
Citation: Stach, C.; Gritti, C.; Bräcker,

J.; Behringer, M.; Mitschang, B.

Protecting Sensitive Data in the

Information Age: State of the Art and

Future Prospects. Future Internet 2022,

14, 302. https://doi.org/10.3390/

fi14110302

Academic Editor: Wei Yu

Received: 30 August 2022

Accepted: 18 October 2022

Published: 22 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Protecting Sensitive Data in the Information Age: State of the
Art and Future Prospects
Christoph Stach 1,* , Clémentine Gritti 2 , Julia Bräcker 3 , Michael Behringer 1 and Bernhard Mitschang 1

1 Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38,
70569 Stuttgart, Germany

2 Department of Computer Science and Software Engineering, University of Canterbury,
Christchurch 8041, New Zealand

3 Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5B,
70569 Stuttgart, Germany

* Correspondence: christoph.stach@ipvs.uni-stuttgart.de; Tel.: +49-711-68588-433

Abstract: The present information age is characterized by an ever-increasing digitalization. Smart
devices quantify our entire lives. These collected data provide the foundation for data-driven services
called smart services. They are able to adapt to a given context and thus tailor their functionalities to
the user’s needs. It is therefore not surprising that their main resource, namely data, is nowadays a
valuable commodity that can also be traded. However, this trend does not only have positive sides,
as the gathered data reveal a lot of information about various data subjects. To prevent uncontrolled
insights into private or confidential matters, data protection laws restrict the processing of sensitive
data. One key factor in this regard is user-friendly privacy mechanisms. In this paper, we therefore
assess current state-of-the-art privacy mechanisms. To this end, we initially identify forms of data
processing applied by smart services. We then discuss privacy mechanisms suited for these use
cases. Our findings reveal that current state-of-the-art privacy mechanisms provide good protection
in principle, but there is no compelling one-size-fits-all privacy approach. This leads to further
questions regarding the practicality of these mechanisms, which we present in the form of seven
thought-provoking propositions.

Keywords: smart service; privacy techniques; location-based services; health services; voice-controlled
digital assistants; image analysis; food analysis; recommender systems; DNA sequence classification

1. Introduction

In 1991, Mark Weiser envisioned the computer for the 21st century [1] as a pervasive
system that ubiquitously surrounds us, constantly adapting to its context and our current
needs. Although this vision did not fully materialize, the Internet of Things (IoT) is a major
step in this direction. Here, various sensors are integrated into everyday objects, enabling
them to monitor their surroundings and react to it. Furthermore, all of these IoT-enabled
devices, often referred to as smart devices, are interconnected and can communicate with
each other. Thus, smart devices have a virtually unlimited data stock at their disposal [2].

The full potential of the gathered data can only be exploited if they are interlinked and
comprehensively analyzed [3]. Yet, these data, which are labeled big data, are generated
at high velocity and in high volume. Profound data processing is therefore not possible on
the mostly lightweight smart devices, as they do not have the necessary resources and
computing power to do this at an adequate speed and scale. Moreover, there is a high
variety in the data in terms of schemata and data formats. Thus, extensive data preparation
is required to merge these data, which also exceeds the capacities of smart devices [4].

The processing of the captured raw data therefore usually takes place in a powerful
backend system. There, the raw data are initially refined. That is, they are cleansed—i.e.,
missing or erroneous data are treated—and transformed—i.e., different schemata and
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formats are harmonized [5]. Subsequently, the refined data can be interlinked, further
preprocessed, and analyzed [6]. In analogy to the concepts of the knowledge manage-
ment, three stages can be differentiated. Data refers to the unprocessed and unfiltered
raw data collected by the smart devices. The refined and interlinked data are termed
information. Knowledge is generated only when the information is analyzed, and the findings
are interpreted [7].

Such knowledge provides the foundation for so-called smart services. A smart service
is any kind of data-driven digital service that is able to adapt to the data and thus offering
users the greatest possible utility in their current situation. Smart services can be very
small scale, e.g., an adaptive application on a smartphone, as well as highly complex, e.g.,
when several smart devices interact with each other via actuators [8]. Examples of smart
services can be found in the public, industrial, and private sectors, e.g., in the context of
smart cities [9], Industry 4.0 [10], and eHealth [11].

While such smart services are very appealing since they significantly facilitate the
lives of their users in a wide variety of situations, they also pose a serious threat. As we are
constantly surrounded by smart devices, they are able to quantify all aspects of their users’
lives as well as the lives of innocent bystanders. The thereby gained knowledge provides
deep insights into the privacy of these individuals [12]. Data protection laws, such as the
European General Data Protection Regulation (GDPR) [13], therefore entail principles, such as
data minimization (Article 5(1)(c)), and mandate data protection by design (Article 25).

However, this leads to what is known as the privacy paradox—although users crave the
best possible protection of their privacy, they still do not want to refrain from using smart
services, which in turn requires them to share their private data with these services [14].
Therefore, this paradox must be resolved by concealing sensitive knowledge patterns
contained in the data without significantly impairing the general data quality. Privacy
measures that are too restrictive would render the data unusable, while measures that
are too shallow would jeopardize privacy [15]. In order for this balancing act to succeed,
however, privacy measures must be tailored to the data and how they are processed.

Therefore, we investigate whether state-of-the-art privacy mechanisms for smart
services are up to this task. Our research goal is to systematically analyze the state of the
art in this domain. To this end, we identify the privacy threats posed by today’s smart
services as well as the strengths and weaknesses of the available privacy mechanisms. By
comparatively reviewing these two dimensions, we elaborate which issues are already
effectively covered by today’s privacy mechanisms and which open research questions still
need to be addressed as part of future work. With this in mind, we make the following
three contributions in our paper:

1. We present modern-day smart services from seven application domains. For each
of them, we analyze which data they capture, which types of processing are used to
extract information from them, and which knowledge can be derived. The selected
application scenarios serve to illustrate the general data processing requirements and
the privacy concerns inherently associated with such smart services.

2. We discuss state-of-the-art privacy measures for the identified data types and forms
of processing. Hereby, we provide an overview of the current state in terms of the
protection of sensitive data when dealing with smart services.

3. We identify, based on our findings, open privacy issues in the context of smart
services that need to be overcome in order to comply with the data protection by
design principle.

The remainder of this paper is structured as follows: In Section 2, we analyze seven real-
world application scenarios of smart services with respect to the involved data processing
and highlight the opportunities offered by these smart services as well as the inherent
privacy threats. Based on our findings concerning data quality requirements and potential
privacy risks, we discuss appropriate state-of-the-art privacy measures and work out their
strengths and weaknesses in Section 3. In Section 4, we map the opportunities and threats
against the strengths and weaknesses to reflect the current state of privacy mechanisms for
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smart services. Based on this contrasting juxtaposition, we identify future prospects with
regard to privacy issues in smart services and how to overcome them in Section 5 before
concluding the paper in Section 6.

2. Analysis of Modern-Day Smart Services

In a first step, we look at seven real-world application scenarios, which require the
comprehensive processing of highly sensitive data. This provides insights into the types
of data that are involved and the requirements regarding data refinement. In addition,
we discuss for each application scenario which opportunities are offered by it and which
privacy threats it poses. The selection of the application scenarios is based on the IoT
and smart service topics which are currently predominant in the literature. This includes
location-based services (Section 2.1), which originally had a primarily military background
but have long since arrived in the private sector, health services (Section 2.2), in which
the IoT enables remote health monitoring, voice-controlled digital assistants (Section 2.3),
which are an important pillar of any smart home, and surveillance services driven by image
analysis (Section 2.4) [16]. Moreover, end-to-end food processing monitoring to ensure food
safety is becoming increasingly common, which is enabled by IoT-supported food analysis
(Section 2.5) [17]. However, even long-established services, such as recommender systems
(Section 2.6) gain new capabilities due to the IoT [18]. As the available computing power is
also steadily increasing, extensive analysis such as DNA sequence classification (Section 2.7)
can also be realized with the help of the IoT [19]. In those application domains in general,
there are particularly severe privacy threats, such as data leakage or data tampering [20]. We
summarize the findings from the study of these seven application scenarios in Section 2.8
and identify knowledge needs to be derived in each scenario as a result of the analysis and
what adverse insights can be gained from the data in the process.

2.1. Location-Based Services

Location-based services (LBS) are an application domain in which large amounts of data
have to be processed. An LBS is a service in which the geographic location of entities
is significantly tied in. In addition to tracking stationary entities, e.g., certain locations
that are relevant for the service, mobile entities can also be tracked, e.g., shipments that
are in delivery [21]. In addition to such non-human entities, the location data of human
users are also being tracked by LBS. This is driven in particular by the increased use of
smartphones (and affiliated technologies, such as smartwatches) [22]. This kind of device is
not only permanently close to its user but also always on and always online [23]. In addition
to a GPS receiver, which enables very accurate positioning, mobile phone tracking also
facilitates sufficiently good positioning of users via their GSM cellular location [24]. While
satellite-based tracking is limited to outdoor areas, indoor tracking is also possible with
standard smart devices. For instance, inertial approaches use built-in accelerometers and
gyroscopes to determine the location relative to a given starting point by means of the
direction of movement and movement speed. Other approaches are based on the Earth’s
magnetic field. A built-in magnetic sensor detects the radiated fields, which can be used to
determine the current position by means of triangulation [25].

Basically, three different types of location capturing can be found in LBS. The most
basic method for static entities is to hardcode their position. For mobile entities, the
current location can be captured as singular location information with the help of the
aforementioned tracking technologies. If several such singular locations are captured in
a temporal sequence, they can be used to form trajectories that describe the movement
path of an entity [26]. The latter in particular requires thorough data refinement, e.g., to
eliminate outliers [27] or to compensate for inaccuracies in the location information [28].

Figure 1 illustrates three data refinement steps. A problem regarding the capturing
of trajectories is that they are only recorded pointwise. Single points can be distorted due
to poor positioning signals, e.g., when an entity is passing urban canyons. If the recorded
location deviates strongly from the actual location, noise filtering can be used to rectify the
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trajectories. An outlier can be detected if a point of the trajectory deviates too much from its
predecessor and successor. In that case, the corrupted point can be detected, deleted and,
e.g., replaced by means of interpolation. If the sampling rate is higher, i.e., if more data are
available for data refinement, the results of the cleansing become more accurate [29].

Filtering Noise Map Matching Semantic Mapping

X

?

Navigation
Services

Routing
Services

Tracking
Services

Information
Services

…

BLE,
GPS,
WLAN,
…

Figure 1. Examples of Data Refinement Steps for Trajectory Data.

While noise filtering can be used to correct significant deviations from single points,
smaller deviations can also be corrected by adding complementary knowledge. For instance,
if an entity can only move on predefined paths, e.g., a parcel on a parcel conveyor or a
car on a road, the trajectory can be projected onto a model of these possible paths. In the
depicted map matching, the white paths are roads, and the entity is a car. The denoised
trajectory can then be smoothed, since it can be assumed that the car follows the road [30].

As can be seen, however, such a smoothing has its limitations. For instance, it is not
possible to determine where the trajectory ends. It is obvious that the car cannot drive off
the road. However, the distance to the road above and the one below is identical. If further
semantic knowledge is added to the model, even such errors can be corrected. For instance,
if some locations are known that are relevant to the entity, then it can be inferred whether
it is more likely to use the upper or lower road. In the shown semantic mapping, the
green marker is the entity’s place of residence. Thus, it can be assumed that the captured
trajectory ends there, and the refinement of the trajectory can be made accordingly [31].

Such refined data enable a variety of LBS. For instance, they enable the search for
stationary objects—e.g., POI in a guide service [32]—or mobile objects—such as drivers
or passengers in a ride-sharing service [33]. Smart navigation systems are also made
possible by such data. These navigation systems not only take the planned route into
consideration but also contextual knowledge such as congestion information provided by
other entities [34]. Social networks in particular are increasingly relying on IoT data from
other smart services. Here, these data are merged with social media, whereby new insights
are gained. Location data play a significant role in this context, as they are not only a key
factor in determining the current context of a person but also because they reveal further
connections between users [35]. For instance, in location-based social networks, social
groups are identified not only based on mutual friends and common interests but also
on matching movement patterns [36]. Another cutting-edge use case is the development
of autonomous vehicles that do not require any human intervention to find and follow
their route [37]. While in the aforementioned use cases, it is only bothersome if the data
refinement is inadequate and thus the tracking of entities is not accurate, in autonomous
vehicles, this might endanger the physical integrity of humans. Therefore, it is mandatory
to delve into the data. Yet, data processed by LBS provide insights into behavioral patterns.
Whenever humans can be linked to the data (e.g., the owner of a smart device), this poses a
severe privacy threat [38].

The inherent opportunities and privacy threats of LBS can be broken down as follows:
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Opportunities:

 The technical ability to locate smart devices (and thus their owners) with high accuracy
enables many services, such as navigation services or location-based information
services.

 The location can also be used to derive a lot of additional information about the data
subject, e.g., which places the data subject visits frequently.

 If this information is enriched with additional data, such as temporal aspects (How
long and when does a data subject stay at a certain place?) or supplementary geo-
graphic data (What can be found at that place?), a very precise profile of the data
subject can be created. This makes LBS the foundation of many other context-based
services since location is a key parameter in context recognition.

Privacy Threats:

o The current location of a data subject is continuously disclosed by an LBS. This
enables long-term surveillance of data subjects.

o The data refinement methods described above make it easy to correct even hardware-
or software-related inaccuracies, enabling very precise location determination.

o Furthermore, LBS can be used to find out much more about a data subject than might
initially appear. For instance, they can be used to determine activities and, in the case
of long-term use, to draw conclusions about hobbies and social contacts.

2.2. Health Services

The healthcare sector can also benefit from comprehensive data analyses. The term
eHealth covers all kinds of services that facilitate the treatment and long-term care of patients
and involve the use of modern information technologies [39]. This brings many benefits to
the table, as treatment costs can be reduced, the patients’ quality of life can be improved,
and the workload of physicians can be reduced [40]. To achieve this, however, it is crucial
to include the patients fully in the process and overcome technical hurdles [41]. This can
be achieved in particular by means of so-called mHealth. Here, everyday mobile devices
such as smartphones are used for medical treatment [42]. Due to mHealth, there is a mobile
application for virtually any health-related use case nowadays [43].

An example of such an mHealth application for people suffering from a chronic disease
is an interactive questionnaire with which they can assess their condition on a daily basis.
Depending on the answers, follow-up questions are asked. In this way, only essential
questions can be asked in a systematic manner without overwhelming patients [44]. In
addition to a local evaluation to determine the appropriate question catalog, the results are
also forwarded to a backend for further analysis. If a critical situation is detected based
on the answers, the patient is advised to see a physician [45]. The physician receives a
summary of the analyzed questionnaires, which facilitates his or her daily work and allows
him or her to focus on emergency cases [46].

Such applications are especially useful in more rural areas or developing countries
where people have no immediate access to a physician. Thus, because of the low-cost
hardware required, mHealth can ensure that people in such areas still receive healthcare [47].
Today’s smart devices, however, enable far more powerful heath services due to their built-
in sensors and connectivity [48]. The so-called quantified self movement motivates people
to use self-tracking to capture vast amounts of health-related data about themselves, such
as blood pressure information, on a permanent basis [49]. While ordinary smart devices
come with many sensors that support this kind of self-tracking, the IoT opens up further
capabilities [50]. For instance, a smartphone can be turned into a health data hub to which
all sorts of IoT-enabled specialized heath meters send their measurement data for storage
and processing [51]. As a result, mHealth approaches provide not only a sufficient amount
of data but also useful data for more comprehensive medical analyses [52].
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In addition to simple questionnaires, the self-assessment of patients can be supported
by such health-related measurements. In the case of diabetics, a continuous glucose moni-
toring device can be coupled with a smartphone to track the blood glucose level in a mobile
application. Moreover, external circumstances that might influence the measurements (e.g.,
stress factors such as noise) can also be captured via the smartphone’s built-in sensors. In
this way, analyses enable a 360-degree health view on the patients [53]. As these data are
tracked continuously, more complex analyses of long-term trends are also feasible [54].

Figure 2 shows the potential of such analyses. First, descriptive analytics can be applied
to the large amounts of historical data collected about a patient. By looking at a health
value over time, it is possible to understand what exactly has happened, e.g., how a patient
responded to taking a particular pharmaceutical, and use this knowledge to adjust the
medication. Yet, as the data are captured in real time, the current situation can also be
monitored by means of real-time analytics. For instance, this knowledge can be used to
operate a smart insulin pump that supplies a patient with the appropriate amount of insulin
based on the current situation. In addition, a model can be trained using historical data,
which enables predictive analytics. Predicting how a health value will change in the future
enables counteracting an adverse trend at an early stage [55]. The potential of such services
is therefore virtually unlimited, including education, diagnostics, and treatment [56].

Real Time
Analytics

Descriptive Analytics Predictive
Analytics

Past Present FutureContinuous Data Acquisition
via Smart Devices and IoT-
Enabled Health Devices

Figure 2. Three Types of Time-Series Analyses Applied in Health Services.

In such an application scenario, the accuracy of the data is key, as it affects the health of
patients. Thus, the data must be refined assiduously in order to achieve the highest possible
accuracy and eliminate measurement errors [57]. However, such services also raise privacy
concerns, since in addition to the health data, which intrinsically contain a vast amount
of sensitive information, a vast amount of knowledge about, e.g., lifestyle, environment,
and social life is disclosed [58]. As smart devices have become an integral part of our lives,
users no longer even notice their presence. Sensors are embedded in everyday objects and
enable a comprehensive and almost invisible permanent monitoring of everyone—both the
users of the smart devices or accidental bystanders [59]. For this reason, particularly high
privacy standards must be applied in such an application scenario [60].

The inherent opportunities and privacy threats of smart health services can be broken
down as follows:

Opportunities:

 IoT technologies enable the self-quantification of health-related values, which means
that frequently recurring health checks in particular can be performed at home by the
patients themselves. This relieves the burden on both patients and physicians.

 The non-intrusive nature of the smart devices allows the permanent monitoring of
patients without disturbing their daily routine. This enhances safety, as no health
measurements can be forgotten, and health problems can be detected at an early stage.
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 Since the smart devices that feed smart health services with data are ubiquitous and
capable of capturing a variety of health values, they can be used to provide 360-degree
health views on the patient.

Privacy Threats:

o Health data are among the most sensitive data, so the large-scale collection and
processing in itself is a privacy threat.

o As smart devices are ubiquitous, data subjects are no longer aware that health data
are collected permanently, which makes them unaware of the privacy threat.

o In addition to inferences about diseases, the collected health data also allow insights
into other aspects, such as unhealthy behaviors, e.g., whether the data subject is a
smoker or carries out little physical activities.

2.3. Voice-Controlled Digital Assistants

In addition, the increasingly popular Voice-Controlled Digital Assistants (VDA) de-
pend on comprehensive data refinement and subsequent data processing. VDA refers
to any hardware and software infrastructure that enables users to request information
or give instructions by means of human speech. In addition to IoT devices that serve
as microphones and speakers, a software agent is required that permanently listens for
a predefined keyword. As soon as this keyword is received, the agent wakes up and
records everything that is subsequently spoken. A speech analysis is then performed on
the recordings, to interpret the spoken commands semantically and process them logically.
Depending on the command, either speech synthesis is used to formulate a response or
a machine-processable command is sent to a corresponding IoT-capable device [61]. The
most popular VDA are Alexa (see https://alexa.amazon.com/, accessed on 30 August
2022), Siri (see https://www.apple.com/siri/, accessed on 30 August 2022), Cortana (see
https://www.microsoft.com/en-us/cortana/, accessed on 30 August 2022), and Google
Assistant (see https://assistant.google.com/, accessed on 30 August 2022) [62].

Such VDA offer users a variety of benefits: First, the easy accessibility via the voice in-
terface provides a convenient way to give tasks to the VDA. Second, this type of interaction
also satisfies a hedonistic desire, as the user has command over a (virtual) assistant that can
perform any assigned task. This is further amplified by the fact that the possession of such
“future technology” also has a symbolic value, since its usage has a favorable impression on
others. Third, VDA also have a positive social aspect, as natural language communication
with them overcomes many impediments regarding the perception of the technology—the
VDA is rather perceived as a person than a technical object [63]. Due to this variety of
benefits, it is therefore not surprising that the popularity and demand for such VDA is
growing constantly. This is further enhanced by the fact that more and more IoT devices
are compatible with VDA, i.e., everyday objects can be used as input device and can be
operated by a VDA. So, the VDA is virtually available at any time and any place [64].

The schematic architecture of the VDA ecosystem is outlined in Figure 3. A compatible
input client with a microphone is required on the user side. The software agent of the respec-
tive VDA service runs on this client. This can be a conventional personal computer with In-
ternet access, a smart device such as a smartphone, or a dedicated VDA-enabled device such
as Amazon Echo (see https://www.amazon.com/smart-home-devices/b?node=9818047011,
accessed on 30 August 2022). On this client itself, however, neither the voice processing nor
the processing of the actual request is carried out. The client only recognizes the specified
keyword and records the subsequent instructions. It sends the recording to its processing
backend. There, voice processing first retrieves and interprets the request [65]. The request
is then processed by means of machine learning approaches. Feedback loops are included
so that if the user labels a response incorrect or unsatisfactory, the respecting request is used
to train the models further and thereby refine them continuously. To put it simply, with
every mistake the VDA makes, the system becomes smarter. IoT-enabled output devices are

https://alexa.amazon.com/
https://www.apple.com/siri/
https://www.microsoft.com/en-us/cortana/
https://assistant.google.com/
https://www.amazon.com/smart-home-devices/b?node=9818047011
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needed to render the results, e.g., smart speakers, a smartphone application, or compatible
third-party devices such as smart light bulbs. To trigger these devices, a VDA backend
has various adapters, e.g., an adapter to generate natural language to answer questions
verbally or adapters by third-party vendors to control their IoT devices [66].

Companion
Client

Voice-Based
Client

Hybrid
Client

Voice
Processing
Cloud

Recording / Input

IoT & Third-
Party Cloud

ResponseIoT Device Third-Party
Application

Instructions / Result

Requests

Figure 3. Ecosystem and Architecture of a Voice-Controlled Digital Assistant.

No matter which service is requested by a user, however, an important aspect of VDA
is that the misinterpretation of his or her commands is minimal. If this is not achieved, a
breach of immersion occurs and user acceptance decreases [67]. To this end, it is imperative
that in the backend, models are trained based on many inputs from different users. Further-
more, the incoming requests must be thoroughly refined in order to be able to successfully
interpret what is being said. In addition to monitoring the quality of the VDA, a feedback
loop is required that involves human operators listening to selected recordings [68].

It is obvious that VDA also raise privacy concerns. The VDA providers are able to
identify all of their users. Thus, they are able to link the recordings to the users. Taking
this into account, the fact that VDA are able to wiretap users permanently is a particularly
disturbing concern. Users do not know what data are actually captured and forwarded
for processing. Even third parties can gain access to the data, e.g., for quality control or to
provide an affiliated service. So, the privacy concerns regarding VDA are reasonable [69].

The inherent opportunities and privacy threats of voice-controlled digital assistants
can be broken down as follows:

Opportunities:

 VDA allow voice-based control of smart devices, making them particularly helpful,
e.g., for people with motor disorders.

 The natural language approach of VDA reduces the technical hurdle for people who
are less tech-savvy.

 The knowledge that a VDA (theoretically) has at its disposal is almost unlimited. That
is, VDA can be used to access required information quickly and easily in almost any
situation in life.

Privacy Threats:

o Since a VDA waits for its specific keyword, it is never completely off. That is, all
conversations are permanently recorded.

o If a VDA is activated using the keyword and the voice recording is forwarded for
processing, it is not possible for data subjects to trace who has access to it.

o For third parties, a VDA is indistinguishable from conventional loudspeakers. There-
fore, they are completely unaware that their conversations are also being recorded.
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2.4. Image Analysis

There are also many benefits offered by computer-aided image analysis. While the
human eye has physical limitations in terms of detail perceptibility, the capabilities of
computational image processing are virtually limitless. Therefore, such data processing
techniques are applied in a variety of application domains today. For instance, in the
food industry, computer vision can be used to reliably detect foreign objects in food
products, medical diagnoses can be supported by the automatic interpretation of computed
tomography images, and in the context of defense and homeland security, suspects can be
recognized on video recordings [70].

In particular in the field of face recognition, remarkable progress has been made in
recent years. While in the early days of this research area in 1964, only a few characteris-
tics of the face could be recognized on images, today, the techniques are so reliable and
accurate that they are used in a variety of commercial, industrial, legal, and governmental
applications [71]. End-users also come into contact with face recognition services, e.g., in
online social networks (OSNs) such as Facebook (see https://www.facebook.com/, accessed
on 30 August 2022) [72]. Here, the so-called DeepFace algorithm is used to identify users on
images shared in the network. This algorithm is almost as good as human identification,
except that, unlike humans, DeepFace can process large amounts of data in next to no
time [73].

Figure 4 illustrates the workflow of face recognition. Initially, all faces on an image
must be detected. For instance, characteristic facial features can be identified such as skin
color which contrasts with the background, or a model can be trained to detect human
faces [74]. Having detected the face, the image needs to be preprocessed, e.g., it has to be
cropped to the relevant part of the face. Furthermore, facial landmarks such as the eyes,
mouth, and nose have to be marked [75]. For the actual recognition, a comparison with
a face database is conducted. To this end, a multinomial classifier is trained using the
face database. This classifier can determine with which person from the face database the
person on the image has the best match [76]. Various machine learning techniques can be
used for this purpose. While in the early days primarily linear discriminant analysis was
used, today, support vector machines and convolutional neural networks are used [77].

Face
Detection

Pre-
Processing

Train
Model

Adam

Face
Recognition

Identifi-
cation

Image
Normalized
Image

Tagged
Image

Face
Database

Machine
Learning Model

Name

Figure 4. Workflow of a Face Detection and Recognition Based on Machine Learning.

The application of such image analysis techniques naturally also raises privacy con-
cerns. With today’s smartphones, IoT-enabled cameras have become ubiquitous in our
everyday lives. Moreover, considering that smartphones can tag captured photos with a
time code as well as location information, image analysis can be used to determine not
only which people are in a picture together but also when and where that meeting has
happened. While this may be intended by the main data subject of the photo, it also
affects any bystanders. Due to this potential exposure, measures are needed to restrict such
privacy-intrusive scenarios [78]. An additional problem associated with image analysis is
the bias in data selection. Such a bias leads to inadequate models, which cause errors in face
recognition, resulting in users being incorrectly linked to a photo. Thus, it is important to
take measures to prevent bias when preparing the data corpus for training the models [79].

https://www.facebook.com/
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The inherent opportunities and privacy threats of image analysis can be broken down
as follows:

Opportunities:

 As social media becomes more and more prevalent in people’s lives, image analysis is
becoming increasingly relevant for them as well. This allows people to be identified
and tagged in images, enabling the automatic linking of people with their social
contacts as well as with places and activities.

 Comprehensive image analysis enables novel search functionalities, e.g., if users want
to find all images of themselves (or other users) that are available in a social network.

 Image analysis is also a key factor in law enforcement and security today, as it can be
used to identify suspects rapidly in video recordings.

Privacy Threats:

o When an image is analyzed, locations or activities can be identified in addition to
the people depicted in it. By linking this information, a lot of knowledge about
the data subject can be derived. Furthermore, by combining all available images, a
comprehensive insight into the lives of the depicted persons can be gained.

o The algorithms are subject to certain probabilities of error. If people are incorrectly
identified, they may be assigned to the wrong circles of acquaintances or interests, un-
noticed by the data subject, which in the worst case can have damaging consequences
for their reputation.

o Third parties can also be tagged on images without their knowledge, allowing the
algorithm to learn their faces. As a result, they can also be identified in pictures,
which means that parts of their private lives are revealed completely without their
knowledge.

2.5. Food Analysis

The aim of food chemistry is to investigate and research all biological and non-
biological components of foods. This research discipline is fully committed to consumer
protection and is intended to ensure the safety of all food products. To this end, chemical
analyses are used to determine, e.g., whether sufficient quantities of a valuable ingredient
are included in a food product or whether food producers comply with the maximum
permitted quantities of unhealthy substances [80]. Here, the use of biosensors can con-
tribute significantly to food safety, as contaminations or toxins in food can be reliably
detected [81]. For this purpose, the vast number of proteins in a food sample must be split
into peptides in order to detect even the smallest traces of substances that can be unsafe to
consume. However, this results in a significantly larger number of analytes. Special tools
and techniques are therefore needed to handle this huge amount of data [82].

In simple terms, it is necessary to search for specific patterns in the source material [83].
To cope with the vast amount of analysis data, machine learning is becoming increasingly
popular. This enables a much more thorough analysis than a manual analysis. Models are
trained from examples. These models generalize the data from the given samples. For new
samples, it must be determined to which of the training samples the new sample has the
best match. This allows one to analyze even very large datasets, such as complete DNA
sequences, for contained patterns [84].

An analysis process in the food chemistry domain is shown in Figure 5. A food sample
is analyzed to determine whether it contains certain allergens. Such allergens must be
explicitly declared by food producers to protect consumers who have a certain food allergy.
In this example, a food chemist determines whether the sample contains glutamate. Yet,
the same procedure applies to other allergens as well, such as gluten, crustaceans, or nut
seeds. For this purpose, the sample is analyzed with a mass spectrometer to determine the
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mass-to-charge ratio of all peptides present in a sample. For the separation of contained
peptides, liquid chromatography is used. From a proteomics and genomics database
for foods, e.g., UniProt (see https://www.uniprot.org/, accessed on 30 August 2022),
comparison samples of the allergens of interest can be obtained. Then, it can be cross-
checked whether sufficiently similar patterns can be recognized in the peptides obtained
from the food sample [85]. For this comparison and all subsequent analyses, however,
a thorough refinement of the sample data is necessary, e.g., to filter out inaccurate or
irrelevant data to be able to focus on the relevant aspects in the data, only [86]. This way, it
is possible to detect whether allergens are present in a food sample in any decomposing
stage [87].
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Figure 5. Schematic Representation of Food Analysis to Detect Allergens in a Food Sample.

Such a pattern recognition in a data stream, as it is generated by the measurement
devices during the analysis, is also known from the domain of complex event processing
(CEP). A pattern consists of individual facts—in the context of food analysis for instance
peptides—which are in a given sequential context [88]. The patterns can be defined by
means of pattern templates. These templates provide a level of abstraction to the actual data,
as they specify the target sequences based on pairs of measurement values and constraints
on those values. A CEP engine then searches for these patterns in the data stream [89]. In
the context of food analysis, however, it is not sufficient to find only exact matches but
also reasonably good matches. For instance, post-translational protein changes can cause
deviations from the entries in the protein sequence database. To this end, data mining
techniques such as k-nearest neighbor analysis can be used to find similarity matches [90].

It is obvious that privacy does not have to be observed in this application scenario,
as the food samples do not have any privacy rights. However, with the help of these
analytical methods, it is possible not only to detect allergens in food products but also to
determine which ingredients are present in the product. That is, deep insights into the
product and manufacturing process can be gained with today’s sensors and data processing
technology [91]. As a result, it is possible to identify a manufacturer’s secret ingredients,
which represents a competitive advantage in the food market. Therefore, maintaining
confidential business information is a necessary tool in the food chemical sector [92].

The inherent opportunities and privacy threats of IoT-supported food analysis can be
broken down as follows:

Opportunities:

 With IoT-supported food analysis, food samples can be analyzed much more efficiently
and effectively.

 Due to the increasing number of people suffering from a food allergy, it is important
that food products are correctly labeled and that this labeling is also thoroughly
verifiable.

https://www.uniprot.org/
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 Due to a predominantly automated processing of food products, a thorough inspection
of these products is required in order to detect any foreign substances or contaminants
at an early stage.

Privacy Threats:

o In this application scenario, there are no privacy threats, but there are confidentiality
threats, as food analysis can provide deep insights into the food product, revealing
specific ingredients or preparation methods, possibly leading to a loss of competitive
advantage.

2.6. Recommender Systems

With the rise of services such as YouTube (see https://www.youtube.com/, accessed
on 30 August 2022) or large online shopping platforms such as Amazon (see https://www.
amazon.com/, accessed on 30 August 2022), we have entered an age of oversupply. Users
cannot obtain a complete overview of all available items (e.g., video clips or products).
Therefore, in all these services and shopping platforms, a mechanism is needed to provide
users with information about the items that are particularly relevant to them. Recommender
systems represent such a mechanism. In simple terms, a recommender system is a tool
that predicts a user’s interests based on his or her previous interactions with the service or
shopping platform. Such interactions can be, e.g., watching a video clip or buying a product.
In this way, information overload can be minimized by presenting a user with only the
most relevant information tailored to his or her needs [93]. Although e-resource services
such as YouTube or e-commerce platforms such as Amazon are the most prominent uses
of recommender systems, such systems have become indispensable in almost all modern
e-services [94].

However, if recommender systems would base their suggestions only on the previous
interaction of the user in question, no new items could be recommended to him or her. The
advantage of these systems is that they not only have knowledge about a single user but
can also draw on the interactions of a large number of users. By means of so-called market
basket analysis, they can determine which combinations of items users frequently interact
with, e.g., which video clips a user has on his or her watchlist or which products a user
buys at the same time. From such item lists, association rules can be derived that describe
which item combinations are encountered regularly. If a user is interested in a subset of the
items of an association rule, the remaining items can be recommended to him or her [95].

In Figure 6, it is shown how a recommender system can proceed to be able to make
tailored recommendations. Basically, there are two different approaches to this end: content-
based filtering and collaborative filtering. In content-based filtering, only the items are consid-
ered. For this purpose, similar items are clustered. The clusters are homogeneous within
themselves—i.e., the items of a cluster are mutually highly similar with regard to the
relevant properties—and heterogeneous to each other—i.e., the items of different clusters
are as different as possible with regard to the relevant properties. If a user interacts with an
item (or has interacted with it in the past), the remaining items of the same cluster can be
recommended to the user, since it is likely that they are also of interest to him or her [96].

Yet, this approach completely neglects social aspects. By including knowledge about
the users themselves as well as social relationships between them, considerably better
recommendations can be made [97]. In collaborative filtering, therefore, users are also
clustered, for instance, based on common interests. This has two effects: On the one
hand, the recommendation set can be reduced significantly. It is no longer necessary to
recommend all similar items but only those that were also popular among other users from
the same cluster. On the other hand, new recommendations can also include distinct items
if other users from the cluster have interacted with them [98]. In addition to these two main
types of recommender systems, however, there is a variety of hybrid approaches that mix
aspects of content-based filtering and collaborative filtering [99].

https://www.youtube.com/
https://www.amazon.com/
https://www.amazon.com/
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Figure 6. Two Fundamentally Different Modes of Operation of Recommender Systems.

There are two issues in this regard: First, third parties, e.g., content creators or manu-
facturers of a product, might try to increase the relevance of their items by submitting fake
data to be prioritized in the recommendations. So, raw data always have to be refined to
purge such misrepresentations. Second, recommender systems rely on knowledge about
the community. Only if large amounts of information about users’ preferences and usage
behavior are available can meaningful recommendations be made. Even if an individual’s
opinion cannot be inferred directly from the recommendations, such information is present
in the base data. Moreover, statistical inferences can also be derived from the processed
and accumulated data, which reveal information about the preferences of individuals.
Therefore, privacy issues have to be addressed in recommender systems as well [100].

The inherent opportunities and privacy threats of IoT-supported recommender sys-
tems can be broken down as follows:

Opportunities:

 IoT-supported recommender systems are able to provide search results that are tailored
to the user (e.g., product recommendations) based on contextual information.

 With the help of collaborative filtering, users can also be presented with completely
new recommendations, which can expand their horizons, as they were previously
unaware that they might be interested in the suggested items.

 Searches become much more efficient, as irrelevant items can be excluded early on,
and more effective, as relevant items can be suggested even if they were not directly
included in the search query.

Privacy Threats:

o The recommender systems have to collect and analyze a lot of data about a user’s
interests in order to make suitable suggestions. As a result, they also gain privacy-
relevant insights into the life of the data subject.

o In collaborative filtering, the data of several users are combined, and profiles are
created, which can be used to derive additional information about a data subject. For
instance, knowledge about a data subject can be transferred to the other data subjects
in the same cluster with a certain probability.

o A recommender system can also deliberately influence users by making one-sided
recommendations.

2.7. DNA Sequence Classification

The analysis of human DNA samples has many useful applications. While in the early
days, DNA analysis was mainly used in forensics to uniquely identify individuals—via the
so-called genetic fingerprint—other areas of application have emerged over time as analytical
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methods have become more advanced. For instance, it can be used to establish paternity
in custody and child support litigation or to trace ancestry over hundreds of thousands
of years to study population genetics. Furthermore, DNA analysis can also be used in the
medical domain to diagnose inherited disorders and human diseases [101].

Epigenetic modifications, such as DNA methylation, can be used to detect common
diseases. For instance, aberrant DNA methylation of imprinted loci can often be observed
in connection with certain types of cancer. In addition, autoimmune diseases, metabolic
disorders, and neurological disorders are closely related to DNA methylation. Medicine
could therefore make significant progress if a deeper understanding of epigenetic mecha-
nisms leading to these diseases is available [102]. Although insights into the mechanisms of
DNA demethylation have already been gained, there are still many correlations that have
been observed but not yet systematically studied. To this end, however, extensive analyses
are required to comprehend all relevant factors [103].

Instead of striving to explain the complex correlations, a reliable classification is
already sufficient for a medical diagnosis. For instance, normal and malignant tissue
samples from human liver and lung can be studied in order to be able to classify future
tissue samples into “normal” and “malignant” based on these findings [104]. Instead of
an analysis by a medical expert, artificial intelligence techniques can be used for DNA
sequence classification. For this purpose, a large number of labeled samples are collected
and used to train a model. This model recognizes the relevant genome sequences that are
indicative of a particular disease [105].

Figure 7 is a simplified illustration of how this can be completed. First, suitable target
data are selected. Preprocessing steps are applied to these data to structure them and prune
errors or missing values. Then, the features relevant for the analysis are extracted. In the
given example, sections of the DNA helix of the samples, i.e., sequences of base pairs. With
these data, a convolutional neural network (CNN) is trained. In a CNN, there are multiple
hidden layers in addition to an input and output layer. During the training phase, weights
are allotted to describe how much certain nodes from one layer contribute to the inputs
of the subsequent layer (and thus, eventually, to the final outcome). This allows one to
classify new unlabeled data. The advantage of a CNN is that pooling allows one to discard
redundant information early on, whereby even large amounts of data can be processed
efficiently. This makes it also more robust against overfitting, i.e., it is possible to detect
variants of a disease. Furthermore, a CNN can subsequently adjust itself to respond to
shifts in circumstances [106].

Data Pre-
Processing

Target
Data

A – T
G – C
C – G
A – T
T – A
…

Feature
Extraction

…
Malignant

Normal

Convolutional Neural Network

Figure 7. Application of a Convolutional Neural Network for the Classification of DNA Samples.

However, the training of such a CNN requires the establishment of large repositories of
annotated genomic data. Although this may represent a key element for future discoveries
in human disease, it inevitably also raises a variety of privacy concerns. Even if the metadata
of the samples are fully anonymized, the DNA itself represents a unique fingerprint. All
knowledge gained from a sample—e.g., ancestry, parenthood, pre-existing conditions, and
genetic disorders—can therefore be uniquely traced back to a data subject [107]. Another
inherent issue with CNN is its black-box approach. The reason for a certain decision cannot
be explained even by domain experts [108]. The layers of a CNN consist of hundreds
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of millions of parameters that are totally detached from the real-world problem that is
modeled by the CNN. Thus, it is not possible to trace which data have influenced the
model in what way and therefore were decisive for a certain classification [109].

The inherent opportunities and privacy threats of IoT-supported DNA sequence
classification can be broken down as follows:

Opportunities:

 IoT-supported DNA sequence classification enables comprehensive automatic detec-
tion of diseases, for instance.

 By using CNN, automatic adaptations to data shifts are facilitated.

 A CNN can learn novel correlations in the DNA structures.

Privacy Threats:

o Training a CNN requires a very large DNA pool (i.e., highly sensitive data). DNA is
a unique fingerprint, which means that the collected samples can always be linked to
a person.

o Through the DNA analysis as well as the comparison with other samples, additional
correlations can be identified (e.g., relatives or hereditary diseases), which reveal a
lot of private information.

o The CNN itself or the decisions made by it cannot be explained. Decision making is
therefore entirely based on full and blind trust in the CNN.

2.8. Synopsis

The seven application scenarios discussed above serve only to illustrate the general
data processing requirements and the privacy or confidentiality concerns involved in big
data analytics. The scenarios are representative examples of the most relevant kinds of data
and processing types required in today’s smart services. In Table 1, the main insights in
this regard are summarized. The following section discusses in more detail how to address
each of the identified privacy and confidentiality concerns by technical means.

Table 1. Synopsis of the Main Findings Regarding the Processing of Data in Smart Services.

Application
Scenario Required Data Processing Privacy or Confidentiality Concerns

Location-Based
Services

In addition to discrete location infor-
mation, movement trajectories must
be analyzed.

A lot of knowledge can be de-
rived from frequent whereabouts,
e.g., place of residence, workplace,
interests, and even social contacts.

Health Services

In addition to individual measured
values, in particular, temporal pro-
gressions of health data must be ana-
lyzed.

Health data are particularly sensitive
as they reveal not only information
about the health condition but also
about the lifestyle.

Voice-Controlled
Digital Assistants

The recordings must be analyzed to
interpret the verbal commands.

The continuous recording enables ex-
haustive spying on users.

Image Analysis
The contents of the images must be
analyzed in order to identify the
shown objects.

By identifying the portrayed individ-
uals, it is possible to reconstruct who
was where and when with whom;
even bystanders can be exposed.
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Table 1. Cont.

Application
Scenario Required Data Processing Privacy or Confidentiality Concerns

Food Analysis Patterns indicating, e.g., allergens
must be detected in food samples.

Other patterns reveal secret ingredi-
ents, thereby disclosing trade secrets.

Recommender
Systems

Large amounts of data from many in-
dividuals must be analyzed to make
appropriate recommendations.

Although the trained models do not
disclose information about individu-
als, the underlying data do.

DNA Sequence
Classification

Neural networks have to be trained
based on a comprehensive DNA
database to detect new correlations.

DNA data contain sensitive infor-
mation; hence, third parties must
not have full access to the complete
dataset.

3. State-of-the-Art Privacy Measures

In this section, we study which technical measures can be used to conceal information
in order to comply with privacy requirements. In this context, it is important to reduce the
information content in line with processing requirements, i.e., the knowledge required by a
data consumer must still be derivable from the data in an adequate quality. If this is not
feasible, the technical measures are not applicable in practice—this would be equivalent to
withholding the data.

In this context, it is first of all necessary to understand which data must be protected
at all in order to be able to apply the privacy measures in a target-oriented manner and to
minimize the impact on data quality. The GDPR stipulates that only personal data have to be
protected. These are data that can be unambiguously traced to a date subject (Article 4(1)).
Without such a linkage, no special privacy measures are required. However, most smart
services across all domains require an authentication of their users. For instance, it must
be possible to link measured values to the correct user, or it must be ensured that a
user is authorized to execute certain commands. As part of this authentication, users
are identified. This can be avoided by outsourcing the authentication to a trusted third
party. This results in a segregation of the identification data and the payload data. The
trusted third party only forwards pseudonymized subsets of the identifying attributes to
the smart service provider [110]. As a result, the smart service provider cannot directly
link the data to a natural person but only to a pseudonymous entity. Yet, if one has access
to both the identification data and the payload data, these data can be joined again via
the pseudonymized references. From the perspective of the GDPR, these are therefore
identifiable entities, i.e., the personal data can be indirectly linked to a natural person. Such
data must be protected in the same way as data which can be directly linked to a natural
person. Thus, privacy measures are required by law for almost all smart services. However,
even with (apparently) fully anonymized data, there is a risk to the privacy of users, which
is why additional privacy measures should be taken in any case [111].

Generally speaking, there are three approaches to share data in a privacy-friendly
way. First, the base data can be minimized by removing entire data items based on certain
properties prior to processing [112]. For instance, in the health care sector, a dataset of
patient records can be reduced by removing all medical records of a certain patient in order
to preserve the privacy of that patient. In formalized terms, this is the application of a
selection operator σ known from relational algebra. It is defined as:

σϕ(R) = {t : t ∈ R, ϕ(t)} (1)

Let R be a relation and ϕ be a propositional formula describing which tuples are to be
included in the result set, i.e., the tuples ti for which ϕ(ti) evaluates to TRUE.
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Second, certain attributes of the data items can be excluded from processing [113]. In
our example, e.g., the age can be concealed in each patient record. In formalized terms, this
is the application of a projection operator Π known from relational algebra. It is defined as:

Πa1,...,an(R) = {t[a1, . . . , an] : t ∈ R} (2)

Let R again be a relation and a1, . . . , ax be the attributes in it. Then, let t[a1, . . . , an] be
the restriction of the tuple t to the first n attributes.

Third, data can be condensed prior to processing [114]. In our example, e.g., not every
medical record is shared, but only aggregations of selected values. For instance, the records
can first be grouped by diseases, and then, the average age of the patients for each disease
can be shared. In formalized terms, this is the application of an aggregate operator G known
from relational algebra. It is written as follows:

G1,G2,...,GmG f1(A1), f2(A2),..., fn(An)(R) (3)

Let R again be a relation. Then, let G1, G2, . . . , Gm be the attributes in R to group by,
while each fi is an aggregate function applied to the attribute Ai of the relation schema,
e.g., SUM, COUNT, AVERAGE, MAXIMUM, or MINIMUM.

Figure 8 graphically illustrates the functional principle of these three operators.
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Figure 8. Graphical Illustration of the Effect of a Selection, Projection, and Aggregation on a Dataset.

The undeniable advantage of these three generic filtering techniques is that they can be
applied to any type of data to preserve privacy. However, they are highly restrictive. Since
entire data items or attributes are excluded from the processing, the amount of data—and
thus the effective data quality—is greatly impaired. Yet, today’s data refinement methods
for deriving knowledge require large amounts of data to be effective. Therefore, perturbing
the data typically leads to better results without compromising privacy. The goal is to
tamper with specific aspects of the data only while ensuring that the data as a whole remain
useful for data consumers [115]. However, there is no one-size-fits-all approach in this
regard. Rather, specialized methods are needed that are tailored to the respective type of
processing as well as the type of data involved. Only then can sensitive aspects of the data
be concealed in a fine-grained manner without limiting the overall data quality [116].

In the following, we therefore discuss four filtering techniques in Sections 3.1–3.4 that
are tailored to specific types of data: namely, location data, time series data, audio data,
and image data. Section 3.5 then deals with a privacy approach that reorders the data in
order to conceal certain patterns. In Section 3.6, statistical methods for privacy protection
are addressed. Finally, Section 3.7 outlines how distributed processing can contribute to
privacy. Due to the large number of research activities in the field of privacy, only a few
representatives can be covered in each category. These seven privacy strategies are mapped
to the application scenarios introduced in the corresponding subsections of Section 2. For
each privacy strategies, we give a summary of its key strengths and weaknesses at the
end of each subsection. To recap our review of the related work, Section 3.8 highlights the
key findings.
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3.1. Location Privacy

When it comes to protecting location data, two types of use cases must be distin-
guished: the protection of isolated snapshots and the protection of continuously captured
trajectories [117]. The most straightforward approach to conceal the location is to mask
it with a random location or to add an arbitrary offset to the actual location [118]. In this
approach, however, one of these fake locations might be implausible, e.g., a location in
the middle of the ocean. To avoid this and still keep the genuine location private, fixed
predefined locations can be used instead of random generated ones, for which it has been
ensured that they appear plausible in the context of the data subject [119]. Other approaches
combine these two strategies by generating dummy locations following specific rules. In
this way, realistic dummy locations can be obtained [120]. It is also possible to hide the real
location among many fake ones. For this, a large number of generated dummy locations are
shared in addition to the real one. This way, third parties cannot tell which of the location
data actually belong to the respective data subject. When using an LBS, it has only to be
ensured that all responses for the dummy locations are filtered out [121].

As shown in Section 2.1, such single fake locations would be cleansed during the data
refinement process if contiguous trajectories are analyzed. Therefore, other measures must
be taken when dealing with trajectories. Spatial cloaking takes advantage of the fact that
continuous trajectories are composed of discrete locations. A circular cloaking area is set at
each of these vertices. Instead of sharing the actual locations, the corresponding cloaking
areas are shared. This way, third parties only obtain a rough idea of the path a data subject
has traversed. The radius of the cloaking areas determines how accurate a localization
can be [122]. The path confusion pursues a similar strategy as the dummy locations. Here,
however, entire dummy trajectories are generated. In simple terms, phantom paths of non-
existent data subjects are made available for data processing among which the actual user
trajectories are hidden [123]. Sometimes, the trajectories do not contain any confidential
knowledge but rather their temporal correlations. If a data subject travels from A to C via B,
this might not be meaningful initially. However, if the temporal relationship is considered,
it can be seen whether B was merely passed or whether the data subject stayed there for a
longer period of time. Likewise, the temporal component of the trajectories can be used to
determine whether two data subjects frequently travel together. To conceal such private
information, temporal cloaking can be used. Here, the time stamps of the vertices are altered.
Thereby, the traveled path of a data subject can still be traced but not when the data subject
was there or for how long [124].

These three approaches to conceal trajectories are shown in Figure 9. The examples
used to illustrate the privacy techniques in the figure are aligned with Section 2.1. Fur-
thermore, combinations of these approaches are also feasible, e.g., spatio-temporal cloaking,
in which both the spatial and temporal dimensions of the vertices of a trajectory are per-
turbed [125]. In addition, there are many other approaches dedicated to a specific task in
the context of location-based services. For instance, there are approaches that address the
privacy proximity test problem, i.e., how to determine whether an instance is in spatial
proximity to another instance (e.g., two users or a user and a POI) without revealing the
exact location of either instance [126].

Spatial Cloaking Path Confusion Temporal Cloaking
±𝑡

Figure 9. Visualization of Spatial Cloaking, Path Confusion, and Temporal Cloaking.
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The key strengths and weaknesses of location privacy approaches are the following:

Strengths:

Z There are special techniques that allow to conceal single locations as well as whole
trajectories or temporal sequences of trajectories.

Z The data quality of the other aspects can be largely maintained.

Weaknesses:

Å The techniques are subject to many restrictions regarding the credibility of certain
location information or trajectories (e.g., a person will most likely not be in the middle
of the ocean), which limits their scope of action.

Å Due to the sensor technology available in smart devices, more data sources are
available to draw conclusions about location. This makes it easy to debunk a dummy
location or a dummy trajectory.

3.2. Privacy-Preserving Time-Series Data

As outlined in Section 2.2, the processing of time-series data is always about identifying
temporal patterns and forecasting trends. Privacy-preserving measures for these data
must therefore not prevent such processing techniques. Rather, the aim is to conceal
particular values or short sections of the time series that contain a particularly high level
of sensitive information. This can be either rule-based (e.g., all values above or below a
certain threshold) or time-based (e.g., all data recorded within a certain time window).
There are basically two strategies to achieve this. On the one hand, the amount of data can
be reduced in order to reveal less knowledge. On the other hand, the amount of data can
be amplified by additional fake data in order to hide the actual values [127].

Figure 10 shows these two opposing strategies. To achieve data reduction, single
values can be deleted from the series if only a few and widely distributed data points
are concerned. The resulting gaps can be filled by interpolation so that the progression is
still coherent [128]. To close gaps in time series where interpolation reaches its limits, e.g.,
due to the complexity of the progression or as the gaps are too large, machine learning
techniques can be used to logically fill the missing parts [129].

Information
Emphasizing Data Smoothing Original Data Adding Noise

Base Data
Reduce Data Amplify Data

Figure 10. Strategies for Protecting Private Information in Time-Series Data.

If details in general shall be removed from a time series, data-smoothing approaches
can be used. Originally, these approaches were primarily developed to compress data
by removing less relevant parts. This removes noise at the same time. In the context of
time-series data, the discrete cosine transform is used for this purpose in particular. An input
signal is transformed into a finite sum of weighted trigonometric functions with different
frequencies, representing a close approximation of the original data. As a result, the time
series is smoothened [130]. With regard to privacy, however, this has another advantage,
as all details of the single measuring points are wiped, and only the temporal progression
remains. By using a continuous wavelet transform, the time-series data can be compressed
even further [131]. Information emphasizing is thereby achieved, i.e., only a chronological
sequence of high points and low points is recognizable.

A contrary strategy to protect privacy is adding noise to the time series. For instance,
an artificial Gaussian noise can be generated, which is used to blanket the time-series data.
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The parameters of the Gaussian random variable can be used to control how much impact
the noise has on the time-series data. In this way, not only each discrete data point can be
distorted but also, in the case of particularly strong noise, the progression of the time series
itself [132]. While this very simple approach sounds promising at first, it has a significant
drawback, as noise filtering is a de facto standard in the data refinement of time-series data.
With the help of artificial neural networks, noise can be reliably eliminated on the fly [133].
One reason why such noise can be easily detected and even removed as an anomaly is
that its frequency is completely different from that of the time series. Using a sequence
of high-pass filters and low-pass filters, a time series can be decomposed into individual
frequency bands. The bands affected by noise can be removed, and the remaining bands
can be composed to the denoised time series [134]. However, there are also algorithms
such as SNIL (spread noise to intermediate wavelet levels), which distribute the noise over all
frequency bands of a time series and are therefore robust against such denoising [135].

The key strengths and weaknesses of privacy approaches for time-series data are the
following:

Strengths:

Z Privacy techniques can be used to conceal both individual data points as well as data
histories in time-series data.

Z The data quality of certain aspects (e.g., temporal trends or relevant data points) can
be maintained.

Weaknesses:

Å When applying the privacy techniques, there must be knowledge about the intended
use of the data. An incorrect privacy filter would completely destroy the utility of the
data.

Å For some data protection techniques, the applications that process the data must be
adapted accordingly. Information emphasizing, for instance, provides only maxi-
mums and minimums instead of a continuous data stream.

3.3. Voice Privacy

In the context of VDA, as presented in Section 2.3, a variety of privacy concerns arise.
First, an imposter could operate the VDA. Since the VDA client is linked to a specific user,
all actions of the imposter would be associated with that user. Second, the VDA is able to
spy on the user continuously without the user’s knowledge. The VDA client can secretly
capture any spoken word and sound even if the specified keyword has not been retrieved
and forward all recordings to its backend. Third, even if the user has said the keyword,
from a privacy point of view the recordings should not always be forwarded to the VDA
backend, since unaware bystanders could be heard in them or sensitive knowledge about
the user could be derived from his or her voice. Due to the large number of threats, there
is not a single privacy approach but rather a framework of protective measures [136]. A
pipeline of privacy filters to protect against these threats is shown in Figure 11.

VDA ClientUser Authenticate Local Pre-
Processing of
Commands

Activate
Client

Ambient
Noise
Filtering

Voice
Masking

Interposed Local Privacy Measures for VDA

Figure 11. A Pipeline to Ensure Voice Privacy when Dealing with VDA.

A first protective measure consists of an authentication mechanism that uniquely
identifies the proper user. In order not to disrupt the immersion when operating the VDA,
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such authentication can also be accomplished in a voice-based manner. Via characteristic
features in their voice, users can be identified quite effectively using a smart speaker [137].
In order to ensure that the voice is not a recording, the environment can be scanned for
suspicious magnetic fields, which would be generated by a loudspeaker. This can be
achieved by a common smartphone via its built-in magnetometer [138].

Even if the speaker is an authorized user, it must be ensured that the VDA client
only becomes active when it has received its keyword. To this end, an obfuscation signal
can be generated in the frequency range of human speech. This ensures that the VDA
client is permanently busy analyzing this signal whether it contains the keyword. This is
the equivalent to a denial-of-service attack. Only when the user has said the keyword, the
obfuscation signal is deactivated and the VDA client can accept new inputs [139].

Instead of forwarding all recordings to the VDA backend by default, it can first be
attempted to handle the commands locally. This can be completed in the edge (e.g., a
computer at the user’s site, which serves as a hub for all of his or her VDA clients) [140]
as well as on the VDA clients themselves [141]. When doing so, ambient noise can also be
filtered out of the recording, which may reveal privacy-sensitive information [142]. For
instance, if pets or technical devices can be heard in the background, then it can be assumed
that they belong to the user. Additionally, conversations of bystanders in the background
can also be obfuscated or be filtered out altogether [143]. To determine who is a bystander
and who is an active user in a recording, the authentication mechanisms mentioned above
can be used.

If the recording has to be sent to the backend for processing (e.g., due to insufficient
on-site processing power or if third-party cloud services are required), the privacy of the
active user can still be protected. From the voice, a lot of sensitive information can be
inferred, e.g., gender, age, intoxication, mood, physical or mental disorders, just to name
a few [144]. By voice masking, the user’s voice can be distorted in such a way that these
aspects are concealed, yet the speech can still be processed by a machine efficiently [145].

The key strengths and weaknesses of voice privacy approaches are the following:

Strengths:

Z There is a large range of voice privacy approaches, which can also be combined
according to privacy requirements.

Z The voice privacy approaches take different privacy aspects into account, e.g., the
protection of unknowing bystanders.

Weaknesses:

Å The techniques partly require additional hardware or adaptations to the installed
hardware.

Å In some cases, the techniques only relocate the analysis of the data. That is, the
sensitive knowledge is merely transferred to another—possibly more trustworthy—
provider.

3.4. Image Privacy

As described in Section 2.4, image analysis can be used to identify people in photos.
This raises a lot of privacy concerns. In order to make privacy-sensitive parts of an image
obliterated, it seems to be a straightforward approach to blur these parts extensively. How-
ever, this has a negative effect on the quality of the image (and thus on its processability),
especially if the blurring affects large parts of the image. Yet, if only small areas are blurred,
this obfuscation can be undone in the data refinement process [146]. Even a full redaction
of individual objects in the image does not reliably protect privacy. For instance, faces (i.e.,
exactly the kind of objects that are particularly privacy-sensitive) can still be recognized by
means of artificial intelligence [147]. Special obfuscation techniques are therefore needed to
conceal the privacy-sensitive areas of an image in a manner that is robust against reconsti-
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tution. To this end, Singular Value Decomposition is used to create a mask for the areas in
question. This mask not only blurs the area but also adds features of other pictures to that
area. This way, the result has similarities to several other images. Therefore, the blurred
object can no longer be uniquely identified [148].

However, there are two problems from a data subject point of view. First, the manual
selection of objects on an image that need to be protected is very cumbersome and time
consuming. Second, guidance is needed in selecting the appropriate obfuscation method.
For instance, if images shall be shared on social media, the obfuscation techniques must
have as little impact on the visual quality as possible. Figure 12 shows what a computer-
aided method for solving these two problems looks like.

Family Portrait with
Bystanders in the Background

Privacy-Friendly Version for
Sharing on Social Media

Detection of Privacy-
Sensitive Contents

Semantic Image
Segmentation

Appropriate
Blurring

Techniques

Figure 12. A Process for Making Privacy-Friendly Versions of Portraits with Sensitive Content.

Initially, the original image is analyzed using deep learning. In this process, the deep
features are extracted, i.e., the components that are significant for the recognition of the
depicted objects in the underlying model. Based on these deep features, the image is then
partitioned into a set of semantic object regions. These regions describe connected areas
on the image, e.g., a person, an animal, or an object, while background objects are ignored.
Using a classification, all of these regions are then assigned to a semantic meaning, e.g.,
bystander or child. For these classes, a privacy sensitivity is determined, which indicates
how much the respective object needs to be protected [149]. In our example, bystanders
receive the protection level orange, while children receive the protection level red. For
persons, the semantic region can also be restricted to the face since this usually has the
highest privacy sensitivity. To this end, face detection can be used to determine the region
to be masked. Depending on the level of protection required, different techniques can be
used that affect the visual quality of the image to a greater or lesser extent, e.g., blanking,
scrambling, or blurring [150]. This way, a privacy-friendly version of the image suitable for
social media can be generated.

The key strengths and weaknesses of image privacy approaches are the following:

Strengths:

Z Sensitive content can be concealed specifically and according to individual privacy
requirements.

Z The data quality of the main components of an image is fully preserved by the image
privacy approaches.

Weaknesses:

Å Privacy is a highly personal experience. In image privacy approaches, however, the
owner or provider of the image decides which privacy requirements apply to the
persons visible in an image.

Å Deep learning is used for the initial image analysis. This means, however, that the
original, unaltered image is thoroughly analyzed, and knowledge is generated. This
means that much more sensitive knowledge is generated than would otherwise be
the case.
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3.5. Pattern-Based Privacy

In Section 2.5, we presented that large amounts of data can be processed effectively
using CEP. Here, a sequence of isolated data items is interpreted as a stream of events. A
CEP engine scans the stream for predefined patterns. As the occurrence of such patterns
can be confidential information, there are also several approaches for CEP to protect privacy.
For instance, the data stream can be preprocessed locally at the user’s site, and the user
decides for each event whether to answer truthfully or incorrectly, i.e., whether to feed an
event untampered into the stream or to add noise to it. Furthermore, the fact that in the
data refinement process, the data are aggregated anyway when converted to knowledge
can be exploited. By means of dedicated aggregation techniques applied directly at the
user’s site, a zero-knowledge privacy guarantee (see the work by Gehrke et al. [151]) can be
achieved [152].

In doing so, it is disregarded, however, that an isolated event typically entails only
little privacy-sensitive information. The information patterns targeted by CEP engines
are only revealed by the occurrence of several events in a certain sequence. An arbitrary
manipulation of single events is therefore not efficient and deteriorates the quality of the
base data unnecessarily. Therefore, other approaches focus in particular on sequences of
events. For this purpose, patterns are defined that have to be kept secret. These patterns
are then purged from the data stream [153].

Although this approach is considerably less restrictive, it still overly compromises
data quality [154]. The problem with this approach is that it only takes into account what
has to be concealed but not what knowledge is needed by data consumers. Therefore, two
types of patterns are needed to preserve data quality: private patterns, which have to be
concealed, and public patterns, which are required by data consumers. Data producers and
data consumers specify which knowledge must not be disclosed or respectively which
knowledge is required. This is then mapped to patterns at the data level [155]. When
concealing the private patterns, it has to be ensured that no public patterns are blurred in
the process or additional erroneous public patterns are created by manipulating the data
stream. To this end, a quality metric is used that weights the privacy (i.e., the concealment
of private patterns) against the false negatives (i.e., public patterns that have been concealed)
and false positives (i.e., public patterns that have been artificially added). The obfuscation of
the private pattern must be conducted in a manner that optimizes this quality metric [156].

To maximize the quality metric, a privacy mechanism has to make use of different
obfuscating techniques. Three such techniques are shown in Figure 13. In this example,
the private pattern B→ C has to be concealed, while the public pattern A→ B should be
recognizable. Let A→ B→ C be the data stream. A simple technique is to drop an event
from the stream or to inject a new one. In the example, the event C is removed, and the
event D is artificially created. This conceals the private pattern, while the public pattern
remains recognizable. Removing event B would conceal the private pattern as well, but the
public pattern would also not be recognizable anymore. Another technique is to tamper
with the events. For instance, the attribute values of data item C can be manipulated so
that it is recognized as a different event C′. This also conceals the private pattern without
affecting the public pattern. Lastly, the events in the stream can be reordered. By swapping
B and C, the private pattern is also concealed—albeit, in this case, the public pattern is
concealed as well. Using a combination of these techniques, even more complex patterns
that contain conjunctions and negations in addition to sequences can be obfuscated [157].

Private Pattern:

B C
t

3. Reordering Events:

A C B
t

Public Pattern:

A B
t

Original Sequence of Events:

A B C
t

1. Adding / Removing an Event:

A B D
t

2. Altering an Event:

A B C'
t

Figure 13. Application of Obfuscation Techniques to Conceal Private Patterns in a Data Stream.
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The key strengths and weaknesses of pattern-based privacy approaches are the
following:

Strengths:

Z Pattern-based privacy does not degrade the data quality of the measurement data.

Z Due to the public and private patterns, sensitive information can be filtered out in a
target-oriented manner.

Weaknesses:

Å The computation of an optimal configuration, i.e., the maximization of the quality
metric, is very complex.

Å A pattern-based privacy approach requires full control over incoming and outgoing
data streams of a data processing system in order to effectively apply the required
obfuscation techniques.

3.6. Differential Privacy

The previously discussed privacy techniques focused on data from individual users,
which are distorted before processing. When transforming the data to knowledge, the base
data of multiple users are often merged. This can be seen, e.g., in the recommender systems
presented in Section 2.6. Here, the models that constitute the basis for the recommendations
are trained on the preferences of all users. To this end, Dwork [158] introduces differential
privacy as a measure for assessing the privacy threat to an individual when he or she
shares his or her data. The goal is to maximize the accuracy of statistical information about
a data collection (e.g., the models of the recommender systems) while minimizing the
potential privacy risks for individuals. This can be illustrated by a simple example: In
collaborative filtering, let there be a cluster consisting of two persons. Even if the interests
of the individual users cannot be derived directly from the trained models, person A can
be sure that if a new item is recommended to him or her, person B is interested in this very
item. Thus, the privacy of person B has still been violated.

The basic idea of differential privacy is straightforward, as shown in Figure 14.
Database 1 contains data about the four users. If the red user wants to know whether her
privacy is disclosed when a statistic is computed on these bases data using the function
f (respectively, a model is trained on these data), a neighboring database Database 2 can be
created, which contains all datasets of Database 1 except the data about the user in question.
If the function f is applied to Database 2 and the results are similar, the privacy of the red
user has not been exposed. So, formally speaking, the following must apply:

P[ f (D1) ∈ R] ≤ exp(ε)P[ f (D2) ∈ R] (4)

A function f is ε-differentially private if its resultsR for all of databaseD1’s neighboring
databasesD2 only differ by an insignificant ε. Since there are different privacy requirements
depending on the data and processing context, there are approaches that adjust the degree
of applied obfuscation according to the level of exposure. That is, there is not a single ε
that describes the privacy requirements but rather many such measures that are applied
depending on the current situation [159].
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Figure 14. Simplified Representation of the Central Idea of Differential Privacy.

While this sounds promising in theory, it turns out that differential privacy is rarely
applied in practice. One reason for this is that there is a lack of awareness of differential
privacy principles in the development of algorithms, and in particular, the handling of
complex types of data proves to be difficult [160]. In research, however, there is a variety
of noise algorithms that establish the ε-differentially private properties without impairing
the quality of the outcomes excessively [161]. Especially for application scenarios such as
recommender systems, differential privacy is therefore suitable [162].

The key strengths and weaknesses of differential privacy approaches are the following:

Strengths:

Z Differential privacy approaches allow statistical analysis while preserving the privacy
of each individual involved.

Z In order to guarantee the differential privacy property, the method is not restricted to
any particular technique, which means that an appropriate obfuscation technique can
be chosen depending on the base data.

Weaknesses:

Å Differential privacy approaches can only be applied when large amounts of data from
many different individuals are analyzed.

Å Ensuring the differential privacy property is difficult depending on the base data
requires the use of destructive noise algorithms. As a result, potentially relevant
aspects in the data are lost.

3.7. Federated Learning

Finally, we look at federated learning, which is an approach that was not originally
intended to provide privacy. Along with the increased application of machine learning
in all kinds of domains, the need for data to train the corresponding models has also
increased. While the IoT provides an almost unlimited number of smart devices as data
sources, organizational problems arise in terms of the communication overhead required to
continuously receive the captured data as well as the central computing resources required
to process the data. As IoT-enabled devices become increasingly powerful, the federated
learning approach shifts many of the data refinement tasks from the central data processor
to the distributed data producers. This includes the entire data preparation phase and
large parts of the data processing phase. That is, data producers generate information
patterns which are gathered by the data processor. The data processor uses these patterns
to create or update global knowledge models that contain the information patterns of all
data producers. In other words, federated learning takes aggregation to the next level as
data producers exchange only knowledge instead of data with the data processor. From the
global models of the data processor, knowledge can also be fed back to the local workers
in order to improve their local models [163]. This procedural concept is illustrated in
Figure 15.
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Figure 15. A Distributed Training of a Global Knowledge Model via Federated Learning.

However, federated learning can also contribute to privacy-preserving machine learn-
ing. Data privacy is generally regarded as the right of an individual to freely decide how
much knowledge he or she wants to disclose about him or herself. This is exactly what
federated learning does, as data producers are free to decide which of their data they
want to use in the data refinement process and which information patterns they want to
include in the knowledge model [164]. By applying privacy filters to the data, differential
privacy can be preserved not only for the isolated local models but also for the shared
global model. Thereby, a stronger quantifiable privacy protection can be achieved [165].
This protection combined with its distributed computing renders federated learning well-
suited for large-scale analyses, such as the DNA sequence classifications presented in
Section 2.7 [166].

The key strengths and weaknesses of federated learning approaches from a privacy
perspective are the following:

Strengths:

Z Federated learning is primarily used to efficiently run complex machine learning
processes. The preservation of privacy is a beneficial side effect that comes at no
additional cost.

Z Federated learning enables data subjects to incorporate their data into global machine
learning model but to carry out the necessary processing of their private data locally,
i.e., under their full control.

Weaknesses:

Å Due to the complex and non-explanatory nature of the trained models, it is not
possible for data subjects to understand what knowledge about them is incorporated
into the global model by means of their locally computed models.

Å The use of federated learning is limited to certain algorithms and algorithm classes.

3.8. Key Findings

Our key findings regarding the means of privacy protection as well as the effects of
the aforementioned privacy techniques are summarized in Table 2.

It is evident that there are dedicated privacy filters for different types of data, namely
for location data, time-series data, voice data, and image data. Furthermore, there are
techniques to conceal private patterns in a stream of data items. Thereby, it is possible to
filter sensitive information in a fine-grained manner. Using these and similar obfuscation
techniques, the ε-differentially private properties can also be established, which ensures
that statistical computations are performed on a plethora of personal datasets—including
the extraction of information patterns that are the foundation of knowledge—without
exposing the privacy of any individual.
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Table 2. Summary of the Key Lessons Learned from the Review of the Privacy Techniques.

Privacy Approach Means of Privacy Protection Effects of the Measures

General Privacy
Measures

The three relational algebra
operators—selection, projection,
and aggregation—can be applied to
base data.

Entire data items or certain at-
tributes can be concealed, and the
base data can be condensed.

Location Privacy
Fake locations can be used, and spa-
tial cloaking, path confusion, and
temporal cloaking can be applied.

Individual locations or entire trajec-
tories as well as their temporal cor-
relations can be concealed.

Privacy-Preserving
Time-Series Data

The data can either be compressed
to reduce details or they can be am-
plified by fake data.

Only temporal progressions can be
observed but no details on single
data points.

Voice Privacy
The VDA can be jammed, data are
preprocessed locally, and the record-
ings are filtered.

A VDA cannot spy on its users,
and the information shared with the
VDA backend is minimized.

Image Privacy
Blanking, scrambling, or blurring
can be used to mask certain areas
of an image.

Objects on an image can be ob-
fuscated in a fine-grained manner
based on their privacy sensitivity.

Pattern-Based
Privacy

Data items can be added, removed,
altered, or reordered.

Private patterns in terms of data se-
quences can be concealed.

Differential Privacy In statistical calculations, noise en-
sures ε-differential privacy.

No knowledge about single individ-
uals is disclosed to third parties.

Federated Learning Data processing is primarily per-
formed locally by data producers.

Data processors only gain insight
into highly aggregated knowledge.

However, these dedicated privacy techniques can only be applied systematically if a
certain underlying structure is present in the data. For generic raw data, only general pri-
vacy measures can be applied. These include, e.g., the three operators of relational algebra
mentioned initially: namely, selection, projection, and aggregation. The dedicated privacy
filters are therefore significantly better suited for backend systems after comprehensive
data refinement measures have been carried out, and processable information has already
been retrieved. Meanwhile, on lightweight smart devices, which are more likely to handle
raw data, the general privacy measures should be preferred as they are easier to apply. Yet,
these general measures have to be used purposefully, as they are not capable of filtering
private aspects specifically and thus tend to have a more significant impact on data quality.

Federated learning represents a completely different approach. Here, data preprocess-
ing is carried out in a distributed manner under the supervision of the data subjects. Only
highly aggregated information in the form of machine learning models is forwarded to the
backend system. In this way, each data subject can decide independently which privacy
measures are applied locally to the data. However, data subjects often lack the necessary
knowledge to do this in a systematic manner that is tailored to the intended purpose of
the models. Moreover, federated learning is only suited for very certain machine learning
algorithms and not for general purpose data refinement.

In this context, it is arguable whether it is even necessary to apply privacy measures
locally on the smart devices of the users. A local application of privacy filters is primarily
reasonable if the data processor to which these smart devices forward the collected data is
not trustworthy. If this is not the case, it is more advisable to apply privacy measures on
the side of the data processor. Such a global approach can be more targeted and results in
stronger privacy protection for the same scope of data filtering—i.e., the trade-off between
privacy and utility is significantly better [167]. Data processors in the service domain are
commonly assumed to be semi-honest-but-curious. That is, they largely carry out their tasks
in a trustworthy manner, and they will not deliberately expose the privacy of a user [168].
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It is therefore sufficient to provide data processors with means to express their privacy
requirements and to verify whether they are respected. So, in this context, federated
learning is rather an exception that can be used if highly sensitive data are involved.

Now, the question arises as to what extent these state-of-the-art privacy measures
are suitable for the deployment in the application scenarios discussed in Section 2. In the
following section, we therefore map the strengths and weaknesses of these approaches
against the opportunities offered by and privacy threats posed by the application scenarios
in order to answer this question.

4. Assessment of the State of Privacy Mechanisms for Smart Services

After discussing the opportunities and privacy threats of smart services in the most
relevant application domains in Section 2 and identifying the strengths and weaknesses
of state-of-the-art privacy technologies for these types of smart services in Section 3, we
now assess whether the available privacy measures are adequate. To this end, we apply a
systematic analysis technique adapted from strategic planning. The so-called SWOT analysis
is originally used to determine the market position and strategy development of companies.
SWOT stands for strengths, weaknesses, opportunities, and threats. In this process, internal and
external factors are first identified and then juxtaposed with helpful and harmful aspects
of a product or a company strategy. From the four resulting intersections (internal factors
vs. helpful aspects, internal factors vs. harmful aspects, external factors vs. helpful aspects,
and external factors vs. harmful aspects), strengths, weaknesses, opportunities, and threats
can be derived. Therefore, SWOT analysis is an important foundation for strategic audits,
as it enables a systematic market and environmental assessment [169]. In addition to the
original focus on companies, the SWOT analysis is meanwhile used in adapted form in
many other domains, for instance, in the education sector when new teaching methods are
to be introduced or in the health sector to determine risk factors for patients [170].

For our assessment of the state of privacy mechanisms for smart services, we also
use an approach based on the SWOT analysis. We develop an individual SWOT matrix
for each of the seven application scenarios. Unlike in the classic SWOT analysis, however,
we do not compare internal and external factors with helpful and harmful aspects but
rather the strengths and weaknesses of the privacy mechanisms with the opportunities and
privacy threats present in the respective application scenarios. In this way, we obtain a
good understanding of the extent to which state-of-the-art privacy measures are suitable
for the deployment in the application scenarios and which open questions still need to be
resolved in this context. The result of our analysis is presented in Figure 16.
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Figure 16. Results of our SWOT Analysis Broken Down by the Respective Application Scenario.

Across all application scenarios, it can be observed that there is an appropriate privacy
technique for each privacy threat. It can also be noted that the privacy techniques are
capable of operating in a target-oriented manner. That is, when protecting sensitive data, it
is also ensured that the general utility of the base data is not unnecessarily impaired. This
is a fundamental requirement, as otherwise, the use of smart services would be severely
disrupted or outright prevented, rendering the privacy techniques worthless.

So, in principle, this is a highly promising result, as there are tailored techniques for
all types of data and forms of processing. However, our analysis also reveals inherent
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problems with state-of-the-art privacy technologies for smart services that need to be ad-
dressed in order to enable effective data protection by design. Problems arise in particular
regarding the selection and configuration of the privacy techniques, since this requires
comprehensive technical and domain knowledge, which a normal user does not possess.
As a result, the privacy measures are often too restrictive in terms of impairing the quality
of the smart service and at the same time not effective enough in terms of protecting all
sensitive data. Moreover, each privacy technology is always designed for a specific use
case. Comprehensive privacy protection therefore requires the integration of many het-
erogeneous approaches, which leads to further adjustment problems. Since many privacy
approaches rely on a trusted third party to protect sensitive data, such an agglomeration of
many different approaches leads to the situation that many third parties gain access to the
private data (one party per approach). Instead of disclosing less private information, the
data are therefore disclosed to even more parties. Finally, uncontrolled tampering with the
data also leads to further security vulnerabilities, which can result in financial or material
damage, which is why the choice of the appropriate privacy method must also not be left
solely to the inexperienced user.

Based on these insights, we derive seven such open research questions and briefly
outline how we believe these questions can be addressed in the following section.

5. Future Prospects

As our assessment of state-of-the-art privacy measures reveals, there is no one-size-fits-
all solution when dealing with smart devices. Rather, a privacy approach has to be found
which is fully geared toward the intended purpose. Only then is it possible to ensure an
adequate data protection. While efficient island solutions for concealing specific sensitive
information exist, there are open questions regarding the applicability of such privacy
filters. In the following, we therefore discuss seven open research questions that emerge in
the context of data protection in the information age.

(a) Privacy Requirements Elicitation. First, it is crucial to identify the privacy risks posed
by a smart service, i.e., what sensitive knowledge is exposed. Only when these risks are
identified explicitly is it possible for data subjects to give informed consent with regard to
the processing of their data. Depending on the threat potential of a service, data access has
to be adjusted accordingly.

The System–Theoretic Process Analysis for Security (STPA-Sec) is a top–down approach
that can be used to systematically identify security problems in complex and dynamic
systems. For this purpose, a holistic view of the system is obtained. For each component
and the communication flow between components, vulnerabilities are annotated in order
to identify all potentially insecure control actions. Based on the results of this analysis, the
system can be redesigned by means of a security-driven design process [171]. This process
can also be adapted to privacy aspects (STPA-Priv) [172].

In practice, however, a conceptual problem in STPA-Priv is encountered. Whereas
both data producers and data consumers are equally interested in the security of a system,
privacy is usually a one-sided interest on the part of data producers—the data consumers
(e.g., smart services), meanwhile, are primarily interested in obtaining as much data as
possible. The results of such a privacy analysis are therefore less useful for the redesign
of a smart service. However, they can be used to determine privacy requirements in the
context of a smart service [173].

In this regard, it is important to study how a holistic view of a smart service can be
compiled. In the context of the IoT, there are many heterogeneous data sources that can be
dynamically added or removed at any time. Furthermore, smart services often use a data
backend as a data source. For a privacy analysis of a smart service, it is also necessary to
assess its data backends and all their data sources. However, such a comprehensive view
of all data sources of a smart service typically cannot be provided.
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(b) Holistic Privacy Platform. Even if a user is fully aware of all privacy risks associated
with a smart service, s/he also needs to be enabled to take effective countermeasures. The
privacy measures discussed in Section 3 certainly contribute to protecting privacy, but
they are no out-of-the-box solutions. Rather, they have to be applied at the right place in
the data flow. To become a usable privacy measure, the filters must be integrated into a
privacy platform. Via such a platform, users can apply the necessary privacy measures
appropriately. The advantage of such a central privacy platform is that it can be constantly
extended with new privacy filters. Meanwhile, there is already a wide range of privacy
filters for some application areas, e.g., the area of behavioral data recorded by smart devices
is still largely unexplored [174]. A privacy platform could be easily upgraded once efficient
privacy filters for behavioral data have been developed. In this way, the protection of
private data is constantly in line with the latest technological advances. There are research
approaches for such platforms that, e.g., provide a selection of privacy filters that can
subsequently be applied to a data stock [175]. Such a solution primarily addresses backend
systems. However, there are also approaches that address the source systems that feed
such a data backend, e.g., smart devices [176].

When dealing with smart services, it is important to determine how such a privacy
platform can reliably monitor them and control their data access. While a privacy platform
for a backend system can restrict access to that data backend and, e.g., apply privacy filters
to certain data before they are shared, it cannot be ensured that a smart service does not
use multiple data backends. The data obtained from each backend individually might not
be very exposing. However, by combining all the gathered data, it might still be possible to
derive sensitive knowledge patterns. Reliable privacy protection requires a holistic end-to-
end approach from the data source to the data sink, i.e., the smart service. In particular,
this means that a smart service must be completely isolated from any data source and can
only obtain all data via the privacy platform.

(c) Configuration of Privacy Filters. A user is generally able to specify certain knowledge
patterns that are particularly private or confidential at a high abstraction level. However,
users are not familiar with the data sources from which these patterns can be derived
let alone privacy filters via which they can be concealed efficiently. The configuration
and parameterization of such a holistic privacy platform is therefore far too complex for
users. Concepts are therefore required to enable them to configure the platform using
rather high-level descriptions of their privacy requirements. This requires models that
accurately represent which information can be obtained from which data sources and what
knowledge can be derived from it. There are metamodels for this purpose to describe such
correlation [177]. Furthermore, data subjects are often not at all aware of their privacy
requirements. They intuitively have a rough idea but are often unable to fully express it.
Yet, using approaches based on collaborative filtering, sensitive knowledge patterns can be
recommended to them that may also be relevant to them [178].

Such an approach can be applied successfully for isolated applications, but for complex
smart services and their data infrastructure, two major problems arise: On the one hand,
in addition to a holistic view on the smart service, domain experts are needed who have
the necessary experience to determine which knowledge can be derived from which data
sources. Such experts are also needed, e.g., to analyze the smart services using STPA-Priv.
Therefore, it is advisable to study whether the model of the data–information–knowledge
relationships can be derived from the STPA-Priv results or to what extent this process
analysis approach needs to be adapted for this purpose. On the other hand, a recommender
system for privacy requirements depends on the assumption that other users have previ-
ously been able to formulate their requirements. This results in a chicken-and-egg problem.
Since the GDPR mandates a data protection by default (Article 25), it should also be studied
whether the privacy requirements identified by STPA-Priv can be translated into some sort
of basic configuration for the privacy filters representing an advisable baseline for any user.
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(d) Deployment of Privacy Filters. Once a configuration has been found, the privacy filters
must be deployed appropriately. There are basically two options: the privacy filters are
applied either directly to the data sources [179] or to the data backend [180]. However, this
decision has a significant impact on privacy and data quality. If a privacy filter is applied
very close to the source, i.e., on the user’s side, the unfiltered raw data never leave the user’s
control. That is, the data are impurified before they are forwarded to the data backend.
Yet, at this point, not all information about the further usage of the data is available; e.g., a
data backend can also feed several smart services, for which different privacy requirements
may apply. Therefore, privacy measures cannot be applied in a target-oriented manner,
which means that they turn out to be either too restrictive or insufficient. Whereas, when
applying privacy filters in the data backend, the data are no longer within the user’s sphere
of influence and the user must completely trust that his or her privacy requirements are
respected by the backend, which represents a major psychological hurdle [181].

In simple terms, the privacy platform must therefore find a deployment plan for which
a utility metric is maximized. At an abstract level, this metric looks like this:

Utility = Data Quality + Privacy (5)

The utility of a deployment plan is defined by how well it preserves privacy and how
little it impairs data quality. A high-level definition, analogous to the configuration based
on knowledge patterns, could look like this:

Utility = ∑
i

Publici ∗ wPublici
−∑

j
Falsej ∗ wFalsej

−∑
k

Privatek ∗ wPrivatek (6)

Here, the data quality is described by how many public knowledge patterns—i.e.,
non-confidential knowledge patterns—can be detected despite the use of privacy filters
(∑i Publici), minus all false positives, i.e., public knowledge patterns that were falsely rec-
ognized due to the use of privacy filters (∑j Falsej). The privacy of a deployment plan is
determined by how few private knowledge patterns it exposes (∑k Privatek). Additionally,
a penalty weight w can be assigned to each of these components to prioritize them differ-
ently depending on the specific use case. The research question here is how to efficiently
determine the one with the best utility from all possible deployment plans.

(e) Secure Data Management. Since the application of privacy filters can be time consuming,
they should not be applied as data flow operators over and over for every data access.
Instead, frequently used data should be stored in the data backend at different privacy
levels, i.e., after different privacy filters have been applied. Zone-based data lakes are
suitable for managing big data in different processing stages. In addition to filtered raw
data, higher-value information, for instance in the form of machine learning models trained
by means of federated learning, can also be stored in such data lakes [182]. For this, the data
backend acts as a data marketplace. Similar to a marketplace for material goods, customers,
e.g., smart services, can pick the data they want [183]. This requires extensive metadata
that characterizes the available data so that smart services can also find relevant data [184].
In contrast to conventional marketplaces, however, privacy constraints must be observed
in data marketplaces; i.e., not every customer may access every data item [185]. Moreover,
since the existence of a data item exposes certain information, even the visibility of the
items has to be regulated in this case. In this regard, it must be ensured that the operator
of the data marketplace cannot abuse this. Since s/he has sovereignty over the data, s/he
could maliciously withhold certain data items to the disadvantage of a data subject or a
smart service. By using blockchain technologies this can be prevented, a trustworthy data
sharing is enabled [186]. Yet, the use of a blockchain raises further privacy issues, e.g., due
to its immutability or the fact that in a data marketplace, there are legitimate reasons why a
certain party is not allowed to see a specific data item [187].

Future research therefore has to address how existing metadata models need to be
extended to include aspects such as applied privacy measures in addition to data quality
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or data origin. Furthermore, access policies must be developed to ensure that certain data
items are not visible to selected smart services. However, it is also important to ensure that
these mechanisms cannot be misused to the disadvantage of data subjects or smart services.
Unlike blockchain technologies, all concepts developed in this context must comply with
current data protection regulations by design.

(f) Proof of Data Possession. Such a data marketplace must inevitably be able to provide
proofs of data possession. It must be verifiable for data subjects whether such a data
provider stores the data of the data subject in the agreed form, e.g., at different privacy
levels. Although such a verification must be publicly available, it must not jeopardize
data protection. That is, a third party must not be able to derive any information by
verifying whether certain data about a data subject are retained [188]. To this end, Proof
of Retrievability and Reliability (PoRR) approaches are applied in cloud-based data stores.
These approaches verify that a cloud provider faithfully manages the entrusted data in the
agreed number of replicas. For this purpose, a so-called Verifiable Delay Function (VDF) is
applied to the data and all replicas. A VFD is slow to compute but easy to verify [189]. The
cloud provider is regularly challenged with respect to this function. If the response to this
challenge takes too long, it is confirmed that the provider does not have the data at rest but
needs to compute the VFD on the fly. In cloud-based data stores, such a procedure can also
be applied efficiently [190].

While at first sight there seem to be many similarities between data marketplaces
and such cloud-based data stores, there are also decisive differences. In particular, the
data marketplace does not manage identical replicas of the source data but rather several
variants of them, which are available in different processing stages and to which different
privacy filters have been applied. Furthermore, it is also possible that some raw data reside
on the smart devices, and the data marketplace only acts as an intermediary between
them and the smart services. Therefore, the data infrastructure here is distributed and
heterogeneous. Furthermore, some components are computationally weak, namely the
smart devices, which is why a mechanism to provide proof of data possession must be
lightweight. It is therefore important to investigate to what extent a PoRR approach can be
applied to such a data marketplace and what adaptations are necessary to this end.

(g) Prevention of Misinformation. Finally, the spread of misinformation is a major problem
in the information age. In the context of a data hub such as a data marketplace, two types
of misinformation must be distinguished: On the one hand, data subjects can deliberately
manipulate their data using privacy filters in order to gain an advantage [191]. For instance,
if they provide health data to a smart service of their health insurance company to obtain
a better rate, it must be ensured that unhealthy habits, such as being a smoker, cannot be
specifically filtered out. This can be restricted by means of attribute-based authentication of
the data sources. Thereby, certain conditions can be specified—e.g., a certain privacy filter
is not applied—which the sources must comply with in order to authenticate successfully.
However, such information can also reveal a lot about the data. For instance, when certain
privacy filters are applied, it can be inferred what kind of knowledge the data subject wants
to conceal. Hence, the authentication process also needs to be privacy-friendly. For this
purpose, a trusted intermediary can be used, which pre-validates the complete attributes of
a source and forwards only those attributes that do not reveal sensitive information to the
data recipient for authentication [192].

However, this approach is based on digital signatures. Due to the advent of quantum
computers, asymmetric cryptography, which provides the foundation for digital signatures,
can no longer be considered secure. Future research therefore needs to explore which
post-quantum cryptography approaches can be used instead and to what extent they are
suitable for the usage on smart devices, which have to generate the signatures. Furthermore,
the question arises how an efficient and trustworthy key management can be implemented
in such a scenario. This concerns both the key generation and the key provisioning.
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On the other hand, misinformation about a data subject can also be disseminated by
third parties. This is well known in the context of OSNs such as Facebook and commonly
referred to as fake news. Here, as well, information is disseminated by means of word-of-
mouth and not directly from a data subject to the intended recipient. For OSNs, there are
approaches that can be used to restrain the dissemination of misinformation. Contradictory
information, i.e., misinformation and credible information, is identified, and its propagation
in the network is monitored [193]. Using a greedy approach, users in the network can be
identified who are considered trustworthy and can therefore be assumed to contribute to
minimize the spread of misinformation by sharing only credible information in the network.
In the case of contradictory information, this allows one to determine which version
represents the misinformation—namely, the one which is not shared by a trustworthy
user—and then to remove it from circulation [194].

However, this procedure was developed specifically for social networks. It must
therefore be studied whether it can also be applied to the data infrastructure of smart
services. In particular, it must be assessed to what extent this approach has to be adapted
and extended in order to be able to deal with heterogeneous raw data from a wide variety
of domains instead of purely textual information. Furthermore, the IoT is a much more
dynamic structure than a social network. Whereas in the latter case, users usually remain
part of the network for a long time, in the IoT, new data sources are constantly being added
or removed. Therefore, it is also important to research how the approach can be adapted to
such an ever-changing environment.

We consider these seven challenges to be the most critical ones related to the protection
of sensitive data in the information age that need to be addressed in future work.

6. Conclusions

In the modern information age, we are accustomed to smart services facilitating our
everyday lives. We use these digital assistants in public, industrial, and private domains.
Such data-driven services are so handy, as they adapt their behavior based on the current
context and thus always provide an optimized user experience. However, this convenience
does not come without a price. Smart services rely on permanent access to a vast amount
of data. They analyze these data comprehensively to derive knowledge about the current
situation of their users. Yet, this often involves highly personal or confidential data,
allowing data processors to obtain sensitive information. For this reason, there are a variety
of privacy measures that conceal certain sensitive knowledge patterns in the data without
impairing the quality of the data. That is, they try to protect the privacy of data subjects
and at the same time maintain the utility of their data for the respective smart services.

For this reason, this paper addresses the question of whether state-of-the-art privacy
mechanisms are prepared to meet this challenge. To this end, we carry out a SWOT-like
assessment, in which we initially analyze the seven most relevant application scenarios
for smart services. It is evident that users can benefit from these smart services in all
situations of life. Yet, smart services also pose a high privacy threat due to the personal data
they process. Although this statement generally applies to all smart services, it becomes
apparent that the different application scenarios involve heterogeneous types of data.
There is therefore no universal privacy threat but rather smart services-specific threats.
Therefore, we also study the strengths and weaknesses of privacy approaches tailored to
smart services. By comparing these two dimensions (opportunities and privacy threats of
smart services on the one side and strengths and weaknesses of privacy approaches on the
other side), we discover that there is an effective answer to every relevant privacy threat.
However, there are fundamental problems with modern privacy technologies for smart
services. Users are overwhelmed by the selection and configuration of privacy techniques.
These techniques are always tailored to a specific use case, which is why a great deal of
domain knowledge is required to apply them effectively. Otherwise, their protective effect
is insufficient, and the negative impact on data quality is too high. The latter can lead to
further security vulnerabilities if the data tampering is not target-oriented. Therefore, a
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trusted third party is often required for the application of the privacy techniques. From
these findings, we derive pertinent open research questions and give our opinion on how
they can be overcome. These research questions deal in particular with concepts for privacy
requirements elicitation, a holistic privacy platform, the deployment of privacy filters, the
configuration of privacy filters, a secure data management, proofs of data possession, and
prevention of misinformation. Only when these issues are fully addressed is a privacy-by-
design approach for smart devices feasible.
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Abbreviations
The following abbreviations are used in this paper:

CEP complex event processing

CNN convolutional neural network

DNA deoxyribonucleic acid

e-commerce electronic commerce

e-resource electronic resource

e-service electronic service

eHealth electronic health

GDPR general data protection regulation

GPS global positioning system

GSM global system for mobile communications

IoT internet of things

LBS location-based service

mHealth mobile health

OSN online social network

POI point of interest

PoRR proof of retrievability and reliability

SNIL spread noise to intermediate wavelet levels

STPA-Sec system–theoretic process analysis for security

STPA-Priv system–theoretic process analysis for privacy

SWOT strengths, weaknesses, opportunities, and threats

UniProt universal protein resource

VDA voice-controlled digital assistant

VDF verifiable delay function
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