
Protecting Sensitive Attributes in Automated Trust
Negotiation

William H. Winsborough
Network Associates Laboratories

15204 Omega Drive
Suite 300

Rockville, MD 20850-4601
william winsborough@nai.com

Ninghui Li
Department of Computer Science

Stanford University
Gates 4B

Stanford, CA 94305-9045
ninghui.li@cs.stanford.edu

ABSTRACT
Exchange of attribute credentials is a means to estab-
lish mutual trust between strangers that wish to share
resources or conduct business transactions. Automated
Trust Negotiation (ATN) is an approach to regulate the
flow of sensitive attributes during such an exchange. Re-
cently, it has been noted that early ATN designs do
not adequately protect the privacy of negotiating par-
ties. While unauthorized access to credentials can be
denied, sensitive information about the attributes they
carry may easily be inferred based on the behavior of
negotiators faithfully adhering to proposed negotiation
procedure. Some proposals for correcting this problem
do so by sacrificing the ability to effectively use sensi-
tive credentials. We study an alternative design that
avoids this pitfall by allowing negotiators to define pol-
icy protecting the attribute itself, rather than the cre-
dentials that prove it. We show how such a policy can
be enforced. We address technical issues with doing
this in the context of trust management-style creden-
tials, which carry delegations and enable one attribute
to be inferred from others, and in the context where
credentials are stored in a distributed way, and must be
discovered and collected before being used in ATN.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’02,November 21, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-633-1 ...$5.00.

1. INTRODUCTION
Traditionally, authorization has been based on the

identity of the entity requesting access to a resource,
either directly or through roles assigned to the entity.
Many researchers have noted that this approach is cum-
bersome when resource and requester are not in the
same security domain. An alternative is to grant re-
sources based on characteristics of the requester that
may be more relevant or more universally recognized
than his1 identity, such as age, employer, project assign-
ment, or credit status. We call this approach attribute-
based access control (ABAC). Some trust management
systems, such as RT [4, 5], explicitly support ABAC,
and others, such as SPKI/SDSI 2.0 [1, 3], can be used
as ABAC systems. In ABAC systems, authorization de-
cisions are based on attributes of the requester, which
are established by digitally signed credentials through
which credential issuers assert their judgments about
the attributes of entities. Because these credentials are
digitally signed, they can serve to introduce strangers
to one another without on-line contact with attribute
authorities. ABAC avoids the need for permissions to
be assigned to individual requesters before the request
is made. Instead, when a stranger requests access, the
ABAC-enabled access mediator can make an authoriza-
tion decision by combining agreements and judgments
of decentralized authorities in a natural and logical way.

ABAC systems depend on credentials that specify at-
tributes of entities and/or rules for deriving entities’ at-
tributes. These attributes (such as financial or medical
data) may be sensitive. The goal of a growing body of
work on automated trust negotiation (ATN) [7, 8, 9, 10,
11, 12] is to enable resource requesters and access me-
diators to establish trust in one another through cau-
tious, iterative, bilateral disclosure of credentials. In
ATN, each negotiator establishes access control poli-
cies used to regulate not only the granting of system
resources, but also the disclosure of credentials to ne-

1We blur the distinction between the software agent and
the human or organization on whose behalf it opera-
tions.

gotiation opponents. The negotiation consists of a se-
quence of exchanges that begin by disclosing credentials
that are not sensitive. As credentials flow, higher levels
of mutual trust are established, and access control poli-
cies for more sensitive credentials are satisfied, enabling
these credentials also to flow. In successful negotiations,
credentials eventually flow to satisfy the policy of the
desired resource.

Recently it has been noted [8, 9] that early ATN de-
signs do not adequately protect the privacy of negotiat-
ing parties. In early designs, the behavior of a negotia-
tor can reveal much about the contents of their creden-
tials before any of those credentials are transmitted. For
instance, under some negotiation system designs, when
a negotiator is asked to prove a sensitive attribute, the
negotiator transmits a counter-query based on access
control policy associated with credentials that prove the
requested attribute. Once the access control policy has
been satisfied by the negotiator’s opponent, the negotia-
tor can provide the credential. Assuming the negotiator
is faithfully adhering to the procedure, a counter-query
is transmitted if and only if the negotiator satisfies the
sensitive attribute. Thus, while the negotiator’s oppo-
nent may not yet have proof of the integrity and au-
thenticity of the attribute, the privacy of the attribute
has certainly be compromised.

It may be difficult to protect information about a ne-
gotiator’s sensitive attributes. While transmitting cre-
dentials can clearly disclose such information, we have
seen that other behavior can do so as well. The infor-
mation that an attribute is not satisfied may also be
sensitive, which an opponent may be able to infer by
presenting a query about the attribute that the nego-
tiator is unable to satisfy. Furthermore, by combining
pieces of information obtained through other means, a
negotiation opponent can infer additional information
about attributes, particularly when using credential sys-
tems that support delegation and other inference rules.
In the current paper, we present an ad hoc study of
some of the vulnerabilities of ATN systems to uncon-
trolled information flow, motivating and extending the
approach to this problem taken in [9].

1.1 Mitigating Uncontrolled Attribute Flow
The fact that prior trust negotiation systems failed

to protect information about the negotiator’s attributes
was first observed contemporaneously by Seamons et
al. [8] and by Winsborough and Li [9]. Seamons et al.
identified three cases where the negotiator may wish to
hide information about which credentials they do and
do not hold, and presented techniques that the negotia-
tor could use for this purpose. First, if having a cer-
tain credential is sensitive, on receiving a request for
it, the negotiator can pretend not to have it. In this
case, the credential can be used only if the opponent
pushes credentials that satisfy the access control policy
without being prompted to do so. This sacrifices the
goal of ATN system completeness, namely that nego-

tiation should succeed whenever possible2. In general,
this technique may prevent the negotiator from effec-
tively using the credential. Second, when an ATN user
wants to hide his lack of a credential, he can establish an
access control policy for a credential place holder, and
disclose the lack only after the policy is satisfied. This
treatment of the negative case is more appealing than
the first technique, but is not comprehensive. Third, if a
request for credentials specifies required field values, the
negotiator can prevent a probing attack by ignoring the
field-value requirements when preparing his response.
Like the second technique, we view this as a step in the
right direction.

One might characterize the attitude taken in the tech-
niques proposed by Seamons et al. as, “When you have
something to hide, pretend otherwise until you know
enough about your negotiation opponent.” The atti-
tude reflected in [9] and the one we explore here can be
summarizes as, “Discuss sensitive topics only with ap-
propriate opponents.” The general principle is that cer-
tain issues, such as medical or financial data, are private
in nature, and even if a negotiator does not feel that his
current status with respect to one of them is sensitive,
he should protect the data anyway. Otherwise, when
his status changes (e.g., his health deteriorates), or a
different issue is raised, the mere fact that he protects
the new data strongly suggests that his status is now
unfavorable. Thus, when asked about a private mat-
ter, the response indicated by the attitude taken here is
that the negotiator should always protect the answer as
if he might have something to hide. This attitude has
the drawback of being more cautious than might seem
necessary in some cases. For instance, it says that a
negotiator should protect answers to queries about his
health, even if he is healthy. However, it can prevent
opponents that have no business knowing the negotia-
tor’s health status inferring when he gets sick, and it
can be turned into an ATN procedure that does not
compromise completeness.

In [9], a notion called acknowledgment policy is in-
troduced (Ack policy, for short). An Ack policy is es-
tablished to protect an attribute. It complements the
protection of credentials by means of access control poli-
cies3. In this context, an attribute is just some prop-
erty that the credential issuer says an entity satisfies.
A negotiator that is not shown by credentials to satisfy
the attribute is presumed not to satisfy the attribute.
A negotiator acknowledges satisfying or not satisfying
an attribute by answering a query about it only after

2We assume that negotiators do not push all authorized
credentials, as is done in the eager strategy of [10]. Most
ATN systems exchange policy content in the form of
counter queries for the purpose of focusing disclosures
on credential that are relevant to the current negotia-
tion.
3Although we give them little attention below, access
control policies remain useful for protecting credential
contents other than attributes, such as the signatures
that can be used to verify integrity and authenticity.

the other party satisfies the Ack policy governing the
attribute. This change in emphasis from protecting cre-
dentials to protecting attributes enables the negotiator
to respond to a query in a way that does not depend on
his credentials.

There are marked distinctions of this approach. Ack
policy is organized in the same way whether or not the
negotiator has the sensitive attribute, thereby avoiding
multiple special cases. Moreover, Ack policy protects
attributes that are proven by a combination of creden-
tials, rather than focusing on the credentials themselves.
This higher level of abstraction is particularly signifi-
cant when dealing with a credential system that sup-
ports delegation and other inference rules, such as any
of the trust management systems listed above. In these
cases, attributes can be deduced from one another. Fi-
nally, in the decentralized environment where ATN has
its role, the need to discover credentials introduces ad-
ditional challenges in preventing unauthorized inference
of attribute information. It is not clear how techniques
based solely on credential access control policies could
be extended to this context.

1.2 Contribution and Organization
The focus in [9] was on detailed specification of nego-

tiation procedures that use Ack policies. Many factors
constraining the design of Ack policy and its enforce-
ment mechanisms were not mentioned and only a par-
tial treatment was given of the danger that Ack poli-
cies may be breached by means of deductive inference.
Additionally, while credential discovery techniques [5]
were used to ensure needed credentials are available to
the negotiation process, the interaction between the dis-
covery problem and the protection of sensitive attribute
information was not examined.

In the current paper, we give a comprehensive treat-
ment of the problem of enforcing Ack policy. We thor-
oughly examine and address the problem of preventing
unauthorized inference of sensitive attributes in a con-
text where the underlying logic of delegation credentials
enables one attribute to be inferred from another. We
study the impact on Ack policy enforcement of the need
to discover credentials in a decentralized environment.
This clearly affects the negotiator’s ability to use the
credential to prove his attributes. But it is also needed
for the negotiator to be able to hide the fact that he
does not satisfy a given attributes. We additionally ex-
amine the motivation for the design structure of Ack
policy. Several factors constrain our ability to enforce
Ack policy on arbitrary attributes and combinations of
attributes. Finally, we identify some open problems
concerning the use of credentials that are not universally
available and the vulnerability such use may create.

The paper is organized as follows. Section 2 presents
background from prior work concerning Ack policy en-
forcement. Section 3 discusses specification of Ack pol-
icy in the context of what might be considered the sim-
plest realistic credential language. Section 4 is the core

of the paper, presenting the significant challenges raised
by simple delegation credentials for Ack policy enforce-
ment, and showing how they can be overcome. Integral
to this is managing the problem of credential discov-
ery. Sections 5 and 6 extend the language to support
respectively conjunction and attribute-based delegation
within delegation credentials. There we consider the
impact of these new credential language features on the
structure and enforcement of Ack policy. Section 8 con-
cludes.

2. BACKGROUND
In this section we state the goal of Ack policy and out-

line the approach to enforcing it that was taken in [9].
The credential language used there is RT0. This lan-
guage is slightly simpler than the one we discuss in the
following sections (having no fields or constraints), but
is otherwise the same.

The goal of access control policies is simple. Cre-
dentials should not flow until AC policies are satisfied.
Traditionally, the safety requirement of ATN is that the
above property is guaranteed.

The goal of Ack policies is that no one should learn
through negotiation whether or not a negotiator N sat-
isfies an attribute without first satisfying its Ack policy.
This means that until N ’s negotiation opponent shows
that it satisfies the Ack policy for a sensitive attribute,
N ’s behavior and the credentials N transmits must give
no indication of whether N satisfies the attribute. This
is the safety requirement for Ack policy enforcement in
ATN.

When using a credential language that allows issuers
to assert the attributes only of entities specifically iden-
tified in the credential, the enforcement of Ack policies
is straightforward. When credentials carry rules that
can be used to infer one attribute from another, the
problem is trickier. The following example illustrates
the use of such credentials.

Example 1. A fictitious Web publishing service,
EPub, offers a discount to preferred customers of its
parent organization, EOrg. EOrg considers students
of the university StateU to be preferred customers.
StateU delegates the authority over identifying students
to RegistrarB, the registrar of one of StateU ’s cam-
puses. RegistrarB then issues a credential to Alice stat-
ing that Alice is a student. These are represented by
four RT0 credentials:

EPub.discount ←− EOrg.preferred (1)
EOrg.preferred ←− StateU .student (2)
StateU .student ←− RegistrarB.student (3)
RegistrarB.student ←− Alice (4)

The credential “EPub.discount ←− EOrg.preferred”
can be read as: if EOrg assigns some entity the at-
tribute “preferred”, EPub assigns the entity the at-
tribute “discount”. The four credentials above form
a chain, pictured in Figure 1, proving that Alice is en-
titled to a discount.

EPub.discount
(1)←− EOrg.preferred

(2)←− StateU.student
(3)←− RegistrarB.student

(4)←− Alice.

Figure 1: A credential chain showing that Alice is authorized for EPub’s student discount.

The Trust Target Graph (TTG) [9] method organizes
the process of ATN in terms of the construction of a
graph (the TTG) that is shared between the two ne-
gotiators. Nodes in the TTG represent queries (called
trust targets in [9]) made by one negotiator or the other.
Each trust target corresponds to a unique node (thereby
avoiding redundant computations). Edges are of vari-
ous types, and represent corresponding kinds of depen-
dencies. One of the most important kinds of edge is
an implication edge, which originates at a query that if
shown would entail satisfaction of the destination query.
Another kind, a control edge is based on an Ack policy
(or an access control policy). It originates at a query
that if satisfied would permit further information to flow
concerning the destination query.

Typically based on the access control policy of a re-
quested resource, the root of the TTG is a query whose
satisfaction entails negotiation success. The negotiators
take turns adding edges to the graph, which remains a
connected graph in which the root is the unique sink. At
the end of its turn, a negotiator transmits the changes
it has made so that the opponent can update its own
graph accordingly, thus achieving agreement in the two
graphs at the beginning of each turn.

Example 2. Alice is cautious about whom she tells
that she is a university student. Her Ack policy for
StateU .student requires recipients of this information
to be members of the Better Business Bureau (BBB).
EPub can prove this by using the following credential:

BBB.member ←− EPub (A)

The TTG constructed during a negotiation between Alice
and EPub is shown in Figure 2.

The addition of an implication edge to the TTG is
very similar to a resolution step in logic programming,
reducing the problem of solving one query to that of
solving another. When a negotiator adds an implica-
tion edge on a query that he did not pose, he must
also transmit credentials proving that if he satisfies the
source query, he will have satisfied the destination query.
These credentials enable the opponent to verify the im-
plication. Thus the TTG summarizes the negotiators’
state of knowledge of what has been shown and what
remains to be shown about each query posed during the
negotiation. Each negotiator uses the TTG to compute
for himself which queries have been satisfied.

Negotiators also keeps track of queries that have failed,
thereby enabling efficient detection of negotiation fail-
ure. A negotiator can mark it “fully-processed,” indi-
cating that it is done adding children to a query. This
means that the TTG contains complete knowledge of

that query, information that can be used by the oppo-
nent to determine that a query has failed.

Negotiators introduce control edges at queries posed
to them concerning sensitive attributes. The origin of
such an edge is a counter query based on the Ack policy
governing the attribute in the destination query. The
counter query must be satisfied before the negotiator
will add implication edges to the protected query, or
mark it fully-processed.

Of course, the most obvious way that a negotiator
discloses information about his attributes is by trans-
mitting credentials that prove those attributes hold.
The TTG method ensures that the Ack policies of such
attributes are satisfied before this happens by solving
queries through a step-by-step, resolution-like process,
reducing queries about one attribute to queries about
attributes that can be proven more directly. At each
step in the process, if the query created concerns a sen-
sitive attribute, the negotiator enforces the appropriate
Ack policy before moving on.

3. WHEN CREDENTIALS DO NOT
CARRY DELEGATIONS

In this section, we study issues related to Ack policies
in the (simpler) case in which the credential language
does not have delegation. We do this in two steps, first
considering a language that does not have fields, then
considering the case when fields are added.

3.1 A Very Simple Language
To start, we consider a very simple language. In this

language, a credential has the form “A.R ←− B”, in
which A and B are entities, and R is a attribute name.
This credential means that A asserts that B has the
attribute R, or, in other words, B has the attribute
A.R. The credential is said to define A.R. Throughout
the paper, when multiple credentials define the same
attribute, the effect is that of disjunction: the creden-
tials can be used independently to show the attributes
of various negotiators.

A policy rule is a conjunction of attributes: “A1.R1∧
A2.R2 ∧ · · · ∧ Ak.Rk”. To satisfy such a policy rule,
a negotiating party needs to prove that it has the at-
tribute Aj .Rj for each j such that 1 ≤ j ≤ k. A query
asking whether an entity N satisfies such a policy is

written 〈A1.R1 ∧ A2.R2 ∧ · · · ∧ Ak.Rk

?
� N〉. In the

TTG method of negotiation, such a query is decom-
posed into separate subqueries, one for each attribute:

〈A1.R1

?
�N〉 · · · 〈Ak.Rk

?
�N〉.

The negotiator, N , specifies acknowledgement policy
for a sensitive attribute, A.R, by defining a set of policy
rules. Any opponent, O, must then prove that he satis-

〈EPub:StateU.student
?

�Alice〉

6(2)

〈EPub:EOrg.preferred
?

�Alice〉

6(1)

〈EPub:EPub.discount
?

�Alice〉

〈Alice :EPub
?

�EPub〉

6(A)

〈Alice :BBB.member
?

�EPub〉
������1

〈EPub:Alice
?

�Alice〉

6(4)

〈EPub:RegistrarB.student
?

�Alice〉
PPPPPPi

(3)

Figure 2: Trust Target Graph created during negotiation between Alice and EPub. The thicker edge
on the left represents a control edge, corresponding to the dependency given by Alice’s Ack policy.
Implication edge (A) must be added by EPub, and the credential justifying it must be transmitted
to Alice before Alice adds implication edges (3) and (4). Technically, the difference between a trust
target and a query is that a trust target has an additional (first) component that specifies which party
posed the query.

fies at least one policy rule in the set before N will give

O any answer to the query 〈A.R
?

�N〉.

3.2 Adding Attribute Fields
The addition of fields and field values to attributes

significantly increases expressive power of the credential
and policy languages. For example, fields can be used
to carry account numbers, a person’s date of birth, or
the name of a project an employee is assigned to. In this
language, a credential still has the form A.R; however,
R now has internal structures. We call R an attribute
term; it has the form r(f1 = a1, . . . , fn = an), in which
r is an attribute name, and each fj , for 1 ≤ j ≤ n, is a
field name and aj is a constant.

A policy rule has the form A1.R1∧A2.R2∧· · ·∧Ak.Rk :
X1 ∈ S1 ∧ · · · ∧ Xm ∈ Sm, in which each Rj is an at-
tribute term, each field is either a constant or a variable,
each Xj for 1 ≤ j ≤ m, is a variable that appears in
A1.R1 ∧ · · · ∧ Ak.Rk, and each Sj for 1 ≤ j ≤ m is a
value set constraining the legal values of Xj . For more
details, see [4].

Technically, an Ack policy is a policy rule associated
with a specific attribute, A.R. In practice, N may wish
to specify one Ack policy for several issuers of R, listing
each of the authorities to which this Ack policy applies.
One such entry for R could be designated the default
Ack policy, which applies to all known issuers of the
attribute. Such issuers may include those identified by
the user, as well as those identified by the system. How-
ever, in general not all issuers are known, and we will
see in the following sections that Ack policy associated
with unknown issuers can be unenforceable when the
language supports delegation.

4. DELEGATION OF AUTHORITY:
RULES IN CREDENTIALS

We now consider a language that supports delegation
of authority. Such credentials are typically issued in a
decentralized way, and must be discovered and collected
prior to being used in ATN. We summarize how this can
be done, discussing the impact of our approach on con-
trolling unauthorized inference of sensitive attributes.
We then study the latter problem in detail, followed by
a summary of the steps needed to prepare for safe nego-
tiation. (Credential collecting steps can be done before
ATN begins, and no dynamic discovery of credentials
during the negotiation is needed.) Finally, we touch
briefly on additional hazards.

4.1 The Language and the Issues
In addition to credentials like A.R←−B, we also have

credentials like A.R←−B1.R1. We call the former type-
1 credentials, and the latter type-2 credentials. The
meaning of A.R←−B1.R1 is that A asserts that each
entity satisfying B1.R1 also satisfies A.R.

To be more precise, a type-2 credential has the form
A.R←− B1.R1 : X1 ∈ S1 ∧ · · · ∧ Xm ∈ Sm, in which
every variable that appears in R also appears in R1, and
each Xj for 1 ≤ j ≤ m appears in R1. Again, for more
details, see [4]. Ack policies are again associated with
individual attributes whose issuers are known, and the
syntax of policy rules remains the same as in Section 3.2.

Note that a delegation of authority over an attribute
is represented by a type-2 credential; type-2 credentials
play an important role in the trust management ap-
proach, where they are quite common. Adding delega-
tions within credentials introduces the following prob-
lems.

• Distributed discovery of credentials: possession of

an attribute A.R may be proven through a chain
of credentials. In a decentralized environment,
credentials are issued and stored in a distributed
manner. Consequently, negotiators must contend
with the problem of discovering and collecting cre-
dentials for the purpose of proving having an at-
tribute.

• Deductive inferencing: when it is known that
A.R←−B1.R1, information about satisfaction of
A.R may imply information about satisfaction of
B1.R1, and vice versa.

• A negotiator’s ability or inability to produce a
type-2 credential can reveal certain information
about the negotiator’s attributes. It may indi-
cate whether the negotiator has been authorized
to have a copy of the type-2 credential. Moreover,
it indicates whether the negotiator knows of the
attribute’s existence, which proves to be a limit-
ing factor in our ability to defend against breaches
of Ack policy.

4.2 Negotiating with Credentials Whose
Storage Is Distributed

The environment we target is inherently decentral-
ized. Negotiators having no prior relationship or knowl-
edge of one another seek to establish a level of mu-
tual trust by exchanging credentials. These credentials
are issued and initially stored in a distributed manner,
and must be discovered and collected for the purpose of
showing an entity’s attributes. We now consider the fol-
lowing basic problem: which negotiator can realistically
be expected to discover which credentials? In addition
to being a fundamental issue in the organization of the
TTG ATN method, the problem of credential discovery
has direct bearing on negotiators’ ability to enforce Ack
policy in the presence of delegation credentials. We now
summarize a storage type system and a notion of well-
typed credentials that guarantee credentials proving at-
tributes can be discovered even when they are stored
in a distributed way. For additional information on the
type system, refer to [5].

Each credential is assumed to be stored either by its
issuer (an issuer-stored credential) or by its subjects (a
subject-stored credential), where subject and issuer are
defined as follows. For a type-1 credential, A.R←−B,
we call A the issuer, and B the subject. For a type-2
credential A.R←−B.R1, we call A the issuer and B the
subject.

Each attribute name has two types: an issuer-side
type and a subject-side type. Attributes (e.g., A.R =
A.r(· · ·)) inherit there types from their attribute names
(r). On the issuer side, the possible types are issuer-
(traces-)none, issuer-(traces-)def, and issuer-(traces-)all,
in order of increasing strength. If R is issuer-def or
issuer-all, each credential of the form A.R←−e is re-
quired to be issuer-stored. (In the current section, e is

always an attribute or an entity. Other attribute expres-
sions, introduced in the following sections, have types
that are determined from their constituent attribute
terms, which will be discussed below as they are in-
troduced.) The significance for credential discovery is
that knowing the issuer A, a search process can retrieve
A.R←−e, finding the issuer of e. If R is issuer-all, the
well-typing rule for credentials additionally requires e to
be issuer-all. This means that a backward search pro-
cess can iterate the credential retrieval step to discover
all entities that satisfy the attribute and the credentials
that prove it4.

On the subject side, the possible types are subject-
(traces-)none and subject-(traces-)all. If R is subject-
all, each credential of the form A.R←−e is required to
be subject-stored, and e must also be subject-all. This
means that a forward search process can start from an
entity and discover all its subject-all attributes and the
credentials that prove them. To ensure that creden-
tials are either issuer-stored or subject-stored, the well-
typing rule also requires that no attribute expression is
both issuer-none and subject-none.

The typing system ensures that every minimal cre-
dential set proving N satisfies A.R can be partitioned
into a set of issuer-stored credentials that are reachable
from A, and a set of subject-stored credentials that are
reachable from N . Thus, if prior to ATN each negotiator
discovers and collects each credential that is reachable
by tracing forward from itself or by tracing backward
from each of its policies, then every credential that is
necessary to enable successful negotiation will be avail-
able to one of the two negotiators during ATN.

4.3 Assumptions
Here we assume that the above typing system is in

place. A type-1 credential showing that N satisfies a
subject-all attribute will in general be available only
from N . Thus it is consistent with the type system to
assume that access to such a fact is under N ’s control.
As we will see, N can also achieve control over subject-
all attributes that are proved by using type-2 creden-
tials. However, it is impossible for an entity to protect
an issuer-all attribute without relying on credential is-
suers to do it for him. This motivates the restriction
that Ack policies be assigned only to attributes that are
subject-all.

Similarly, we assume N will answer queries only about
subject-all attributes. This ensures that N can find the
credentials needed to show he satisfies the query before
he actually receives the query. It is justified because
the type systems ensures that the opponent, unlike N ,
has the ability before ATN begins to find the creden-
tials needed to decompose a query about an issuer-def
attribute into one or more queries about subject-all at-
tributes.

In addition to searching for credentials in a forward

4This search is backward with respect to the orientation
of the arrow in credentials.

direction starting from itself, each negotiator will con-
duct a similar forward search starting from each at-
tribute it considers sensitive. Doing so enables the ne-
gotiator to prevent its opponent being able to make
unauthorized inferences about sensitive attributes that
it otherwise would be able to make based on the nego-
tiator’s inability to present these credentials. Note that
this search for credentials is possible only beginning at
attributes whose issuers are known.

We make the worst-case assumption that O has access
to all type-2 credentials. Note that some attributes may
be defined only by such credentials, as some issuers may
delegate their authority to other parties and not issue
type-1 credentials. We presume that O may know that
this is the case for some issuers.

4.4 Preventing Unauthorized Inference of
Sensitive Attributes

Based on the underlying logic of the credential sys-
tem, there are four ways that a negotiator’s opponent
can infer additional attribute information by using an-
swers to queries that the negotiator provides. In the
following four subsections we present techniques that
the negotiator can use to prevent each of these.

4.4.1 Backward, negative inference
When the opponent, O, knows that there is a creden-

tial A.R←−B1.R1, and that the negotiator, N , does
not satisfy A.R, O can conclude that N does not satisfy
B1.R1. We call this backward, negative inference, as it
infers negative information about B1.R1 and the direc-
tion of the inference is the reverse of that of the arrow
in the credential.

This form of inferential breach was identified in [9];
the TTG protocol in [9] protects against it by using
a step-by-step, resolution-like process to reduce queries
and reveal credentials, as outlined in section 2. When

a query 〈A.R
?

�N〉 is encountered, N first enforces the
Ack policy on A.R through the control-edge mechanism
presented in section 2. When that is satisfied, N ac-
knowledges that it does not have any type-1 creden-
tial proving A.R; however, it will reveal the credential

A.R←−B1.R1 and reduce the query to 〈B1.R1

?
� N〉.

N now enforces the Ack policy of B1.R1. After O satis-
fies the Ack policy of B1.R1, assuming that there are no
other credentials defining B1.R1, N acknowledges this
fact.

Note that N must know that the credential A.R←−
B1.R1 exists to be able to follow this method. It is for
handling this case that N must collect credentials that
can be discovered by a forward search process, starting
from each attribute that N considers sensitive. The im-
possibility of conducting such a search without knowing
the issuer of the sensitive attribute is one of the factors
preventing us from being able to enforce Ack policy on
attributes whose issuer is unknown.

4.4.2 Backward, positive inference
When O knows that the only credential defining A.R

is A.R←−B1.R1, and that N satisfies A.R, then O
knows that N satisfies B1.R1; we call this backward
positive inference. Although this form of inferential
breach was not identified in [9], the strategy used in
the TTG protocol to prevent backward negative infer-
ence also protects against backward positive inference.
This is because, using the step-by-step ATN procedure,

N will not answer the query 〈A.R
?

�N〉 without first re-

ducing it to 〈B1.R1

?
�N〉 and enforcing the Ack policy

on B1.R1.

4.4.3 Forward, positive inference
When O knows that there is a credential A.R←−

B1.R1, and that N satisfies B1.R1, one can conclude
that N satisfies A.R. We call this forward, positive in-
ference. This form of inferential breach was identified
in [9], but not fully dealt with. To deal with it, first, N
needs to know that A.R←−B1.R1 exists. This is han-
dled by the assumption that N does forward search from
itself. Since A.R is subject-all, so is B1.R1, by the well-
typing rules; furthermore, we assume in the current case
that N satisfies B1.R1, so the type system ensures that
N can discover this fact, and the credentials that prove
it, through the forward search process. From there, N
can find A.R←−B1.R1.

Now, N needs to ensure that the Ack policy for B1.R1

is at least as strong as that of A.R. We call this require-
ment Ack policy closure. The most straightforward way
to ensure this is simply to conjoin the latter Ack policy
to the former. The result is that if N enforces the Ack
policy on B1.R1 before indicating whether he satisfies
the attribute B1.R1, then O will not be able to use this
credential to infer that N satisfies A.R unless O has al-
ready satisfied the Ack policy of A.R. Note that N will
have to enforce Ack policy closure over all credentials
obtained by the forward search process described above.

4.4.4 Forward, negative inference
When O knows that the only credential defining A.R

is A.R←−B1.R1, and that N does not satisfy B1.R1,
then O can conclude that N does not satisfy A.R. We
call this forward, negative inference. The scenario can
be generalized to the case that there are several creden-
tials defining A.R.

The above inference is justified only when A.R is
known not to be defined by type-1 credentials, since only
then does a negative answer to B1.R1 imply a negative
answer to A.R. In particular, one cannot make the in-
ference unless one is certain there is no type-1 credential
A.R←−N . Let us assume for the moment that creden-
tial A.R←−B1.R1 is known to N before the negotiation,
and that N enforces Ack policy closure with respect to
this credential. In this case the Ack policy for B1.R1,
which N will enforce via the step-by-step TTG proce-
dure before acknowledging he does not satisfy B1.R1, is

at least as strong as that of A.R. So the inference that
N does not satisfy A.R is not a violation. Note that
this argument hinges on the assumption that N knows
of credential A.R←−B1.R1.

This form of inferential breach was not discussed in
[9]. It can be prevented if we assume that for each sen-
sitive attribute, A.R, N discovers some way in which
the satisfaction of A.R could in principle be shown.
Specifically, it suffices if N knows that A issues type-
1 credentials defining A.R (although such a credential
presumably has not been issued to N). Otherwise, N
needs to obtain a type-2 credential defining A.R, such
as A.R←−B1.R1. We call such a credential a witness.
In this case, N must enforce Ack policy closure with
respect to the witness credential. In doing so, N will
ensure that the Ack policy of B1.R1 is at least as strong
as that of A.R. Before giving a negative answer to a
query about B1.R1, which is necessary for O to make
a negative inference about A.R, N will enforce the Ack
policy of B1.R1, and with it the Ack policy of A.R.

Note that N will inductively need to know at least
one way in which satisfaction of B1.R1 could be shown.
Thus in general, N has to find a chain of witness creden-
tials starting at an attribute for which it knows type-1
credentials are issued. Also note that, as in section 4.4.1,
our technique for avoiding this form of breach depends
on the user knowing the issuer of the sensitive attribute,
in this case A.

An alternative approach.The drawback to the ap-
proach discussed here is that the negotiator has to search
for credentials in a direction not supported by the type
system, since sensitive attributes are typically not is-
suer traceable. Thus, the user must take responsibility
for discovering them. We argue that this is reasonable,
since the user presumably knows something about how
an attribute he considers sensitive is defined. However,
it is natural to consider whether there is another ap-
proach that the type system would support.

The type system supports the discovery of an entity’s
subject-all attributes through a forward search process
that starts from the entity. It also supports searching
forward from an arbitrary attribute expression to find
others whose satisfaction is entailed by satisfaction of
the first. Thus, when a query is posed during ATN, a
negotiator can search to find sensitive attributes that
are entailed by the query, as well as the credentials that
show the entailment. The negotiator can now apply Ack
policy closure as needed with respect to these credentials
to ensure that the Ack policy he enforces on the query
is adequately strong. However, the required dynamic
search process adds a significant burden, and may open
the door to inference attacks based on timing. So it is
not recommended.

4.5 Summary of Steps in Preparing for Ne-
gotiation

While theoretically negotiators could collect on the

fly the credentials needed during negotiation, the time
required for this would make it impractical. In addition
to collection, it is necessary to enforce Ack policy closure
with respect to collected credentials. Thus, a negotiator
N should prepare for negotiation by taking the following
steps beforehand:

1. Collect credentials through a forwards search pro-
cess starting from N itself.

2. Determine its set of sensitive attributes and their
associated Ack policies.

3. Ensure that for each sensitive attribute that N
does not satisfy, N has a chain of witness creden-
tials that together protect the attribute against
forward, negative inference.

4. Enforce Ack policy closure over every credential
discussed in steps 1 and 3.

5. Collect credentials through a forward search pro-
cess that starts from N ’s sensitive attributes (in-
cluding those made sensitive in step 4.

6. Enforce Ack policy closure over every credential
discussed in step 5.

7. Collect credentials through a backwards search pro-
cess starting from its Ack policies and from any
access control policies it enforces.

Every attribute made sensitive in step 6 will be visited
by the forward search procedure during step 5. Conse-
quently, performing an additional forward search from
such an attribute would not lead to the discovery of any
new credentials, making it unnecessary. Step 3 suffices
to protect against forward, negative inference because
any attribute made sensitive in step 4 or 6 that N does
not satisfy will already have a witness credential, ob-
tained either in step 3 or in step 5, and with respect to
which Ack policy closure will be enforced in step 4 or 6,
respectively.

4.6 Use Only Universally Available Dele-
gation Credentials

The goal of ATN is to protect sensitive negotiator
attributes while enabling needed credentials to flow to
authorized entities. Negotiators are responsible for pro-
viding type-2 credentials that they typically must ob-
tain for this purpose from third parties. This creates a
potential for uncontrolled information flow unless such
credentials are universally available. The problem is
that, if a third party credential is protected, and there-
fore available only to entities with certain attributes, a
negotiator’s opponent can infer that the negotiator sat-
isfies those attributes based on his ability to present the
protected credential. One solution is to assume that
only type-1 credentials are protected, and type-2 cre-
dentials are not. This is consistent with the goal of
protecting sensitive attributes, since no attribute can
be shown by using only type-2 credentials.

5. CONJUNCTIONS IN CREDENTIALS

5.1 Type-4 Credentials
We now add credentials of the form A.R←−A1.R1 ∧
· · · ∧ Ak.Rk, which are known as type-4 credentials [4].
Such a credential says that an entity satisfies A.R if it
satisfies each Aj .Rj , for 1 ≤ j ≤ k. More precisely, a
type-4 credential has the form A.R←− A1.R1 ∧ · · · ∧
Ak.Rk : X1 ∈ S1 ∧ · · · ∧ Xm ∈ Sm, in which every
variable that appears in R also appears in some Ri, and
each Xj for 1 ≤ j ≤ m appears in some Ri.

Policy rules remain unchanged. As in section 4, Ack
policy is restricted to subject-all attributes.

5.2 Impact of Type-4 Credentials on Ack
Policy and Its Enforcement

The nature of Ack policy is not changed by the in-
troduction of type-4 credentials. In particular, Ack pol-
icy is not permitted to be associated with intersections.
Enforcement of such a policy would require negotiators
to record the history of queries. Moreover, even a cor-
rect enforcement mechanism would be vulnerable to at-
tack by collusion if different opponents pool information
about different attributes that each one is authorized to
know about. (While we assume that entities who are
entitled to attribute information do not give the infor-
mation to others, entities may nonetheless collaborate
to obtain information that none of them is authorized
to have.)

The addition of type-4 credentials does not interfere
with the TTG method preventing unauthorized back-
ward inference. The two forms of forward inference do,
however, require additional attention.

Forward, positive inference. For each type-4 creden-
tial, A.R←−A1.R1 ∧ · · · ∧ Ak.Rk, such that A.R
is sensitive, to prevent unauthorized forward, pos-
itive inference, N must ensure that the Ack poli-
cies of the Aj .Rj are together at least as strong
as the Ack policy of A.R. In this case, ensuring
Ack policy closure is a more interesting problem
than with type-2 credentials. We do not give a
general solution here; however, it appears a so-
lution is readily achievable, for instance by using
Lambda Prolog [6].

Forward, negative inference. Suppose N wants to
use A.R←−A1.R1 ∧ · · · ∧ Ak.Rk as a witness cre-
dential for preventing forward, negative inference
of A.R. Then N needs to make the Ack policy
of each Aj .Rj as strong as that of A.R, which is
easily done by conjoining the latter to the former.
This ensures that the Ack policy of A.R is enforced
before O learns that N does not satisfy A.j .Rj .

6. ATTRIBUTE-BASED DELEGATION

6.1 Type-3 Credentials
We now add credentials of the form A.R←−A.R1.R2,

which are known as type-3 credentials [4]. Such a cre-
dential says that the set of entities satisfying A.R con-
tains the set satisfying B.R2 for every B satisfying A.R1.
This enables A to delegate authority to B based not on
B’s identity, but based on B’s attribute, A.R1. We call
A.R1.R2 a linked attribute.

To be more precise, a type-3 credential has the form
A.R←−A.R1.R2 : X1 ∈ S1 ∧ · · · ∧Xm ∈ Sm, in which
every variable that appears in R also appears in R1 or
in R2, and each Xj for 1 ≤ j ≤ m also appears in R1

or in R2. A policy rule now has the form e1 ∧ e2 ∧ · · · ∧
ek; X1 ∈ S1 ∧ · · · ∧Xm ∈ Sm, in which each ej is either
an attribute Aj .Rj or a linked attribute, Aj .R1,j .R2,j ,
each field is either a constant or a variable, each Xj for
1 ≤ j ≤ m, is a variable that appears in e1 ∧ · · · ∧ ek,
and each Sj for 1 ≤ j ≤ m is a value set constraining
the legal values of Xj .

6.2 Extending Ack Policy to Protect Sensi-
tive Linked Attributes

We can allow Ack policy to be associated with A.R1.R2

provided the expression is subject-all5. Such a policy
protects knowledge of whether there exists a B such
that N satisfies B.R2. Note that the meaning is not
to protect knowledge of each B.R2 for which B satisfies
A.R1. In particular, when B is unknown to N , N will
not protect the fact that N does not satisfy B.R2.

• To defend against unauthorized forward, positive
inference of A.R1.R2, N must discover all B such
that he satisfies B.R2. Then he must determine
which of these B are A.R1. For each such B, N
must ensure that the Ack policy of B.R2 is as
strong as that of A.R1.R2.

• To defend against unauthorized forward, negative
inference, N must find some B in A.R1 that de-
fines B.R2, and N must determine how B.R2 can
be defined (i.e. by type-1 credentials or by some
witness credential that N must discover).

• To defend against unauthorized backward (nega-
tive or positive) inference, N must perform for-
ward search and credential collection from each
sensitive linked attribute, A.R1.R2. When N sat-
isfies A.R1.R2, N has to do this anyway as part of
performing forward search from himself, in order
to enable all satisfied attributes to be shown.

6.3 Negotiating with Linked Attributes
Suppose the opponent O issues a query 〈A.R1.R2

?
�

N〉. Here we extend the approach specified in [9] to
handle sensitive linked attributes. There are three cases.

5This form of Ack policy is new and was not discussed
in [9].

When R1 is issuer-all, O can find all B satisfying
A.R1, so O reduces the query to one of the form

〈B.R2

?
�N〉 for each such B.

When R1 is issuer-def, O does not reduce A.R1 be-
cause in general doing so could cause the query
size to grow without bound. Instead, O reduces

the query 〈A.R1.R2

?
�N〉 to a new form of query,

〈?X.R2

?
� N〉, where ?X is a placeholder for an

arbitrary, unspecified issuer. N is being asked
whether he satisfies B.R2 for any B. N expands

〈?X.R2

?
� N〉 by adding a new edge connecting

it to 〈B.R2

?
� N〉 for each B.R2 that N consid-

ers sensitive6. N can now enforce any Ack policy
associated with B.R2.

When R1 is subject-all, N processes the query. If
N considers A.R1.R2 sensitive, N can protect the
linked attribute by adding a control child that
must be satisfied before N will reduce the query.
Once this control child, if any, is satisfied, N re-

duces the query to 〈?X.R2

?
�N〉, as in the above

case, thereby continuing the step-by-step, resolution-
like process whereby backward breach of Ack pol-
icy is prevented.

6.4 Impact on the Type System
For a given credential like A.R←−A.R1.R2, we call

A both the subject and the issuer. As presented in [5],
a linked attribute A.R1.R2 is issuer-all when both R1

and R2 are issuer-all, and subject-all when both R1 and
R2 are subject-all. A.R1.R2 is issuer-def if R1 is issuer-
def and R2 is subject-all, or R1 is issuer-all and R2 is
issuer-def.

6.5 Impact on Defense against Breach
The step-by-step, resolution-like negotiation proce-

dure, extended as outlined above, continues to prevent
unauthorized backward inference of attributes.

Consider A.R←−A.R1.R2 for which A.R is sensitive.
To protect against unauthorized forward, positive infer-
ence of A.R, N must protect B.R2 as strongly as N pro-
tects A.R, for each B.R2 that N satisfies and for which
B satisfies A.R1. N can find all such B.R2 by searching
from N itself because B.R2 is subject-all. (That B.R2

is subject-all follows by the well-typing rules for cre-
dentials from the fact that A.R is sensitive, and hence
subject-all.)

If N decides to use A.R←−A.R1.R2 as a witness
credential for preventing forward, negative inference of
A.R, then N needs to find a B such that he knows
how B.R2 can be shown. In other words, either B
must issue facts or N must have a type-2 credential

6If it is later shown that such a query succeeds, O will

add a corresponding edge connecting 〈A.R1

?
� B〉 to

〈A.R1.R2

?
�N〉. See [9] for details.

B.R2←−D.R3 such that, inductively, N knows how
D.R3 can be shown.

6.6 Query Hiding
An idea not discussed in [9] is for N to hide the chil-

dren he adds to queries like 〈?X.R2

?
� N〉 when those

children correspond to sensitive attributes. N just intro-
duces the node into the graph without labelling them.
Then N adds control edges. When O satisfies the con-
trol children, N can add the label. This technique
avoids giving O a complete list of the R2 attributes that
N considers sensitive. O can still find out whether any

given B.R2 is sensitive by posing 〈B.R2

?
� N〉 (for in-

stance, as a control child on some query about O) and
seeing whether N adds a control child to it. Thus, query
hiding can reduce, but not stop information flow con-
cerning what attributes are sensitive.

6.7 Pitfalls of Proving Attributes of Others
To show he satisfies A.R1.R2, N must show that some

B satisfies A.R1. An issue that has not to our knowledge
been raised concerning ATN is that N ’s ability to prove
an attribute of B’s may reveal something about N ’s
attributes. If B protects the credentials needed to show
an attribute, and N produces those credentials, N shows
he satisfies B’s policy for access to them.

This problem can be side stepped if we assume that
O does not pose and N does not answer queries of the

form 〈A.R1.R2

?
�N〉 where A.R1 is considered sensitive

by issuers of attributes based on R2. In most cases
this seems reasonable. Finding a more comprehensive
solution remains an open problem.

7. RELATED WORK
In this section we further discuss related work. Au-

tomated trust negotiation was introduced by Winsbor-
ough et al. [10], who introduced two negotiation strate-
gies, an eager strategy in which negotiators disclose each
credential as soon as its access control policy is satisfied,
as well as a strategy in which negotiators disclose cre-
dentials only after exchanging sufficient policy content
to ensure that a successful outcome is ensured. The for-
mer strategy has the problem that many irrelevant cre-
dentials may be disclosed; the latter, that negotiators
reveal which credentials they hold in an uncontrolled
way, by transmitting access control policy content for
them. Yu et al. [11] introduced an efficient strategy
that explicitly requires negotiators to reveal to strangers
which credentials they hold. Seamons et al. [7] intro-
duced structures called policy graphs for protecting pol-
icy content, and strategies enforcing policy graphs. Yu
et al. [12, 13] developed families of strategies that can
interoperate in the sense that negotiators can use dif-
ferent strategies within the same family. This previous
work does not address the problem of protecting infor-
mation about whether you hold a credential or satisfy
an attribute.

The Platform for Privacy Preferences Project (P3P) [2]
enables user agents to automate decisions about disclo-
sure of user data based on what data is requested and
the Web site privacy policies. The assumption is the
Web site does not consider its privacy practices to be
sensitive, so any negotiation is relatively simple.

8. CONCLUSION
We have presented techniques that extend the ATN

procedures given in [9] so as to fully enforce Ack pol-
icy. These techniques prevent breach of Ack policy by
means of deductive inference in the underlying logic of
the credential language. We have also considered other
potential means of breach, and shown how they can be
prevented. Throughout, we have considered the impli-
cations of the necessity to discover credentials in the
decentralized context where ATN has its role. In ad-
dition, we have explained the factors that have deter-
mined which attribute structures are permitted to have
Ack policy associated with them. Specifically, we have
explained why Ack policy can be associated neither with
a conjunction nor with an attribute whose issuer is not
known. Finally, we have identified the open problem
of whether credentials issued to and protected by third
parties can safely be used in ATN.

9. REFERENCES
[1] Dwaine Clarke, Jean-Emile Elien, Carl Ellison,

Matt Fredette, Alexander Morcos, and Ronald L.
Rivest. Certificate chain discovery in SPKI/SDSI.
Journal of Computer Security, 9(4):285–322, 2001.

[2] Lorrie Cranor, Marc Langheinrich, Massimo
Marchiori, Martin Presler-Marshall, and Joseph
Reagle. The platform for privacy preferences 1.0
(P3P1.0). World Wide Web Consortium
Recommendation, April 2002.

[3] Carl Ellison, Bill Frantz, Butler Lampson, Ron
Rivest, Brian Thomas, and Tatu Ylonen. SPKI
certificate theory. IETF RFC 2693, September
1999.

[4] Ninghui Li, John C. Mitchell, and William H.
Winsborough. Design of a role-based trust
management framework. In Proceedings of the
2002 IEEE Symposium on Security and Privacy,
pages 114–130. IEEE Computer Society Press,
May 2002.

[5] Ninghui Li, William H. Winsborough, and John C.
Mitchell. Distributed credential chain discovery in
trust management. To appear in Journal of
Computer Security. Extended abstract appeared
in Proceedings of the Eighth ACM Conference on
Computer and Communications Security, 2001.

[6] Gopalan Nadathur. A proof procedure for the
logic of hereditary harrop formulas. Journal of
Automated Reasoning, 11:115–145, 1993.

[7] Kent E. Seamons, Marianne Winslett, and Ting
Yu. Limiting the disclosure of access control

policies during automated trust negotiation. In
Proceedings of the Symposium on Network and
Distributed System Security (NDSS’01), February
2001.

[8] Kent E. Seamons, Marianne Winslett, Ting Yu,
Lina Yu, and Ryan Jarvis. Protecting privacy
during on-line trust negotiation. In 2nd Workshop
on Privacy Enhancing Technologies.
Springer-Verlag, April 2002.

[9] William H. Winsborough and Ninghui Li.
Towards practical automated trust negotiation. In
Proceedings of the Third International Workshop
on Policies for Distributed Systems and Networks
(Policy 2002), pages 92–103. IEEE Computer
Society Press, June 2002.

[10] William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and
Exposition, volume I, pages 88–102. IEEE Press,
January 2000.

[11] Ting Yu, Xiaosong Ma, and Marianne Winslett.
Prunes: An efficient and complete strategy for
trust negotiation over the internet. In Proceedings
of the 7th ACM Conference on Computer and
Communications Security (CCS-7), pages
210–219, November 2000.

[12] Ting Yu, Marianne Winslett, and Kent E.
Seamons. Interoperable strategies in automated
trust negotiation. In Proceedings of the 8th ACM
Conference on Computer and Communications
Security (CCS-8), pages 146–155. ACM Press,
November 2001.

[13] Ting Yu, Marianne Winslett, and Kent E.
Seamons. Supporting structured credentials and
sensitive policies through interoperable strategies
for automated trust negotiation. ACM
Transactions on Information and System Security
(TISSEC), 6(1), February 2003. To appear.

