, an extension to the

Soot framework to perform static dataflow analysis, and

code partitioning. FlowDroid is a static data flow tracker.
There is a certain similarity between the two concepts (data

slicing and data flow tracker). In our work, we will use the

FlowDroid as follows.

FlowDroid generates the main method from the list of

entry points. This main method is then used to generate a call

graph and an inter-procedural control-flow graph (ICFG).

We will then detect all sources which are reachable from the

given entry points. Starting at these sources, the taint

analysis tracks taints by traversing the ICFG. Thus, the value

tainted by the source would be considered as a slicing

criterion. FlowDroid will track taints forward through the
inter-procedural control flow graph (ICFG). Each statement

that transforms a taint abstraction could be seen as part of a

code partition. However, since FlowDroid is a taint tracker,

it doesn’t distinguish between statements that simply pass on

taints (because they, e.g., do not reference the tainted value

at all) and those that actively transform one taint abstraction

into another. We may need to extend the implementation to

build a graph of taint-transforming statements while

computing the IFDS flow functions. In the end, FlowDroid

reports all discovered flows from sources to sinks.

Depending on the options the user has chosen either the

whole path with all intermediate variables is displayed or

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 21 of 24

only the source and the sink statement.

The Enclave code will be implemented with Intel SGX

SDK. Therefore, all the modules in the Enclave side will be
executed in C++. During the implementation, the developer

should be aware of and faced with the two main issues of

Intel SGX. i) the limited memory size of 128MB plus 4GB

(but with huge overhead), we encourage curious readers to

solve this issue by using paging support to go beyond that

limitation and that is because the limit of 128MB comes

from the BIOS itself. Notice that, the Linux driver supports

paging, but Windows does not. And ii) the impossibility of

execution system calls from within enclaves. The boundary

between user and kernel space is system calls. Typically,

userspace programs have no direct access to the hardware.

Instead, the user space program requests the operating
system to allocate memory and perform I/O on its behalf.

The system call interface rules the interaction between the

operating system and user-space applications. For every

system call, an enclave exit and re-entry would be one way

to issue system calls in the presence of SGX. Besides the

standard user/to transition, the enclave mode switch could be

provided. The developer should notice that system calls are

disallowed in enclave mode. However, system calls are the

standard way for any user-space application to demand

service from the privileged operating system kernel. Every

valuable program has to allow system calls for external
communication; for instance, reading and writing from/to

disk and the network involve system calls. We encourage

developers to refer to [49] to understand more on how to

handle system calls issues.

The modules in the untrusted environment will be
executed in Java. The two parts (i.e., the Java side and the
C++ side) will be linked with the Java Native Interface (JNI).
We will convert some data types in Java into certain C++
types. For instance, we will convert types short, boolean,
byte, and object into int type. For each object, we use its hash
code (an integer) in C++.

Comparisons

To illustrate the benefit of our proposed solution, we

compare it with the most related works in terms of i) system
design and ii) theoretical analysis as follows. The system

design and theoretical analysis of our proposed solution are

inspired by the Glamdring framework [9] and the CFHider

prototype system [21]. In the Glamdring framework, it

targets C/C++ applications, uses the static analysis function

provided by the LLVM compiler to separate the code.
Glamdring then automatically partitions the application into

untrusted and enclave parts. Glamdring uses data flow

analysis to identify functions that may be exposed to

sensitive data. It uses backward slicing to identify functions

that may affect sensitive data. Glamdring then places

security-sensitive functions inside the enclave and adds

runtime checks and cryptographic operations at the enclave

boundary to protect it from attack.

In CFHider, it protects the control flow confidentiality of

the programs and places it in a data matrix to transmit it to

the enclave, and then transmit the other part of the program

to the untrusted environment. CFHider combines program
transformation with Intel SGX. It transforms the condition

of each branch statement into a CFQ function call and moves

its execution into the enclave that is considered as an opaque

and trusted memory space, i.e., the enclave.

However, our proposed solution differs from the

aforementioned approaches in that it goes through four

stages. The first three stages (Data annotation stage, Data

analysis stage, and Program partitioning stage) are inspired

by the design of the Glamdring framework. the fourth stage

(Code generation stage) is inspired based on the design of

the CFHider framework. In our proposed solution, we
proposed a prototype system targeting protecting the data

confidentiality of Java programs. Our solution will use the

static analysis provided by FlowDroid. To perform this task,

we will consider the value tainted by the source as a slicing

criterion. Once the source(s) will be marked in the program,

the Soot framework will be used to analyze the original

program and then transform it into another representation

(i.e., the 3-address form). Users must first annotate sensitive

variable(s). It will partition the original program into a

transformed program and the SEDM. The latter includes all

security-sensitive variables. After the partitioning, the

transformed program will be uploaded to and performed in
the public cloud (i.e., non-enclave area). The SEDM will be

transmitted to and executed in an SGX enclave. On the

enclave side, we will perform necessary computations for all

security-sensitive statements inside the enclave based on

SEDM.

Table 14: Summary of the comparison between the proposed approach, Glamdring, and CFHider.

Aspects The Proposed Approach Glamdring CFHider

Analysis Mechanism Forward/Backward data flow analysis Backward dataflow analysis Forward dataflow analysis

Protection Type Data and control flow confidentiality Data confidentiality and integrity Control Flow Confidentiality

Programming Languages Applicable to most PLs C/C++ Applicable to most PLs

Platforms Most types of TEE technologies SGX SGX

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 22 of 24

In our future work, we will implement the proposed solution

and compare it with some related works in the field
concerning performance, evaluation, and execution time.

Table 14 illustrates the comparison between the three
approaches. Concerning data flow analysis, our approach
applies to both forward and backward data flow analysis,
while the Glamdring framework and CFHider prototype are
applicable for the backward and forward data flow analysis,
respectively. Our approach aims to protect the confidentiality
of sensitive data as well as the control flow confidentiality.
Glamdring protects the confidentiality and integrity of
sensitive data but it cannot protect program control-flow
confidentiality. CFHider aims to protect the confidentiality
of control flow but not the sensitive data program. Another
factor is the programming language, the proposed approach
and CFHider are applicable for most programming
languages while Glamdring was designed for C/C. The last
aspect in our comparison is the platforms that the approaches
were designed for. Glamdring and CFHider were designed to
be executed in SGX technology. Although we evaluate the
proposed solution with SGX in this study, we claim that the
proposed solution is suitable for most TEEs.

Related work

TEE Infrastructure

TEEs isolate security-sensitive application logic from the

operating system and other applications and therefore protect

applications by transmitting confidential partition to TEE. In

general, TEEs can be used to decrease the impact of code

injection attacks that attempt to steal an application’s data,
such the case for inaudible data attacks [14-16] or exfiltrate

data existing in another TEE.

Some recent efforts [17-19] include general solutions in the

standardization of TEE interfaces and protocols. However,
most TEEs do not take various types of compartments with

various privileges into consideration. PrivateZone [20]

presented a framework to enable individual developers to

utilize TrustZone resources. In this project, developers can run

Security Critical Logics (SCL) in a Private Execution

Environment (PrEE). This work relies on ARM TrustZone.

ARM servers emerge as a serious and competitive alternative

to existing Intel and AMD servers [50].

Program data protection
CFHider [21] and E-CFHider [22] aim to protect the control

flow confidentiality in the public cloud setting. However, it

hides conditions of branch statements to an opaque SGX

enclave and injects fake branch statements to obfuscate the

control flow. Yongzhi Wang and Jinpeng Wei [7] proposed

runtime control flow obfuscation (RCFO) to protect the

confidentiality of the outsourced program control flow.

Some existing software-based methods such as [23] and [24]

cannot fully meet security, performance, and generality at

the same time. These two methods are projected to replace

the conditional instructions with lambda calculus and Turing

machine simulations, respectively, which can defeat

symbolic execution-based reverse-engineering attacks.

Virtual Ghost [25] protects application memory from a

secured operating system by extending the virtual machine

monitor (VMM). These works put trust in the virtual

machine monitor, and unable to protect against attackers

with privileged access, such as system administrators.

Trusted hardware (SGX)
SGX provides a TEE, called an enclave, that protects the

integrity of the code and the confidentiality of the data inside

it from other software, including the operating system and

hypervisor. LightBox [26] utilizes SGX to build the first

system that can drive off-site middleboxes at near-native

speed with stateful processing and the most comprehensive

protection to data. SGX-Tor [27] presents a practical approach

to enhance the security and privacy of Tor by utilizing Intel

SGX. EnclaveDB [28] a database engine that guarantees

confidentiality, integrity, and freshness for data and queries.

Panoply [29] allows applications to be partitioned into

multiple compartments and to be run across multiple enclaves

following the principle of least privilege. However, this

approach is not easily applicable to complex applications such

as databases. Oblix [6] a search index for encrypted data that

hides access patterns. It relies on a combination of novel

oblivious-access techniques and recent hardware SGX enclave

platforms. Another study [30] designed a scheme for the

existing methods based on software and hardware. Although

the scheme was designed based on SGX, it leaks the access

pattern.

Graphene [31, 32], and SCONE [4] have verified the

possibility of implementing whole applications inside

enclaves, supporting that by using appropriate systems, such

as a library OS or the C standard library, to the enclave.

However, these approaches have a large trusted computing

base (TCB) that violates the principle of least privilege due to

placing all code inside the enclave. Ryoan [33] aimed to

protect the confidentiality of security-sensitive data, it

provides a distributed sandbox, leveraging SGX to protect

sandbox instances from possibly malicious software.

However, it does not protect the confidentiality of program

control flow. VC3 [34] the system that lets users running

distributed MapReduce computations in the cloud, but placing

the code and data in a secure area. VC3 depends on SGX

technology to isolate memory regions on individual

computers. Bahmani et al. [35] proposed a secure multi-party

computation protocol where one of the parties has access to

SGX hardware and performs the bulk of the computation.

Coppolino Luigi, et al. [36] reviewed some techniques for

securing Java software with Intel SGX, the authors selected

some promising projects for an experimental comparison in

terms of effort, security, and performance. SERECA project

[37, 38, 39] aims to remove technical impediments to secure

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 23 of 24

cloud computing, it proposes to develop a secure environment

for reactive cloud applications using Intel SGX.

Conclusions and future work
In this paper, we proposed a solution that can be applied

to most TEE systems. Due to the novelty and popularity of

Intel SGX in this field, we used SGX technology in our
proposed solution as an intended platform to protect the data

confidentiality of Java applications.

We describe our proposed solution, the partitioning

technique that helps developers leveraging program

transformation techniques, program partitioning, and TEE

technologies for protecting security-sensitive data of

applications. Our proposed solution uses static dataflow

analysis to decide which security-sensitive statements must

be protected. Therefore, the proposed solution showed how

our concrete examples were used to protect their security-

sensitive data in terms of confidentiality. Precisely, the

proposed solution focuses on protecting the computations of
the expression statements, control flow statements, and

function call statements of applications in the public cloud

setting. The results of the experimental verification are

analyzed using real Java concrete applications i.e., Binary

Search application, Bubble Sort application and QuickSort

application in Fig 2, Fig 5, Fig 6, Fig 9, Fig 10, Fig 13 and

Fig 14 to show how the confidentiality of security-sensitive

data is protected.

It is our future work to implement the approach, evaluate
it, and compare it with other works from the related field.
The future work of this research is going to carry out based
on the workflow of the proposed approach demonstrated in
Fig 1 and the proposed implementation discussed in the
proposed implementation section where the necessary steps
of the implementation were discussed in detail. In our future
work, we will further investigate program analysis
mechanisms and partitioning techniques for efficient
transformation. However, this proposed solution helps us to
obtain a better understanding of how to utilize the program
analysis, transformation technique and TEE technologies for
protecting security-sensitive data of programs. As a result, it
will help us to implement the current proposed approach and
thus obtain a much-reduced performance overhead than
existing software-based solutions.

Acknowledgement

This paper was supported in part by the National Natural Science

Foundation of China (Grant No. 61602364), Key R&D Program of

Shaanxi Province (Grant No. 2019ZDLGY12-03, 2019ZDLGY13-06),

and the Key Program of NSFC-Tongyong Union Foundation (Grant

No. U1636209).

Authors’ contributions

The authors equally contributed to this research and the paper

initiated and written by the first author.

Authors’ information

Anter Faree received his B.S. in Computer Science and Engineering

from the National University, Yemen in 2006. He spent six years at the

Information Center and Decision Support, Ibb, Yemen as a software

developer. He received his MS in Computer Science from Osmania

University, India in 2015. He received his Ph.D. in computer science

and technology from Xidian University, China, in 2020. His areas of

interest include cloud computing security, software security and big

data. Contact Anter anterfaree@stu.xidian.edu.cn

Yongzhi Wang received his BE and MS degrees in computer science

from Xidian University, China in 2004 and 2007, respectively. He

received his Ph.D. in computer science from Florida International

University, FL, USA, in 2015. His research interests include software

security, cloud computing security, and outsourced computing

security. He has published more than 20 peer-reviewed articles. Some

of them are published in top-tiered conferences and journals,

including INFOCOM, ICSE, CCS, TIFS, IEEE Communications. Contact

Wang at ywang@park.edu

Funding

NA

Availability of data and materials

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1 Xi’an, Shaanxi, China., 710071

2 Park University, Parkville, MO, USA

References
[1] Yaqoob, I., E. Ahmed, A. Gani, et al., Mobile ad hoc cloud: A survey.

2016. 16(16): p. 2572-2589.

[2] Zhang, A. and X.J.J.o.m.s. Lin, Towards secure and privacy-preserving

data sharing in e-health systems via consortium blockchain. 2018. 42(8):

p. 140.

[3] Lee, J., J. Jang, Y. Jang, et al. Hacking in darkness: Return-oriented

programming against secure enclaves. in 26th USENIX Security

Symposium (USENIX Security 17). 2017.

[4] Arnautov, S., B. Trach, F. Gregor, et al. {SCONE}: Secure Linux

Containers with Intel SGX. in 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16). 2016.

[5] Weichbrodt, N., A. Kurmus, P. Pietzuch, et al. AsyncShock: Exploiting

synchronisation bugs in Intel SGX enclaves. in European Symposium

on Research in Computer Security. 2016. Springer.

[6] Mishra, P., R. Poddar, J. Chen, et al. Oblix: An efficient oblivious search

index. in 2018 IEEE Symposium on Security and Privacy (SP). 2018.

IEEE.

[7] Wang, Y., J.J.C. Wei, Toward protecting control flow confidentiality in

cloud-based computation. Computers Security, 2015. 52: p. 106-127.

[8] Bosman, E., K. Razavi, H. Bos, et al. Dedup est machina: Memory

deduplication as an advanced exploitation vector. in 2016 IEEE

symposium on security and privacy (SP). 2016. IEEE.

[9] Lind, J., C. Priebe, D. Muthukumaran, et al. Glamdring: Automatic

Application Partitioning for Intel SGX. in 2017 USENIX Annual

Technical Conference (USENIX ATC 17). 2017.

[10] Costan, V. and S. Devadas, Intel SGX Explained. IACR Cryptology

ePrint Archive. 2016(086): p. 1-118.

[11] Intel: Intel® Software Guard Extensions Programming Reference

(2020).

mailto:anterfaree@stu.xidian.edu.cn
mailto:ywang@park.edu

Anter Faree and Yongzhi Wang: Journal of Cloud Computing: Advances, Systems and Applications Page 24 of 24

[12]

https://software.intel.com/sites/default/files/managed/48/88/329298-

002.pdf

[13] Ferrante, J., K.J. Ottenstein, J.D.J.A.T.o.P.L. Warren, et al., The

program dependence graph and its use in optimization. ACM

Transactions on Programming Languages, 1987. 9(3): p. 319-349.

[14] Gruss, D., C. Maurice, and S. Mangard. Rowhammer. js: A remote

software-induced fault attack in javascript. in International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment.

2016. Springer.

[15] Do, Q., B. Martini, and K.K.R. Choo, Is the data on your wearable

device secure? An Android Wear smartwatch case study. Software:

Practice and Experience, 2017. 47(3): p. 391-403.

[16] D’Orazio, C.J., K.-K.R. Choo, and L.T. Yang, Data exfiltration from

Internet of Things devices: iOS devices as case studies. IEEE Internet

of Things Journal, 2016. 4(2): p. 524-535.

[17] Do, Q., B. Martini, and K.-K.R. Choo, Exfiltrating data from Android

devices. Computers Security, 2015. 48: p. 74-91.

[18] Guan, L., P. Liu, X. Xing, et al. Trustshadow: Secure execution of

unmodified applications with arm trustzone. in Proceedings of the 15th

Annual International Conference on Mobile Systems, Applications, and

Services. 2017.

[19] Ferraiuolo, A., A. Baumann, C. Hawblitzel, et al. Komodo: Using

verification to disentangle secure-enclave hardware from software. in

Proceedings of the 26th Symposium on Operating Systems Principles.

2017.

[20] Zhao, S., Q. Zhang, Y. Qin, et al. SecTEE: A software-based approach

to secure enclave architecture using tee. in Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications

Security. 2019.

[21] Jang, J., C. Choi, J. Lee, et al., Privatezone: Providing a private

execution environment using arm trustzone. IEEE Transactions on

Dependable Secure Computing, 2016. 15(5): p. 797-810.

[22] Wang, Y., Y. Shen, C. Su, et al. CFHider: Control Flow Obfuscation

with Intel SGX. in IEEE INFOCOM 2019-IEEE Conference on

Computer Communications. 2019. IEEE.

[23] Zou, Y., Y. Wang, and X. Zhang. Enforcing Control Flow

Confidentiality with SGX. in IEEE INFOCOM 2020-IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS).

2020. IEEE.

[24] Lan, P., P. Wang, S. Wang, et al. Lambda obfuscation. in International

Conference on Security and Privacy in Communication Systems. 2017.

Springer.

[25] Wang, Y., S. Wang, P. Wang, et al. Turing obfuscation. in

International Conference on Security and Privacy in Communication

Systems. 2017. Springer.

[26] Criswell, J., N. Dautenhahn, and V. Adve, Virtual ghost: Protecting

applications from hostile operating systems. ACM SIGARCH

Computer Architecture News, 2014. 42(1): p. 81-96.

[27] Duan, H., C. Wang, X. Yuan, et al. LightBox: Full-stack protected

stateful middlebox at lightning speed. in Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security.

2019.

[28] Kim, S., J. Han, J. Ha, et al., SGX-Tor: A Secure and Practical Tor

Anonymity Network with SGX Enclaves. IEEE/ACM Transactions on

Networking, 2018. 26(5): p. 2174-2187.

[29] Priebe, C., K. Vaswani, and M. Costa. Enclavedb: A secure database

using SGX. in 2018 IEEE Symposium on Security and Privacy (SP).

2018. IEEE.

[30] Shinde, S., D. Le Tien, S. Tople, et al. Panoply: Low-TCB Linux

Applications with SGX Enclaves. in NDSS. 2017.

[31] Xu, J., Y. Zhang, K. Fu, et al., SGX-Based Secure Indexing System.

IEEE Access, 2019. 7: p. 77923-77931.

[32] Tsai, C.-C. Graphene Library OS with Intel SGX Support. Available

from: https://github.com/oscarlab/graphene.

[33] Tsai, C.-C., K.S. Arora, N. Bandi, et al. Cooperation and security

isolation of library OSes for multi-process applications. in Proceedings

of the Ninth European Conference on Computer Systems. 2014.

[34] Hunt, T., Z. Zhu, Y. Xu, et al., Ryoan: A distributed sandbox for

untrusted computation on secret data. ACM Transactions on Computer

Systems, 2018. 35(4): p. 1-32.

[35] Schuster, F., M. Costa, C. Fournet, et al. VC3: Trustworthy data

analytics in the cloud using SGX. in 2015 IEEE Symposium on

Security and Privacy. 2015. IEEE.

[36] Bahmani, R., M. Barbosa, F. Brasser, et al. Secure multiparty

computation from SGX. in International Conference on Financial

Cryptography and Data Security. 2017. Springer.

[37] Coppolino, L., S. D’Antonio, G. Mazzeo, et al., A comparative
analysis of emerging approaches for securing java software with Intel

SGX. Future Generation Computer Systems, 2019. 97: p. 620-633.

[38] Fetzer, C., G. Mazzeo, J. Oliver, et al. Integrating reactive cloud

applications in sereca. in Proceedings of the 12th International

Conference on Availability, Reliability and Security. 2017.

[39] Brenner, S., T. Hundt, G. Mazzeo, et al. Secure cloud micro services

using Intel SGX. in IFIP International Conference on Distributed

Applications and Interoperable Systems. 2017. Springer.

[40] SECURE. SECURE ENCLAVES FOR REACTIVE CLOUD

APPLICATIONS. 2020. Available from:

https://www.serecaproject.eu.

[41] Holdings, A., Building a Secure System using Trust-Zone Technology.

2005, Whitepaper.

[42] Azab, A.M., K. Swidowski, R. Bhutkar, et al. SKEE: A lightweight

Secure Kernel-level Execution Environment for ARM. in NDSS.

2016.22.

[43] specifications, G.p.d. Global platform device specifications. Available

from: https://globalplatform.org/.

[44] Platform, G.P.R.D., Global Platform Device Technology TEE System

Architecture. 2011.

[45] Weiser, M., Program slicing. IEEE Transactions on software

engineering, 1984(4): p. 352-357.

[46] Arzt, S., S. Rasthofer, C. Fritz, et al., Flowdroid: Precise context, flow,

field, object-sensitive and lifecycle-aware taint analysis for android

apps. Acm Sigplan Notices, 2014. 49(6): p. 259-269.

[47] Fritz, C., Flowdroid: A precise and scalable data flow analysis for

android. 2013, TU Darmstadt: Darmstadt.

[48] Dworkin, M., Recommendation for block cipher modes of operation.

methods and techniques. 2001, National Inst of Standards and

Technology Gaithersburg MD Computer security Div.

[49] Padhye, R. and U.P. Khedker. Interprocedural data flow analysis in soot

using value contexts. in Proceedings of the 2nd ACM SIGPLAN

International Workshop on State of the Art in Java Program analysis.

2013.

[50] Soares, L. and M. Stumm. FlexSC: Flexible System Call Scheduling

with Exception-Less System Calls. in Osdi. 2010.

[51] Hua, Z., J. Gu, Y. Xia, et al. vTZ: Virtualizing ARM TrustZone. in 26th

USENIX Security Symposium (USENIX Security 17). 2017.

[52] Faree, A. and Y. Wang. Protecting Security-Sensitive Data Using

Program Transformation and Intel SGX. in 2019 International

Conference on Networking and Network Applications (NaNA). 2019.

IEEE.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/oscarlab/graphene
https://www.serecaproject.eu/
https://globalplatform.org/

Figures

Figure 1

The Architecture of the proposed solution Engine

Figure 2

The annotation process and sensitive information �ow in a simple Java program.

Figure 3

The partitioned statements of the Java program in Fig. 2 and their execution process inside the enclave

Figure 4

The scheme of the process execution sequence inside the enclave.

Figure 5

The Original Binary Search Application.

Figure 6

The Partitioned Binary Search Application.

Figure 7

The 3-address code of the sensitive method at line 2 in Fig. 6.

Figure 8

The process execution sequence of the binary search functions inside and outside the enclave.

Figure 9

The Original Bubble Sort Application.

Figure 10

The Partitioned Bubble Sort Application.

Figure 11

The process execution sequence of the bubble Sort functions inside and outside the enclave.

Figure 12

The 3-address code form of the security-sensitive method at line 21 in Fig. 10.

Figure 13

The Original QuickSort Application.

Figure 14

The Partitioned QuickSort Application

Figure 15

The 3-address code of the sensitive method at line 10 in Fig. 14

Figure 16

Execution process of QuickSort application inside/outside the enclave

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

TheConferenceVersion.pdf

https://assets.researchsquare.com/files/rs-462176/v1/04c34be1207d547f9d8abc7c.pdf

