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The rapid development of the Global Positioning System (GPS) devices and location-based services (LBSs) facilitates the collection
of huge amounts of personal information for the untrusted/unknown LBS providers. This phenomenon raises serious privacy
concerns. However, most of the existing solutions aim at locating interference in the static scenes or in a single timestamp
without considering the correlation between location transfer and time of moving users. In this way, the solutions are vulnerable
to various inference attacks. Traditional privacy protection methods rely on trusted third-party service providers, but in reality,
we are not sure whether the third party is trustable. In this paper, we propose a systematic solution to preserve location
information. The protection provides a rigorous privacy guarantee without the assumption of the credibility of the third parties.
The user’s historical trajectory information is used as the basis of the hidden Markov model prediction, and the user’s possible
prospective location is used as the model output result to protect the user’s trajectory privacy. To formalize the privacy-protecting
guarantee, we propose a new definition, L&A-location region, based on k-anonymity and differential privacy. Based on the
proposed privacy definition, we design a novel mechanism to provide a privacy protection guarantee for the users’ identity
trajectory. We simulate the proposed mechanism based on a dataset collected in real practice. The result of the simulation shows
that the proposed algorithm can provide privacy protection to a high standard.

1. Introduction

In recent years, the booming amount of personal mobile
devices with location services has promoted the development
of location-based systems in wireless networks [1]. The wide-
spread use of mobile smart devices has laid the foundation
for massive data collection based on mobile perception. In
these data collection systems, location-based services (LBSs)
provide real-time services related to the user’s current loca-
tion information. Various useful applications depend on
LBSs. For example, Google Maps provides navigation ser-
vices such as route suggestions and road traffic condition
notifications. Groupon and Yelp [2] provide business service
information based on the distances from the users’ location.
Although LBSs (as shown in Figure 1) are very useful and

convenient for users, these conveniences are at the expense
of users’ private information. The service providers can infer
an individual’s residence information, work location, and
other private information by observing the user’s temporal
correlated data [3–6].

Many methods for personal information protection are
proposed as follows. One of the solutions is Private Informa-
tion Retrieval (PIR) [7]. In modern cryptography, the main
purpose of PIR is to allow a user to retrieve items from a
server without disclosing any private information. In other
words, the server does not know the user’s specific query
information and retrieved data in the process. However,
one major disadvantage of this technique is the enormous
amount of calculation for redesigning different queries
according to different query types. Most of the methods are
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developed based on location obfuscation, which uses a cloak-
ing area or a perturbed location. These solutions rely on syn-
tactic privacy models, which cannot provide a strict privacy
guarantee. Unfortunately, most of the solutions only con-
sider the stationary scenario and perturb the location at a sin-
gle timestamp while neglecting the temporal correlation of
the movement of the user’s locations. Hence, the adversaries
can effortlessly access more private information by linking
inference attacks. Most typical methods to protect users’ pri-
vate information use differential privacy and k-anonymity. k
-Anonymity as one of the principal approaches [8–10]
ensures the probability of success to any linking attack to
be lower than 1/k. However, it provides a lower privacy guar-
antee and data utility.

Differential privacy [11] was originally proposed by
Dwork in 2006. Later, the idea is regarded as a standard for
private information preservation. Although the applications
of differential privacy in protecting private information have
gradually become applicable in practice, some challenges still
exist in the problem of continuous location sharing. First of
all, in the standard privacy protection settings, only user-
level privacy (whether a user appears in a dataset or not) is
protected. In our setting, the trajectories of a single user are
protected for a period of time. Second, the released trajectory
can be identified based on road networks without temporal
correlation. Furthermore, the adversary can identify the user
captured by moving patterns. Finally, none of the effective
released trajectory mechanism utilizes the combination of
k-anonymity and differential privacy.

In this paper, we propose an all-new solution to preserve
the user’s trajectory privacy with k-anonymity and differen-
tial privacy. As shown in Figure 2, a moving user needs to
continuously share locations with untrusted service pro-
viders or other third parties in a period of time. In other
words, in our solution, a user’s accurate location information
is only known by him. We regard all service providers and
third parties as adversaries. The adversaries have side knowl-
edge as much as they can obtain. We propose a new privacy
protection system that enables private location sharing with-
out disclosing users’ accurate locations to these adversaries
and protects users’ trajectories in a continuous time period.

The proposed system is noted as UGIS (User and Geo-
graphic Space-Indistinguishable System), and this system
consists of two parts. One part is the KD-location region
(KD is the k-anonymity and differential privacy for short),
referred to as a special region in the context. Another part

is the users’ accurate trajectory processing mechanism. In
the KD-location region, adversaries cannot recognize the
target user. We then move on to the trajectory processing
mechanism that makes a good performance to protect users’
trajectories. To our knowledge, UGIS is a better private pro-
cessing mechanism that combines k-anonymity and differen-
tial privacy methods to protect the location and trajectory
information of users. The following is a summary of this
paper’s contribution:

(i) To protect the user’s accurate location, we only need
to “hide” it in a special region set in which the
adversaries cannot distinguish the locations or users.
Accordingly, we propose a special region set based
on k-anonymity and differential privacy to protect
the accurate location of each timestamp

(ii) To show that the user’s movement is associative and
temporally correlated. In our problem, the user’s
location transfer is time-related. We use the Markov
model to represent the user’s location change
between continuous timestamps [12]. Hence, from
the perspective of adversaries, the user’s location
transfer model is a hidden Markov model (HMM)

(iii) We focus on the transfer mechanism in a Markov
model. We utilize the concept of differential privacy
to add noise to this transfer mechanism to make the
users’ trajectories indistinguishable

The rest of this paper is organized as follows. Section 2 is
our related works. In Section 3, we discuss the notions of
location privacy from the literature and analyze the weak-
nesses and strengths of the state-of-the-art algorithms. Also,
in Section 3, we introduce the coordinate system and location
transition model. We then describe several components and
definitions of our UG-indistinguishable system in Section 4.
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Section 5 contains the illustration of the framework and the
implementation of our location release algorithm. The exper-
iment and evaluation are presented in Section 6.

2. Related Works

In this part, we mainly make some generalizations and sum-
maries of the previous literature. A few recent works [3–15]
provide an overview of location privacy protection mecha-
nisms (LPPMs) and methods. These location privacy protec-
tion mechanisms mainly use obfuscation technology to
achieve the anonymity area. The most widely used approach
to construct the LPPMs is k-anonymity. The notion of k
-anonymity is commonly used to protect privacy for
location-based systems in most of the works in the field.
These systems mainly focus on protecting the users’ identities
and preventing the adversary from inferring accurate infor-
mation among k users from the published user datasets.
One way to implement this method is to use dummy loca-
tions mentioned in [16, 17]. However, since the output of
the dummy location is controlled by the server, the adversar-
ies can easily find out where the dummy location is not logi-
cally generated. Another method to achieve k-anonymity is
through the cloaking region [18–20]. The disadvantage of
the method is the high risk of having a too-large cloaking area
to satisfy thekvalue in the scene with few users. A different
approach is to add certain quality constraints to provide bet-
ter privacy protection [21], while [22] additionally using
bandwidth constraints. Literature [7] also proposed a loca-
tion privacy mechanism focusing on the evaluation based
on location-based range queries. This method evaluates the
degree of privacy according to the size of the cloaking area
and the coverage of the sensitive area. Two methods have
been proposed to deal with the adversary’s background
knowledge, by expanding the anonymous area or delaying
the sending of requests. Both solutions may lead to a decline
in service quality. The methods based on k-anonymity are
improved, but the definition of differential privacy provides
a more rigorous guarantee.

Several privacy-protecting methods use the differential
privacy approach in recent works [23, 24]. For instance,
[25] presents a way to statistically simulate the location
data from a database while providing privacy guarantees.
They designed an information perturbation mechanism to
generate aggregated information from a large amount of
locations, trajectories, and spatiotemporal data [26–29].
[30] proposed a differential privacy data mining algorithm
that uses a spatial quadtree decomposition technique to
preprocess the locations. The work closest to ours is [31].
A large part of the research is based on the use of cloaking
areas to enforce location confusion mechanisms. This
method leads to a reduction in the utility of published data.
[32] proposed a data sanitization method collectively
manipulating users’ profiles and friend relationships. This
method is not suitable for our framework setting and fur-
ther research. However, the method does not solve the
users’ movement trajectory problem. In this paper, our sys-
tem protects the users’ accurate location with a rigorous

privacy guarantee and makes the users’ trajectories indistin-
guishable at each timestamp.

3. Preliminary

In this section, we discuss various notions of location
privacy-preserving methods such as k-anonymity, differen-
tial privacy, and location transfer model. We consider a sce-
nario where a user wants to post a query about points of
interest at the current location by using a personal device
(e.g., smartphone) to query a public service provider. The
users expect their accurate location to be private regardless
of the process of the search. Our goal is to develop a real-
time privacy mechanism that provides privacy protection in
a formal notion to achieve users’ expected privacy protection
level. A list of frequently used symbols in this paper is all
motioned in Table 1.

3.1. k-Anonymity. k-Anonymity is one of the privacy pro-
tection methods widely used in most location-based sys-
tems. These systems focus on protecting the user’s
identity, making the adversary unable to infer which user
is the true target among k users. One way is to generate
k − 1 properly pseudo points and use the actual location
and pseudo locations to perform k queries to the service
provider. Another way to achieve k-anonymity is through
a cloaking area. This approach involves creating a cloaking
area that includes k users sharing some points of interest,
then querying the server using this cloaking area instead
of the accurate location. Unfortunately, the adversaries
can identify the target user when adequate side knowledge
is available. Pseudo locations are only useful if they have
enough similarity with the real locations from the adver-
saries’ point of view.

As a result, notions that abstract from adversaries’ knowl-
edge, such as differential privacy, have more popularity later
than k-anonymity approaches.

3.2. Differential Privacy and Laplace Mechanism. Differential
privacy (DP) [11] is a notion of private information
inspired by the concept of statistics. DP guarantees to max-
imize the accuracy of data queries when querying from the
statistical database while minimizing the chance of identify-
ing other records. DP removes the individual characteristics
while preserving statistical characteristics to protect the
user’s privacy. DP has gradually become the de facto stan-
dard in data privacy due to its strong privacy guarantees
in statistical analysis. Moreover, differential privacy is a
semantic model that does not need to rely on the adver-
sary’s background knowledge and provides a higher level
of semantic security from private information. Differential
privacy ensures that adversaries cannot infer whether a par-
ticular user is present in the original data. Releasing data
according to differential privacy ensures that adversaries
cannot infer any information about personal information
from the “sanitized data.” The definition of differential pri-
vacy is demonstrated as follows.

3Wireless Communications and Mobile Computing



Definition 1. (differential privacy). A mechanism M satisfies
ε-differential privacy if any outputs ∈ S and databaseD and its

neighboring database D′can be obtained by either adding or
removing a single record, and the following holds:

Pr M Dð Þ ∈ sð Þ ≤ eε × Pr M D′
� �

∈ s
� �

: ð1Þ

The Laplace mechanism [33] is commonly used to achieve
ε-differential privacy. It is built on the sensitivity defined as
follows.

Definition 2. (sensitivity). For any query f ðDÞ: D→ Rd ,

l1-norm sensitivity is the maximum l1-norm of f ðDÞ − f ðD′Þ,

where D and D′ are any two instances in neighboring data-
bases as the following equation holds how to capture the
sensitivity of two neighboring databases:

Sf =max
D,D′

f Dð Þ − f D′
� �

�

�

�

�

�

�

1
: ð2Þ

The Laplace mechanism implements differential private
protection by adding noise of Laplace distribution to the query
result AnsðDÞ = f ðDÞ + LapðβÞ, where β = Sf /ε. As shown

above, the concept of differential privacy is generally applied
in the joint publishing of compound data. The standard con-
cept makes it unsuitable for applications that involve only
one person. In this paper, we propose a more rigorous privacy
guarantee with k-anonymity and differential privacy methods.

3.3. Coordinate System. We divide a map into grids where
each grid is a state in the Markov model. The users’ real loca-
tions can be denoted by the state grids in a Markov model.
Denote R is the area that includes all the state grids. These
areas R can be divided into many spaces R = fr1, r2, r3,⋯,rig,
where each ri means a unit grid in region R. We set up a spatial
coordinate system by which the user’s accurate longitude and
latitude can be represented as X-axis and Y-axis coordinates.

Vector coordinates represent each grid unit, which more
clearly shows the user’s current position and the corresponding
state grid in the Markov model. In Figure 3, all grids have the
same size, but in the real world, the sizes of each region are
not necessarily equal.

The following example illustrates how to use these grids
to denote the user’s current location. If the user is located
in the area r6, we denote into this state coordinate system,
where lu = r6 = ½1, 3� with x = 1 and y = 3. As time goes by,
the trajectory of a user’s movement is represented by a series
of state lui in the map coordinate system.

3.4. Location Transition Model and HMM. This paper is
based on the study of moving users’ trajectories, so we pro-
pose to use the random process Markov chain [34–36] to
simulate the movement of the user from one point to another
under temporal correlations. Other constraints, such as the
road networks, can also be captured by the Markov model.
The kernel of theMarkov model is the state transition matrix.
The current state only depends on the transition matrix and
its previous moment state. As mentioned before, the user’s
real locations are unobservable and only known by him.
Hence, for the adversaries, the user’s movement process is a
hidden Markov model.

We use Pt to represent the location of the user at time-
stamp t. Pt½ri� = Pr ðatu = riÞ represents the probability that
user u appears in the area ri at timestamp t. Therefore, we
construct the Markov process as follows:

Pr atu = ri
� �

= Pr atiu = ri ∣ a
t1
u = r1, a

t2
u = r2,⋯,ati−1u = ri−1

� �

:

ð3Þ

In the first-order Markov model, there is the hypothesis
that the transition probability of state and the output proba-
bility of observation are only dependent on the current state.
So the Markov process can be simplified to

Pr atu = ri
� �

= Pr atiu = ri ∣ a
ti−1
u = ri−1

� �

: ð4Þ

The transition probability,

Pr
ri j
u = Pr ati+1u = r j ∣ a

t
u = ri

� �

, ð5Þ

is the one-step transition probability from timestamp t to
t + 1. The transition probability satisfies the following
properties:

Pr
ri j
u ≥ 0,

〠
∞

i=0

Pr
ri j
u = 1,

j = 1, 2, 3,⋯:

ð6Þ

The sum of the transition probabilities of all possible
locations of the user from timestamp t to t + 1 is 1. We
implement the Markov model on the trajectory of moving
users and get Pt = Pt−1 ∗ TM to denote the probability

Table 1: Summary of notations.

Symbol Meaning

atu User’s information at timestamps t

Xi, Y i Axis in the coordinate system

Δ The special location set a user is located in

pt i½ � The probability of a user in region i at timestamps t

l Current location of the user

l′ Puppet of the user’s location

Rt The special region a user is located in

l̂
Nearest location to the target user’s location in

the special region

Sf The sensitivity

TM Markov transfer mechanism

D,D′ Neighboring database

Tau Trajectory of a user
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transfer at each timestamp. The transition matrix TM is
given in our system.

4. UG-Indistinguishable System Model

To apply k-anonymity and differential privacy in the area
where moving users share locations on consecutive time-
stamps, we conduct a rigorous privacy analysis and set a spe-
cial region Rt (contains an actual user and pseudo users).
Even if the adversaries capture this special region, they still
cannot identify the target user.

4.1. BB Cloaking Region R. The essence of applying differen-
tial privacy in location sharing is to “hide” a real location in a
database by adding or removing one record to obtain a
“neighboring database.” The special region R can be regarded
as a set of locations. The adversaries cannot infer whether the
target user is in this database R or not with any kinds of
queries. However, such a dataset is not completely suitable
for our problem. So we proposed a new notion, the black B
cloaking region. The black B cloaking region is also noted
as a special region to hide users’ accurate location at every
timestamp. We need to compute the amount of information
as follows to obtain the cloaking region at timestamp t:

H atu
� �

=〠 Pr atu = ri
� �

· logPr atu = ri
� �

, ð7Þ

which is also known as the amount of prior information
that user u is in region ri at timestamp t. We intend to
use Hðatu = ri ∣ KÞ to represent the posterior information that
adversaries infer the user’s location information through exist-
ing background knowledge K.

H atu = ri ∣ K
� �

=〠 Pr atu = ri ∣ K
� �

· logPr atu = ri ∣ K
� �

: ð8Þ

In summary, the amount of the user’s location informa-
tion disclosed to the adversary is as follows:

H ′ =H atu
� �

−H atu = ri ∣ K
� �

: ð9Þ

Thus, we can obtain a definition of generating a special
location set.

Definition 3. (θ-location set). We can set the probability that
the adversary can infer the user’s current location Pr ðatu =
ri ∣ KÞ as the posterior probability, and the probability of
the user at the current location is Pr ðatu = riÞ; then, the pri-
vacy requirement is as follows:

Pr atu = ri ∣ K
� �

− Pr atu = ri
� �

≤ θ: ð10Þ

θ is the privacy threshold of the user’s current location at
timestamp t and 0 < θ < 1. In this article, we set parameter θ
as no greater than 0.3. We assume that the parameter θ is
given in our framework. When the user’s location informa-
tion exposed to the adversary is greater than the privacy
threshold, the cloaking region needs to be generated for pro-
tecting the real location at timestamp t.

We define a special region based on k-anonymity and dif-
ferential privacy, which intuits that the released area will not
help an adversary to distinguish any instances in the region.
According to Definition 1, we make a transformation that
adjusts to a special region R in our article. The new definition
is shown as follows.

Definition 4. (BB cloaking region differential privacy∗). At
any timestampt, the cloaking region generation by mechan-
ismMis represented asRt , the query function represented
asqðÞ, and the query result ofqðÞon the cloaking region
satisfiesε-differential privacy, and the following holds:

Pr q atu1

� �

∈ Rt

� �

≤ eε · Pr q atu2

� �

∈ Rt

� �

: ð11Þ

The definitions guarantee that the accurate location is
always protected in a location set Δ at each timestamp. The
released region Rt is differentially private at timestamp t for
continuous location sharing under temporal correlation.
We use the following context to explain how the special
region work. In the beginning, a user moves to a new location
where he may send a query (e.g., find the nearby restaurant)
[37, 38]. At each timestamp, we denote the user’s individual
information as At

ui
= ftime, location, sex, age, queryg. The

user can be treated as a target user. Then, we assume a mech-
anism in our system that can obtain a set of k nearest neigh-
bor users with the same query. This set allows the existence of
the dummy users, and our system can release the dummy
users. Our anonymous generation process is more compli-
cated, and the best effect is verified by experiments when
k = 5. We regard these four nearest neighbor users as the
new target users, respectively. Hence, we have a set of users,
as shown in Figure 4.

4.2. Razor Mechanism. After obtaining a set of nearest neigh-
bor users, we propose a new method, Razor Mechanism, to
filter the similar terms. We use this mechanism to eliminate
users whom we do not want to appear in the nearest neighbor
users set.

Even though the adversaries have side knowledge as much
as they can have, they still cannot know which nearest neigh-
bor users are generated by the first anonymity. The Razor
Mechanism uses the principle of similarity measurement
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Figure 3: State coordinate system.
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[36] to filter out the pseudo users generated in the first ano-
nymity. In services based on location information, we usually
set the distance between locations as a measure of similarity.
The similarity measurement of users in the anonymous area
is shown in the following formula:

Sim atui , a
t
u j

� �

=
dist ui, uj

� �

maxdist Rtð Þ
: ð12Þ

As shown in Figure 4(a), the data generated in the anony-
mous data preprocessing stage are removed as noisy data by
the Razor Mechanism. Figure 4(b) shows all the remaining
data in the special cloaking region, excluding the location
coordinate data of yellow dots.

4.3. Drift and Puppet. We use the Razor Mechanism to filter
out noisy points that we do not want to appear because the spe-
cial region contains almost all similar users and possible loca-
tion information. The target user’s information is also
eliminated with a small probability (technically, distðui, ujÞ =

maxdistðRtÞ). This phenomenon is referred to as “drift” and
can be solved with the puppet approach in the special region.

We use ltðlon, latÞ and lt ′ðlon′, lat′Þ to denote the user’s
accurate location and puppet, respectively. The definition of
the puppet mechanism is shown as follows.

Definition 5. (puppet). A puppet lt ′ is a cell in the special set
which has the closest distance to the target user’s location lt :

lt′ lon′, lat′
� �

= arg max
l̂∈Δ

dist l̂, l
� �

: ð13Þ

In this equation, Δ represents the special location set, and

the function dð̂l, lÞ denotes the distance between two users in
the special region. Note that the puppet approach does not
leak any information about the target user. If the target user
is in the special set, we protect the target user in the region;
otherwise, the puppet is then protected in the special set.

Using a puppet does not disclose whether the user’s location
lt is in Rt or not. We have mentioned before that our location
release mechanism is treated as a black box region. It is still a
black box after replacing the accurate location with a puppet.

5. Location and Trajectory Release Algorithm

5.1. Framework. The framework of the special location region
release algorithm is shown in Algorithm 1. We generate a
special location set at every timestamp to protect a single
user’s accurate location continuously. The procedure of the
generation of the special location set at timestamp t is
explained in the context above. First, from lines 1 to 6 in
Algorithm 1, the model makes a prediction based on the hid-
den Markov model. At each timestamp t, we compute the
probability pt−1. If the current location at timestamp t satis-
fied the privacy threshold (pt−1 ≤ θ), the procedure moves
to the next timestamp. Otherwise, the special cloaking region
is generated at the current location. The process of the special
location set is shown in lines 8 to 19. If the target user is fil-
tered out of the special location set, we use a puppet in Δt

at timestamp t as if it is the “target” user in the release mech-
anism. Our proposed algorithm uses l1-norm to capture the
sensitivity of the special location set. After all these steps,
we can obtain a special location set. According to this special
location set, we can generate a special region for a single user
at timestamp t. In this region, no matter how much side
knowledge the adversaries may have, the adversaries can no
longer distinguish the target user from the users.

5.2. Linking Differential Privacy to Trajectory. A user’s loca-
tion trajectory is a moving path or trace reported by a moving
object in the geographical space. The user’s trajectory Tau

is

represented by a set of n time-order points, Tau
: p1 ⟶ p2

⟶⋯⟶ pn, where each point pi consists of a geospatial
coordinate set ðXi, Y iÞ and timestamp t (i.e., pi = ðX i, Y i, tÞ,
where 1 ≤ i ≤ n). Such temporal and spatial attributes of a
location trajectory can be considered powerful quasi-

(a) The first anonymity (b) The second anonymity

Figure 4: Obtain the set of users.
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identifiers that can be linked to various other kinds of phys-
ical data objects [39, 40]. From the adversaries’ point of view,
these trajectories may disclose users’ individual information
such as users’ work, home, and points of interest (POI).
Although such trajectories can be made anonymous by
replacing the identifier of users with random identifiers, the
users may still suffer from privacy threats.

In this paper, our approach uses the Markov model to
denote users’ movement from one special region to another.
We use the equation pt = pt−1 ∗ TM to denote a single user
moving from one region (at timestamp t − 1) to another
region (at timestamp t), and TM denotes the transfer mech-
anism of users’ movement. The transfer mechanism uses
Laplace noise to make users’ trajectories indistinguishable.
As shown in Figure 5, we add Laplace noise to the Markov
transfer mechanism to make users’ transition probability
basically the same. For example, when a user moves from
region r1 to another, according to his habits, the transfer

probability at each region is different (e.g., the probability
from r1 to r2 is 5/10, r1 to r3 is 2/10, and r1 to r4 is 3/10).
According to our method, after adding Laplace noise to the
transfer mechanism, the transition probability from r1 to r2
is 4/10, r1 to r3 is 3/10, and r1 to r4 is 3/10. In the following
section, we will show the performance by the experiment
results.

6. Experiment and Evaluation

In this section, we present the evaluation of our method. All
algorithms are implemented in Python on macOS with the
real-world datasets GeoLife and Gowalla [41–43]. The Geo-
Life dataset is collected in (Microsoft Research Asia) GeoLife
project by 182 users from April 2007 to August 2012. A time-
stamped sequence of points represents the GPS trajectories in
this dataset. Each point contains information on latitude,
longitude, and altitude. This dataset has 17,621 trajectories
with a total distance of 1,292,951 kilometers and a total dura-
tion of 50,176 hours. The trajectories are updated at a fre-
quency of every 1 ~ 60 seconds. The Gowalla dataset is
collected by Stanford University and is a location-based
social networking site where users can share their location
information by signing in. The dataset collects a total of
6,442,890 check-in locations and 19,651 check-in informa-
tion. The check-in data is used to train the Markov model.
We implement the proposed model by the following steps.

Step 1. Input the training dataset (Gowalla) to train the Mar-
kov model and output the prediction results.

Step 2. If the prediction results we obtain from Step 1 did not
satisfy the privacy threshold θ, then we need to generate the
special location set by our mechanism at the current time-
stamp. Otherwise, move to the next timestamp and continue
Step 1.

Step 3. Check whether the real location is in the special region
or not. In the process of generating a special region, we have a
small probability of filtering out the true location. So we use
the nearest and the most similar location as a puppet in Δr
instead of it.

Framework.

Input: atu, TM, pt−1, l, l′

Output: Cloaking regionRt

1: pt ⟵ ptTM;

2: Pr ðatu = riÞ − Pr ðatu = ri ∣ KÞ = pt−1;
3: if pt−1 ≥ θ then

4: Construct a special set of this location;
5: else
6: Go to next timestamps;
7: end if
8: Construct a special location set:
9: Run k-anonymity⟶setΔ∗;
10: ri = ðxi ; yiÞ;
11: for ðint k = 0, k ≤ 5, k++Þ do
12: ri = Random ðx∗i ; y

∗
i Þ

13: if distðri ; r
∗
i Þ ∈ ðdistmin ; distmaxÞ then

14: add r∗i toΔ
∗

15: algorithm goes on
16: else
17: go to line 11
18: end if
19: end for

20: Δ∗
⟶ Razor Mechanism;

21: Simðatui ; a
t
u j
Þ = distðui ; uj Þ/max ðRtÞ

22: while Check l′do
23: if l ∈ Rt then

24: algorithm goes on;
25: else fl ∉ Rtg

26: l′ ⟵ surrogate;
27: end if
28: end while

29: Obtain sensitivity of the special set Δ1;
30: Δ1 + LapðΔf /εÞ = Rt ;
31: Releases this region Rt ;
32: end;
33: return Algorithm;
⟶ Go to the next timestamps

Algorithm 1
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Figure 5: Possible transfer state.
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Step 4. Use the special region Rt in each timestamp to divide
the real-world map into several neighboring grids. In each
grid, the adversaries cannot distinguish between the target
user and the pseudo user.

Step 5. Finally, we add noises to the Markov model. In each
timestamp, we add noise to the transfer mechanism to make
the trajectories indistinguishable.

The performance of the release mechanism as a user
moves over time is explained as follows. We treat our release
mechanism at each timestamp with ε = 1. Each method is
run over 20 times and shows outstanding performance.
Figure 6(a) shows how to hide a user’s accurate location by
the first anonymity. The X-axes and Y-axes represent the
longitude and latitude, respectively. The symbol “∘” denotes
the user’s true location. “Δ” are the pseudo locations gener-
ated in the first anonymity. We have the SSE (sum of the
squared errors) as the core indicator for the selection of k
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Figure 6: Differential privacy and k-anonymity.
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value. As the k value increases, the sample division gets more
refined, and the degree of aggregation of each cloaking region
gradually increases. Then, the SSE naturally gradually
becomes smaller. In our method, we set the parameter k = 5
. We have experimented for many times that the parameter
k size is better than others, as shown in Figure 7.

We choose four users who are the most similar to the
real user and sent the same query at timestamp t. In
Figure 6(b), we can see the second k-anonymity after
Figure 6(a). In the second anonymity, we consider the first
four users generated by the first anonymity as the “real” user,
respectively. Then, the model generates more anonymous
users by these four “real” users. In Figure 6(b), the symbol
“∗” denotes the pseudo users generated in the second ano-
nymity. Through these two operations, we obtained a much
bigger anonymous area with many similar anonymous users.
Next, through the “Razor Mechanism” in Section 4, the
model filters out several pseudo users generated from the
first k-anonymity with “Razor,” as shown in Figure 6(c). In
this part, we make full use of the Jaccard Razor. While using
the “Razor Mechanism,” the actual user may be filtered out
with a very small probability, which is known as the “drift”
phenomenon.

When a “drift” happens by a minuscule probability, we
use a surrogate user in ΔRt to impersonate the target user.

In the next step, the model adds Laplace noise to this spe-
cial region ΔRt at timestamp t, which can provide a rigor-
ous privacy guarantee. We then obtain a new cloaking
region that contains the pseudo location and the true loca-
tion. As shown in Figure 6(d), the area within the square
is one of the grids in the real-world maps. The symbol “∗”
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denotes the pseudo users generated in the second ano-
nymity. Finally, the model generates a noisy cloaking
region. The added Laplace noise makes the new special
region very stable. Noisy users are always around the real
user and fake users. In this special region, the adversaries
cannot distinguish the target user and the pseudo users.
In Figure 8, the true trajectory is compared with the tra-
jectories with noise added to the Markov transfer mecha-
nism. Figure 8(a) is a randomly selected accurate
trajectory of a single user in a period of time. The user’s
movement is shown in Figure 8(a). The most important
step in the algorithm is the addition of Laplace noise to
the Markov transfer mechanism. This process makes the
transfer probability stable. The noisy trajectories after add-
ing noise with the Laplace mechanism are presented in
Figure 8(b). As shown in Figures 8(a) and 8(b), the
released trajectory is still close to the accurate trajectory.
The special regions at every timestamp t are used to divide
the real-world map into grids, as shown in Figure 8(c). In
this region, the adversaries’ side knowledge no longer
affects privacy protections. The adversaries cannot either
distinguish the accurate trajectory in the released trajecto-
ries or recognize the target user in these special regions
ΔRt at each timestamp. Our mechanism is the better one
comparing to the normal Laplace mechanism, as shown
in Figure 9.

To show the practicality of the release location area, we
measure the query accuracy and recall rate of k nearest neigh-
bors for every 500 timestamps in 150 trajectories, as shown in
Figure 10. In Figure 10(a), it shows that the precision declines
when k rises because when k grows, the nearest neighbors have
to be found in larger areas. And a larger location set returned.
On the other hand, Figure 10(b) indicates that the recall ratio
increases with greater k. Figure 8 shows the comparisons of
experiment results by the proposed method’s position release
mechanism in this paper and those by the Laplace mechanism.
The results indicate that the usability of our method is better
than that of the Laplace mechanism.

7. Conclusion and Future Work

In this paper, we proposed a L&A-indistinguishable system
under temporal correlation. The system uses the Markov
model to denote users’ movement on the road network and
then generates a special user set by k-anonymity and differ-
ential privacy approaches. The proposed system can provide
perfect privacy protection for a single moving user. The
method is based on the hidden Markov model and learns
from historical trajectories to obtain prediction results for
the future timestamp.

As a direction for future work, we are interested in instan-
tiating the system with different and more advanced mobility
models and researching the impact on the system’s perfor-
mance change. We look forward to making the mobile user’s
personal information protected with a more rigorous privacy
guarantee with a smaller loss in data utility. We aim to conduct
more profound research to enhance the availability of the
region release mechanism based on the existing research stud-
ies. We plan to develop a model to recommend points of inter-
est, based on the user’s movement position information, and to
recommend the community to which the user may move.
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