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Protecting the global ocean for biodiversity, 
food and climate

Enric Sala1 ✉, Juan Mayorga1,2, Darcy Bradley2, Reniel B. Cabral2, Trisha B. Atwood3, 

Arnaud Auber4, William Cheung5, Christopher Costello2, Francesco Ferretti6, 

Alan M. Friedlander1,7, Steven D. Gaines2, Cristina Garilao18, Whitney Goodell1,7, 

Benjamin S. Halpern9, Audra Hinson3, Kristin Kaschner8, Kathleen Kesner-Reyes10, 

Fabien Leprieur11, Jennifer McGowan12, Lance E. Morgan13, David Mouillot11, 

Juliano Palacios-Abrantes5, Hugh P. Possingham14, Kristin D. Rechberger15, Boris Worm16 & 

Jane Lubchenco17

The ocean contains unique biodiversity, provides valuable food resources and is a 

major sink for anthropogenic carbon. Marine protected areas (MPAs) are an e�ective 

tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 

2.7% of the ocean is highly protected3. This low level of ocean protection is due largely 

to con�icts with �sheries and other extractive uses. To address this issue, here we 

developed a conservation planning framework to prioritize highly protected MPAs in 

places that would result in multiple bene�ts today and in the future. We �nd that a 

substantial increase in ocean protection could have triple bene�ts, by protecting 

biodiversity, boosting the yield of �sheries and securing marine carbon stocks that 

are at risk from human activities. Our results show that most coastal nations contain 

priority areas that can contribute substantially to achieving these three objectives of 

biodiversity protection, food provision and carbon storage. A globally coordinated 

e�ort could be nearly twice as e�cient as uncoordinated, national-level conservation 

planning. Our �exible prioritization framework could help to inform both national 

marine spatial plans4 and global targets for marine conservation, food security and 

climate action.

The global ocean is a trove of biodiversity, containing unique life forms 

and genetic resources that provide ecosystem services of enormous 

value to humans2,5. However, increasing anthropogenic effects are 

compromising the ability of the ocean to provide these services6,7 and 

have motivated a global discussion about expanding the world’s system 

of MPAs.

MPAs—especially highly protected areas in which extractive and 

destructive activities are banned8,9—can be effective management tools 

to safeguard and restore ocean biodiversity and associated services1,2,10, 

complement conventional fisheries management and contribute to the 

mitigation of climate change by protecting marine carbon stocks11. Yet 

as of March 2021, only around 7% of ocean area has been designated 

or proposed as MPAs, and only 2.7% is actually implemented as fully 

or highly protected3. This low level of ocean protection is explained 

in part by conflict between protection and extraction stemming from 

perceived trade-offs. Rather than viewing protection versus extraction 

as a zero-sum game, we ask whether strategic conservation planning 

can simultaneously yield benefits for biodiversity conservation, food 

provisioning and carbon storage.

Previous efforts to identify global conservation priorities in the 

ocean have primarily focused on narrow definitions of biodiversity 

and ignored other key facets such as functional roles, evolutionary 

histories of species and unique community assemblages12,13. Perhaps 

more importantly, focusing on a single objective in a multi-use ocean 

often results in strong trade-offs that hinder real-world conservation 

action. To overcome these problems, we developed a comprehensive 

conservation planning framework to achieve multiple objectives: 

biodiversity protection, food provisioning and carbon storage. The 

framework considers human impacts that are abatable through highly 

or fully protected MPAs (that is, protection from fishing, mining and 

habitat destruction) and those that are un-abatable with those tools14 

(for example, nutrient pollution, ocean warming and acidification), 

and it seeks to maximize the difference made by protection relative 

to a business-as-usual scenario (that is, a world without additional 
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protection). Furthermore, it does not require area-based targets set 

a priori, but instead produces a hierarchy of marine conservation pri-

orities across scales.

Biodiversity conservation

Marine biodiversity is the variety of life in the sea, encompassing vari-

ation at many levels of complexity, from within taxa to ecosystems. 

Thus, we sought to identify areas where MPAs would be most effec-

tive at achieving multiple biodiversity conservation goals, including 

minimizing species extinction risk, maintaining diverse species traits 

in ecosystems, and preserving the evolutionary history of marine life, 

while ensuring biogeographical representation. To this end, we define 

the biodiversity benefit of a given network of MPAs as the weighted sum 

of the marginal gain in persistence of specific biodiversity features 

resulting from the removal of abatable impacts relative to business as 

usual15 (see Methods).

Our results show that priority areas for biodiversity conservation 

are distributed throughout the ocean, with 90% of the top 10% priority 

areas contained within the 200-mile exclusive economic zones (EEZs) 

administered by individual coastal nations (Fig. 1a). These EEZs are 

home to irreplaceable biodiversity and are often heavily affected by 

human activities that can be abated by MPAs16 (Supplementary Fig. 1). 

However, we also find many priority areas in the high seas around sea-

mount clusters, offshore plateaus and biogeographically unique areas 

such as the Antarctic Peninsula, the Mid-Atlantic Ridge, the Mascarene 

Plateau, the Nazca Ridge and the Southwest Indian Ridge (Supplemen-

tary Fig. 2).

Global biodiversity benefits accrue rapidly with protection of the 

highest priority areas (Fig. 1b). We find that we could achieve 90% of 

the maximum potential biodiversity benefits from MPAs by strategi-

cally protecting 21% of the ocean (43% of EEZs and 6% of the high seas). 

This would markedly increase the average protection of endangered 

and critically endangered species from currently 1.5% and 1.1% of their 

ranges to 82% and 87%, respectively, and would increase the average 

protection of biogeographical provinces by a factor of 24 (Supple-

mentary Figs. 3, 4).

Climate change is already modifying the distributions of marine 

species and is expected to continue to do so17. Hence the biodiversity 

benefits of any MPA network that is designed for current conditions may 

change in the future18. To assess these putative changes, we re-assess 

our biodiversity prioritization using projected species distributions 

for 2050 under a ‘high greenhouse gas emissions’ scenario (Intergov-

ernmental Panel on Climate Change (IPCC) Special Report on Emissions 

Scenarios (SRES) A219–21; see Methods). We find that around 80% of 

areas that are within the top 10% global biodiversity priorities today 

will remain so in 2050 (Supplementary Fig. 5). Some temperate regions 

and parts of the Arctic would rank as higher priorities for biodiversity 

conservation by 2050, whereas large areas in the high seas between 

the tropics and areas in the Southern Hemisphere would decrease in 

priority.

Food provisioning

In highly and fully protected MPAs, the biomass of commercially 

targeted fishes and invertebrates increases over time, and given the 

right biological conditions, may also enhance productivity in fished 

areas outside of the MPA through adult and larval spillover22–24. Where 

overfishing is occurring, MPAs can increase food provisioning; where 

fisheries are well-managed or exploited below the maximum sustain-

able yield (MSY), this effect can be muted or reversed25,26. Thus, we 

identify priority areas that would improve future yields of fisheries by 

modelling the effects of protection on 1,150 commercially exploited 

marine stocks (representing around 71% of global MSY27), accounting 

for their current management status, exploitation level, fishing effort 

redistribution and relevant biological attributes28. Because the redis-

tribution of fishing effort after the implementation of MPAs can affect 

food provisioning outcomes, we model two different scenarios. The 

first assumes that displaced fishing effort from MPAs relocates to the 

remaining fished areas outside MPAs proportionally to previous effort 

allocation (see Methods). The second assumes no redistribution, such 

that fishing effort outside the MPA remains constant.

We find that, under the full effort displacement assumption, stra-

tegically placed MPAs that cover 28% of the ocean could increase 
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Fig. 1 | Global conservation priorities. a, c, e, Prioritization of a global 

network of MPAs for biodiversity conservation (a), food provisioning (c) and 

carbon stocks (e). Existing fully protected areas are shown in light blue. b, d, f, 

Corresponding cumulative benefit functions, in which ‘benefits’ are defined as 

conservation gains (for biodiversity) (b), net change in the catchable species of 

fisheries owing to spillover from marine protected areas (for food 

provisioning) (d) and reduction of the risk of carbon disturbance due to 

bottom trawling (for carbon) (f). Cumulative global benefits and those 

accruing from protection of the high seas and EEZs are shown separately. The 

blue bar in the benefit curves denotes the current 2.7% of the global ocean that 

is included in fully protected areas.
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food provisioning by 5.9 million metric tonnes (MMT) relative to a 

business-as-usual scenario with no additional protection and unabated 

fishing pressure (Fig. 1d). Achieving 90% of this potential would require 

strategic protection of 5.3% of the ocean (Supplementary Fig. 6). This 

result reflects only data-rich stocks; a conservative scaled-up estimate 

including all stocks globally would produce a yield increase of 8.3 MMT 

(see Methods). Assuming that fishing effort outside MPAs remains con-

stant, the maximum increase in yield decreases to 5.2 MMT (7.3 MMT 

when including all stocks), and the area needed to capture 90% of these 

benefits would decrease to 3.8% of the ocean (Supplementary Figs. 7, 

8). Areas with the largest food provisioning potential were located 

within EEZs (Fig. 1c), which currently provide 96% of global catch and 

contain most of the world’s overexploited fisheries22. The concomitant 

changes in catchable biomass will take time to accrue, and will vary 

across species and locations. Notably, if fishery management were to 

improve globally, the food provisioning case for MPAs would diminish.

Carbon storage

Marine sediments are the largest pool of organic carbon on the planet 

and a crucial reservoir for long-term storage29. If left undisturbed, 

organic carbon stored in marine sediments can remain there for millen-

nia30. However, disturbance of these carbon stores can re-mineralize sed-

imentary carbon to CO2, which is likely to increase ocean acidification, 

reduce the buffering capacity of the ocean and potentially add to the 

build-up of atmospheric CO2. Thus, protecting the carbon-rich seabed 

is a potentially important nature-based solution to climate change11,31.

Using satellite-inferred information on fishing activity by industrial 

trawlers and dredgers between 2016 and 2019, aggregated at a reso-

lution of 1 km2, we estimate that 4.9 million km2 or 1.3% of the global 

ocean is trawled each year. This disturbance to the seafloor results in 

an estimated 1.47 Pg of aqueous CO2 emissions, owing to increased 

carbon metabolism in the sediment in the first year after trawling. If 

trawling continues in subsequent years, emissions decline as sediment 

carbon stocks become exhausted. However, after 9 years of continuous 

trawling, emissions stabilize at around 40% of the first year’s emissions, 

or around 0.58 Pg CO2 (Supplementary Fig. 35). If the intensity and 

footprint of trawling remains constant, we estimate that sediment 

carbon emissions will continue at approximately 0.58 Pg CO2 for up 

to around 400 years of trawling, after which all of the sediments in the 

top metre are depleted. Although 1.47 Pg CO2 represents only 0.02% 

of total marine sedimentary carbon, it is equivalent to 15–20% of the 

atmospheric CO2 absorbed by the ocean each year32,33, and is compara-

ble to estimates of carbon loss in terrestrial soils caused by farming34. 

Although an unknown fraction of the aqueous CO2 is emitted to the 

atmosphere, the increase in CO2 in the water column and sediment pore 

waters can have far-reaching and complex effects on marine carbon 

cycling, primary productivity and biodiversity29,35.

We identify areas where MPAs can effectively prevent the reminer-

alization of sediment carbon to CO2 that results from anthropogenic 

disturbances36. Top priority areas are located where carbon stocks 

and present anthropogenic threats are highest, including China’s EEZ, 

Europe’s Atlantic coastal areas, and productive upwelling areas (Fig. 1e). 

Countries with the highest potential to contribute to the mitigation 

of climate change through protection of carbon stocks are those with 

large EEZs and large industrial bottom trawl fisheries. The global ben-

efit of protection for sediment carbon accrues sharply, because the 

spatial footprint of bottom trawling is small. At our working resolu-

tion of 50 km × 50 km, eliminating 90% of the present risk of carbon 

disturbance due to bottom trawling would require protecting 3.6% of 

the ocean (mostly within EEZs) (Fig. 1f). Deep-sea mining is another 

emerging threat to sediment carbon, but its spatial footprint is so far 

unknown as this industry is only now developing.

Multi-objective prioritization

We conduct three separate analyses for multi-objective prioritiza-

tion. First, we explore synergies across objectives by overlaying 
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single-objective priority maps to create a composite multi-objective 

solution37. Overlaying the areas required to achieve 90% of the benefit 

for each conservation objective, we find that unprotected triple-benefit 

areas are spread across the world’s EEZs in all continents, covering 0.3% 

of the global ocean (Fig. 2a). Double-benefit areas (combinations of 

two out of three objectives) cover 2.7% of total ocean area.

Our second approach involves estimating the co-benefits that arise 

from single-objective prioritizations (Fig. 2b–d). For instance, we find 

that achieving 90% of the biodiversity benefit following the optimal 

single-objective prioritization would coincidently protect 89% of at-risk 

carbon stocks, but would come at a cost of 27 MMT of catchable fish. 

Although these two approaches are instructive, selecting sites for 

protection on the basis of overlapped benefits or co-benefits often 

results in strong trade-offs between objectives that could be reduced 

by a jointly optimized network of MPAs.

Our third and preferred approach is to conduct joint multi-objective 

optimization. This approach allows for stakeholder preferences to 

inform priorities, which are captured by assigning weights to each 

objective. As a decision-support framework, multi-objective prioritiza-

tion is well-suited to assess multiple benefits given different scenarios 

or preferences.

To illustrate this approach, we derive an efficiency frontier for the 

biodiversity and food provision objectives (Fig. 3a) that maximizes net 

benefits across a range of possible preferences (expressed as objective 

weights). Although our framework can consider explicit preferences 

for each and any objective, we treat carbon as a co-benefit (weight = 0) 

to facilitate visualization and interpretation (see Supplementary Fig. 14 

for a multi-objective prioritization with equal weights given to each of 

the three goals). If society were to value marine biodiversity benefits as 

much as food provision benefits (see Methods), the optimal conserva-

tion strategy would protect 45% of the ocean, delivering 71% of the maxi-

mum possible biodiversity benefits, 92% of food provisioning benefits 

and 29% of carbon benefits (Fig. 3c, Supplementary Fig. 10). Results also 

suggest that we could protect as much as 71% of the ocean, obtaining 

91% of the biodiversity and 48% of the carbon benefits, with no change 

in the future yields of fisheries (Fig. 3d, Supplementary Fig. 11). If, on 

the contrary, we placed no value on biodiversity, the optimal strategy 

would call for the protection of 28% of the ocean, providing a net gain of 

5.9 MMT of seafood (8.3 MMT when accounting for unassessed stocks) 

and incidentally securing 35% of biodiversity benefits and 27% of carbon 

benefits (Fig. 3b, Supplementary Fig. 12). Only if biodiversity is deemed 

undesirable (negative weight) would it be optimal to protect less than 

28% of the ocean. Assuming no redistribution of fishing effort after 

protection, the analysis yields a slightly different efficiency curve. In 

this case, giving no value to biodiversity would call for protection of 

12% of the ocean (Supplementary Figs. 10–13).

The need for international cooperation

Global-scale prioritization helps to focus attention and resources on 

places that yield the largest possible benefits. A particular advantage of 

our approach is the ability to quantify how international cooperation 

in the expansion of MPAs can facilitate greater benefits for all three 

of our objectives simultaneously. To demonstrate this, we calculated 

the cumulative biodiversity benefit of protecting areas from highest 

to lowest priority under three strategies: (1) systematic expansion of 

MPAs considering global priorities; (2) systematic expansion of MPAs 

within EEZs and the high seas considering only national priorities; 
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conservation strategy with strong biodiversity preference (14 × food 

provisioning weight). This scenario achieves 91% of the biodiversity benefit at 

the least cost to future fisheries yields and achieves 48% of the carbon benefit 

by protecting 71% of the global ocean.
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and (3) random allocation of MPAs (see Methods). We find that a glob-

ally coordinated effort could achieve 90% of the maximum possible 

biodiversity benefit with less than half the ocean area of a protection 

strategy that is based solely on national priorities (21% versus 44% of the 

ocean, respectively) (Fig. 4b). A comparable analysis of global priorities 

to expand the network of terrestrial protected areas similarly found 

large efficiency gains from global coordination38. A random approach 

to conservation is the least efficient and would require protection of 

85% of the ocean to achieve the same results.

Discussion

There is a growing consensus that ocean conservation can deliver last-

ing benefits to biodiversity, climate mitigation and food security. Our 

framework shows that strategic conservation planning can reconcile 

seemingly conflicting objectives using strategic and efficient prioriti-

zation for MPAs at both global and national scales.

Our results highlight the need for a greater level of investment in MPAs 

than we have at present, regardless of the preferences of the stakehold-

ers involved. We recognize that such change, along with the required 

improvements to enforcement and compliance, could be challenging 

to implement. One possible path forward is to upgrade the level of pro-

tection and management effectiveness of existing but weakly protected 

MPAs that are located in areas of the highest priority (Supplementary 

Fig. 15), so that they can deliver their full suite of benefits. We found that 

this cannot be achieved by a few countries alone; especially when consid-

ering co-benefits, there is an important role for most coastal countries to 

help to achieve each of the objectives considered in this analysis (Fig. 4a, 

Supplementary Figs. 16, 17). Concerns over potential inequities will need 

to be addressed through international cooperation, including sustain-

able financing mechanisms to reduce potential short-term burdens on 

nations with disproportionately large priority areas.

Food provisioning benefits also require improved fisheries man-

agement, which should go hand in hand with improved conservation 

efforts—for example, in addressing the potential problems that are asso-

ciated with fishing effort redistribution. Here we do not promote MPAs 

as the best fisheries management tool, but rather show that MPAs can 

improve the yield of fisheries, while also protecting biodiversity, carbon 

stocks and other ecosystem services. MPAs and responsible fisheries 

management are not mutually exclusive; rather, they are complementary.

Our analysis makes a series of assumptions. First, we assume that the 

current distribution of human impacts is a good proxy to estimate ‘no 

additional protection’ counterfactuals. However, human impacts on the 

ocean are dynamic and will continue to change into the future. Neverthe-

less, current threats often have lasting effects that are captured well by 

our prioritization framework. As an alternative, we estimate a worst-case 

scenario in which we assume that everything that is not protected is 

lost (Supplementary Figs. 18, 19). Second, we assume that the relative 

distribution of human impacts remains constant after protecting a given 

cell. For example, we assume that fishing effort redistributes across the 

range of a stock proportionally to the distribution of effort before protec-

tion. On the contrary, if fishing effort relocated predominantly towards 

areas that were previously less-fished, if fishing effort concentrated near 

the MPAs or if the total fishing effort increased, then our results would 

probably change. Third, population and recruitment variability were not 

incorporated into the analysis. MPAs are known to reduce population and 
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a, Fraction of nations’ EEZs in the top 10% of priority 

areas for global marine biodiversity conservation. 

Shown here are the 100 countries or territories with 

the largest contributions towards achieving the 

maximum possible biodiversity benefit. Values are in 

addition to current protection. b, Cumulative 

biodiversity conservation benefit from implementing 

a globally coordinated MPA expansion according to 

global priorities (blue), national priorities (orange), 

and random placement (grey; 100 random sets). The 

blue bar denotes the current 2.7% of the global ocean 

that is included in fully protected areas. ATF, French 

Southern Territories; FSM, Federated States of 

Micronesia; SGS, South Georgia and the South 

Sandwich Islands; SHN, Saint Helena, Ascension and 

Tristan da Cunha; SJM, Svalbard and Jan Mayen; UMI, 

United States Minor Outlying Islands.
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catch variabilities and accounting for these variabilities more explicitly 

would bolster MPA benefits39,40. MPAs also tend to increase the abun-

dance of larger predatory target species, with possible food-web effects41 

that cannot easily be resolved and are beyond the scope of this analysis. 

Fourth, our results relating to CO2 released through trawling represent 

a preliminary best estimate, based on the available data, and further 

research is required to verify these estimates across scales.

In addition, we recognize that the combination of disparate global 

datasets introduces uncertainty into our results. Thus, we explore the 

uncertainty in the biodiversity prioritization in a sensitivity analysis that 

simulates commission errors in species distributions and adds random 

noise to feature weights (see Methods, Supplementary Figs. 20–22). 

Finally, we highlight the need for higher-resolution regional analyses to 

better resolve priority areas for MPAs at that scale. Our analysis can also 

be expanded to explicitly model the costs of improved ocean protec-

tion42, and to include additional benefits such as increased tourism rev-

enue27, improved human well-being43 and savings due to improved flood 

and storm-surge protection in coastal habitats44. Reduced CO2 emissions 

through reduced trawling effort could also generate carbon credits, and 

provide a meaningful opportunity for financing MPA creation.

Our results may be informative in the context of both national and 

global conservation targets. The 15th meeting of the Conference of 

the Parties (COP15) United Nations (UN) Convention on Biological 

Diversity (CBD), which is to be held in 2021, is expected to produce a 

global agreement for nature, with an emergent movement to protect 

at least 30% of the ocean by 203045,46 to achieve both biodiversity con-

servation and climate mitigation goals. Our results lend credence to 

this target and suggest that a substantial increase in ocean protection 

could achieve triple benefits—not only protecting biodiversity, but 

also boosting the productivity of fisheries and securing marine carbon 

stocks that are at risk from bottom trawling and other industrial activi-

ties. Our framework has the flexibility to incorporate the preferences 

of different governments or stakeholders in identifying priority areas, 

which can help to motivate a more science-based expansion of ocean 

protection and contribute to solving three major challenges that face 

humanity in the twenty-first century—namely, the decline of global 

biodiversity, the need to provide nutrition to a growing population 

and the imperative to mitigate climate change. Finally, our framework 

allows us to identify widespread co-benefits arising from expanded 

protection that overcome previously perceived trade-offs between 

biodiversity protection and fisheries.
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Methods

Data

We used the best available spatial data layers comprising current 

species distributions (n = 4,242), projected species distributions 

(n = 4,242), marine sedimentary carbon stocks (n = 1), seamount 

density distributions (n = 194), coastal, pelagic, abyssal and bathyal 

biogeographical provinces (n = 127), commercially exploited fish and 

invertebrate stocks (n = 1,150), and human impacts on the world’s 

oceans (n = 70). We harmonized all data layers with a Mollweide 

equal-area projection (around 50 km × 50 km), and these were cropped 

to ocean areas using a 1:50 m land mask obtained from https://www.

naturalearthdata.com. All data processing was done in R using rgdal, 

raster, sf and tidyverse libraries.

Species list and distributions

We constrained our analysis to consider those species that are (1) 

directly or indirectly affected by threats abatable by MPAs as reported 

by the International Union for Conservation of Nature (IUCN) or (2) 

reported in global catch databases47,48. The resulting dataset con-

tains 5,405 species, 30% of which are directly targeted by fisheries. 

We obtained species distribution information as the probability of 

occurrence in each spatial cell on the basis of environmental variables 

and constrained by currently known natural ranges19. Distributions for 

seabirds were obtained directly from BirdLife International (http://

datazone.birdlife.org/home). Species distributions were available at 

a 0.5° resolution, and were subsequently rasterized, re-projected to a 

Mollweide equal-area projection and normalized such that the values 

across a species range add up to one. Overall, species distribution data 

were available for 4,242 (78%) of the species in the initial list represent-

ing all major taxonomic groups: Osteichthyes (n = 2,115), Chondrich-

thyes (n = 760), Cnidaria (n = 586), Mollusca (n = 205), Arthropoda 

(n = 201), Aves (n = 173), Mammalia (n = 111), Echinoderms (n = 39) and 

Reptilia (n = 18) (Supplementary Figs. 23–25, Supplementary Table 1).

Seamounts

We include seamounts in our analysis as they are known aggregators of 

pelagic biodiversity and an important habitat for deep-sea species that 

are still underrepresented in global species distribution datasets49. We 

used the spatial locations of 10,604 of the world’s bathyal seamounts 

(below 3,500 m) classified into 194 classes based on four biologically 

relevant characteristics: overlying export production, summit depth, 

oxygen level and proximity50 (Supplementary Fig. 26). For each sea-

mount class, we created a raster layer with the number of seamounts 

in each grid cell, which we normalized to obtain the fraction of total 

seamounts per unit area. Each class of seamounts was treated as an 

individual feature in the analysis.

Biogeographical provinces

We used the spatial delineations of the pelagic (n = 37), coastal (n = 62), 

bathyal (n = 14), and abyssal (n = 14) provinces of the ocean as individual 

biodiversity features to ensure representation of different facets of 

biodiversity throughout the world’s ocean51–53. These provinces have 

been delineated on the basis of the best available oceanographic and 

biological data along with expert consultation and are thought to con-

tain biogeographically distinct assemblages of species and communi-

ties with a shared evolutionary history (Supplementary Figs. 28, 29). 

Spatial polygons were converted to rasters by estimating the fraction 

of each pixel covered by each province for province polygons that 

overlapped the centre of the pixel.

Food provisioning

We used data for 1,150 commercially exploited fish and invertebrate 

stocks—which have an associated MSY of 56.6 MMT—to model their 

response to MPAs and the resulting change in future catch in remaining 

fishing areas after protection28. Because global MSY is at least 80 MMT27, 

and stocks not included in our analysis are probably in worse shape than 

the stocks for which we have requisite data, we can conservatively scale 

up the food provisioning potential from MPAs by 41%.

We define the food provisioning potential of a given network of MPA 

(s) as the change in total future catch that is due to the MPA network s; 

that is, H H H∆ = Σ − Σs j s j j j, bau, , where Hs,j is the catch of stock j given MPA 

network s and Hbau,j is the catch of stock j with no additional MPAs (or 

business-as-usual; bau).

We model the biomass transitions of each individual stock j inside 

(Bin,j) and outside (Bout,j) MPAs as
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where t is time, rj is intrinsic growth rate, Kj is carrying capacity, mj is 

species relative mobility, Rj is the proportion of stock’s carrying capac-

ity in MPAs and Ej is the exploitation rate.

The catch of stock j at each time step is given by Hj,t = Ej,tBout,j,t and the 

steady-state catch is given by
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We derive the intrinsic growth rate (r) of individual stocks from Thor-

son54, FishBase55 and SeaLifeBase56. We combine the MSY estimate 

per stock from a previous study27 with our compiled growth rates to 

calculate the total carrying capacity per stock. We consistently used 

species-specific intrinsic growth rates in our model regardless of the 

region, as regional variations in growth rates for over a thousand stocks 

are not available. We distribute the total carrying capacity in space in 

proportion to the stock’s probability of occurrence from AquaMaps 

species’ native ranges19. Finally, we derive species relative mobility (m) 

by categorizing stocks based on the linear scales of movement of adult 

individuals: m = 0.1 represents species with maximum scales of move-

ment of less than 1 km, m = 0.3 represents species with maximum scales 

of movement of between 1–50 km, and m = 0.9 represents species with 

maximum scales of movement of more than 50 km. Other parameters 

for evaluating MPA effects on catch are generated dynamically, such 

as the proportion of stock range under protection (R).

Carbon

We used a published modelled spatial layer of global marine carbon 

stocks stored in the first metre of ocean sediment based on a sam-

ple of 11,578 sediment cores collected throughout the global ocean29 

(Supplementary Fig. 30). The data layer was resampled using bilinear 

interpolation and re-projected from its original 1-km2 resolution to 

match our working resolution and equal-area projection.

Administrative data

We use the Marine Protection Atlas database3 to select MPAs that are 

classified as fully or highly protected (that is, no-take MPAs or protected 

areas in which only minimal subsistence or recreational fisheries are 

allowed), and that have been implemented as of September 2020. The 

resulting dataset consists of 1,398 MPAs, covering 2.7% of the world’s 

ocean. Lastly, we used the political boundaries of the world’s EEZs as 

made available by https://marineregions.org/ (v.10).

https://www.naturalearthdata.com
https://www.naturalearthdata.com
http://datazone.birdlife.org/home
http://datazone.birdlife.org/home
https://marineregions.org/
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Biodiversity benefit

A schematic diagram for calculating benefits for each objective is shown 

in Supplementary Fig. 31. For biodiversity, we include 4,559 individual 

features corresponding to: (1) species’ native ranges, extinction risk 

and functional and evolutionary distinctiveness for 4,242 marine spe-

cies that are directly or indirectly affected by fishing19; (2) density of 

seamounts grouped into 194 distinct classes50; and (3) 37 pelagic, 62 

coastal, 14 abyssal and 14 bathyal biogeographical provinces53,57. For 

each feature, we use benefit functions resembling species–area rela-

tionships to capture the diminishing marginal benefit from additional 

protection.

We define the biodiversity benefit (B) of protecting a set of pixels 

(s) as

∑B σ X= ( ) ,s
j

j j
z j

s

where σj represents the weight given to feature j and zj is the curvature 

of a power function analogous to a species–area curve. X js
 corresponds 

to the fraction of the total suitable habitat of feature j that remains 

viable given the set of protected pixels (s), and is defined as

∑ ∑X v v= + ,j
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∉
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s

where vi j,
in  and vi j,

out correspond to the fraction of the feature’s total 

habitat that remains suitable in pixel i if i is protected, and if pixel i is 

left unprotected, respectively. These are defined as
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where vi j, 0
 represents the current fraction of a feature’s total suitable 

habitat present in pixel i, Iui
is the fraction of that habitat that may be 

lost owing to un-abatable impacts and Iai
 is the fraction of that habitat 

that may be lost as a result of abatable impacts13 (Supplementary 

Figs. 17–19). The term ‘feature’ refers to an individual species, a class 

of seamount, or a biogeographical province.

We estimate Iai
 and Iui

 using the most recent five years (2009–2013) 

of human impacts on the world’s ocean58. Data were classified into 

impacts that are abatable (artisanal fishing, commercial fishing clas-

sified in pelagic high-by-catch, pelagic low-by-catch, demersal destruc-

tive, demersal non-destructive high by-catch, and demersal 

non-destructive low by-catch) and those that are un-abatable (sea 

surface temperature rise, light pollution, organics and nutrient pollu-

tion, ocean acidification, shipping, and sea-level rise) in relation to 

MPAs. Human impact layers were resampled using bilinear interpola-

tion to match our working resolution. To estimate the fraction of suit-

able habitat lost we assume a saturating relationship rescaled between 

0–1 such that

I
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where Ik,i is the average impact of stressor k in pixel i in the last five years, 

and K is the total number of stressor layers in the model (n = 16). The 

human impacts dataset already accounts for the differential effects 

of a stressor in different ecosystems and environmental conditions 

(for example, ocean productivity). Ideally one would incorporate the 

differential effects across species. However, given the current limited 

state of knowledge regarding species-response curves to different 

stressors, we assume that the abatable and un-abatable impacts in a 

pixel affect all features in that pixel equally.

We weighted the species in the analysis as a function of their extinc-

tion risk (EX)59, functional distinctiveness (FD) and evolutionary dis-

tinctiveness (ED). These weights are calculated using additive and 

multiplicative components as proposed previously60:

σ j= EX (FD + ED ) ; ∀ ∈ species.j j j j

Following a previous report38, we numerically coded the IUCN clas-

sification of extinction risk such that the highest weight is given to 

critically endangered species (least concern = 1; near-threatened = 2; 

vulnerable = 4; endangered = 6; critically endangered = 8; data defi-

cient = 2). Unassessed species were treated as data-deficient, and the 

numerical values were normalized so that the maximum weight equals 1.

For each taxonomic class, we used a set of functional traits and a 

phylogeny to estimate species functional and evolutionary distinctive-

ness, respectively, for fishes61, sharks62, marine mammals63, birds64. We 

computed the functional distance between all pairs of species within 

a given taxonomic class using the compute_dist_matrix function in 

the funrar R package. Functional distinctiveness FDi of species i rep-

resents the extent to which the traits of species i are distinct relative 

to the traits of all the other species from the same taxonomic class at 

a global scale65:

d

N
FD =

∑

− 1
,i

j j i
N

i j=1; ≠ ,

where di,j is the functional distance between species i and j, and N is the 

total number of species. The functional distances di,j are scaled between 

0 and 1 (maximum value), so FDi is 0 when all species have the same 

trait values (the functional distance between all species pairs is 0),  

and 1 when species i is maximally differentiated from all other species. 

This calculation was carried out using the distinctiveness function in 

the funrar R package. Using the same approach, we also estimated 

species evolutionary distinctiveness. The evolutionary distinctiveness 

of species i, EDi, is high when the species has a long unshared branch 

length with all the other species. The more ‘isolated’ a species is in 

a phylogenetic tree, the higher its evolutionary distinctiveness. We 

computed ED using the evol.distinct function from the picante R pack-

age. We did not have enough information to estimate functional and 

evolutionary distinctiveness for 15% of the species in the analysis. We 

imputed these values using arithmetic means for each taxonomic class 

when possible, and sample means when entire classes lacked data (for 

example, Reptilia). For seamounts, we weighted each class the same, 

such that the aggregate weight given to all seamounts equalled the 

aggregate weight given to all species. The same weighting approach 

was applied to the biogeographical provinces.

The parameter zj, which determines the curvature of the power func-

tion and is analogous to the exponent of a species-area curve, was set 

equal to 0.25 for all features, based on a typical species-area relationship 

z-value between 0.2 and 0.366. The rationale behind a benefit function 

with exponent zj is that there is a relationship between area lost (that 

is, not protected) and a species’ risk of extinction. The parameteriza-

tion of zj will depend on a species’ characteristics and other informa-

tion, including scale of movement (for which z decreases with higher 

movement67), trophic level (for which z increases with trophic rank68) 

and human impacts (for which z decreases with higher exploitation69), 

amongst other things. A feature-specific zj would therefore theoretically 

be preferred, but in the absence of a systematic method for parameter-

izing z for all features in our analysis, we test a range of constant z-values 



(z = 0.1, 0.2, 0.3, 0.4). Although z is important to determine the biodi-

versity benefits under business-as-usual and thus the magnitude of the 

MPA effect on biodiversity persistence, the normalized global benefits 

accruing from protection are relatively insensitive to the value of this 

parameter (Supplementary Figs. 32, 33). We used the Kendall tau correla-

tion coefficient—a nonparametric statistic that measures the similarity 

in the ordering of the rankings—to compare the top 30% of the solutions 

using z = 0.1 and z = 0.4, and found that the results are robust to z (τ = 0.95).

Food provisioning benefit

The food provision benefit (F) is defined as the difference in catch made 

by an additional set of fully protected pixels or MPAs (s); that is, the 

difference between the global catch with and without implementing 

additional MPAs. F is estimated at equilibrium such that:
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where mj represents the mobility of stock j, Kj is total carrying capac-

ity, Rs,j is the fraction of total K that is inside the set of protected cells 

(s) and rj represents the stock growth rate. The parameters Es,j and 

Ebau,j pertain to the equilibrium exploitation rate of stock j in the fish-

ing area in the presence of an MPA network (s) and in the absence 

of additional MPAs, respectively. We derived the exploitation rate 

per stock in a world with no MPAs (E0,j) using the ‘conservation con-

cern’ business-as-usual scenario of a previous study27. This scenario 

assigns future fisheries prospects according to current stock status 

and management as follows: (i) for assessed stocks, current exploita-

tion rates are held constant in perpetuity; (ii) for unassessed stocks of 

‘conservation concern’ (that is, those currently overfished or experi-

encing overfishing), open-access dynamics are assumed; and (iii) for 

unassessed, non-conservation concern stocks, the exploitation rate 

is set to maintain current biomass. We then solve for the exploitation 

rate per stock in the fishing area given currently implemented MPAs 

and given our prioritized network of MPAs (s) by accounting for fishing 

effort redistribution (see below).

Fishing effort redistribution

We considered two common fishing effort redistribution models: (1) 

all fishing effort in areas designated as MPAs will transfer to the remain-

ing fishing areas (full-effort transfer); and (2) fishing effort in areas 

designated as MPA will go away and the fishing effort density in fishing 

area remains the same (no-effort transfer). If fishing effort displaces 

after protection, it does so such that the relative levels of fishing out-

side remain constant. We assume that effort redistributes across the 

range of a stock proportionally to the distribution of effort before 

protection. With full-effort transfer, the fishing mortality of a stock 

outside an MPA increases in proportion to the size of the MPA,  

that is, the new fishing mortality equals 1/(1 – Rs,j) times the fishing 

mortality with no additional MPA70–73. The exploitation rate (E) can be 

expressed in terms of fishing mortality as E = 1 – e−F. Hence, the  

exploitation rate per stock in fishing area given the current MPAs  

and given a network of MPAs (s) is given by E E= 1 − (1 − )j j
R

bau, 0,
1/(1− )jbau,     

and  E E= 1 − (1 − )s j j
R

, 0,
1/(1− )s j,  , respectively. Under the no-effort transfer 

assumption, the exploitation rate experienced by the stock biomass 

outside the MPA remains the same (that is, Ebau,j) after MPA implemen-

tation. Supplementary Figure 34 shows the results of both models. 

The potential food provisioning benefit is slightly lower under the 

no-effort redistribution assumption primarily because the total 

catches from underfished and well-managed fisheries are lower com-

pared to the full-effort redistribution scenario in which fishers would 

try to compensate for the harvest lost from MPAs by increasing fishing 

effort in the remaining fishing areas.

Carbon benefit

We defined the carbon benefit (C) as a linear function of the amount 

of carbon that remains given a set of protected areas (s), such that:

C X= ands Cs

∑ ∑X c c= + ,C
i s

i
i s

i
∈

in

∉

out
s

where ci
in and ci

out correspond to the fraction of total carbon that 

remains in pixel i if i is protected, and if pixel i is left unprotected, respec-

tively. We estimate ci
in and ci

out using the same approach as in the bio-

diversity benefit but without un-abatable impacts such that:

c c= andi i
in

0

c c I= (1 − ),i i a
out

i0

where ci0
 is the estimated carbon stored in the first meter of sediment 

in pixel i, and Iai
 is the fraction of that carbon that would be lost (that 

is, remineralized to aqueous CO2) in the absence of protection. The 

latter is estimated as:

I p p= SVR × × × (1 − e ),a i
k t

crd lab
− i

i i i

where SVRi (swept volume ratio) is the fraction of the carbon in pixel i 

that is disturbed by bottom trawling and dredging fishing practices, 

p
crdi

is the proportion that resettles in pixel i after disturbance, p
labi

 is 

the fraction of carbon that is labile, ki is the first-order degradation 

rate constant and t represents time, which is set to one year.

The SVRi from fishing is estimated by:

∑ pSVR = SAR × ,i
g

i g, depthg

where SARi,g is the swept area ratio of pixel i by vessels using gear g, and 

p
depthg

 is the average penetration depth of gear type g. SARi,g is estimated 

as follows:

W

A
SAR =

∑ TD ×
,i g

v
V

i v v

i
,

,

where TDi,v is the trawled distance by vessel v in pixel i, Wv is the width 

of the gear trawled by vessel v and Ai is the total area of pixel i. Trawled 

distance (TD) is estimated using fishing activity detected by automatic 

identification systems (AIS) data from Global Fishing Watch (GFW) 

between 2016 and 2019. For each vessel v in each cell i, TD is the sum of 

the product between time and speed across all AIS positions associated 

with fishing activity in pixel i (see ref. 74 for more details on detecting 

fishing activity from AIS). We include only those fishing vessels that are 

registered as—or have been classified by GFW as—trawlers or dredgers. 

We used official fishing registries from the European Union and the 

Convention for the Conservation of Antarctic Marine Living Resources 

(CCAMLR) to refine this classification into five gear types: otter trawls, 

beam trawls, towed dredges, hydraulic dredges and midwater trawls. 

Vessels classified as midwater trawls were excluded entirely from this 

analysis, because this gear type does not come into contact with the 

seafloor. Vessels without official classification were classified as otter 

trawls as these are the most common type of bottom trawlers in the 

ocean. Finally, to minimize noise and AIS positions misclassified as 

fishing, we include only fishing positions within the range of common 
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depths and speeds reported for each gear type by Eigaard et al.75: otter 

trawls, towing speeds of 2–4 knots and depths up to 2,000 m; beam 

trawls, towing speeds of 2.5–7 knots and depths up to 100 m; towed 

and hydraulic dredges, towing speed of 2–2.5 knots.

The width of the trawled gear of each vessel Wv was estimated using 

vessel-size-footprint relationships reported by Eigaard et al.75, such as:

W = 0.3142 × LOA(TD;HD)
1.2454

W = 10.6608 × KW(OT)
0.2921

W = 0.6601 × KW(BT)
0.5078

where LOA is the vessel’s length overall in meters, and KW is its engine 

power. Within each gear type, there is variability in gear dimension 

based on target species and other factors. Because we do not have data 

on the target species of each vessel, we use the relationships reported 

in Eigaard et al.75 to specify gear dimension as that associated with the 

largest variety of target species. We estimate that on average, a total 

of 4.9 million km2 of the ocean is trawled each year. This represents 

around 1.3% of the total ocean area.

The remaining parameters were obtained from the scientific litera-

ture. We used the average penetration depths reported by Hiddink 

et al.76 for otter trawls (2.44 cm), beam trawls (2.72 cm), towed dredges 

(5.47 cm) and hydraulic dredges (16.11 cm). Of these gear types, otter 

trawlers are the most prominent, with an average area fished of 4.65 

million km2 per year. As a result, the area-weighted average sediment 

penetration depth across all gear types corresponds to 2.44 cm. The 

fraction of carbon in each cell that resettles in that same cell after trawl-

ing (p
crdi

) was assumed constant at 0.87, and was estimated using the 

average from studies that quantified the amount of sediment load lost 

following trawling or mining77–81. For this study we focused only on the 

proportion of carbon that is labile (p
labi

), and thus more prone to rem-

ineralization after a disturbance. The labile fraction was estimated as 

a function of the type of sediment. We used sediment type as a proxy 

for estimating the amount of labile carbon because it relates to many 

aspects that can influence the preservation and remineralization of 

organic matter (for example, oxygen penetration depths, permeabil-

ity, infaunal communities82,83 and physical protection84), as well as 

reflect its origin85. The proportion of labile carbon assigned to each 

sediment type was estimated using literature values that were tuned 

to our model86,87; pixels dominated by ‘fine’ sediments such as muds, 

silts or biogenic (more than 50% of pixel area) were assigned a p
labi

 = 0.7, 

those dominated by ‘coarse’ sediments like gravel (more than 50%) a 

p
labi

 = 0.286, and the remaining combinations of ‘sandy’ sediments 

were assigned a p
labi

 = 0.04. We classified pixel sediment types using 

the sediment lithology from a previous study72, grouped as follows: 

coarse: gravel, coarse sediments, ash-volcanic, shells and coral frag-

ments; sandy: sand and fine-grained calcareous sediment; fines: silt, 

clay and siliceous mud; biogenic: radiolarian ooze, diatom ooze, mix 

calcareous-siliceous ooze, siliceous ooze and calcareous ooze.

The first-order degradation rate constants (ki) were assigned as 

a function of oceanic region, and were estimated from ranges of 

values presented in the literature for oxic sediments that were then 

tuned to our model86,87; North Pacific = 1.67, South Pacific = 3.84, 

Atlantic = 1.00, Indian = 4.76, Mediterranean = 12.3, Arctic = 0.275, 

Gulf of Mexico and Caribbean = 16.8. Values for the North and South 

Atlantic, as well as the Gulf of Mexico and the Caribbean, were com-

bined owing to the paucity of studies in the South Atlantic and the 

Caribbean. We included only oxic sediments in our model because 

one of our main assumptions about physical disturbances to marine 

sediments, such as benthic fishing, is that mixing of the sediments 

and resuspension increases the amount of time the disturbed carbon 

is in contact with oxygen88.

Finally, to avoid the random ranking of pixels without bottom 

trawling but with different amounts of carbon, we assigned a small 

and constant Ia = 10−30 to each pixel without trawling data. To be as 

precise as possible, we performed the analysis to estimate the annual 

CO2 efflux at a 1-km resolution. This minimizes the risk of overestima-

tion due to a coarse scale. However, to harmonize the carbon analysis 

with biodiversity and food provision, we ran the carbon model at a 50 

km × 50-km resolution in all multi-objective prioritizations. As a result, 

we probably overestimate the total area in which trawling is occurring 

and subsequently the total area needed to safeguard carbon stocks. On 

the other hand, although the GFW database is the most comprehensive 

publicly available source of fishing effort data, it does not account for 

every single bottom trawler in the world and lacks fishing effort data 

for thousands of fishing vessels that do not carry AIS, predominantly 

from developing nations.

Finally, to report the total benthic annual CO2 efflux (Mg CO2), we 

estimate the efflux in a given pixel i as:

w c ICO = × × ,a2 0i i i

where c0i
 is the carbon stored in the first meter of sediment in pixel i, 

Iai
 is the is the fraction of that carbon that would be lost in the absence 

of protection (as defined above) and w is the ratio of the weight of CO2 

relative to that of C (that is, 3.67 tons of CO2 equal to 1 ton of C).

Overall, we found that the average carbon stock in sediments dis-

turbed by bottom trawling is 9.1 × 103 Mg C km−2 (global average is 

6.6 × 103 Mg C km−2). The average remineralization efficiency of dis-

turbed carbon—estimated as the mean across pixel level remineraliza-

tion rates—is 29.7%.

Carbon model validation

Cross-comparisons of our model results for the effects of trawling on 

CO2 efflux from the sediment–water interface are difficult because of 

the novelty of this topic. Although several studies have documented 

increased benthic metabolism after trawling, most of these studies 

have measured changes in oxygen or variables other than CO2 efflux. 

Furthermore, the studies that have measured CO2 efflux from the 

sediment-water interface are non-spatial in nature. To validate our 

model, we compared our predicted values with measured CO2 annual 

efflux values either from studies that explicitly measured CO2 efflux at 

the sediment–water interface from trawled sediments, or from benthic 

metabolism studies that were conducted in areas in which trawling 

occurs. In all cases, studies provided only descriptions of site locations 

or coarse GPS coordinates. As a result, we compared the measured value 

from the study with an average predicted value for the study location. In 

total, we found four studies that met our criteria for comparisons (See 

Supplementary Table 2). Our predicted CO2 annual efflux values are of 

the same order of magnitude and underestimate the reported values. 

The root-mean-square error of the predicted values is 0.004 × 109 mol 

CO2 km−2 and a log-transformed linear regression yields R2 = 0.79.

Effects of multiple years of trawling on carbon efflux

Let Ct be the total carbon in the first metre of the sediments affected by 

bottom trawling. Assuming that the footprint and intensity of bottom 

trawling remains constant every year, we model net carbon depletion 

as: Ct + 1 = Ct + CAt − CLt, where Ct is the carbon stock in time t, CAt is the 

annual addition of carbon from external sources and CLt is the carbon 

lost each year. The carbon stocks in trawled sediments in year zero (C0) 

are 54.89 × 109 Mg C (from this analysis), and the annual addition of car-

bon into trawled areas from external sources amounts to 96.04 × 106 Mg 

C, which we calculate as the product of the total area trawled (4.9 × 106 

km2; from this analysis) and the average carbon accumulation rates for 

coastal shelf systems (19.6 Mg C km−2 yr−1) (ref. 89).

The annual carbon lost each year as a result of trawling comprises: 

(1) carbon that is resuspended into the water column and then laterally 



transported to a different pixel where its fate is unknown (CT); and 

(2) carbon that is remineralized in the sediment (CR). Thus CLt = CTt 

+ CRt, where CTt = Cd(1 − pcrd), and CRt = Cdϵ, where pcrd is the frac-

tion of disturbed sediment that resettles (pcrd = 0.87), and ϵ is the 

remineralization efficiency of disturbed sediments (ϵ = 0.3, from our 

analysis). Cd corresponds to the carbon that is disturbed each year by 

trawling, which we define as:

C C C= − CT − CR + + CA ,t t t t td, d, −1 −1 −1 n

where Cn is the newly available labile carbon that comes from deeper 

sediment layers that have become recently exposed by trawling-induced 

erosion in year. This is estimated as the difference between the aver-

age trawl penetration depth (pd = 2.44 cm) and the depth of sediment 

resettled after previous trawling; accounting for natural sediment 

accumulation rates (rs = 0.07 cm yr−1 for coastal shelf systems90): 

Cn = C0(pd – pd × pcrd – rs). This yields an annual deepening of the 

disturbed carbon layer of 0.0024 m yr−1.

This analysis suggests it would take around 400 years for trawling (at 

its current scale and intensity) to exhaust all of the sediments in the top 

1 m. Moreover, we find that remineralization rates stabilize at 40% of 

the initial rate after the 9th successive year of constant trawling (Sup-

plementary Fig. 35). Our assumptions are that carbon losses and addi-

tions are constant year to year, carbon stocks are equally distributed 

in the top metre of sediment, carbon stocks stored in sediment deeper 

than that which is directly affected by the trawl are unaffected, and 

that each pixel where there is bottom trawling is disturbed once a year.

Ranking algorithm

We implemented a heuristic, forward-looking algorithm to iteratively 

select pixels that maximize our defined benefit functions at each step. 

This approach builds on the existing and widely used zonation algo-

rithm60 but differs in two important ways. First, our approach does not 

impose the constraint that protecting the entire world is best, which 

enables us to use non-monotonic benefit functions, such as the one 

for food provisioning. Second, our algorithm can account for the value 

of unprotected cells, which allows us to base benefit functions on the 

entire landscape, not only on those cells selected for protection. Using 

the biodiversity objective as an example, the algorithm operates as 

follows:

1. Compute starting conditions. Given the current protected areas and 

the distribution of human impacts, estimate the biodiversity benefit 

for every feature under business as usual.

2. Set rank r = 0.

3. Estimate the marginal increase in benefit δB from protecting each 

pixel i:

δB B B= −i s i s+0 0

∑ ∑δB σ X σ X= ( ) − ( ) ,i
j

j j i
z

j
j j

z
+s s0 0

which can be approximated as

∑δB σ X S≈ ∆i
j

j j ji 0

∑δB σ v v S≈ ( − )i
j

j i j i j j,
in

,
out

0

where S j0
 is the derivative of the benefit function with respect to Xj at 

any given step.

4. Select the pixel k that maximizes δB and assign it a rank of r = r + 1.

5. Update current conditions.

6. Return to step 3 until all pixels have been selected.

Note that at any given step, the slope S j0
 is independent of the pixel 

i that is being evaluated for selection, and thus it needs to be estimated 

only once for each feature91. Furthermore, for a given feature, the deci-

sion to select a pixel depends only on the pixel-specific difference in 

value with and without protection, which in turn depends on the rela-

tive levels of abatable and un-abatable impacts such that:

v v v I I− = (1 − ) .i j i j ui j a,
in

,
out

, 0 i i

It is this interaction between types of impacts in a given cell that 

gives higher priority to areas in which abatable impacts are relatively 

high and un-abatable impacts are relatively low.

Given the global scale of this analysis, we made the simplifying 

assumption that the costs to establish, implement and manage MPAs 

are uniform. Realistic, comprehensive and spatially explicit datasets 

that account for variations in these costs for MPAs are not available at 

present. However, when possible, such data can and should be inte-

grated into our prioritization framework at scales relevant for con-

servation planning92–94.

Multi-objective prioritization

We jointly maximize multiple objectives for biodiversity, carbon and 

food by combining them into a single benefit function such that the 

utility of a set of protected pixels (Us) can be defined as:

U α B α C α F= + + ,s s s sb c f

where αb, αc and αf correspond to the weights given to the biodi-

versity, carbon and food objectives, respectively, which in turn 

reflect our preferences for each of the three goals. As there is no 

globally accepted weighting scheme to aggregate our three goals, 

any multi-objective optimization will be subjective. To illustrate 

the possibilities without imposing our own subjectivity, we explore 

how the optimal level of ocean protection to maximize net benefits 

changes given different preferences. For this analysis, we vary the 

weight given to biodiversity across a range of −100× to 100× the 

weight placed on food provisioning. For example, a weight of 1 would 

mean that the value of reaching the maximum biodiversity benefits 

is equal to the value of the maximum change in catch (5.9 MMT). A 

value of 0.5 would indicate that food provisioning is twice as valu-

able as biodiversity, and a value of −1 would imply that by reaching 

maximum biodiversity benefits we would incur a loss comparable 

to losing 5.9 MMT of catch. For this exercise we treat carbon as a 

co-benefit and assign it a weight of zero.

Incorporating climate change

We framed our exploration of how climate change affects biodiversity 

conservation priorities by asking how an MPA network designed for 

today compares to a network designed for the future. To answer this 

question, we conducted a biodiversity prioritization with projected 

species distributions (2050, SRES A2 emissions scenario11,31) and sea-

mounts, but excluded biogeographical provinces and current human 

impacts, because the future spatial configurations of these are pres-

ently unknown. The SRES A2 scenario describes a world that is char-

acterized by high regional heterogeneity with continuous population 

growth in the twenty-first century. Cumulative CO2 emissions by the 

middle and end of the twenty-first century are projected to be about 

600 and 1,850 Gt C respectively21. Data on the future distributions of 

seabirds were not available, and these species were excluded from 

these analyses.

National priorities and random analysis

We explored the implications of national planning—whereby priorities 

are driven by the level of representation of each feature within a coun-

try’s EEZ—as opposed to globally coordinated planning based on global 
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feature representation. Effectively, this means running the prioritiza-

tion independently for each country but with the pixel-specific values 

(vi j, 0
) representing the fraction of the country-level total suitable 

habitat contained within each pixel. The result is a ranking for each 

country, which we used to build a global ranking based on the marginal 

increase in biodiversity benefit arising from each pixel. To measure 

the implications of this nation-centric approach, we measured the level 

of protection needed to reach 90% of the total global biodiversity ben-

efits and compared it with the globally coordinated priorities. Finally, 

we built a null model of biodiversity conservation benefits following 

a random prioritization by generating 100 sets of randomly ordered 

pixels and evaluating their performance against a globally optimized 

solution.

Uncertainty analysis

We assessed the robustness of our results to two common sources of 

uncertainty in conservation planning: (1) commission errors in species 

distribution maps; and (2) weighting of individual features. It has been 

shown that at global and coarse scales, commission errors are more 

common and important to assess than omission errors as these can 

introduce an overestimation of biodiversity representation in spatial 

planning38,95. Furthermore, although we aim to minimize the subjectiv-

ity of assigning feature weights by using ecologically relevant metrics 

(extinction risk, evolutionary distinctiveness and functional distinc-

tiveness), these—and our approach to combine them—are only a subset 

of many possible alternatives. Thus, to investigate these sources of 

uncertainty we ran 1,000 iterations of the biodiversity prioritization, 

randomly removing up to 30% of each species distribution, and adding 

random errors to feature weights in each iteration. The fraction of each 

species distribution to remove was drawn from a uniform distribution 

U[0, 0.3], and the errors added to each feature weight (w) were ran-

domly drawn from a uniform distribution U[−sd(w), sd(w)]. We present 

maps of the fraction of all runs in which each pixel was within the top 

5% and 10% of the prioritization solution (Supplementary Figs. 20, 21) 

as well as a map of the coefficient of variation of each pixel across all 

runs (Supplementary Fig. 22). Although this approach helps us to assess 

the robustness of high priority areas for biodiversity conservation, it 

is limited by the unrealistic assumption that commission errors are 

randomly distributed. We restrict the assessment of uncertainty to the 

biodiversity component of our analysis because the carbon, fisheries 

and human impact components have been assessed elsewhere29,96.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

The underlying data used in this study are available from the sources 

listed in the Supplementary Information.

Code availability

The R code that supports the findings of this study is available at https://

github.com/emlab-ucsb/ocean-conservation-priorities.
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