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Abstract  

Cloud computing allows clients to upload their sensitive data to the public cloud and perform sensitive computations in those 

untrusted areas, which drives to possible violations of the confidentiality of client sensitive data. Utilizing Trusted Execution 

Environments (TEEs) to protect data confidentiality from other software is an effective solution. TEE is supported by 

different platforms, such as Intel’s Software Guard Extension (SGX). SGX provides a TEE, called an enclave, which can be 
used to protect the integrity of the code and the confidentiality of data. Some efforts have proposed different solutions in 

order to isolate the execution of security-sensitive code from the rest of the application. Unlike our previous work, CFHider, 

a hardware-assisted method that aimed to protect only the confidentiality of control flow of applications, in this study, we 

develop a new approach for partitioning applications into security-sensitive code to be run in the trusted execution setting 

and cleartext code to be run in the public cloud setting. Our approach leverages program transformation and TEE to hide 

security-sensitive data of the code. We describe our proposed solution by combining the partitioning technique, program 

transformation, and TEEs to protect the execution of security-sensitive data of applications. Some former works have shown 

that most applications can run in their entirety inside trusted areas such as SGX enclaves, and that leads to a large Trusted 

Computing Base (TCB). Instead, we analyze three case studies, in which we partition real Java applications and employ the 

SGX enclave to protect the execution of sensitive statements, therefore reducing the TCB. We also showed the advantages 

of the proposed solution and demonstrated how the confidentiality of security-sensitive data is protected. 

Keywords: Cloud Computing, Confidentiality, Program Partitioning, Program Transformation, Program 

Analysis, Sensitive data, Trusted Execution Environment TEE, Intel SGX. 

Introduction 

Applications have grown enormously in the public cloud, the 

total number of applications developed over the cloud has 

raised intensely over the past few years. However, the 

security problems that threaten the public cloud are very 

serious. This threat poses a significant risk to application 

security in the public cloud. This also has a major impact on 

application security and privacy [1]. In general, the user’s 
application is required to be uploaded to and performed on 

the public cloud. However, public clouds are not as enough 

protected as users imagine. Security violation incidents and 

vulnerabilities found by researchers [2, 3, 5] appear most 

commonly. As a result, this can lead to violations of the 

confidentiality and integrity of security-sensitive data. 

Revealed incidents including the loss of confidentiality or 

integrity of data [8, 13] increase these concerns. Under such 

a circumstance, a key solution to protect cloud users’ 
program confidentiality and integrity in the public cloud 

setting is required. One of the most important parts of the 

program is to protect the confidentiality of its sensitive data, 
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which determines the important component in the program 

that must be protected its data against unintentional, 

unlawful, or unauthorized access, disclosure, or theft.  

To address this concern, server works such as [4, 6] have 

utilized different Trusted Execution Environments (TEEs) 

technologies to protect security-sensitive data in applica-

tions. In comparison to a cryptographic co-processor, the 

TEEs are an execution environment from the rest of the 

applications using the hardware abilities of the platform. 

Moreover, TEEs protect their data from being accessed from 

outside the TEEs. The code in TEE is known as a trusted 

code while the other code is considered an untrusted code. 

Even though TEE provides security guarantees against 

strong attacks, few applications employ this technology. One 

common approach to protect the confidentiality of the 

security-sensitive data in the code is to annotate some 

variables (sources) by the developer, which is considered to 

be very helpful in protecting the confidentiality of the 

program. Therefore, several studies have investigated 

protecting data confidentiality in order to achieve a sufficient 

program’s confidentiality protections. The sensitive data in 
the program including the set of security-sensitive functions, 

global variables, and local ones are a significant component 

of the program that needs first to be protected. The work in 

[7] aimed to extract the control flow and deploy it into a 
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trusted environment. Some other efforts on protecting 

control flow and data flow confidentiality mainly leverage 

program transformation or distributed architectures. The 

results from the previous studies have limitations in the 

aspect of security [7, 9, 51]. Therefore, current works in this 

track either failed to grant high confidentiality guarantees or 

incurred high-performance overheads. We claim that our 

proposed solution is suitable for most TEEs. Despite all 

those different technologies, we plan to implement the 

proposed solution based on Intel’s Software Guard 
eXtension (SGX) technology [10, 11] due to its novelty and 

popularity in its field. 

In this paper, we present and analyze our approach based 

on a fresh direction for securing applications using trusted 

execution technologies offered by modern CPUs such as 

SGX. SGX provides a TEE, called an enclave, that protects 

the integrity of the code and the confidentiality of the data 

inside it from other software, including the operating system 

and hypervisor. This paper provides a novel approach to 

program partitioning for TEE-secured applications. It 

describes the architecture of the proposed solution and the 

different phases that lead to the partitioning. In general, our 

approach can be used for partitioning critical Java 

applications into security-sensitive code to be run in a trusted 

execution environment and cleartext code to be run in the 

public cloud setting. It uses a case study a binary search 

application to validate the proposed solution. The results of 

the experimental verification are shown using concrete 

examples to show how the confidentiality of security-

sensitive data is protected. 

Our goal in this paper is to propose a security solution that 

is compatible with all TEE systems and applicable to most 

Java applications. Our proposed solution analyzes, 

partitions, and transforms existing Java applications for 

deployment of the security-sensitive parts and performs the 

necessary computations in a trusted area such as an SGX 

enclave.  

In general, our proposed solution goes through four main 

stages as follows. 

I. Data Annotation Stage. In this stage, a developer first 

annotates interest variables in the source code of a Java 

application that contains security-sensitive data and 

whose confidentiality should be protected. In other 

words, the developer provides information about the 

sources (inputs) of sensitive data by annotating variables 

whose values must be protected in terms of 

confidentiality. 

II. Data Analysis Stage. Based on the annotation stage, our 

approach will use static program analysis to find data 

and control dependencies on security-sensitive data. Our 

approach will also use static forward slicing to observe 

a sub-graph with all statements in the program 

dependence graph (PDG) [12] on which statements in 

source annotated contain a control and data dependence. 

III. Program Partitioning Stage. Based on stages (1) and (2), 

our solution will generate the partition details (PD) that 

will define the set of security-sensitive functions and the 

set of security-sensitive variables. It will also define 

which part of the code must be placed inside the enclave 

to protect the confidentiality of its data. PD will also 

define the transformed program (untrusted code) that 

will be performed in the public cloud while the sensitive 

data will be transmitted to an SGX enclave. 

IV. Code Generation Stage. In this stage, our solution will 

demonstrate the computations of the security-sensitive 

statements inside the enclave based on the output of PD. 

Moreover, this stage shows how we will return data 

from the enclave to the user environment. We also show 

how our approach will react with the security-sensitive 

and insensitive data that will be deployed to the trusted 

and untrusted areas, respectively. 

  Our contributions can be summarized as follows. 

• We propose a general solution, that protects the 

confidentiality of sensitive data on most user-level 

programs that can be performed on TEE systems such as 

SGX-supported CPU. 

• We analyzed our proposed solution using concrete 

examples to show how the confidentiality of security-

sensitive variables and functions is protected. 

• In our case studies, we leverage the program analysis, 

program partitioning, and SGX technology to hide only 

the security-sensitive statements of Java code inside an 

SGX enclave. 

Paper Organization 

The rest of this paper is organized as follows. In section 2, 

we give a brief background on TEE systems, SGX 

technology, and the trusted execution environment. Section 

3 introduces the system design of this work. In Section 4, we 

discuss three case studies that can be applied to our proposed 

system. Section 5 describes the proposed implementation. In 

Section 6, we compare the proposed system to the two most 

related works in the field. Section 7 provides related work. 

The last section concludes this paper and discusses future 

work. 

Background  

Trusted execution environment (TEE) 

There are hardware-based solutions such as Intel SGX, ARM 

TrustZone [40], and software-only approaches, e.g., Virtual 

Ghost [25] and SKEE [41]. Software-based approaches apply 

compiler instrumentation or kernel deprivileging to isolate the 

TEE memory from the kernel memory. TEE provides secure 

execution of permitted software called Trusted Applications 

(TAs). The TA is composed of TEE Commands that 

cooperatively offer secure services to the TA’s clients; 
meanwhile, it forces confidentiality, integrity and access rights 
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to the code, data, and resources. Each TA is isolated and 

protected against illegitimate access from other TAs, 

providing an ecosystem of application vendors.  

TEE system such as ARM TrustZone technology offers a 

system-wide security solution, partitioning the hardware and 

software resources, therefore, they reside in one of two 

scenarios, secure scenario for the security subsystem and 

normal one for everything else. Several Android applications 

utilize this technology because of the standardization’s lack. 
This subject is addressed by Global Platform [42, 43] that 

established the standard for managing applications on secure 

chip technology and a set of specifications for the TEE system 

architecture. 

Intel SGX 
Intel SGX grants developers to move their sensitive parts of 

applications into a protected execution environment, called an 

enclave, to protect the code confidentiality and data integrity. 

Code and data of the enclave live in a protected memory 

region (i.e., the enclave) page cache (EPC). Only the code of 

application executing inside the enclave is authorized to access 

the EPC. The confidentiality of enclave memory is secured by 

transparent memory encryption achieved by the CPU. Enclave 

calls (ecalls) can be used to enter an enclave and outside calls 

(ocalls) can be used to call out of the enclave. Therefore, any 

interaction between the enclave and the OS via system calls, 

such as network, must execute outside of the enclave. SGX 

supports local attestation mechanisms which allow an enclave 

to prove to another enclave that it has a particular digest and 

runs on the same processor. This privileged mechanism 

enables the deployment of enclaves that support remote 

attestation.  

In Intel SGX, the size of the TCB contains the enclave code 

and trusted hardware. Thus, only some portions of an 

application that require access to sensitive data should be 

implemented inside the enclave. Some studies [4, 31] have 

resulted that increasing the code size leads to increasing the 

number of software bugs. As a result, increasing potential 

security vulnerabilities. To overcome this problem, it is 

important to minimize the size of the TCB. However, some 

factors impact the security of enclave data and code such as 

the complexity of the enclave interface. For instance, the 

security-sensitive code inside the enclave needs to interact 

with the non-enclave environment to call or return some data 

from/to the enclave.  

The Security Model 

The security objective is to protect the confidentiality of 

sensitive statements in the untrusted area, preventing an 

attacker from reading or modifying the stored sensitive data. 

To this end, we assume the attackers are interested in obtaining 

the sensitive data of the program uploaded by the user, i.e., 

compromising the data confidentiality. However, the attackers 

are not interested in compromising computation integrity, 

such as tampering with the computation results. For the 

environment setting, we assume that the user’s zone is free of 
attacks. However, the public cloud is untrusted. On the public 

cloud, we assume the processors support SGX. Yet the 

software stacks on the public cloud host, such as the 

hypervisor and the OS, are untrusted. 

To facilitate our description, we call the enclaves the trusted 

area and call the software stacks on the public cloud the 

untrusted area. The attackers can be outside attackers, 

malicious and cloud vendor employees, or malicious users 

who are co-hosted with benign cloud users. We do not have 

special restrictions on the programs to be protected. As long 

as the program itself does not reveal its sensitive data 

intentionally (e.g., explicitly printing out the annotated data or 

other sensitive information), our solution will work well. 

System design 

Architecture 

The architecture of our proposed solution is shown in Fig. 1. 
For the original Java program P that the user aims to perform 
on the public cloud, our proposed solution must know which 
data is security-sensitive in the code of P. Therefore, 
developers are required to annotate at least one variable in 
the program (stage 1 in Fig. 1) to provide cues to the 
partitioning phase. Once the source(s) (variable(s)) are 
marked in the program, our proposed solution will perform 
static dataflow analysis (stage 2 in Fig. 1). Based on the 
output of the dataflow analysis, the proposed solution will 
use the PDG to performs forward slicing to isolate the 
security-sensitive data from the code in the program, we call 
this process the Partition Details (PD). PD defines which 
part of the code must be protected by the enclave. In other 
words, it will partition the original program P into a 
transformed program PT and the Sensitive Extracted Data 
Matrix (SEDM). The latter includes all security-sensitive 
variables and functions (stage 3 in Fig. 1). After the 
partitioning, PT will be uploaded to and performed in the 
public cloud (i.e., non-enclave area). SEDM will be 
transmitted to and executed in an SGX enclave. Notice that 
the user necessarily needs to transmit the SEDM to the 
enclave in an encrypted manner marked as E(SEDM). In the 
enclave, we perform necessary computations for all security-
sensitive statements inside the enclave based on SEDM 
(stage 4 in Fig. 1). We provide further discussion about each 
stage in the following section. 

System design 

In this section, we present our proposed solution, a new 
approach for securing applications using TEEs. This solution 
is built upon hiding the security-sensitive data of 
applications in terms of code confidentiality. Our approach 
starts with static dataflow analysis supported by data 
annotation. Then, we will classify the annotated statements 
and capture a bunch of the statements that will generate a 
secure partition to be deployed to an SGX enclave. For the 



Anter Faree and Yongzhi Wang:  Journal of Cloud Computing: Advances, Systems and Applications Page 4 of 24 

 

 

partitioning goal, we will define all the statements that 
deliver confidential data from a certain variable to another 
one in a given context across reachable paths. To this end, we 
will apply static dataflow analysis and expand it to accurately 
capture contextual information by annotating statements that 
propagate variables from sources to sinks. We will follow 
standard dataflow analysis algorithms in [44] and [45] to 
capture sensitive information for a propagating variable 
statement in a tag t < source, successor >, where the source 
is an incoming security-sensitive variable (predecessor flow), 
a successor is a security-sensitive variable propagating 
further (successor flow). The four stages of the proposed 
solution can be explained as follows. 

Data annotation stage 

In this stage, our proposed solution must know which 

variables are security-sensitive in the program. In other 

words, the developer should provide information about 

the source(s) of security-sensitive data by annotating 

variables whose values must be protected in terms of 
confidentiality. These annotated variables are marked as SA. 

To clearly understand how a developer marks security-

sensitive data in a program, we consider a piece of Java code 

in Fig. 2. Only variable x at line 3 is annotated as a security-

sensitive variable, indicating that all the variables at line 

6,9,11,16,20 and 21 become sensitive variables due to the 

information flow from the annotated variable x to those 

statements. Therefore, the annotated variable and all its 

related security-sensitive statements must be stored and 

executed inside a special SGX enclave.  
Although there is information flow from variable z to c at 

line 13, it is considered as normal data, because neither 
variable z nor c has an interaction with the annotated variable 
x. Meaning that variables z and c are cleartext. Thus, they 
will be executed in the untrusted area including all other 
statements that have no interactions with the annotated 
variable.

 
1. public class AnotationEx { 

2.      public static void main(String args[]) { 

3.       @int x = 0; // Sensitive source – Marked by the developer 
4.        int y = 4; 

5.        int z= 2;   

6.        x = y + 3;   // Sensitive statement – Marked by the algorithm 
7.        float total = (float) 0.0; 

8.        boolean flag; 

9.        if (x < y)   // Sensitive statement – Marked by the algorithm 
10.         { 
11.           total += x;  // Sensitive statement – Marked by the algorithm 
12.           flag = true;  
13.           return;   
14.         } 
15.        int c = z++; 
16.        int summation = Sum(x , y); // Sensitive statement – Marked by the algorithm 
17.        System.out.println("the summation of x and y is:" +summation); 
18.         } 
19.   public static int Sum(int x, int y) {// Sensitive – Marked by the algorithm 
20.         int sum= x+y; // Sensitive statement – Marked by the algorithm 
21.         return sum; // Sensitive statement – Marked by the algorithm 
22.      } 

23.   } 

Fig. 2 The annotation process and sensitive information flow in a simple Java program.     

Code 
Annotation 

@Sensitive Source 

The original Program P 

Data Flow Analysis 
Forward 
Slicing 

Partition 
Details 
(PD) 

Annotated Data 

Transformed 
Program PT 

User’s Zone 

E(SEDM) 

PT 

Sensitive 
Extracted Data 
Matrix (SEDM) 

Partition Deployed 

The SOOT Framework 

E(SRDM) 

Java Program (.java) 

Enclave Area 

Transformation process 

PDG 

Untrusted PT code 

Public cloud area 

User Environment 
D(E(SRDM)) → SRDM 

① Data Annotation Stage ② Data Analysis Stage ③ Program Partitioning Stage ④ Code Generation Stage 

SEDM 

Fig. 1 The Architecture of the proposed solution Engine 
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Data analysis stage 

Based on the annotated source(s) code SA, our approach 

will distinguish a part of the code that will be considered as 

a sensitive statement from the one that is considered as 
insensitive ones. Therefore, the data analysis stage will 

identify all security-sensitive statements in the program that 

possess dependencies on the set of all annotated statements 

SA. The proposed solution will use static dataflow analysis to 

examine all security-sensitive statements. Static dataflow 

analysis is workload independent and therefore conservative 

decisions must be made about dependencies.  

To extract all security-sensitive variables in a Java code, 

we will transform the original code into another 

representation. Based on the standard approaches’ analysis, 
we will also use the standard PDG. Where in the standard 

PDG, vertices represent statements and edges are both data 
and control dependencies between statements. Therefore, we 

will use a partition technique mainly based on the graph 

reachability problem over the PDG. PDGs are considered 

efficient representations for program partitioning [46]. The 

program slicing technique was instructed as a sequence of 

dataflow analysis problems. Using a standard dataflow 

analysis algorithm and the PDG, our approach will obtain 

the set of all security-sensitive statements as follows. 

Firstly, in term of Static dataflow analysis and by given SA 

and PDG, our approach will use graph-reachability to 

observe a subgraph PC of PDG which contains all statements 
with a transitive control or data dependence on statements in 

PDG (i.e., vertices reachable from statements in SA via edges 

in PDG). For statements in SA that are annotated as security-

sensitive data in the program, our approach will use an 

encryption method [47] to perform encryption on the 

sensitive data before placing it inside the enclave (i.e., 

E(SEDM)), see Fig 3. 

Secondly, given SA and PDG, our approach will use static 

forward slicing to observe a subgraph PF with all statements 

in PDG on which statements in SA contain a control /data 

dependence (i.e., all vertices from which statements in SA are 

reachable via PDG). 
Thirdly, the set of all security-sensitive statements ST is 

taken by combining PC and PF As a result, our proposed 
solution constructs a new step, we call this step the partition 
details PD. 

Program partitioning stage 

In this stage, we define which part of the code must be placed 

inside the enclave to protect the confidentiality of data. Based 

on static program analysis, we will define the code that will be 

performed in the enclave. As a result, this will define the 

enclave boundary interface of the sliced code which includes 

ecall and ocall to the untrusted area. Our approach will 

construct the partition details (PD) from ST with the set of 
security-sensitive functions and variables, these sensitive data 

will be stored in the SEDM in order to transmit them to the 

enclave area in an encrypted manner. The PD contains all 

statements’ functions and variables that include at least one 

variable in ST. It also includes the transformed program PT. 

Moreover, it provides a special function ecall to the non-

enclave code to retrieve these security-sensitive variables 
when needed. Therefore, our proposed solution will generate 

a tuple for each security-sensitive statement inside the SEDM, 

marked as L(s). 

In General, PD contains two main components; SEDM, which 

will be deployed to the trusted area (i.e., the enclave), and the 

transformed program PT that the user aims to execute on the 

public cloud. The transformation will be achieved at the user’s 
zone inside PD. In the whole process, the insensitive functions 

and variables remain in the user’s zone or the untrusted area. 
Only the security-sensitive statements in the program will be 

transmitted to the enclave. As a result, this will create an 

enclave boundary interface that will establish all security-
sensitive statements transmitted to enclave functions and 

perform all necessary computations inside the enclave and 

finally return the results outside the enclave (i.e., to the user 

environment). In general, our proposed solution will check 

each security-sensitive statement in the SEDM to know 

whether the statement is a function call, expression statement, 

or a control flow statement. In other words, we classify each 

security-sensitive statement in the SEDM into one of the 

following three types. 

Expression statement. For this kind of statement, a tuple 
will be created, recording some information about that 

statement. This means, during the transformation 

process, the proposed solution will replace each security-

sensitive expression statement in the program with bracket 

(1), where bracket (1) includes two functions, i) the 

stmtextract() function and ii) the stmtreturn() function. The 
function stmtextract() will be used to extract all variables from 
each sensitive expression statement in the program and store 
them in the SEDM. For each statement in the stmtextract(), a 
tuple will be created, called L(stmt) represented by the 
bracket (2), records the statement id stmtid that will be used 
to pick up the proper statement during the execution of the 
program inside the enclave, statement type sttype that will be 
used to determine the type of statement (either expression or 
control flow statement), variable type vartype that determines 
the data type of each variable in the security-sensitive 
statement based on its index in Table 1, the left operand 
leftop, the right operand rightop, and the operator of the 
statement stmtop. The tuple L(stmt) can be seen in bracket 
(2). 

< 𝑠𝑡𝑚𝑡𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝐿(𝑠𝑡𝑚𝑡),𝑠𝑡𝑚𝑡𝑖𝑑), 𝑠𝑡𝑚𝑡𝑟𝑒𝑡𝑢𝑟𝑛(𝐿(𝑒𝑛𝑐𝑠𝑡𝑚𝑡),𝑠𝑡𝑚𝑡𝑖𝑑)> (1) 

In Table 1, we assume different encoding for each primitive 
data type in Java (i.e., byte, short, int, long, float, double, 
boolean, char), plus the object type. After that, we indexed 
all the data types starting with ‘00’ until ‘08’. Similarly, these 
indexes can be used to determine the data type of the returned 
value by a Java method, for instance, the ‘09’ index can be 
used when the method does not return a value. In our solution, 
for each boolean type, we will convert true and false to 1 and  
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Table 1 Primitive data types indexes 

Data type 𝑖𝑛𝑡 𝑑𝑜𝑢𝑏𝑙𝑒 𝑓𝑙𝑜𝑎𝑡 𝑙𝑜𝑛𝑔 𝑏𝑦𝑡𝑒 𝑠ℎ𝑜𝑟𝑡 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑐ℎ𝑎𝑟 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑜𝑖𝑑 

Index 00 01 02 03 04 05 06 07 08 09 

0, respectively. We will also use the hash code (an integer 
value) to represent each object type. The function stmtreturn() 
will be used to retrieve the return values of each statement 
that will be computed inside the enclave based on our scheme 
in Fig 4. For each statement inside the enclave, there will be 
return values; those return values will be generated based on 
the switch-case statement code in each function (i.e., stmtexp 
function and stmtcf function inside the enclave). A special 
function will be executed inside the enclave. The idea of the 
special function is as follows. Based on the statement id 
stmtid and statement type stmttype, it will look up the SEDM, 
identifying the proper tuple and choose the required 
variables from L(s) based on the variable type vartype and its 
index in Table 1, and then return the evaluation result of a 
certain statement to the user environment (see Fig 3). Based 
on bracket (1) and bracket (2), the proposed solution will 
store the sensitive statements of the simple code listed in Fig 
2. Table 2 shows the stored sensitive statements of the simple 
program. The first column in Table 2 represents the statement 
id that will be generated sequentially for each security-
sensitive statement in Fig 2; this means, we will generate a 
sequence unique number for each security-sensitive 
statement. The second column represents statement type; for 
each security-sensitive statement, we use 0 and 1 to assign 
the expression statement and the control flow statement, 
respectively.  For instance, the statement at line 9 in Fig 2 is 
a control flow statement, thus we will encode it with 1 as it 
is shown in Table 2, where the other statements in Fig 2 are 
expression statements, thus we encode them all with 0. The 
third column represents the variable type vartype which stores 
the data type of each statement; therefore, we pick up the 
proper data type from Table 1 based on its definition in Fig 
2. The fourth and fifth columns represent the left and right 
operand for each security-sensitive statement in Fig.2, 
respectively.  
 

< 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑣𝑎𝑟𝑡𝑦𝑝𝑒 , 𝑙𝑒𝑓𝑡𝑜𝑝, 𝑟𝑖𝑔ℎ𝑡𝑜𝑝, 𝑠𝑡𝑚𝑡𝑜𝑝 > (2) 

Notice that if the value of the left or the right operand is 

constant, we will store the actual value in the tuple, otherwise, 

we will retrieve its position from the corresponding array that 

will be generated inside the enclave (see Table 5). The last 

column in Table 2 stores the actual operator of each security-

sensitive statement in Fig 2. Table 2 shows all security-

sensitive statements in Fig 2, where the stmtid(0), stmtid(1), 
stmtid(2), stmtid(3), stmtid(4), stmtid(5), stmtid(6), represent 

lines 3,4,6,7,9, 11 and 14, respectively. 

Control flow statement: For this kind of statement, we will 

apply the same solution that will be used in the expression 

statements above. The control flow statement differs from 

the expression statement in that the value is stored in the 

statement type, where 1 and 0 indicate a control flow 

statement and the expression statement, respectively. 

Function call statement: In our proposed solution, we 
consider a function in a Java program as a security-sensitive 
function if its body or its definitions contain at least one 
statement in ST. In other words, any function that its body or 
its definitions contain a statement related to the annotated 
variable(s), will be considered as a sensitive function. For 
each sensitive function, we replace the sensitive function in 
a Java application with the bracket (3). Note that the function 
call statement differs from the expression statement and 
control flow statement in that the stored value in the 
statement type parameter. Where 2 indicates a function call 
statement, 0 and 1 indicate the expression statement and 
control flow statement, respectively.  

Where the function funextract() in bracket (3) will be used to 
extract the statement based on the fun(list) and funid. Note 
that the 𝑓𝑢𝑛(𝑙𝑖𝑠𝑡)  is nothing but bracket (4). The tuple in 
bracket (4) records the statement id (stmtid) which defines a 

Table 2 The sensitive expression statements and control flow statements of Fig.2 inside the 𝑆𝐸𝐷𝑀. 𝑠𝑡𝑚𝑡𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒  𝑣𝑎𝑟𝑡𝑦𝑝𝑒  𝑙𝑒𝑓𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡𝑜𝑝 𝑠𝑡𝑚𝑡𝑜𝑝 

0 00 00 00 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 
1 00 00 4 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 
2 00 0 01 3 + 

3 00 2 00 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 
4 01 𝑛𝑢𝑙𝑙 00 01 < 

5 00 2 20 00 + 

6 00 2 20 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 
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unique Identifier for each security-sensitive statement, the 
statement type (stmttype) which indicates the current 
statement type, the function id (funid) states a function 
modifier (funmodifire) defines the access type of unique 
Identifier for each security-sensitive function, the 
application), the function name (funname) which returns the 
string name function, the function type (fuctype) which returns 
the return type of the function, and finally the Parameter list 
(parm(list[])) which stores the list of the input parameters, 
preceded with their data types from the sensitive function 
and list them in a data matrix as is shown in bracket (4) (i.e., 
from which it can be accessed in Java). < 𝑓𝑢𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡  (𝑓𝑢𝑛(𝑙𝑖𝑠𝑡),𝑓𝑢𝑛𝑖𝑑) > (3) 

In our solution, we will index the access modifiers parameter 

(funmodifire) for each sensitive method based on its access 

modifier in Table 3 and store the index in the enclave. The 

function fun (return ()) in bracket (5) will be used to read the 

return values that will be generated inside the enclave for 
each security-sensitive function based on its statement id and 

its function id. Note that, the list of the return value will be 

created inside the enclave. For each return value, a tuple will 

be created in the Sensitive Returned Data Matrix (SRDM) 

which can be used to store the returned values from the 

enclave to the user environment. 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒, 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒, 𝑓𝑢𝑛𝑛𝑎𝑚𝑒, 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 , 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] (4) 

Meanwhile, we will encrypt the data matrix E(SRDM) before 
we send it to the user environment. In the user environment, 
we will decrypt the received data matrix D(E(SRDM)) during 
program execution and pick a proper value for each function 
based on its statement id and function id in the given tuple in 
the bracket (6).    < 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 (𝑓𝑢𝑛(𝑒𝑛𝑐𝑟𝑒𝑡𝑢𝑟𝑛)), 𝑓𝑢𝑛𝑖𝑑 > (5) 

Table 3 records the return id (retid), the statement id (stmtid), 
the statement type (stmttype), function id (funid), and  
 

Table 3 The indexes of the access modifiers that will be used in our proposed 
solution. 

Public Protected  Private Default  

0 1 2 3 

the return value of the function (funreturn). For the security-
sensitive function in the example in Fig 2, we replace line 16 
with bracket (3). Where the function fun(extract()) in bracket (3) 
will be used to extract all information from the target 
function based on fun(list) (i.e., bracket (4)) and funid and 
then list all the information in SEDM. The function funreturn() 
in the bracket (5) will be used to read the return values that 
will be generated inside the enclave for each security-
sensitive function based on its statement id, statement type, 
and function id. Note that, the list of the return value will be 
created inside the enclave. For each return value, a tuple will 
be created in the Sensitive Returned Data Matrix (SRDM) 
which can be used to store the returned values from the 
enclave to the user environment. At that time, we will 
encrypt the data matrix E(SRDM) before we send it to the 
user environment. In the user environment, we will decrypt 
the received data matrix D(E(SRDM)) during program 
execution and pick a proper value for each function based on 
its statement id, statement type and function id in the given 
tuple in the bracket (6). Table 4 shows how our proposed 
solution will store the actual values of the sensitive method 
at line 16 in Fig 2 in the enclave based on bracket (4). < 𝑟𝑒𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 > (6) 

Code generation stage 

The code generation stage demonstrates the whole 
computations of the security-sensitive statements inside the 
enclave based on the Sensitive Extracted Data Matrix 
(SEDM). Moreover, it illustrates the return values that will 
be transmitted from the enclave to the user environment as is 
shown in Fig 3. Fig 3 demonstrates the execution process of 
the security-sensitive and insensitive statements of the 
program in Fig 2. After the partitioning process, we obtain  

Fig. 3 The partitioned statements of the Java program in Fig. 2 and their execution process inside the enclave 

Partition process 

E(sum) 

The Transformed Program PT <untrusted area> 
 
int z = 2;   
boolean flag; 
flag = true; 
int c = z++; 

The sliced code <the sensitive statements in the trusted area> 
int x = 0; 
int y = 4; 
x = y + 3;   
float total = 0.0;  
if (x < y)               
total += x; 
int summation 
int sum 
return sum 

User Environment  
D(E(sum)) → sum → 11 

The Original Program P 
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Table 4 Storing the actual values of the method sum at line 16 in Fig.2 inside the enclave. 

𝑠𝑡𝑚𝑡𝑖𝑑  𝑓𝑢𝑛𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒  𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒  𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑓𝑢𝑛𝑡𝑦𝑝𝑒  𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] 
7 0 02 0 "Sum" 0 [𝑥, 𝑦] → [7,4] 

Table 5 The actual values of the program in Fig.2 inside the enclave. 

 

 

 

 
 

 
 
 

two partitions, the sensitive one on the left side of Fig.3 
which includes all security-sensitive variables and functions; 
and the insensitive part on the right side of Fig 3 which 
contains all cleartext statements. The statements in the 
sensitive part will be transmitted to the enclave, where the 
insensitive ones will be transmitted to the untrusted area. 
After performing all the necessary computations inside the 
enclave based on the scheme in Fig 4, the return values will 
be encrypted inside the enclave using a proper encryption 
method and returned value to the user environment. We 
assume that the user environment is a secured area, therefore, 
we will decrypt the return values in the user environment 
using a corresponding decryption method to ensure that the 
returned value will be accessed only by a trusted user and 
thus cannot be leaked out to the attacker. As it is illustrated 
in Fig 3, the return value is the function” sum”, thus, this 

value will be encrypted E(sum) inside the enclave and then 
transmitted to the user environment in an encrypted manner.  

In the user environment, the return value will be decrypted 

D(E(sum)) using the same encryption method that is used 

inside the enclave. The main design scheme of our proposed 
solution inside the enclave is shown in Fig 4. We define an 

interface to create several arrays, where each array contains 

values with the same type and different arrays have different 

types as is shown in Table 5. We use these arrays to store the 
actual values of sensitive variables, thus, we only store their 
positions in the tuples instead of storing the actual values and 
that is because we aim to secure the actual variables inside 
the enclave. Therefore, we can read the actual sensitive 
values using their positions in each matching array. In our 
scheme, we read these arrays’ positions to obtain the actual 
values of each sensitive value and then perform necessary 
computations on it. In Fig 4, we show how we will compute 

 

 

Sequence Data type Position-0 Position -1 Position -2 Position -3 

0 int 0 4 11 … 

1 double    … 

2 long    … 

Fig. 4 The scheme of the process execution sequence inside the enclave.  

E(SRDM) 

The encrypted data matrix E (SRDM) for return values 

Sensitive Extracted Data Matrix (SEDM) for (stmtextract) 
 < 2, 00,0, 01,3," + " >  // for Exp_statement at line 6 in Fig.2 – based on bracket 2 < 3,01, null, 00,01,"<" > // for CF_statement at line 9 in Fig.2 - based on bracket 2 < 7,02,0, 0, "sum", 01,[x,y] > // for Exp _statement at line 19 in Fig.2 - based on bracket 4 

Boolean main_stmtFn (stmt_type) 
switch (stmt_type) { 
        Case 1: 

             𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id); 

        Case 2: 

             𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id); 

         Case 3: 

              𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id); 

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id) 

        return  "sum", 01, [𝑥, 𝑦] Boolean 𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id) 

        return  sen_list[7] > sen_list[4]; 

Enclave area 

Sensitive Returned Data Matrix (SRDM) for (stmtreturn) 
 < 0, 2, 00, 7 >  // return value of Exp_statement at line 6 in Fig.2 < 1, 3, 01, 𝑓𝑎𝑙𝑠𝑒 >  // return value of CF_statement (at line 9 in Fig.2 < 3, 7,02,0,[7,4] > // return value of Exp_statement at line 19 in Fig.2 

User Environment  

The returned values 
D(E(SRDM)) → SRDM 

 

𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id) 

           return  sen_list[4] + sen_list[3]; 
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lines 6, 9 and 19 in Fig 2. Moreover, we explore how we 
achieve the return values for each. Thus, for each executed 
statement inside the enclave, the return value will be 
generated and sent back to the user environment. < 𝑟𝑒𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑖𝑑 , 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑠𝑡𝑚𝑡𝑟𝑒𝑡 > (7) 

We use the switch-case statement inside the enclave to 

determine which type of the statement will be executed 

based on the statement type stmttype (i.e., either expression 

statement, control flow statement or a function call 

statement). After each execution, a tuple will be created in 

(SRDM) based on bracket (7) for expression and control 

flow statements, bracket (6) for function call statements, 
those tuples will be used to store the returned values of each 

executed statement. The SRDM will be signed and 

encrypted inside the enclave and sent to the user 

environment E(SRDM) (see Fig 4).  

In the user environment, we will handle the corresponding 

decryption operations. Thus, we decrypt the received data 

matrix (i.e., D(E(SRDM)) in the user environment and pick 

the proper return value for each statement based on the 

statement id and statement type in the given matrix (SRDM). 

Notice that both the user environment and enclave use the 

same encryption method mentioned above. The tuple in 

bracket (7) records the return id retid, the statement id 

(stmtid), statement type stmttype, and the return value stmtret of 

each expression and control flow returned statement. In our 

scheme in Fig 4, we define three functions, one for executing 

function call statements, referred to as funcall, for executing 

the expression statement, referred to as stmtexp and the other 

one for executing control flow statements referred to as 

stmtcf. Based on the statement type stmttype, the three 
functions can be invoked from a special function in the 
enclave, called mainstmtFn. The difference between the 

function stmtexp and the function stmtcf() is that in the function 
stmtexp() we acquire return values that will be returned to the 
user environment in an encrypted manner, called E(SRDM), 
where the function stmtcf() ” returns a boolean value (either 
true or false) to determine whether the condition of the 
control flow statement is executed successfully. In the user 
environment, we will use the stmtreturn function in bracket (1) 
with its tuple in bracket (7) to retrieve the return values of 
stmtcf and stmtexp functions from E(SRDM). Similarly, we 
will use the funreturn function in bracket (5) with its tuple in 
bracket (6) to retrieve the return values of the funcall function 
from E(SRDM). 

Case study 

In this section, we analyze our approach and show its 

experimental verification by applying it to three real java 

applications, Binary Search application, Bubble Sort 

application, and QuickSort application as follows. 

Binary Search Application 

The binary search application in Fig 5 is a real java 
application which is a search algorithm that finds the position 
of a target value within a sorted array. 

Data annotation 

In this section, we assume the search key at line 19 in Fig 5 
is a security-sensitive variable, all other statements that 
interact with the variable key are security-sensitive 
statements. Thus, the annotation process at line 19 in Fig 5 
marks the content of the variable key as security-sensitive 
data. Note that the statements in the function binarysearch() 
at lines 4,5,6,7,9,10, and 12 are become security-sensitive 
statements due to the information flow. 

1: class BinarySearch{ 

2: public static int binarySearch(int arrBS[], int low, int high, int key) 

3:    { 

4:          if (high >= low) { 

5:          int mid = low + (high - low)/2; 

6:          if (arrBS [mid] == key) { 

7:          return mid; 

8:          } 

9:          if (arrBS [mid] > key) { 

10:          return binarySearch (arrBS, low, mid-1, key); 

11:          } else { 

12:          return binarySearch (arrBS, mid+1, high, key); 

13:          } 

14:     } 

15:       return -1; 

16:   } 

17:  public static void main (String args[]) { 

18:    int arrBS[] = {3, 5, 6, 8, 11, 12, 14, 15, 17, 18}; 

19:    @int key = 8; // Sensitive source – Marked by the developer 
20:    int last=arrBS.length-1; 

21:    int result = binarySearch(arrBS,0, last, key); 

22:    if (result == -1) 

23:     System.out.println("Element is not exist!"); 

24:      else 

25:   System.out.println("Element is found at index: "+result); 

26:     } 

27:  } 

 
                            Fig. 5 The Original Binary Search Application. 
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1: class BinarySearch { 

2: public static int binarySearch(int arrBS[], int low, int high, int key) 

3:   { 

4:       if (high >= low) { 

5:       int mid = low + (high - low)/2; 

6:       if (arrBS [mid] == key) { 

7:       return mid; 

8:       } 

9:       if (arrBS [mid] > key) { 

10:       return binarySearch (arrBS, low, mid-1, key); 
11:       } else { 
12:       return binarySearch (arrBS, mid+1, high, key); 
13:        } 
14: } 
15:       return -1; 
16:  } 
17:  public static void main (String args[]) { 
18:    int arrBS[] = {3, 5, 6, 8, 11, 12, 14, 15, 17, 18}; 
19:    @int key = 8; 
20:    int last=arrBS.length-1; 
21:    int result = binarySearch(arrBS,0, last, key); 
22:    if (result == -1) 
23:      System.out.println("Element is not exist!"); 
24:       else 
25:  System.out.println("Element is found at index: "+result); 
26:       } 
27:  } 

 
 

   Fig. 6 The Partitioned Binary Search Application. 
 

Dataflow analysis  

Next, our proposed solution must recognize the annotation 
variable(s) and PDG. In general, two main steps will be 
performed as follows. 
1. Static dataflow analysis 

For analyzing and extracting security-sensitive variables in 
Fig 5, we will follow standard dataflow analysis algorithms 
to capture all the sensitive information based on the 
annotated variable(s) in the program.  
2. Static forward slicing 

Then, we perform forward slicing to find a subgraph with all 
statements in PDG on which statements in the variable key 
(i.e., the annotated variable) have a control and data 
dependence. As it is shown in Fig 6, the sliced statements are 
highlighted in yellow colour, while the cleartext ones are 
highlighted in yellow. We consider the highlighted 
statements in yellow as sensitive statements, while the ones 
in yellow are cleartext statements. Fig 5 and Fig 6 illustrate 
the original binary search and the partitioned one, 
respectively. 

Program partitioning and transformation 

In this part, we show how our proposed solution will store 
sensitive variables that will be trans-mitted to the enclave 
and the rest of the code that will be deployed to the untrusted 
area. After performing partitioning on the binary search 
application, we will perform a transformation process on the 

code and we target the partitioned part in particular. For each 

expression statement and control flow statement in the 

partitioned part, we replace it with bracket (1) to extract all 

the security-sensitive variables. For the function call 

statement, we replace it with bracket (3) to extract all the 

security-sensitive information. As a result, we store all the 

security-sensitive variables based on bracket (1) and bracket 

(3) in the SEDM. Based on the previous two stages (i.e., data 

annotation and dataflow), our proposed solution will 

construct the partition details (PD) which contain security-

sensitive variables and insensitive ones. Therefore, we will 

use the function stmtextract() to extract all variables from each 

security-sensitive statement in the partitioned part and store 

them in the SEDM based on bracket (2). 

Meanwhile, we will store the security-sensitive functions in 
the SEDM by extracting their data using bracket 3(3). Table 
6 shows how the security-sensitive statements (the 
expression statements and control flow statements) in Fig 6 
will be stored in the SEDM. Each statement id in Table 6 
represents a single sensitive statement in the partitioned code. 
It also shows all the executed statements of the partitioned 
code in Fig 6. The stmtid(0), stmtid(1), stmtid(2), stmtid(3), 
stmtid(4), and stmtid(5) record the expression statement at line 
19, the control flow statement at line 4, the expression 
statements at line 5, the control flow statement at line 6, the 
expression statements at line 7, and the control flow 
statement at line 9, respectively. Table 7 shows the 
information of the binarySearch function in the SEDM. 

Code generation 

In this section, we show statements’ computations of the 
binary search application that will be executed inside and 
outside the enclave. As aforementioned in the program 
partitioning stage, the security-sensitive data will be sent to 

Sliced statements (sensitive statements). Cleartext statements. 
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Table 6 The sensitive variables of binary search application inside the 𝑆𝐸𝐷𝑀. 

𝑠𝑡𝑚𝑡𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒  𝑣𝑎𝑟𝑡𝑦𝑝𝑒  𝑙𝑒𝑓𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡𝑜𝑝 𝑠𝑡𝑚𝑡𝑜𝑝 

0 00 0 8 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 

1 10 𝑛𝑢𝑙𝑙 01 00 > = 

2 00 0 02 4 𝑛𝑢𝑙𝑙 
3 10 𝑛𝑢𝑙𝑙 03 00 = = 

4 00 0 02 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 
5 10 𝑛𝑢𝑙𝑙 02 3 > 

Table 7 Storing the actual values of the binarySearch method at line 21 in Fig. 6 inside the 𝑆𝐸𝐷𝑀. 

𝑠𝑡𝑚𝑡𝑖𝑑 𝑓𝑢𝑛𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑓𝑢𝑛𝑡𝑦𝑝𝑒  𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] 
6 0 02 0 "binarySearch" 0 [𝑎𝑟𝑟𝐵𝑆, 0, 𝑙𝑎𝑠𝑡, 𝑘𝑒𝑦] → [{3, 5, 6, 8, 11, 12, 14, 15, 17, 18},0,18,8] 

the enclave side in an encrypted manner (i.e., E(SEDM)). 
Once the enclave receives the E(SEDM) and verifies the 
execution environment, it will be able to decrypt 
D(E(SEDM)) using a corresponding decryption method. 
Following our security model scheme in Fig 4, we will define 
an interface in the enclave that will generate several arrays, 
where each array contains values with the same type and 
different arrays have different types (see Table 8). For 
expression and control flow statements, we use these arrays 
to store actual values of each variable coming from (3) (1) 
and 2 in the partitioned code, and bracket (3) and bracket (4) 
for the functions call statements; next, we will store their 
positions in tuples instead of storing their actual values. As a 
result, we will pick up the actual variables using their 
positions in each array. Table 8 shows that we only have 
integer values in the binary search application, therefore, all 
the values will be stored in the integer array (i.e., in sequence 
0, first row). In Table 9, Position−0, Position−1, and 
Position−2 store variables low, high, and mid, respectively. 
Whereas Position-3 stores the value of the variable key. The 
positions of the first three variables will keep on updating 
until we find the required index of the search key element as 
it appears in Table 9. Table 9 demonstrates the actual values 
of low, high and mid variables according to their execution 
sequence inside the enclave.  

Eventually, we return the last row in Table 9 to the user 
environment. To do so, we define three functions inside the 
enclave (see Fig 4). Based on the statement type stmttype, both 
functions stmtexp() and stmtcf() will be invoked from the main 
function mainstmtFn() and return the proper results. We 
compute all security-sensitive expression statements and 
control flow statements in functions stmtexp() and stmtcf(), 
respectively. After performing the necessary computations, 
we will return all security-sensitive variables to the user 
environment. In the user environment, we will use the 
function stmtreturn() in bracket (1) with its tuple in bracket (7) 
to retrieve all expression and control flow values from 
E(SRDM). Meanwhile, we will use the funreturn() function in 

bracket (5) with its tuple in bracket (6) to retrieve the 
function call values from E(SRDM). Fig 8 shows how the 
proposed solution will hide the security-sensitive function 
(i.e., the binarySearch method at line 2 and line 21 in Fig 6). 
Fig 7 shows the three-address code of the security-sensitive 
method at line 2 in Fig 6 that will be transformed into a new 
form (i.e., Jimple form). where r0 in Fig 7 refers to the 
elements of the array arrBS[] in Fig 6; i0, i1, and i2 refer to 
int low, int high, and int key, respectively. The function 
statement at line 21 will be transformed into a Jimple form 
as follows:  
(i2=staticinvoke<BSClass:intbinarySearch

(int[],int,int,int)>(r1, 0, i1, b0);). 

The above transformation includes the variable result and the 
function call of the binarySearch method at line 21. For the 
security-sensitive function in the binary search application, 
we replace it with the bracket (3). Where the function 
funextract() in bracket (3) will be used to extract fun(list) based 
on funid. Notice that the fun(list) is the bracket (4) which 
contains the statement id stmtid, the statement type stmttype, 
the function id funid, the function modifier funmodifire, the 
function name funname, the function type fuctype, and finally 
the parameter list parmlist[] to list them all in a data matrix. 
These values will be placed inside the enclave as it is shown 
in Table 7. The function funreturn() in the bracket (5) will be 
used to read the return values that will be generated inside 
the enclave for each security-sensitive function based on its 
statement id and function id. Note that, the list of the return 
value will be created inside the enclave. For each return value, 
a tuple will be created in the Sensitive Returned Data Matrix 
SRDM which will be used to store the returned values from 
the enclave to the user environment. At that time, we will 
encrypt the data matrix E(SRDM) before transmitting it to 
the user environment. In the user environment, we will 
decrypt the received data matrix D(E(SRDM)) during 
program execution and pick a proper value for each function 
based on its statement id and function id in the given tuple in 
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Table 8 The Actual values of the binary search application inside the enclave. 

Sequence Data type Position-0 Position -1 Position -2 Position -3 

0 int 0 9 4 8 

1 double    … 

2 float    … 

3 long    … 

Table 9 The execution sequence of low, high, mid, and key variables inside the enclave. 

Statement Execution sequence Low High Mid Key 

1 0 9 4 - 

2 0 3 1 - 

3 2 3 2 - 

4 3 3 3 8 

1. public static int binarySearch(int[], int, int, int) 

2. { 

4.      int[] r0; 

5.      int i0, i1, i2, i3, $i4, $i5, $i6, $i7, $i8, $i9, $i10, $i11; 

6.      r0 := @parameter0: int[]; 

7.      i0 := @parameter1: int; 

8.      i1 := @parameter2: int; 

9.      i2 := @parameter3: int; 

             Fig. 7 The 3-address code of the sensitive method at line 2 in Fig. 6. 

 

 

 

 

 

Sensitive Returned Data Matrix (SRDM) for (funreturn) < 0,02, 0, 0,8, >  // return the function < 𝑟𝑒𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 > 

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id) 
   { 
       𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒  𝑓𝑢𝑐𝑡𝑦𝑝𝑒   𝑓𝑢𝑐𝑛𝑎𝑚𝑒  (𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[ ]) 
   } 

E(SRDM) 
 

User Environment side 

The returned data matrix 
D(E(SRDM)) → SRDM 

Sensitive Extracted Data Matrix (SEDM) for (funexp) < 0, 02,0, 3, "binarySearch" , 00, 𝑟0, >  // for binarySearch function < 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒, 𝑓𝑢𝑛𝑛𝑎𝑚𝑒, 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 , 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] > 

Fig. 8 The process execution sequence of the binary search functions inside and outside the enclave.  

Enclave side 
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the bracket (6). The tuple in bracket (6) records the return id 

retid, the statement id stmtid, the statement type stmttype, 
function id funid, and the return value of the function funreturn. 
This tuple will be used to retrieve all the security-sensitive 
functions in the program to the user environment. 

Bubble sort application 

The bubble sort application in Fig 9 is a real java application 
that is considered as the simplest sorting algorithm that 
works by repeatedly swapping the adjacent elements if they 
are in the wrong order. 

Data annotation  

In this subsection, we assume the array arr[] at line 21 in Fig 
9 is a security-sensitive statement, all other statements that 
interact with the array arr[] are security-sensitive statement 
Thus, the annotation process at line 21 in Fig 9 marks the 
content of the array arr[]is security-sensitive data. Note that 
the statements in the function bubbleSort() at lines 2, 3, 4, 5, 
and 8 are become security-sensitive statements due to the 
information flow from the annotated statement. 

Data flow analysis  

Next, our proposed solution must recognize the annotation 
statement(s) and PDG. In general, two main steps will be 
performed for this purpose as follows. 
1- Static dataflow analysis 

For analyzing and extracting the security-sensitive statement 
in Fig 9, we will follow the standard dataflow analysis 
algorithm mentioned in the first case study to capture all 
sensitive information.  

2-  Static forward slicing 

The binary search application in Fig 5 is a real java 
application which is a search algorithm that finds the position 
of a target value within a sorted array. 
As aforementioned in the program partitioning stage, we 
perform forward slicing to find a subgraph with all 
statements in PDG on which statements in the annotated 
variable have a control and data dependence. As it is shown 
in Fig 10, the sliced statements are highlighted in yellow, 
while the cleartext ones are highlighted in yellow. We 
consider the highlighted statements in yellow as sensitive 
statements, while the ones in yellow are cleartext statements. 
Fig 9 and Fig 10 illustrate the original bubble sort and the 
partitioned one, respectively. 

Program partitioning and transformation 

In this part, we show how our proposed solution will store 
sensitive statements that will be transmitted to the enclave 
and the rest of the code that will be deployed to the untrusted 
area. After performing the partitioning task on the bubble 
sort application, we will perform a trans formation process 
on the code and we target the partitioned part in particular. 
For each expression statement and control flow statement in 
the partitioned part, we replace it with bracket (1) to extract 
all the security-sensitive variables. For the function call 
statement, we replace it with bracket (3) to extract all the 
security-sensitive functions. As a result, we store all the 
security-sensitive statements based on bracket (1) and 
bracket (3) in the SEDM. Based on the two first stages (i.e., 
data annotation and dataflow), our proposed solution will 
construct the partition details (PD) which contains security-
sensitive variables and insensitive ones.

 
1: public class BubbleSort{  

2:       void bubbleSort(int arr[]) {  

3:         int n = arr.length;  

4:            for (int i = 0; i < n-1; i++)  

5:            for (int j = 0; j < n-i-1; j++)  

6:             if (arr[j] > arr[j+1])  

7:             {  
8:              int temp = arr[j];  

9:              arr[j] = arr[j+1];  

10:              arr[j+1] = temp;  
11:            }  
12:         }  
13:    void printArray(int arr[]) {  
14:      int n = arr.length;  
15:        for (int i=0; i<n; ++i)  
16:         System.out.print(arr[i] + " ");  
17:         System.out.println();  
18:      }  
19:    public static void main(String args[]) {  
20:       BubbleSort ob = new BubbleSort();  
21:       *int arr[] = {64, 34, 25, 12, 22, 11, 90};  
22:       ob.bubbleSort(arr);   
23:       System.out.println("Sorted array");  
24:       ob.printArray(arr);  
25:       }  
26:    } 

 
 
Fig. 9 The Original Bubble Sort Application. 
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1: public class BubbleSort{  

2:      void bubbleSort(int arr[]){  

3:        int n = arr.length;  

4:           for (int i = 0; i < n-1; i++)  

5:           for (int j = 0; j < n-i-1; j++)  

6:            if (arr[j] > arr[j+1])  

7:            {  
8:             int temp = arr[j];  

9:             arr[j] = arr[j+1];  

10:             arr[j+1] = temp;  
11:          }  
12:       }  
13:    void printArray(int arr[]) {  
14:      int n = arr.length;  
15:        for (int i=0; i<n; ++i)  
16:         System.out.print(arr[i] + " ");  
17:         System.out.println();  
18:      }  
19:    public static void main(String args[]) {  
20:       BubbleSort ob = new BubbleSort();  
21:       *int arr[] = {64, 34, 25, 12, 22, 11, 90};  
22:       ob.bubbleSort(arr);  
23:       System.out.println("Sorted array");  
24:       ob.printArray(arr);  
25:       }  
26:    } 
 

 
 

 
Fig. 10 The Partitioned Bubble Sort Application. 

 

Table 10 The security-sensitive variables of the bubble sort application inside the 𝑆𝐸𝐷𝑀. 𝑠𝑡𝑚𝑡𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒  𝑣𝑎𝑟𝑡𝑦𝑝𝑒  𝑙𝑒𝑓𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡𝑜𝑝 𝑠𝑡𝑚𝑡𝑜𝑝 

0 00 0 7 𝑛𝑢𝑙𝑙 𝑛𝑢𝑙𝑙 

1 01 𝑛𝑢𝑙𝑙 0 6 < 

2 01 𝑛𝑢𝑙𝑙 0 7 < 

3 01 𝑛𝑢𝑙𝑙 6 6 > 

4 00 0 0 34 𝑛𝑢𝑙𝑙 
 

Therefore, we will use the function stmtextract() to extract all 

variables from each security-sensitive statement in the 

partitioned part and store them in the SEDM based on 

bracket (2). Meanwhile, we will store the security-sensitive 
functions in the SEDM by extracting their data using bracket 
(3). Table 10 shows how the security-sensitive statements 
(the expression statements and control flow statements) in 
Fig 9 will be stored in the SEDM. Each statement id in Table 
10 represents a single sensitive statement in the partitioned 
code. It also shows all the executed statements of the 
partitioned code in Fig 9. The stmtid(0), stmtid(1), stmtid(2), 
stmtid(3), stmtid(4) record the expression statement at line 3, 
the control flow statement at line 4, the control flow 
statement at line 5, and the control flow statement at line 6, 
the expression statement at line 8, respectively. Table 10 
shows the information on the bubbleSort function in the 
SEDM. 

Code generation 

In this section, we show statements’ computations of the 
bubble sort application that will be executed inside and 
outside the enclave. As aforementioned in the program 
partitioning stage, the sensitive data will be transmitted to the 
enclave side in an encrypted manner (i.e., E(SEDM)). Once 
the enclave receives the E(SEDM) and verifies the execution 
environment, it will be able to decrypt D(E(SEDM)) using a 
corresponding decryption method. Under our security model 
scheme in Fig 4, we will define an interface in the enclave 
that will generate several arrays, where each array contains 
values with the same type and different arrays have different 
types. For expression and control flow statements, we use 
these arrays to store actual values of each variable coming 
from bracket (1) and bracket (2) in the partitioned code, and 
bracket (3) and bracket (4) for the functions call statements;   

Sliced statements (sensitive statements). Cleartext statements. 
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Table 11 Storing the actual values of the bubbleSort method at line 21 in Fig. 10 inside the 𝑆𝐸𝐷𝑀. 𝑠𝑡𝑚𝑡𝑖𝑑 𝑓𝑢𝑛𝑖𝑑 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑓𝑢𝑛𝑡𝑦𝑝𝑒  𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] 
5 0 02 0 "bubbleSort" 0 [𝑎𝑟𝑟] → [11,12,22,25,34,64,90]  // *sorted array 

 

1: public static void main(java.lang.String[]) 

2: { 

3:        java.lang.String[] r0; 

4:        testbubblesort.BubbleSort $r1, r2; 

5:        int[] r3, $r4; 

6:        java.io.PrintStream $r5; 

7:        r0 := @parameter0: java.lang.String[]; 

8:        $r1 = new testbubblesort.BubbleSort; 

9:        specialinvoke $r1.<testbubblesort.BubbleSort: void <init>()>(); 

10:        r2 = $r1; 
11:        $r4 = newarray (int)[7]; 
12:        $r4[0] = 64; 
13:        $r4[1] = 34; 
14:        $r4[2] = 25; 
15:        $r4[3] = 12; 
16:        $r4[4] = 22; 
17:        $r4[5] = 11; 
18:        $r4[6] = 90; 
19:        r3 = $r4; 
20:        virtualinvoke r2.<testbubblesort.BubbleSort: void bubbleSort(int[])>(r3); 
21:        $r5 = <java.lang.System: java.io.PrintStream out>; 
22:        virtualinvoke $r5.<java.io.PrintStream: void println(java.lang.String)>("Sorted array"); 
23:        virtualinvoke r2.<testbubblesort.BubbleSort: void printArray(int[])>(r3); 
24:        return; 

25:  } 

 

Fig. 12 The 3-address code form of the security-sensitive method at line 21 in Fig. 10. 

 

next, we will store their positions in tuples instead of storing 
their actual values. To return the proper values to the user 
setting, we define three functions inside the enclave (see Fig 
4). Based on the statement type stmttype, both functions 
stmtexp() and stmtcf() will be invoked from the main function 
mainstmtFn() and return the proper results. We will perform all 
security-sensitive data of expression statements and control 
fowl statements in functions stmtexp() and stmtcf(), respectively. 

After that, we will return all security-sensitive variables to 
the user setting. In the user setting, the function stmtreturn() in 
bracket (1) with its tuple in bracket (7) will be used to 
retrieve all expression and control flow values from 
E(SRDM). Meanwhile, we will use the funreturn() function in 
bracket (5) with its tuple in bracket (6) to retrieve the 
function call values from E(SRDM).

 
Sensitive Returned Data Matrix (SRDM) for (funreturn) < 0,02, 0, 0, 𝑎𝑟𝑟[11,12,22,25,34,64,90] >  // return the function as a sorted array < 𝑟𝑒𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑟𝑒𝑡𝑢𝑟𝑛 > 

𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id) 
   { 
       𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒  𝑓𝑢𝑐𝑡𝑦𝑝𝑒   𝑓𝑢𝑐𝑛𝑎𝑚𝑒  (𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[ ]) 
   } 

E(SRDM) 
 

User Environment side 

The returned data matrix 
D(E(SRDM)) → SRDM 

Sensitive Extracted Data Matrix (SEDM) for (funexp) < 0, 02,0, 5,3, "bubbleSort" , 00, 𝑎𝑟𝑟[], >  // for binarySearch function < 𝑠𝑡𝑚𝑡𝑖𝑑, 𝑠𝑡𝑚𝑡𝑡𝑦𝑝𝑒 , 𝑓𝑢𝑛𝑖𝑑 , 𝑓𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑟𝑒, 𝑓𝑢𝑛𝑛𝑎𝑚𝑒, 𝑓𝑢𝑐𝑡𝑦𝑝𝑒 , 𝑝𝑎𝑟𝑚𝑙𝑖𝑠𝑡[] > 

Fig. 11 The process execution sequence of the bubbleSort functions inside and outside the enclave.  
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1. public class QuickSort { 

2.      public static void main(String[] args) { 

3.           int[] x = { 9, 2, 4, 7, 3, 6, 10, 5 }; 

4.           System.out.println(Arrays.toString(x)); 

5.           int low = 0; 

6.           int high = x.length - 1; 

7.           quickSort(x, low, high); 

8.           System.out.println(Arrays.toString(x)); 

9.      } 

10. public static void QuickSort(int[] arr, int low, int high) { 
11.           if (arr == null || arr.length == 0) 
12.                return; 
13.           if (low >= high) 
14.                return; 
15.           int middle = low + (high - low) / 2; 
16.           @int pivot = arr[middle]; 
17.           int i = low, j = high; 
18.           while (i <= j) { 
19.                while (arr[i] < pivot) { 
20.                     i++; 
21.                } 
22.                while (arr[j] > pivot) { 
23.                     j--; 
24.                } 
25.                if (i <= j) { 
26.                     int temp = arr[i]; 
27.                     arr[i] = arr[j]; 
28.                     arr[j] = temp; 
29.                     i++; 
30.                     j--; 
31.                }} 
32.           if (low < j) 
33.                quickSort(arr, low, j); 
34.           if (high > i) 
35.                quickSort(arr, i, high); 
36.     } 
37. } 

 
Fig. 13 The Original QuickSort Application. 

 

Fig 11 shows how the proposed solution will hide the bubble 
sort function at line 21 in Fig 10. Fig .12 shows the 3-address 
code of the security-sensitive method at line 21 in Fig 10 that 
will be transformed into a Jimple form. The r3 in Fig 12 
contains the elements of the array arr[] For the security-
sensitive function in the bubble sort application, we replace 
it with the bracket (3). Where the function funextract() in 
bracket (3) will be used to extract fun(list) based on funid. 
Notice that the fun(list) is nothing but the bracket (4). These 
security-sensitive statements will be placed inside the 
enclave as it is shown in Table 11 for the bubbleSort function. 
The function funreturn() in the bracket (5) will be used to read 
the return values that will be generated inside the enclave for 
each security-sensitive function based on its statement id and 
function id. Note that, the list of the return values will be 
created inside the enclave. For each return value, a tuple will 
be created in the Sensitive SRDM which will be used to store 
the returned values from the enclave to the user setting. 
Meanwhile, we will encrypt the data matrix E(SRDM) 
before transmitting it to the user environment. In the user 
environment, we will decrypt the received data matrix 
D(E(SRDM)) during program execution and pick a proper 
value for each function based on its statement id and its 
functionid in the given tuple in the bracket (6). The tuple in 

bracket (6) will be used to retrieve all the security-sensitive 
functions in the program to the user setting. 

Quicksort application 

The Quicksort application in Fig 13 is a divide and conquer 
algorithm. It first divides a large list into two smaller sub-
lists and then recursively sorts the two sub-lists. Our 
proposed solution can be applied to the Quicksort application 
as follows. 

Data annotation  

In this section, we assume the variable “pivot” at line 16 in 
Fig 13 is a sensitive variable, and all other statements that 
interact with the variable “pivot” are security-sensitive 
statements. Therefore, the annotation process at line 16 in 
Fig 13 marks the content of the variable “pivot” as sensitive 
data. Likewise, the QuickSort() method at line 10 is 
considered as a sensitive statement due to the information 
flow from the annotated variable to the other statements. For 
the same reason, all statements in the main method at lines 
3,4,5,6,7 and 8 are considered sensitive statements. 
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1. public class QuickSort { 

2.      public static void main(String[] args) { 

3.           int[] x = { 9, 2, 4, 7, 3, 6, 10, 5 }; 

4.           System.out.println(Arrays.toString(x)); 

5.           int low = 0; 

6.           int high = x.length - 1; 

7.           quickSort(x, low, high); 

8.           System.out.println(Arrays.toString(x)); 

9.      } 

10.      public static void QuickSort(int[] arr, int low, int high) { 
11.           if (arr == null || arr.length == 0) 
12.                return; 
13.           if (low >= high) 
14.                return; 
15.           int middle = low + (high - low) / 2; 
16.           @int pivot = arr[middle]; 
17.           int i = low, j = high; 
18.           while (i <= j) { 
19.                while (arr[i] < pivot) { 
20.                     i++; 
21.                } 
22.                while (arr[j] > pivot) { 
23.                     j--; 
24.                } 
25.                if (i <= j) { 
26.                     int temp = arr[i]; 
27.                     arr[i] = arr[j]; 
28.                     arr[j] = temp; 
29.                     i++; 
30.                     j--; 
31.                } 
32.           } 
33.           if (low < j) 
34.                quickSort(arr, low, j); 
35.           if (high > i) 
36.                quickSort(arr, i, high); 
37.      } 

38. } 

 
Fig. 14 The Partitioned QuickSort Application. 

 

Table 12: Sensitive variables of the QuickSort application inside the SEDM. 

stmtid stmttype vartype leftop rightop stmtop 

0 00 0 0 7 + 

1 00 0 7 null null 

2 00 0 0 null null 

3 00 0 7 null null 

4 01 null 0 7 < 

5 01 null 2 7 < 

 

Data flow analysis  

Following, our proposed solution will recognize the 

annotation variable(s) as follows: 

1- Static dataflow analysis 

For analyzing and extracting sensitive variables in Fig 13, we 
will utilize the standard dataflow analysis algorithm 
mentioned in the first case study to extract all sensitive 
information based on the annotated variable(s) in the 

program. 
2-  Static forward slicing 

In this phase, we perform forward slicing to find a subgraph 
with all statements in PDG on which statements in the 
variable key (i.e., the annotated variable) have a control and 
data dependence. As it is shown in Fig 14, the sliced 
statements are highlighted in yellow colour. We consider the 
highlighted statements in yellow as security-sensitive 
statements. Fig 13 and Fig 14 illustrate the QuickSort 
application and the partitioned one, respectively.
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Table 13: Storing actual values of the method quickSort in Fig 14 in the SEDM. 

stmtid funid stmttype funmodifire funname funtype 
parm(list[]) 

6 0 02 0 ”quickSort” 0 [arr[],low,high]ß[2,3,4,5,6,7,9,10,0,7] 

 

 
1: public static void quickSort(int[], int, int){ 

2: int[] r0; 

3: int i0, i1, i2, i3, i4, i5, i6, $i7, $i8, $i9, $i10, $i11, $i12; 

4: r0 := @parameter0: int[]; 

5: i0 := @parameter1: int; 

6: i1 := @parameter2: int; 

7: if r0 == null goto label0; 

8: $i7 = lengthof r0; 

9: if $i7 != 0 goto label1; 

10: label0: 

11: return; 

12: label1: 

13: if i0 < i1 goto label2; 

14: return; 

15: label2: 

16: $i8 = i1 - i0; 

17: $i9 = $i8 / 2; 

18: i2 = i0 + $i9; 

19: i3 = r0[i2]; 

20: i4 = i0; 

21: i5 = i1; 

22: goto label7; 

23: label3: 

24: i4 = i4 + 1; 

25: label4: 

26: $i10 = r0[i4];  

27: if $i10 < i3 goto label3; 

28: goto label6; 

29: label5: 

30: i5 = i5 + -1; 

31: label6: 

32: $i11 = r0[i5]; 

33: if $i11 > i3 goto label5; 

34: if i4 > i5 goto label7; 

35: i6 = r0[i4]; 

36: $i12 = r0[i5]; 

37: r0[i4] = $i12; 

38: r0[i5] = i6; 

39: i4 = i4 + 1; 

40: i5 = i5 + -1; 

41: label7: 

42: if i4 <= i5 goto label4; 

43: if i0 >= i5 goto label8; 

44: staticinvoke <QuickSort: void quickSort(int[],int,int)>(r0, i0, i5); 

45: label8: 

46: if i1 <= i4 goto label9; 

47: staticinvoke <QuickSort: void quickSort(int[],int,int)>(r0, i4, i1); 

48: label9: 

49: return; 

50: } 

            Fig. 15 The 3-address code of the sensitive method at line 10 in Fig. 14 

 

Program partitioning and transformation 

In this phase, we show how our proposed solution will store  

sensitive variables and the rest of the code that will be 

deployed to the enclave and the untrusted area, respectively. 

After performing partitioning on the binary search 

application, we will perform a transformation process on the 

code and we target the partitioned part in Fig 14. For each 

expression statement and control flow statement in the 

partitioned program, we replace it with the bracket (1) to 

extract all the security-sensitive variables from the code. For 

the function call statement, we replace it with the bracket (3) 

in order to extract all security-sensitive information from the 

method itself. Thus, we store all security-sensitive variables 

that we extracted from the expression statements, control 

flow statements, and function call statements based on the 

bracket (1) and bracket (3) in the SEDM.  
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The encrypted data matrix E (SRDM) for return values 

Boolean main_stmtFn (stmt_type) 
switch (stmt_type) { 
        Case 1: 
             𝑓𝑢𝑛𝑐𝑎𝑙𝑙 (fun-id, stmt_id); 
        Case 2: 
             𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id); 

         Case 3: 
              𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id); 

𝑓𝑢𝑛𝑐𝑎𝑙𝑙  (fun-id, stmt_id) 
        return  "quickSort", 01, 𝑎𝑟𝑟[] Boolean 𝑠𝑡𝑚𝑡𝑐𝑓 (sen_list, stmt_id) 

 return  sen_list[0] < sen_list[7]; 

Enclave area 

User Environment  

The returned values 

D(E(SRDM)) → SRDM 

Sensitive Extracted Data Matrix (SEDM) for (stmtextract) 
 0, 00, 0,3, 𝑛𝑢𝑙𝑙, null  // for Exp_statement at line 15 in Fig.14 – based on bracket (2) 1,00, 0, 7, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙 // for CF_statement at line 16 in Fig.14 - based on bracket (2) 4,01, null, 0,7, " < " // for CF_statement at line 18 in Fig.14 - based on bracket (2) 6,02,0, 0, quickSort, 0, arr[] // for the function call statement at line 10 in Fig.14 - based on bracket (4) 

Sensitive Returned Data Matrix (SRDM) for (stmtreturn) 
 0, 0, 00, 3  // return value of Exp_statement at line 15 in Fig.14 – based on bracket (5) 1, 1, 00,7  // return value of Exp_statement at line 15 in Fig.14 – based on bracket (5) 2, 4, 01, 𝑓𝑎𝑙𝑠𝑒  // return value of CF_statement at line 18 in Fig.14 - based on bracket (5) 3, 6,02,0,[{2,3,4,5,6,7,9,10},0,7] // return value of the function call statement at line 10 in Fig.14 - based on bracket (5) 

𝑠𝑡𝑚𝑡𝑒𝑥𝑝(sen_list, stmt_id) 

return  sen_list[0] + sen_list[7];  
return  sen_list[7]; 

Fig .16 Execution process of QuickSort application inside/outside the enclave 
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expression statement at line 16, the two variables at the 

expression statements at line 17, the control flow statement 

at line 18, and the control flow statement at line 19, 
respectively. Table 11 displays the sorted elements of the” 
quickSort” method in the SEDM. 

Code generation 

In this section, we show statements’ computations of the 
QuickSort application that will be executed inside and 
outside the enclave. As mentioned before in the program 

partitioning stage, the sensitive data will be transmitted to 

the enclave side in an encrypted manner (i.e., E(SEDM)). 

Once the enclave receives the E(SEDM) and verifies the 

execution environment, it will be able to decrypt the data 

matrix (i.e., D(E(SEDM)) using the corresponding 

decryption method. According to the scheme of the security 

model in Fig 4, we will define an interface in the enclave that 

will generate several arrays, where each array contains 

values with the same type and different arrays have different 

typesFor expression and control flow statements, we use 
these arrays to store actual values of each variable retrieving 
from bracket (1) and bracket (2) in the partitioned code, and 
bracket (3) and bracket (4) for the functions call statements. 
In order to return the proper values to the user setting, we 
define three functions inside the enclave (see Fig. 4). Based 
on the statement type stmttype, both functions stmtexp() and 
stmtcf() will be invoked from the main function mainstmtFn() 
and return the proper results. We will perform all security-
sensitive of expression statements and control flow 
statements in functions stmtexp() and stmtcf(), respectively. 
After that, we will return all security-sensitive variables to 
the user setting. In the user setting, the function stmtreturn() in 
bracket (1) with its tuple in bracket (7) will be used to 
retrieve all expression and control flow values from 
E(SRDM). Meanwhile, we will use the funreturn() function in 
bracket (5) with its tuple in bracket (6) to retrieve the 
function call values from E(SRDM). Fig 16 shows how the 
proposed solution will hide the quickSort function at line 10 
in Fig 14. The 3-address code of the security-sensitive 
method at line 10 in Fig 14 is shown in Fig 15. The figure 
shows the code after transforming it into the Jimple form. 
The r0 in the statement at line 3 in Fig 15 contains the 
elements of the array arr[]. For the security-sensitive 
function in the QuickSort application, we replace it with the 
bracket (3). Where the function funextract() in bracket (3) will 
be used to extract fun(list) based on funid. Notice that the 
fun(list) is nothing but the bracket (4). For the quickSort 
method, these security-sensitive statements will be placed 
inside the enclave as is shown in Table 13. The function 
funreturn() in the bracket (5) will be used to read the return 
values that will be generated inside the enclave for each 
security-sensitive function based on its statement id and 
functionid. Note that, the list of the return values will be 
created inside the enclave. For each return value, a tuple will 
be created in the SRDM which will be used to store the 
returned values from the enclave to the user setting. Next, 
we will encrypt the data matrix E(SRDM) before 

transmitting it to the user environment. In the user 
environment, we will decrypt the received data matrix 
D(E(SRDM)) during program execution and pick the proper 
value for each function based on its statement id and function 
id in (6). This tuple will be used to retrieve all security-

sensitive functions in the program to the user setting. Fig 15 

shows the 3-address code of the security-sensitive method at 

line 10 of the QuickSort application represented in Fig 14. 

Note that the 3-address code is an intermediate code used by 

optimizing compilers to aid in the implementation of code-

improving transformations. Each 3-address instruction has 

at most three operands and is typically a combination of 

assignment and a binary operator. 

The proposed implementation   

In this section, we briefly describe our proposed 

implementation and validation steps as follows. The 

workflow of our proposed solution is shown in Fig 1. First, 

users mark a certain variable(s) as security-sensitive sources 

in the Java program to be analyzed. We will utilize the 

FlowDroid [45] to perform this task, we will consider the 

value tainted by the source as a slicing criterion. Figs 2 and 
5 show how developers can mark a certain variable in the 

code and consider it as a slicing criterion. Once the source(s) 

will be marked in the program, the Soot framework [48] will 

be used to analyze the original program and then transform 

it into another representation (i.e., the 3-address form). The 

Soot framework is an open-source Java-based compiler tool. 

The program analysis and transformation can be performed 

in the Jimple Transformation Pack (jtp) phase in the 

execution of the Soot program. After this step, FlowDroid 

will be used, a dataflow analysis tool, an extension to the 

Soot framework to perform static dataflow analysis, and 

code partitioning. FlowDroid is a static data flow tracker. 
There is a certain similarity between the two concepts (data 

slicing and data flow tracker). In our work, we will use the 

FlowDroid as follows. 

FlowDroid generates the main method from the list of 

entry points. This main method is then used to generate a call 

graph and an inter-procedural control-flow graph (ICFG). 

We will then detect all sources which are reachable from the 

given entry points. Starting at these sources, the taint 

analysis tracks taints by traversing the ICFG. Thus, the value 

tainted by the source would be considered as a slicing 

criterion. FlowDroid will track taints forward through the 
inter-procedural control flow graph (ICFG). Each statement 

that transforms a taint abstraction could be seen as part of a 

code partition. However, since FlowDroid is a taint tracker, 

it doesn’t distinguish between statements that simply pass on 

taints (because they, e.g., do not reference the tainted value 

at all) and those that actively transform one taint abstraction 

into another. We may need to extend the implementation to 

build a graph of taint-transforming statements while 

computing the IFDS flow functions. In the end, FlowDroid 

reports all discovered flows from sources to sinks. 

Depending on the options the user has chosen either the 

whole path with all intermediate variables is displayed or 
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only the source and the sink statement. 

The Enclave code will be implemented with Intel SGX 

SDK. Therefore, all the modules in the Enclave side will be 
executed in C++. During the implementation, the developer 

should be aware of and faced with the two main issues of 

Intel SGX. i) the limited memory size of 128MB plus 4GB 

(but with huge overhead), we encourage curious readers to 

solve this issue by using paging support to go beyond that 

limitation and that is because the limit of 128MB comes 

from the BIOS itself. Notice that, the Linux driver supports 

paging, but Windows does not. And ii) the impossibility of 

execution system calls from within enclaves. The boundary 

between user and kernel space is system calls. Typically, 

userspace programs have no direct access to the hardware. 

Instead, the user space program requests the operating 
system to allocate memory and perform I/O on its behalf. 

The system call interface rules the interaction between the 

operating system and user-space applications. For every 

system call, an enclave exit and re-entry would be one way 

to issue system calls in the presence of SGX. Besides the 

standard user/to transition, the enclave mode switch could be 

provided. The developer should notice that system calls are 

disallowed in enclave mode. However, system calls are the 

standard way for any user-space application to demand 

service from the privileged operating system kernel. Every 

valuable program has to allow system calls for external 
communication; for instance, reading and writing from/to 

disk and the network involve system calls. We encourage 

developers to refer to [49] to understand more on how to 

handle system calls issues. 

The modules in the untrusted environment will be 
executed in Java. The two parts (i.e., the Java side and the 
C++ side) will be linked with the Java Native Interface (JNI). 
We will convert some data types in Java into certain C++ 
types. For instance, we will convert types short, boolean, 
byte, and object into int type. For each object, we use its hash 
code (an integer) in C++. 

Comparisons  

To illustrate the benefit of our proposed solution, we 

compare it with the most related works in terms of i) system 
design and ii) theoretical analysis as follows. The system 

design and theoretical analysis of our proposed solution are 

inspired by the Glamdring framework [9] and the CFHider 

prototype system [21]. In the Glamdring framework, it 

targets C/C++ applications, uses the static analysis function 

provided by the LLVM compiler to separate the code. 
Glamdring then automatically partitions the application into 

untrusted and enclave parts. Glamdring uses data flow 

analysis to identify functions that may be exposed to 

sensitive data. It uses backward slicing to identify functions 

that may affect sensitive data. Glamdring then places 

security-sensitive functions inside the enclave and adds 

runtime checks and cryptographic operations at the enclave 

boundary to protect it from attack. 

In CFHider, it protects the control flow confidentiality of 

the programs and places it in a data matrix to transmit it to 

the enclave, and then transmit the other part of the program 

to the untrusted environment. CFHider combines program 
transformation with Intel SGX. It transforms the condition 

of each branch statement into a CFQ function call and moves 

its execution into the enclave that is considered as an opaque 

and trusted memory space, i.e., the enclave.  

However, our proposed solution differs from the 

aforementioned approaches in that it goes through four 

stages. The first three stages (Data annotation stage, Data 

analysis stage, and Program partitioning stage) are inspired 

by the design of the Glamdring framework. the fourth stage 

(Code generation stage) is inspired based on the design of 

the CFHider framework. In our proposed solution, we 
proposed a prototype system targeting protecting the data 

confidentiality of Java programs. Our solution will use the 

static analysis provided by FlowDroid. To perform this task, 

we will consider the value tainted by the source as a slicing 

criterion. Once the source(s) will be marked in the program, 

the Soot framework will be used to analyze the original 

program and then transform it into another representation 

(i.e., the 3-address form). Users must first annotate sensitive 

variable(s). It will partition the original program into a 

transformed program and the SEDM. The latter includes all 

security-sensitive variables. After the partitioning, the 

transformed program will be uploaded to and performed in 
the public cloud (i.e., non-enclave area). The SEDM will be 

transmitted to and executed in an SGX enclave. On the 

enclave side, we will perform necessary computations for all 

security-sensitive statements inside the enclave based on 

SEDM. 

 

Table 14: Summary of the comparison between the proposed approach, Glamdring, and CFHider. 

Aspects The Proposed Approach Glamdring CFHider 

Analysis Mechanism Forward/Backward data flow analysis Backward dataflow analysis Forward dataflow analysis 

Protection Type Data and control flow confidentiality Data confidentiality and integrity Control Flow Confidentiality 

Programming Languages Applicable to most PLs C/C++ Applicable to most PLs 

Platforms Most types of TEE technologies SGX SGX 
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In our future work, we will implement the proposed solution 

and compare it with some related works in the field 
concerning performance, evaluation, and execution time. 

Table 14 illustrates the comparison between the three 
approaches. Concerning data flow analysis, our approach 
applies to both forward and backward data flow analysis, 
while the Glamdring framework and CFHider prototype are 
applicable for the backward and forward data flow analysis, 
respectively. Our approach aims to protect the confidentiality 
of sensitive data as well as the control flow confidentiality. 
Glamdring protects the confidentiality and integrity of 
sensitive data but it cannot protect program control-flow 
confidentiality. CFHider aims to protect the confidentiality 
of control flow but not the sensitive data program. Another 
factor is the programming language, the proposed approach 
and CFHider are applicable for most programming 
languages while Glamdring was designed for C/C. The last 
aspect in our comparison is the platforms that the approaches 
were designed for. Glamdring and CFHider were designed to 
be executed in SGX technology. Although we evaluate the 
proposed solution with SGX in this study, we claim that the 
proposed solution is suitable for most TEEs. 

Related work 

TEE Infrastructure 

TEEs isolate security-sensitive application logic from the 

operating system and other applications and therefore protect 

applications by transmitting confidential partition to TEE. In 

general, TEEs can be used to decrease the impact of code 

injection attacks that attempt to steal an application’s data, 
such the case for inaudible data attacks [14-16] or exfiltrate 

data existing in another TEE.  

Some recent efforts [17-19] include general solutions in the 

standardization of TEE interfaces and protocols. However, 
most TEEs do not take various types of compartments with 

various privileges into consideration. PrivateZone [20] 

presented a framework to enable individual developers to 

utilize TrustZone resources. In this project, developers can run 

Security Critical Logics (SCL) in a Private Execution 

Environment (PrEE). This work relies on ARM TrustZone. 

ARM servers emerge as a serious and competitive alternative 

to existing Intel and AMD servers [50]. 

Program data protection 
CFHider [21] and E-CFHider [22] aim to protect the control 

flow confidentiality in the public cloud setting. However, it 

hides conditions of branch statements to an opaque SGX 

enclave and injects fake branch statements to obfuscate the 

control flow. Yongzhi Wang and Jinpeng Wei [7] proposed 

runtime control flow obfuscation (RCFO) to protect the 

confidentiality of the outsourced program control flow. 

Some existing software-based methods such as [23] and [24] 

cannot fully meet security, performance, and generality at 

the same time. These two methods are projected to replace 

the conditional instructions with lambda calculus and Turing 

machine simulations, respectively, which can defeat 

symbolic execution-based reverse-engineering attacks. 

Virtual Ghost [25] protects application memory from a 

secured operating system by extending the virtual machine 

monitor (VMM). These works put trust in the virtual 

machine monitor, and unable to protect against attackers 

with privileged access, such as system administrators. 

Trusted hardware (SGX) 
SGX provides a TEE, called an enclave, that protects the 

integrity of the code and the confidentiality of the data inside 

it from other software, including the operating system and 

hypervisor. LightBox [26] utilizes SGX to build the first 

system that can drive off-site middleboxes at near-native 

speed with stateful processing and the most comprehensive 

protection to data. SGX-Tor [27] presents a practical approach 

to enhance the security and privacy of Tor by utilizing Intel 

SGX. EnclaveDB [28] a database engine that guarantees 

confidentiality, integrity, and freshness for data and queries. 

Panoply [29] allows applications to be partitioned into 

multiple compartments and to be run across multiple enclaves 

following the principle of least privilege. However, this 

approach is not easily applicable to complex applications such 

as databases. Oblix [6] a search index for encrypted data that 

hides access patterns. It relies on a combination of novel 

oblivious-access techniques and recent hardware SGX enclave 

platforms. Another study [30] designed a scheme for the 

existing methods based on software and hardware. Although 

the scheme was designed based on SGX, it leaks the access 

pattern. 

Graphene [31, 32], and SCONE [4] have verified the 

possibility of implementing whole applications inside 

enclaves, supporting that by using appropriate systems, such 

as a library OS or the C standard library, to the enclave. 

However, these approaches have a large trusted computing 

base (TCB) that violates the principle of least privilege due to 

placing all code inside the enclave. Ryoan [33] aimed to 

protect the confidentiality of security-sensitive data, it 

provides a distributed sandbox, leveraging SGX to protect 

sandbox instances from possibly malicious software. 

However, it does not protect the confidentiality of program 

control flow. VC3 [34] the system that lets users running 

distributed MapReduce computations in the cloud, but placing 

the code and data in a secure area. VC3 depends on SGX 

technology to isolate memory regions on individual 

computers. Bahmani et al. [35] proposed a secure multi-party 

computation protocol where one of the parties has access to 

SGX hardware and performs the bulk of the computation. 

Coppolino Luigi, et al. [36] reviewed some techniques for 

securing Java software with Intel SGX, the authors selected 

some promising projects for an experimental comparison in 

terms of effort, security, and performance. SERECA project 

[37, 38, 39] aims to remove technical impediments to secure 
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cloud computing, it proposes to develop a secure environment 

for reactive cloud applications using Intel SGX. 

Conclusions and future work 
In this paper, we proposed a solution that can be applied 

to most TEE systems. Due to the novelty and popularity of 

Intel SGX in this field, we used SGX technology in our 
proposed solution as an intended platform to protect the data 

confidentiality of Java applications. 

We describe our proposed solution, the partitioning 

technique that helps developers leveraging program 

transformation techniques, program partitioning, and TEE 

technologies for protecting security-sensitive data of 

applications. Our proposed solution uses static dataflow 

analysis to decide which security-sensitive statements must 

be protected. Therefore, the proposed solution showed how 

our concrete examples were used to protect their security-

sensitive data in terms of confidentiality. Precisely, the 

proposed solution focuses on protecting the computations of 
the expression statements, control flow statements, and 

function call statements of applications in the public cloud 

setting. The results of the experimental verification are 

analyzed using real Java concrete applications i.e., Binary 

Search application, Bubble Sort application and QuickSort 

application in Fig 2, Fig 5, Fig 6, Fig 9, Fig 10, Fig 13 and 

Fig 14 to show how the confidentiality of security-sensitive 

data is protected. 

It is our future work to implement the approach, evaluate 
it, and compare it with other works from the related field. 
The future work of this research is going to carry out based 
on the workflow of the proposed approach demonstrated in 
Fig 1 and the proposed implementation discussed in the 
proposed implementation section where the necessary steps 
of the implementation were discussed in detail. In our future 
work, we will further investigate program analysis 
mechanisms and partitioning techniques for efficient 
transformation. However, this proposed solution helps us to 
obtain a better understanding of how to utilize the program 
analysis, transformation technique and TEE technologies for 
protecting security-sensitive data of programs. As a result, it 
will help us to implement the current proposed approach and 
thus obtain a much-reduced performance overhead than 
existing software-based solutions. 
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Figures

Figure 1

The Architecture of the proposed solution Engine

Figure 2

The annotation process and sensitive information �ow in a simple Java program.



Figure 3

The partitioned statements of the Java program in Fig. 2 and their execution process inside the enclave

Figure 4

The scheme of the process execution sequence inside the enclave.



Figure 5

The Original Binary Search Application.



Figure 6

The Partitioned Binary Search Application.

Figure 7

The 3-address code of the sensitive method at line 2 in Fig. 6.



Figure 8

The process execution sequence of the binary search functions inside and outside the enclave.



Figure 9

The Original Bubble Sort Application.



Figure 10

The Partitioned Bubble Sort Application.



Figure 11

The process execution sequence of the bubble Sort functions inside and outside the enclave.

Figure 12

The 3-address code form of the security-sensitive method at line 21 in Fig. 10.



Figure 13

The Original QuickSort Application.



Figure 14

The Partitioned QuickSort Application



Figure 15

The 3-address code of the sensitive method at line 10 in Fig. 14



Figure 16

Execution process of QuickSort application inside/outside the enclave
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