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Abstract

Protecting the privacy of users querying
Location-based Services

Volkan Cambazoglu

Location-based services (LBS) is a new and developing technology for mobile 
users. Nowadays, it is very easy for a person to learn his/her location with the 
help of a GPS enabled device. When this location is provided to a LBS via 
querying, it is possible to learn location dependent information, such as 
locations of friends or places, weather or traffic conditions around the 
location, etc.
As LBS is a developing technology, users might not be aware of the risks that it 
poses. There have been many protocol proposals aiming at protecting the 
location privacy of the users, who communicate with a LBS. K-Anonymity is 
one of the popular solutions that aims to gather k users under a cloak in order 
to make queries of each user indistinguishable in the eye of an adversary. 
However, there are claims that K-Anonymity does not solve the problem of 
location privacy.
In this master thesis, the aim is first to scrutinize existing protocols on 
location privacy, in order to study their approaches to the problem, strengths 
and weaknesses. The thesis continues with implementation of an existing 
protocol and detailed analysis of essential components of the location privacy 
problem. The thesis is concluded by confirming the ideas on K-Anonymity.
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Chapter 1

Introduction

1.1 Introduction to Location-Based Services

New types of smart mobile devices enabled the emergence of Location-Based
Services (LBS). A user of the service carries a mobile device that obtains its
location via Global Positioning System (GPS) [3] or a Wireless Local Area
Network (WLAN) [10]. With the help of a service provider, the device can,
for example, discover nearby restaurants or whereabouts of a friend [1, 5].
In other words, a user provides a user name, location information in x and
y coordinates, a time stamp and a message to the Location Service Provider
(LSP). Message content can include a question or a keyword so that the LSP
can define where the target is. When the LSP calculates the user’s and the
target’s locations, it returns a result, which might indicate a path from the
user’s location to the target’s location or simply present two locations on the
map, to the user.

The advantage of this system is letting users find useful information ac-
cording to their location information. There are many possibilities of in-
terpreting and using location information. It is not required that there are
always two end points that a user starts from and ends at. A user could also
retrieve local information, such as weather or traffic conditions, according to
the location. Location information could also be used to track a vehicle. A
user waiting at a location could follow a vehicle, e. g. a bus, on a mobile
device, so that the arrival time of the vehicle or an intersection point on the
vehicle’s route could be learned.

While the LBS helps users reach places or people easily, private informa-
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tion of users could be disclosed to other people. As users do not want their
locations and mobility patterns to be revealed to other ones, the aim is to
prevent people from making an identity-location binding. Identity-location
binding means that one is able to tell that a specific user has been to a
specific location.

As LBS is a new and interesting opportunity for users, users might not
be aware of the risks that it poses. LBS providing companies/organizations
might set policies to protect user’s rights. However they might not work
all the time or cover all possibilities. As Karim mentions in his paper The
Privacy Implications of Personal Locators: Why You Should Think Twice
Before Voluntarily Availing Yourself to GPS Monitoring, “There must be
significant safeguards to protect the personal, marketable data that a per-
sonal tracking device generates from circulation to interested third parties.”.
[29] It is necessary to pay attention to protecting personal data because of
the unclear guidelines for companies when to ask for approval of customer
in order to release his/her private data to another entity. In addition to
third parties, law enforcement can also by-pass company policies. According
to Karim, “The personal tracking device creates a new realm of potential
for government surveillance. Law enforcement could intercept an individu-
als GPS data, or access past information, making the individual constantly
vulnerable to surveillance.”. [29]

The problem of providing location privacy to users is very wide that
there are many aspects to consider, such as different layers and architectures
of communication. For example, some researchers approach the problem
from physical layer, some from network layer. This project aims to deal
with the problem on application layer. The adversary can be defined as the
LSP or someone, who has access to the LBS data. Furthermore, there are
different architectures for providing location privacy to users. For example,
it can be a central architecture in which all the users communicate with the
LBS via a trusted server. This solution has strengths such as being easy to
implement and maintain, and weaknesses such as forming a bottleneck for
performance and becoming a single point of failure. There are also distributed
solutions. [45] This project aims to adopt a central architecture for simplicity
and working on server side, the LSP, thoroughly.

According to our aims, the studied system, Figure 1.1, is composed of
users, a Trusted Server (TS) and a Location Based Service (LBS). Users
have mobile devices with which they access the LBS through the TS. The
service is based on the location derived on the mobile phone. In addition
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to handling communication between the users and the LBS, the TS is the
central component that provides location privacy to the users. After getting
queries of users from the TS, the LBS prepares answers for queries and sends
them to the TS, which hands them to corresponding users.

Figure 1.1: System Overview
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1.2 The Analysis of the Location Privacy

Figure 1.2: Communication between a user and a Location Based Service

Figure 1.2 shows the model to analyze the location privacy of a user as-
suming an adversary. We will model the capabilities of the adversary in the
next section. Users check-in or query the system at locations where they are
present. This operation could be interpreted as a generation of an actual
event. An event [38] is composed of user’s identity, location information,
time stamp and, optionally, message content. Actual, observable and ob-
served events [38] are all events with different states. State of an event can
change due to transformation or observation. Users send their actual events
to the TS. The TS modifies the actual events by applying the Location Pri-
vacy Preserving Mechanism [38] (LPPM) on them. The LPPM will briefly
be explained below, after the explanation of Figure 1.2. When the LPPM
is applied on actual events, they become protected or, in other words, lo-
cation private. Since the resulting events are protected, they can be open
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to observation; hence, they are called observable events. The TS sends the
observable events to the LBS, where an adversary is present. The adversary
observes the events that the LBS has received. The events that the adversary
has acquired are called observed events since they are obtained as a result
of observation on observable events. The difference between observable and
observed events is that the observed ones are a subset of the observable ones.

1.2.1 Location Privacy Preserving Mechanism (LPPM)

The LPPM have been proposed to protect the location privacy of users.
When the LPPM is applied on the LBS data, one should not be able to figure
out a user’s location at a certain time, even if the LBS data and extra infor-
mation about the user are available. The LPPM can include anonymization,
obfuscation, elimination, introduction of dummy events or a combination of
them.

• Anonymization [12, 20, 38] is applied on actual events so that it
is not possible to deduce user’s identity by looking at a query or a
response. For example, an anonymized query might consist of pseudo
name, location information, time stamp and message content. Pseudo
name could be anything, such as a random number or name, except
the user name.

• Obfuscation [11, 14, 21, 22] is a method to make a user’s location
information and/or time stamp inaccurate or imprecise so that the
adversary cannot pinpoint where a user is exactly located.

• Elimination [25, 26, 27, 28] means removal of some of the actual events
of a user. The reasons might be overuse of the system by the user or
privacy degrading parts in the actual event. If a user uses the system
frequently and for long periods of time, then that user might reveal
too much information about him/herself unintentionally. Furthermore,
if a user is staying at a location continuously or always asking for the
same content, then an adversary might distinguish the user from others
easily. Therefore, it might be necessary to eliminate some of the actual
events of users in order to increase their location privacy.

• Introduction of dummy events [15, 30, 33, 44] aims to add fake
events, which mislead an adversary so that, a user appears to be at a
location, which he/she does not really.
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Moreover, several LPPM could be combined to provide higher location
privacy to users.

• K-anonymity [13, 20, 21, 22, 41, 42, 43, 45] is a location privacy solu-
tion, which includes both anonymization and obfuscation. Anonymiza-
tion is applied to protect the user name of the user and obfuscation tech-
niques are applied to protect the location-time couple where the user is
present. When an adversary observes the results of K-anonymity mech-
anism, he/she notices that there are k many indistinguishable events all
identity-less and occurring at the same location/area and time period.
K-Anonymity will be examined and explained in detail in sections 4, 5
and 8.
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1.3 The Evaluation Model for the Location

Privacy

As the LPPM is mentioned in the previous subsection, there are various ways
of providing location privacy to the users of the LBS. The next step, after
applying the LPPM on actual events, is to evaluate the effectiveness of the
LPPM. It is also important to benchmark different LPPMs according to their
efficiency in protecting the location privacy of the users. It is necessary to
understand the adversary model and the location privacy metric, in order
to be able to assess the efficiency of the LPPM. Therefore, we, first, look at
what the adversary does when he/she acquires the observed events, which
are transformation of actual events due to the application of the LPPM on
them. Then, we consider a way of evaluating the LPPM depending on the
comparison between the actual and the observed traces. The evaluation
model is adopted from the paper A Distortion-Based Metric for Location
Privacy [38].
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1.3.1 The Adversary Model

Figure 1.3: Adversary’s way of utilizing the observed events

The order of adversary’s actions are presented in Figure 1.3 from left to
right. The adversary acquires observed events and, then, analyzes them ac-
cording to his/her knowledge of the users and/or the locations. The analysis
consists of generation of traces and assignment of probabilities to them. The
adversary generates possible traces out of the set of observed events. The
adversary’s probability assignment is done according to the order of traces.
A trace [38] is a sequence of events, which are placed in it in the order they
are generated. Each user has an actual trace, which is composed of actual
events of the user. There are also observed traces, which consist of observed
events. The adversary generates observed traces in a probabilistic manner
to figure out the real trace of a specific user. The trace, which is assigned
the highest probability, is the closest one to the actual trace of the specified
user, according to the adversary.
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1.3.2 The Location Privacy Metric

Figure 1.4: Evaluation model for estimating Location Privacy of a user

In reality, the adversary looks at the results of his/her probabilistic anal-
ysis and guesses a user’s location; however, since we try to simulate the
adversary, we think we have what the adversary would have. Therefore,
traces, which are generated by the simulated adversary, are compared to ac-
tual traces of users. As it is shown in Figure 1.4, the difference between
traces, which are weighted according to a probability distribution, tells us
adversarys error or how much the observed traces are different or distorted
from the actual ones. [38] For example, if the adversary generates a possible
trace, which is very close to the original one, and assigns high probability to
it, then the adversary’s error would be very small. On the other hand, if the
adversary assigns low probability to the same trace, then his/her error would
be greater than the previous example. Adversary’s error is aggregated over
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all traces, hence the location privacy of a user depends on complete analy-
sis of the adversary, which means that adversary’s both correct and wrong
decisions are taken into account. When the location privacy of all users are
calculated, it is possible to estimate system wide location privacy.
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Chapter 2

Problem Description

There have been many protocol proposals aiming at protecting the location
privacy of the users considering approach from application layer and central-
ized architecture. One of the most popular solutions is K-anonymity, where
the locations of k users are cloaked together so that they appear as potential
senders of a query. R. Shokri et al. [39] showed recently that construct-
ing cloaking regions based on users’ location does not reliably relate to the
location privacy of users.

The goal of this master thesis is to investigate the weaknesses of exist-
ing protocols, identify the sensitive information revealed, explore how these
protocols can be tampered with, and propose a better solution. After com-
pleting investigation of existing protocols, there is not enough time to propose
a brand new protocol for the location privacy. However, investigation shows
that there are still important aspects to consider, which are the traces of
users, the adversary model and the comparison of different protocols.

The trace of a user is directly considered in the assessment of the location
privacy of the user. It is hard to simulate every possible trace of a user, hence
we would like to consider abstract models for traces of users. Generation of
traces of users will be explained in chapter 7.

The adversary model is another crucial part of the problem, as it has
direct impact on the outcome of the location privacy of a user. Most of the
existing protocols on location privacy do not reveal details of their adversary
models and we would like see the effect of different adversary models on the
location privacy values. Adversary modeling will be explained in chapter 9.

We also would like to be able to compare the existing protocols on the
location privacy by implementing them. The reason behind this goal is to
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evaluate their strengths and weaknesses; and also to benchmark them. Our
investigation also shows that it is hard to compare most of the existing pro-
tocols as they do not give the same type of results and do aim to address
different aspects of location privacy. For example, both in K-anonymity and
Distortion-Based Metric the aim is to provide location privacy to users, how-
ever K-anonymity is not suitable for traces and Distortion- Based Metric is
suitable. Then, it is necessary to adapt K-anonymity to Distortion-Based
Metric, in order to be able to compare them. Moreover, the claims of au-
thors’ of Distortion-Based Metric on K-anonymity could be verified by this
study. Our simple K-anonymity implementation will be explained in chap-
ter 8, and the results of our simulations will be presented and discussed in
chapter 11.
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Chapter 3

Methodology

The outline of the methodology that is taken during the master thesis is
enumerated below.

1. Look at different approaches to the location privacy problem

2. Confine/narrow the problem space

3. Consider a simple scenario and discuss it

4. Investigate existing metrics

5. Draw an overview of the system

6. Implement the evaluation model

(a) Generation of traces of users

(b) Simple K-anonymity

(c) Probability assignment and the adversary knowledge modeling

(d) Distance metric

Each step will be explained briefly now.
The project started with identifying important papers on Location Pri-

vacy. These papers were selected either as highly cited ones from Google
Scholar [7] or among the set of references of papers that are known to be
outstanding works. As they will be mentioned in the related work section,
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there are different approaches to location privacy such as solutions at differ-
ent communication levels, which are physical, network and application layers
of the communication stack. After examination of these works, it is decided
that studying the protocols, which are on the location privacy problem, on
application layer and providing a solution to an observed shortcoming would
be an interesting and also a feasible project.

The investigation of protocols on application layer is done in more depth
in comparison to previous one; because it is necessary to consider all aspects
of a certain problem so that a solution could be proposed in a limited period
of time. For example, it is figured out that there is a major division of proto-
cols on application layer according to the targeted architecture. Centralized
architecture is chosen for the study; because it is simpler to understand, im-
plement and handle in contrast to the distributed one. It is also decided
that if there is still time after simulating centralized architecture, we would
also look into distributed one. There are also other details, which will be
explained in the following sections, such as the adversary model and the
evaluation model. All of these details are decided at the second stage of the
project.

Since the project started with the aim of investigating K-anonymity pro-
tocol, before starting with the implementation, a simple scenario is studied
on paper in order to see how the scenario is altered after applying the K-
anonymity protocol and if there are any obvious shortcoming of the protocol.
This study made us think about the details of the protocol so that it was
helpful for the implementation. We also brainstormed about aspects that
might pose problems and the weaknesses, which caused those problems. For
instance, two of the important aspects from this study were the message con-
tent and people that query from the same location. We noticed that message
content might reveal identity of a user and when people query the system
from the same location, K- anonymity cannot provide adequate protection;
because of the absence of the cloaking box.

A detailed analysis of ten major works on location privacy continued even
after the study of the simple scenario. The reason of why this process took so
long was the complexity of the subject and the limited length of the papers.
New aspects and ideas were taken note of after each reading, which shows
that the scope of the subject is very wide and each work is only able to
cover a part of it. Furthermore, each paper is limited to approximately ten
pages, hence the content in each paper is mostly composed of the results and
important points. Even if the papers are well motivated and structured, as
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the details of each work are invisible or unclear to us, it is generally hard
to reflect the solutions, which are on paper, in the code. Significant ideas
from these works and how they are included in our implementation will be
mentioned in the following sections of the report.

Completing the analysis of papers let us draw the system overview in
Figure 1.2, which is presented in the introduction section. System overview,
Figure 1.2, helps to prioritize the sequence of our implementation. Each
entity and procedure in the system overview are reflected in the implemen-
tation as close as possible. Thus we have separate modules and methods to
represent the entities and their operations. All of these components interact
with the central mechanism as the architecture is chosen in that way. Further
details will be mentioned in the implementation section.

During the implementation, we encountered some obstacles about ad-
versary modeling, distance metric and generation of traces. We considered
different probability distribution functions in order to model the adversary.
We also needed to consider each function for different users, thus the process
took time, as a result of implementing, simulating and comparing results with
other distributions. For the distance metric, there were some unclear parts
and they will be mentioned in section 10. Moreover, generation of traces was
another varying and time consuming part. We started with consideration of
realistic scenarios that were composed of few events, which did not produce
convincing and generalizable results. Then we moved on to automated gener-
ation of traces, which required rather simple models that were not necessarily
realistic; but having more events included in them. Generation of traces will
be explained in section 7.
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Chapter 4

Related Work

4.1 The Location Privacy Protocols on

Different Layers

This master thesis focuses on application layer protocols on location privacy,
however we also looked at various works that approach the problem from
different layers of the communication stack. There are some works that
consider protection of the location privacy of users by focusing on physical
layer. For example, there are use of RF fingerprinting [28], random silent
period [36] and MIXes in mobile communication systems [18], in order to
protect location information of users from physical layer. Some other works
approach from network layer. For instance, pseudonyms, mix zones [12]
and anonymous on demand routing [31] are some of the works that aim to
achieve the location privacy inside the network. The rest of this chapter is
about related work on application layer.

4.2 The Location Privacy Protocols on

Application Layer

4.2.1 K-Anonymity

K-anonymity [22, 42, 20, 43, 13, 41, 21, 45] is a popular solution for providing
location privacy to users. The concept comes from achieving privacy in data
mining, such that when relational data including private data of many users
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will be released, K-anonymity protection mechanism is applied on the data to
protect privacy of users. K value means that there are k many same values for
unique identifiers of users; because if all of the unique identifiers of users look
the same, someone cannot link an entry in the data to a specific user. This
concept is imported into the location privacy subject. The unique identifiers
of a user in location privacy could be considered as user name, location-time
couple and in some cases the message content. Therefore, users, who benefit
from K-anonymity, are stripped from their user names and cloaked under the
same area. An observer would notice that output of K-anonymity solution is
composed of identity-less, k-many events all occurring at the same area and
time period.

Since one of the aims of this project is to investigate existing protocols
on location privacy, the investigation started from K-anonymity. It has both
strengths and weaknesses. For example, when a user is located in a crowd,
K-anonymity can provide fast and simple solution. Since there are a lot of
people around the user, it is very easy to form a cloaked region that users can
hide underneath it. If the user is present in that area randomly, he/she can
rely on K-anonymity. However, its weakness is the k value and working in a
discrete and independent manner. Use of k value comes from a data mining
point of view and it is not suitable for preserving location privacy most of the
time. For example, an adversary might have knowledge about a user’s home
and work locations. In that scenario, even if the user is benefiting from
k-anonymously cloaked region, which is around location of home or work,
he/she is visiting the same location/area over and over again. Therefore
the k value loses its effectiveness. In addition to k value, the protection
mechanism does not count in history of the user. Therefore, a system cannot
guarantee that a user’s trace is secure from the beginning to the end, even
if the user is cloaked k-anonymously all of the time. One of the papers that
lay inefficiency of K-anonymity in protecting location privacy of users is [39].

4.2.2 Metrics for the Location Privacy

Authors of [39] published [38], which is an extensive analysis of existing
protocols for the location privacy, later. Apart from K-anonymity, there are
uncertainty-based metrics, clustering error based metrics and traceability-
based metrics. Shortcomings of existing location privacy mechanisms are
explicitly shown in [38].
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Uncertainty-Based Metric

Uncertainty-based metric considers only the entropy of events of a user. It
is a very general solution. It is not suitable for estimating the probabilistic
nature of the adversary. It is very hard to model the adversary; because the
adversary’s knowledge and probability assignment are unknown. Besides,
the adversary can choose wrong events as favorite. Thus, the accuracy of
the adversary is another variable in the system. Uncertainty-based metric
cannot capture this kind of detail. It is also not suitable for calculating
tracking errors that is identification of traces of users. [38]

Clustering Error Based Metric

In clustering error based metric, adversary gets observed events and par-
titions them into multiple subsets for each user. The error in partitioning
indicates the location privacy of the system. Here, the observed events are
transformation of the actual events. For instance, a mechanism, such as
anonymization or obfuscation, etc., is applied on actual events in order to
protect location information of the user from disclosure to public. In this
metric, there are two problems that are calculation of set of all possible par-
titions and suitability for tracing. The set of all possible partitions seem like
a very big set, however, it is not. As the observed events are not indepen-
dent events, some of the events are associated with each other according to
location and time. Clustering error based metric cannot measure this as-
pect. For example, a cluster might include two events with the same time
instance, which is not possible in a trace. It might also include two events,
with consecutive time instances, that are far apart from each other. It might
not be possible for a user to cover that distance in the specified period of
time. Finally, this metric cannot indicate a user how much location privacy
he/she has at any time or location. [38]

Traceability-Based Metric

Traceability-based metric aims to estimate certainty of an adversary in track-
ing a user. It is mentioned that a user will be traceable until a point in time
or location. This point is called a confusion point; as the adversary’s un-
certainty is above a threshold. [38] It is also mentioned that querying the
LBS periodically, in time space, exposes sensitive locations for users. They
suggest that querying the LBS can be done based on areas, which means that
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the users do not send queries or the LBS does not expect queries at some
locations, which are private areas to use the service. Those places are out of
the range of the service. On the other hand, when some places are defined
as service points, a user, who passes by that location, has to send a query
or the LBS extracts the information from the device of the user. Therefore
private locations of users become protected in terms of location privacy and
users still benefit from the system in other places as they are traceable. [25]

Distortion-Based Metric

The set of criteria, which is used to evaluate existing location privacy metrics,
is composed of adversary’s probability of error and tracking error, users’
actual traces and private location-time couples, measurement of traceability
of users, genericity of the metric and the granularity of the resulting location
privacy value. Each criterion reveals more insight about the problem and
existing metrics. For example, adversary can make mistakes; but uncertainty
based metrics or K-anonymity metric is not able to count in adversary’s error
in probability assignment or tracking users. Furthermore, considering actual
traces of users at all times is also important, because it helps to assess how
successful the adversary is in tracking a user. Location/Time sensitivity is
another helpful criterion such that private location-time couple(s) of a user
could be handled with caution, because if users visit same locations over and
over again, then the location privacy mechanisms might struggle to protect
users at those locations and times. Being able to measure traceability of
users is crucial; because the events that are part of a trace are related to
each other. The metrics as K- anonymity or clustering error based do not
consider traces of users, instead they only look at individual events, which
is a shortcoming for both metrics. The metrics are evaluated also according
to their capabilities of measuring impacts of different LPPM that is the
genericity of the metric. It is expected that all metrics should be able to
capture the effects of different protection mechanisms. The last criterion
considers the granularity of the measurement, which means that a metric
should be able to indicate a user how much location privacy he/she has at a
certain time. If this can be done, then it is also possible to estimate system
wide location privacy. [38]

Moreover, authors of [38] provide another solution, which is the Distortion-
Based Metric. They claim that their metric satisfies all of the criteria men-
tioned above. The Distortion-Based Metric aims to reconstruct actual data
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by investigating observed events. Reconstruction is done by hypothesizing
relationship among observed events and replacing them with possible repre-
sentative events using probability. In other words, they try to reduce un-
certainty and predict actual traces of users. There are, of course, many
assumptions in the paper. For example, representative events are computed
using adversarys knowledge of users, which is not defined in the paper. An-
other example is events happen consecutively, which means that there is a
defined time gap between two events. Thus if something is missing, then it
is known to be eliminated.
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Chapter 5

Simple Scenario

After discussing K-anonymity metric, a simple scenario is studied on paper
to see how the mechanism works.

Figure 5.1: Simple Scenario

The scenario shown in Figure 5.1 consists of five users grouped at the same
location. One of the users departs away from the other users in a straight
line for 4km and returns to the group along the same path. The purpose of
this scenario is to illustrate K-anonymity and to study the resulting location
privacy for the departing user and the group.

Events are generated at eight time instances (ti), evenly spread over the
duration of the move. During each time interval, the user therefore moves
1km.

In a first step we look at the observed events without using K-anonymity.
We assume that the users apply pseudonyms to hide their identity.
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Pseudonym X coordinate [km] Y coordinate [km] Time stamp Content
a x y t0 c
b x y t0 c
d x y t0 c
e x y t0 c
f x y t0 c

Table 5.1: Events at time t0, when K-anonymity is not used

Pseudonym X coordinate [km] Y coordinate [km] Time stamp Content
g x y t1 c
h x y t1 c
i x y t1 c
j x y t1 c
k x + 0.6 y + 0.8 t1 c

Table 5.2: Events at time t1, when K-anonymity is not used

Pseudonym X coordinate [km] Y coordinate [km] Time stamp Content
l x y t2 c
m x y t2 c
n x y t2 c
o x y t2 c
p x + 1.2 y + 1.6 t2 c

Table 5.3: Events at time t2, when K-anonymity is not used
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The other observed events are generated in the same fashion.
Without K-anonymity, an adversary can conclude that one user is moving

away from a group of four users staying at the same location. A mapping
of the observed events of the moving user to its pseudonyms is possible.
However, it is not possible for the adversary to conclude the identity of the
moving user.

In the second step we show the observed events resulting from the K-
anonymity mechanism where both location and time information is cloaked.
The other assumptions are the same as in the previous run.

The observed events might look like as in the tables below. tt is the
toleration value in time. Let us assume that all users tolerate enough in x
and y coordinates, in order to cover everyone in a single cloak, which has k
value equals to 5. As it is visible in the table for the first time instance, all
of the users seem to be located on a point; because toleration values are only
used to calculate if a cloak of k users could be formed. The observed events
are cloaked under the minimal and imaginary box that covers all of the users.
If all of the users are at the same location, then there is no minimal box,
instead it is a point.

Pseudonym X coordinate [km] Y coordinate [km] Time stamp Content
a x y [t0 - tt, t0 + tt] c
b x y [t0 - tt, t0 + tt] c
d x y [t0 - tt, t0 + tt] c
e x y [t0 - tt, t0 + tt] c
f x y [t0 - tt, t0 + tt] c

Table 5.4: Events at time t0, when K-anonymity is used

Pseudonym X coordinate [km] Y coordinate [km] Time stamp Content
g [x, x + 0.6] [y, y + 0.8] [t1 - tt, t1 + tt] c
h [x, x + 0.6] [y, y + 0.8] [t1 - tt, t1 + tt] c
i [x, x + 0.6] [y, y + 0.8] [t1 - tt, t1 + tt] c
j [x, x + 0.6] [y, y + 0.8] [t1 - tt, t1 + tt] c
k [x, x + 0.6] [y, y + 0.8] [t1 - tt, t1 + tt] c

Table 5.5: Events at time t1, when K-anonymity is used

The other observed events are generated in the same fashion. Figure 5.2
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(a) and (b)1 are, consecutively, illustrations of Table 5.4 and 5.5.

(a) The illustration of Table 5.4 (b) The illustration of Table 5.5

Figure 5.2: Illustration of 5 users at different time instances, based on Table
5.4 and 5.5

We can make the following conclusions from using K-anonymity:
As it is mentioned in subsections 1.2.1 and 4.2.1 before, K-anonymity

aims to gather k many users within one cloaked area in order to protect
them from an adversary. When applied, all the resulting events look the
same as it is presented in Table 5.4 and 5.5. For this example, all of the
users benefit from k=5, hence five users must be present within each others’
toleration in distance and time. Toleration means that a user can be at most
tx units in x coordinate and ty units in y coordinate far from another one.
Furthermore, the events of two users should have at most tt units difference
between their timestamps. When these two requirements are satisfied, then
two users could be placed within the same cloaking area.

According to the definition of K-anonymity, if all of the five users are
cloaked as shown in Figure 5.2 (b) and for all time instances, then the ad-
versary cannot know who is querying the system. In this scenario, it means
that every user has tolerated at least 2.4 km in x coordinate and 3.2km in y
coordinate. Adversary knows only the area and it might be a hard task iden-
tifying five users in an area of 7.68 km2. There might be many possible users
in that area. However, for the first and last time instances, if the adversary
is monitoring x and y coordinates, he/she might figure out who those five

1The map is taken from Google Maps [6] .
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users are, also depending on the environment.
If the stationary users do not tolerate enough distance in x and y coordi-

nates, and/or period in time as in the previous paragraph, then the mobile
user will be cloaked until the edge of the tolerated x and y coordinates,
and/or period in time. Then he/she will either try his/her luck with k=1 or
not be able to use the service until finding a suitable cloak. If a user uses
the LBS with k=1, it means that he/she is on his/her own. In other words,
he/she will be visible to an adversary with his/her location, time stamp and
message content, just like absence of K-anonymity.

Moreover, message content might also reveal a user, even if the user is
cloaked; because an adversary can follow the user at the edges of cloaked
areas. Trying to get an answer, as accurately as possible, from the LBS
necessitates sending the message content unprotected to the LBS. A user
will have a direction, when asking for the same and/or a specific question for
a long period of time. A user can get lost in the middle of cloaked regions.
However, the user can be identified when switching from one cloak to another.
Still, the adversary needs to monitor the user during a period of time.

Finally, the privacy mechanism does not rely only on the k value, but
also on toleration of x, y and t ranges. Picking different values affects the
outcome of K-anonymity mechanism, because if the toleration values are too
small, it might not be possible to form cloaks of k users. When a user is not
present within the tolerated area of other users, then that user is left out
of the group, which means that he/she either reveals his/her location-time
information to the adversary or cannot use the service in order to protect
his/her location privacy at the specified location and time.
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Chapter 6

Implementation

So far we have analyzed related works on the location privacy and worked
out a simple scenario on paper. We have studied the communication between
a user and a LBS in detail, as in Figure 1.2. We have also learned how to
evaluate the location privacy a user can experience. As mentioned in chapter
2, the goal of this master thesis is to study existing protocols, which provides
location privacy in location based services, and identify their strengths and
weaknesses. It is necessary to simulate essential components of the LBS and
the LPPM, in order to achieve our goal.

We realize that there are certain parts, which need to be analyzed in
detail, in order to be able to understand the location privacy problem better.
We separate the key components into two groups, which are varying and
non-varying parts, because the analysis can be done easily and clearly when
there is less or no variation in the analyzed component. On the other hand,
if a component has too much variation in it, it might even be very hard to
define the scope and parameters of the component.

The unknown and varying parts are identified as the traces of users and
the simulation of adversary. The rest of the components are somewhat known
or predictable. After being able to make this distinction, we needed to start
implementing the key entities of the system, which were user, event, trace
and adversary. These entities were represented in the implementation as
explained below. In addition to the key entities of the system, the evaluation
model for the location privacy was also identified as the Distortion-Based
Metric [38]. When the basic components of the implementation was done,
we moved on to the varying parts, which will be explained in detail in the
following chapters.
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6.1 User

• A user of the LBS has a user name so that the trusted server can
identify it. User name is kept in a String variable.

• A user can define location-time sensitivity (LTS) [38], which means
that being present at a specific location and time is sensitive for the
user. If there is a sensitive location-time couple for a user, then no one
should be able to track the user at that time and location. This also
means that if the user is at a different location at the specified time or
at the specified location at another time, then there is no sensitivity
for the user. Sensitivity indicates need for privacy by the user. LTS is
kept in a HashMap<String, Float>. For example, “(1.0, 2.0), 18:00”
is the String value that represents the location-time couple and 0.0
is the Float value that represents the highest sensitivity. The lowest
sensitivity is 1.0.

• A user has a reference number that is to be used while querying the
LBS. Reference number is increased by one after each query. The ref-
erence number is used to get pseudo name of the user. User name and
reference number are concatenated and given to MD5 hash computa-
tion, thus a user can get a different pseudo name at each query. There
can be more secure ways of obtaining a different pseudo name at each
query; however it is good enough for this case. The reference number
is kept in an int variable.

6.2 Event

• An event is a quadruple of <user’s identity, location information, time
stamp, message content (optional)>.

• An event belongs to a user, hence it has a user variable in it. Someone
can look at an event and see whom it belongs to. The user variable is
of type User, which is explained above.

• The location information of the event is kept in two Float variables
that are x and y coordinates. X coordinate corresponds to latitude and
y coordinate corresponds to longitude.
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• Time of the event is kept in a GregorianCalendar. Date and time of
the event can be stored in detail in this calendar object.

• An event has also a message content that is kept in a String variable.
This message content tells a LSP how to use the location information
of the user. It can be empty so that it only says a user was present
at this location and time or it can ask for something depending on the
location and/or time.

• As it is mentioned in the introduction chapter, an event can be an actual
or observable or observed event, however only the actual and observed
events are included in the implementation. Actual and observed events
are kept in different Vector<Event> objects in the implementation.
Vector can be seen as a LinkedList or a flexible array.

6.3 Trace

• A trace is a sequence of events. The events occur at consecutive time
instances and are placed in traces in the order they are generated. For
example, if there are three events in a trace, time of the first event
is before the time of the second event and time of the second event
is before the time of the last event. There are no events with the
same time instance in a trace. Consecutive time instances means that
there is a certain time gap between each event. For example, in the
implementation, the time gap is defined as 30 minutes, hence if the
first event of a user is generated at 01.00, then the next event will be
generated at 01.30.

• Trace is kept as a LinkedList<Event> in the implementation.

6.4 Adversary

• An adversary gets observed events and extracts information, such as
number of users and number of time instances, from them. However
it is not necessary that adversary figures these details out from the
observed events. The adversary might know the number of users in
the system by looking at the events that are acquired beforehand or
another way.
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• Wemodel the adversary by assigning probabilities to traces. A powerful
adversary can identify traces with events from the same user and assign
them high probabilities, while a weak adversary cannot distinguish the
traces and thus assigns the same probability to every trace. In our
study we chose different probability distributions to model different
types of adversaries.

• At first, we tried HashMap<Trace,Float> to store probabilities of traces,
which are generated exponentially for each user. In other words, there
are possible traces that a user can take and it is decided by looking
at the number of users and the time instances of observed events. For
example, if there are 3 users and 4 time instances, then the number
of possible traces are 81 (34). Therefore, let us call this procedure the
“exponential generation of traces”. After all the traces are gen-
erated, each one of them is mapped to a probability. HashMap is a
useful data structure to map from traces to probabilities as we only
generate distinct traces, which means that there is no collision among
traces while being mapped in the data structure.

• As we have found an alternative to generating all possible traces, the
mapping from Trace to Float is replaced with mapping from String to
array of Float. An example for String object is “(0,0)”, which means
that “first user at first time instance”. An example for array of Float
is [0.4, 0.3, 0.05, 0.25], which means that the first user can take one
of four paths from first time instance and the probabilities for taking
each path is kept in the array. In this example, the adversary believes
that first user probably took first path at first time instance. We can
call this procedure the “no generation of traces”; because there is
no need to build a structure for traces in this approach. The traces are
distinguished as a result of decision making of which path the user has
taken at each time instance.

• Two implementation choices that are explained here will be compared
in detail in section 9.

• As it will be explained in chapter 9, the probability distribution func-
tions that are used for modeling the adversary are Uniform, Binomial
and Unit Impulse functions. Binomial and Unit Impulse functions are
also shifted at each run in order to simulate adversaries with different
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favorite traces, which are very likely traces taken by the users. The val-
ues that exist for each function are calculated beforehand and stored in
the HashMap for corresponding Trace or String value. For example, if
there are four traces and the function is Unit Impulse, then the values
are [1.0, 0.0, 0.0, 0.0]. In this case, first trace has 100% probability and
the rest of the traces have 0% probability.

6.5 The Central Mechanism

Even if the key entities of the system are defined, there is still a need for
a central mechanism that the entities could interact with. At this point,
there was an idea of combining different location privacy metrics into one
application, because every metric is useful for some scenario and has strengths
and weaknesses that is different from the other ones. If several location
privacy metrics could be combined in one application using fuzzy logic, it
would have been possible to handle various scenarios at one instance. The
flow of the design could be explained in these steps:

1. Users’ mobile devices obtain location information and send it to the
adviser.

2. The adviser assesses the situation by looking at a set of messages from
users and sends the results to users.

3. Users choose an option from a set of possibilities that the adviser rec-
ommends and send their queries to the trusted server by using the
chosen option.

4. The trusted server anonymizes the messages of users and hands them
to the LSP.

5. The LSP answers users’ queries and sends the answers to the trusted
server.

6. The trusted server hands LSP’s replies to users.

In this design, the adviser seems as another entity in addition to the
trusted server and LSP; but it can also be included in the trusted server.
Thus the design of the program is made in a way that a location privacy
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adviser, which is combined with the trusted server for simplicity, is placed at
the center of the program/system and the entities interact with it.

Since we have investigated several existing solutions before starting the
implementation, we were able to select Distortion-Based Metric as a starting
model for the central component of our application. The reason behind
selection of Distortion-Based Metric was its well defined structure and the
detailed analysis of other existing metrics in the paper. We thought that this
metric covers more details on location privacy problem and it might be easier
to evaluate our design, as Distortion-Based Metric has a sound explanation.
As we were using an Object Oriented Language, it should be easy to use a
model for testing and then replace it with another module. Here the module
is the Distortion-Based Metric.

Furthermore, while implementing Distortion-Based Metric, we encoun-
tered several obstacles. The paper proposes a model how to evaluate loca-
tion privacy. An essential point is the assignment of probability distributions
to traces. The paper left it open how to assign these probability distribu-
tions. In addition to the probability assignment, the distance metric and the
location-time sensitivity of users were also explained on an abstract level in
the paper. We looked into these unclear parts in detail by getting queries
from imaginary users and simulating possible traces of them. The sequence
of operations are ordered as below in the code in order to analyze the unclear
parts. The details of the overview, below, will be explained further starting
with chapter 7.

1. We manually generated traces of several users (3-4) on the map.

2. We, then, selected locations, which have half an hour of time difference
between each of them, on the trace and stored these locations in an
input file.

3. Application is started by reading the input file. All of the events that
are read are kept as actual events.

4. Location privacy preserving mechanism(s) is/are applied on actual events
so that observable events are generated.

5. Adversary acquires observed events and analyzes them as explained in
section 1.3.
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6. Location privacy of each user and system are calculated by comparing
actual events and adversary’s analysis.

7. Location privacy values are output to a file to be plotted on a graph.

The reason for selecting period of half an hour is to have fairly logical pri-
vacy values; because having short period of time between two events decreases
location privacy of the user as he/she is overusing the system. However if we
leave long period of time between two events, then the system might become
useless from users’ perspective or seem unrealistic. Half an hour might be
considered as a rough value between two extremes.

The starting idea of combining different location privacy mechanisms in
one application using fuzzy logic is abandoned, because of time constraints
and complexity of the location privacy problem. While trying to implement
Distortion-Based Metric, understanding and implementing how traces are
evaluated, how distances are calculated and how the probability distribu-
tion(s) are applied took longer than expected. After running simulations on
these things and agreeing on what is meant, we continued with a simplified
K-anonymity implementation; however, time of the project was up at that
stage and our first idea was left as a future work.

6.6 Implementation Tools

• The implementation is completely written in Java [8].

• The development environment is Eclipse IDE [2].

• OpenOffice.org [9] is used for spreadsheets. The results are analyzed
and plotted in graphs.

• Gnuplot [4] is used for some of the plots, specially for 3D plots.
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Chapter 7

Generation of Traces of Users

Our observations showed that when users have certain movement patterns,
plotting of location privacy values on a graph also takes certain shape. For
example, when users cross each others road, plotting of their location privacy
values also cross each other. In this example, the users were actually far apart
from each other and they perpendicularly cross each other. There was notable
difference between location privacy values of users at the beginning. At the
point of intersection location privacy values of both users got closer to each
other and as they moved away from each other the gap between their location
privacy values also got wider. Furthermore, when users moved almost parallel
with having some distance to each other, their location privacy values also
seemed to follow the same behavior.

These observations were derived from four scenarios each having twelve
events from three users and also a scenario in which there were sixteen events
from four users. All of the traces were generated manually by selecting real
coordinates on the map. One of the scenarios was provided in Figure 7.1. We
wondered if our observation could be supported with more users and events.
Generating more events manually could be a time consuming task, hence we
decided to use an abstract model to automatically generate many events in
a fast manner. Moreover, we decided to work on three models of traces that
cross each other, are parallel to each other and form a closed shape. They
are explained in the following sections.
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Figure 7.1: Manually generated traces of 3 users, which are user a, c and d,
at 4 time instances, which are 1-4

In Figure 7.1, there are 3 users, which are user a, c and d, and 4 time
instances. For example, a1 means user a at first time instance. The same
applies to other events as well. These traces are built using Google Maps
[6] such that time difference between each event is half an hour by walking.
In this scenario, the expectation is to observe that user c and d experience
similar location privacy and as they cross user a’s path, their location pri-
vacy values decrease. However, when we use this scenario, the actual and
observed events are the same, which means that we do not have any protec-
tion mechanism such as K-anonymity at this stage of the project. In this
case, as some of the observed events and actual events are the same, the
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distance between them is zero; but other events have probability, since the
adversary is assumed not to know this detail. Furthermore, we use Bino-
mial distribution and Unit Impulse functions on this scenario and they both
produce different results, which match with the expectation partially. After
getting these results, we abandon manually generated traces and continue
with automatically generated traces; because manually generated traces are
very limited and do not give results that can be generalized.
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7.1 Cross Traces

Figure 7.2: Crossing traces. Path in black color belongs to user a and the
red one belongs to user b.

Traces that cross each other start from different points, intersect at a
point in the middle and then end at different points. For example, in Figure
7.2, there are two users and each one of them has four events at different time
instances. (a1 means user a at time instance 1.) A unit circle is drawn and
two users are randomly placed on two points that are on the circle. These
points (a1 and b1) are starting points of the users and they are distributed
between 0 and π degrees. We draw a line that includes the starting point
and the origin of the circle, in order to find the end point of the user on
the other side of the circle. The events in between starting and end points
are, too, randomly placed on the line. Randomness can be obtained over a
uniform or normal distribution. This model could be perceived as a zoomed
view of an area on a map. A user might be moving within a certain radius of
a location and there are also other users that follow the same user behavior.
It is easy to model check-in/query locations of users inside a unit circle by
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calculating angles and trigonometric values of them. The scaling factor could
be considered after preparing the mathematical model. For example, unit
circle has a radius of one unit and in reality the radius could be enlarged to
whatever distance measure desired and the inflated area could be placed as
it is or rotated on the map. Another important thing you might notice that
a user’s path need not be a straight line. All of the events are generated at
consecutive time instances, e.g. each half an hour. A user might cover a long
distance by using a vehicle and then a short distance by walking as it could
be imagined for user b in Figure 7.2. We rely on the time difference between
each event in order to select them on the trace.
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7.2 Parallel Traces

Figure 7.3: Parallel traces. Path in black color belongs to user a and the red
one belongs to user b.

Traces that are parallel to each other start and end at different points
and they never intersect with each other. For instance, in Figure 7.3, there
are, again, two users and each one of them has four events at different time
instances. In order to model parallel traces, we, randomly, take a point on the
circle between -π/2 and π/2 degrees for each user. We subtract the degree,
which corresponds to the starting point, from π degrees and calculate the
end point. In other words, the starting point is (x,y) and the end point is
(-x,y). We again fill the events in between two points randomly, as explained
in previous section.
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7.3 Circular Traces

Figure 7.4: Circular traces. Path in black color belongs to user a and the red
one belongs to user b.

Circular traces start at a point on the circle, keep moving on it and end
at the beginning point. As in the previous examples, we have eight events
from two users; but this time they move in a circular shape. The modeling of
a circular trace is done by randomly picking a degree from 0 to 2π and then
calculating the corresponding point on the circle. A user starts his/her trace
from this point and stops at the same point. The points in between them are
randomly chosen as a degree, sorted in ascending order and placed on the
circle. Again, the actual trace of a user might be different from a circular
shape as it is visible for user b in Figure 7.4; however the importance is on
placing the actual events on the circle. Moreover, as the number of generated
events increase, traces of users are better represented in the model. For
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example, in Figure 7.4, user b might follow an irregular shape; because there
are only four events of him/her. If there are many events from user b, trace
of him/her will take the shape of the circle, as each one of his/her events will
be placed on the circle.
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Chapter 8

Simple K-Anonymity
Implementation

Several approaches to the location privacy are investigated in this project
in order to understand different aspects of the problem. However, our focus
was mostly on K-anonymity, as we started the project by reading the pa-
per Unraveling an Old Cloak: k-anonymity for Location Privacy [39], which
claims that K-anonymity does not address the problem of location privacy in
a convincing way. We studied highly cited papers that are on K-anonymity
and published in the last ten years. We also examined several works of the
authors of [39], in order to see their follow-up works and direction of studies,
which lead us to the paper A Distortion-Based Metric for Location Privacy
[38]. We adopted the evaluation model for the location privacy from [38] and
it is used to assess our simplified K-anonymity implementation.

After thorough examination of existing protocols, we select the paper
Location Privacy in Mobile Systems: A Personalized Anonymization Model
[20] as an example of K-anonymity solution. As the name suggests, the K-
anonymity implementation of this paper considers a personalized approach
for each user. As it is mentioned before in the report, K-anonymity aims to
cloak k users together so that they seem identical to any observer. Picking
the k value is easy when dealing with relational data, however it is hard to
figure the value out in real time. There might not be enough users to form
a group of k at a certain location or time. If there are not k users around
a location, then the system chooses to work with k equals to 1. This is
calculated by looking at the toleration values in x and y coordinates, and
time space. In this case, where K-anonymity does not work, the user is
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clearly visible to any adversary. Another issue while selecting the k value
is the performance of the mechanism, because if the mechanism cannot find
a solution until the toleration in time space expires, then the events are
discarded from the mechanism meaning that they are, again, not protected.
In [20], the personalized approach is applied to k and toleration values, so
that every user can define their personal values and do not need to meet with
system wide values. By this way, users might benefit from the system more
frequently, as the scenarios, in which K-anonymity does not work, can be
by-passed.

Steps States Variables
1 Actual event (user id, x, y, t, C)
2 K-anonymity (k, tx, ty, tt)
3 Observed event (pseudo name, [x-tx, x+tx], [y-ty, y+ty], [t-tt, t+tt], C)

Table 8.1: An example of application of K-anonymity

In the example above, x is x coordinate, y is y coordinate, t is time
stamp of event, C is message content, tx is toleration in x coordinate, ty is
toleration in y coordinate, tt is toleration in time space and pseudo name
can be a random or defined string or number, but it should be different from
the user id.

In [20], (k, tx, ty, tt) values are kept as personal values of each user,
however we choose to use system wide values for simplicity and automation
of simulations. In our simulations, the aim is to protect every user with
K-anonymity, thus toleration in x and y coordinates are chosen as the small-
est integer value that covers all of the users at once. The actual events are
obtained using the automated generation of traces of users, as explained in
the previous chapter. Selecting the smallest integer is easy in this case as
the actual events are plotted in or on the unit circle, which means that the
longest distance between two events could be two units. Therefore, the tol-
eration values in x and y coordinates are both two units. There is another
detail related to the toleration values in x and y coordinates that is the loca-
tion information in the observed event. As users can be present at different
locations, when the toleration values in x and y coordinates are applied on
them, the resulting areas can intersect; but not cover each other. Thus, the
toleration values are only used to check if a cloak of k users can be com-
posed. When all users are confirmed to be inside the toleration values of
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their neighbors, the smallest area that includes all of the users is calculated.
For example, if there are four users that are located at (0,0), (1,0), (0,1) and
(1,1) coordinates and k is equal to four, then the observed events of them are
kept as (pseudo name, [0, 1], [0, 1], [time period], C). Someone, who looks at
one of the observed events, understands that a user was present inside the
area, which has range of x values from 0 to 1 and y values from 0 to 1, at
the specified time period.

Since the time gap between two events is defined as half an hour in our
implementation, the toleration value in time space should be one less than
quarter of an hour; because two consecutive events can collide. For example,
an event occurs at 01.00 and the next one occurs at 01.30. If the toleration
value in time space is 15, then time periods of two events will look like
[00.45, 01.15] and [01.15, 01.45] after the application of K-anonymity. It
is visible that the ending time of one observed event intersects with the
beginning time of the next one, hence the toleration in time space could
roughly be 14 minutes. We want to avoid intersection between consecutive
events; because while evaluating our K-anonymity implementation, observed
events are selected according to their order in time and if the wrong event
is selected, then the location privacy values might be overestimated. For
instance, the event that occurs at 01.00 is located at (0, -1) and observed
at (-0.6, -0.8). The next event is located at (1, 0) and observed at (0.8,
0.6). Under normal circumstances, the distance between actual and observed
events is 0.632 for both events that take place at 01.00 and 01.30. However
if the observed events are confused as a result of time intersection, then
the distance would be calculated as 1.788 for both cases, which leads to
overestimation in the assessment of the protection mechanism.

It is mentioned that the evaluation method is adopted from Distortion-
Based Metric [38], which is based on traces, and K-anonymity is not suitable
for traces. Moreover, Distortion-Based Metric works with exact locations
and K-anonymity works with areas. It was necessary to adapt our simpli-
fied K-anonymity implementation to Distortion-Based Metric so that we can
evaluate its effectiveness.

First of all, we tried to build traces by looking at the observed events,
when we simulated the adversary. If k value is equal to the number of users,
then it appears as if there is only one trace in the system. In this case we look
at the actual events of users and calculate the distance to the corresponding
observed event, which is closest in time space. Then combining the distance
with the probability distribution gives us the distortion that K-anonymity
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provides. If the k value is less than the number of users, then there can be
several traces. For example, if there are 4 users and 4 time instances and k
is equal to 2, then there are at least 2 distinct observed events at each time
instance, which leads to 16 ((2 distinct events)4 time instances) possible traces.

The incompatibility of location and area problem is solved by picking
a random point inside the specified area. Selecting a random point in an
area is definitely not the same as having an area and it might also lead to
underestimation or overestimation in the location privacy results. However
it is still a reasonable thing to do, as an adversary is able to look at the
area from K-anonymity result and guess where the user might be in that
area. It is possible to do smarter things here; but it probably requires more
simulations and this is an option that we take according to the deadline of
the project.
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Chapter 9

Probability Assignment

Probability assignment is one of the most important factors in the location
privacy problem. As it is explained in the introduction chapter, the adver-
sary in the LBS is simulated in order to assess how much location privacy a
user can experience. The adversary has knowledge of users that we cannot
know to what extend. Adversary acquires observed events of users, generates
possible traces out of these events and then he/she uses his/her knowledge
to guess or predict which traces or events could belong to whom. Guessing
traces or events is interpreted as assigning probabilities to them according to
the knowledge of the adversary. For example, if the adversary is tracking a
user and he/she knows that the user visits a location everyday at the same
time, then he/she observes the events at the specified time and sees that
there are four events but only one of them is at the expected location. In
this case, adversary assigns 100% probability to that event and 0% to other
three events. After having pinpointed an event that probably belongs to the
user, adversary starts observing other events in order to form the probable
trace of the user. Adversary, again, considers his/her knowledge of the user
and the distances of the observed events, which occur at other time instances,
to the pinpointed event. This process continues until all the observed events
are considered. One could understand from this example that assessing a
user’s location privacy requires building the correct trace model, calculat-
ing distances between actual and observed events and applying probability
distributions over the distance calculations. All of these factors are crucial,
because if the trace model or the user’s trace behavior is built incorrectly, or
the probability distribution is chosen wrong, then the distance calculations
are affected and if the distance calculations are wrong, then the resulting
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location privacy values cannot reflect the real situation.

Figure 9.1: Probability distribution functions over 16 possible traces

We consider three different probability distribution functions, which are
uniform, unit impulse and binomial (p=0.5), in this project. An example of
each distribution over 16 possible traces is presented in Figure 9.1.

• When uniform distribution is considered, the adversary cannot dis-
tinguish a user from the others, hence all possibilities look equally prob-
able. In Figure 9.1, every trace has 1/16 probability to belong to a
specific user. An adversary has different probability distributions for
each user, because he/she has different level of knowledge of each user.
An adversary, who considers uniform distribution for tracking a user,
is considered a weak adversary, because if the adversary has no knowl-
edge of the user and acquires observed events, he/she can already say
that every trace is probable to belong to the targeted user. Therefore,
weak adversary cannot add more information to what he/she already
has, or, in other words, he/she cannot decrease the uncertainty in the
observed events/traces.

• In the case of unit impulse, the adversary is strong; because he/she
can select a trace as the targeted user’s trace with 100% certainty. This
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is probably because of the knowledge that the adversary has about the
user. It does not mean that adversary tries his/her luck to find the user
and he/she gets it right in the first try. The adversary is absolutely
sure of the trace that it belongs to the user. In Figure 9.1, targeted
user’s trace is numbered as 8. Since adversary assigns 100% probability
to a trace and the sum of probabilities of all traces adds up to 100%,
the rest of the traces have 0% probability, thus there is no yellow bar
for other traces in Figure 9.1.

• The other probability distribution that we consider is the binomial
distribution (p=0.5) and its strength lies between the weak and strong
adversaries. For example, the adversary that uses binomial distribution
thinks that the trace of the targeted user is numbered as 8; but he/she
also thinks that traces that are numbered as 7 and 9 are also very
likely. Therefore, the adversary does not have one choice as in the
case of strong adversary; but he/she also does not think that all the
possibilities are equally probable. He/she has a favorite trace, that is
the one numbered as 8 and is the most probable trace that belongs to
the user. He/she also thinks that there is no need to consider traces
that are numbered as 1, 2, 14, 15 and 16.

In Figure 9.1, the ordering of traces is a significant detail. Sixteen traces,
which are numbered, are placed on the x axis of the graph. The question
is which number corresponds to which trace. If it is assumed that there are
2 users and 4 time instances in the scenario, then we have 16 (24) possible
traces. For example, some of the traces could look like <a1, a2, a3, a4>, <b1,
b2, b3, b4>, <a1, b2, a3, a4>, etc. The users are named as a and b, and
the time instances are concatenated to the user names, e.g. a1 means user
a at time instance 1. Since time instances in a trace are sorted in ascending
order and cannot be repeated, each trace has to have events with 4 different
time instances. One can guess that the trace that is numbered as 8 is either
<a1, a2, a3, a4> or <b1, b2, b3, b4>, by looking at adversaries probability
distributions in Figure 9.1. However the other traces are harder to guess
by just observing the probability distributions, because, for instance, the
adversary, whose knowledge corresponds to binomial distribution, believes
that the traces that are numbered as 7 and 9 are also very probable traces for
the targeted user. Even if we assume that the targeted user is, for example,
a, we still have to consider distances between observed events. Traces that
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are numbered as 7 and 9 have probably one different event in comparison
to the actual trace; but in that case there are 4 possibilities such as <b1,
a2, a3, a4>, <a1, b2, a3, a4>, <a1, a2, b3, a4> and <a1, a2, a3, b4>.
As the number of traces increase and we consider the traces that are less
likely for the targeted user, it gets harder to predict how the traces are
ordered on the x axis. There might also be strange cases like a trace which
has more events from user b and seems very likely for user a; because of
short distances. For example, user b follows a trace that is very close to
user a’s trace and it takes a shortcut towards the same end point. In this
case, the probability distribution(s) will be affected and the location privacy
values might not reflect the reality, such that it provides an underestimation
or an overestimation in the results. Thus the probability distributions are
dependent on the ordering and the characteristics of traces, which means
that they are also dependent on the distance metric.

As it is mentioned in the adversary part of the implementation chapter,
two approaches for assigning probabilities to traces/events are tried. In the
“exponential generation of traces”, all of the traces are generated exponen-
tially by searching among the observed events. For example, if there are 2
users and 4 time instances, the observed events could be seen in Table 9.1.

Time Instances t1 t2 t3 t4
User a a1 a2 a3 a4
User b b1 b2 b3 b4

Table 9.1: 8 events of 2 users at 4 time instances

The process of exponential generation of traces start from first time in-
stance, take an event and move on to next time instance. It is repeated
until all the time instances and users are exhausted. For instance, generated
traces are <a1, a2, a3, a4>, <a1, a2, a3, b4>, <a1, a2, b3, a4>, <a1, a2, b3,
b4> and so on. When all of the traces are generated, the probabilities are
assigned to them in HashMap<Trace,Float>. For the strong adversary, an
example is <<a1,a2,a3,a4>,1.0>. When this approach is used, the mapping
from traces to probabilities is done for only one user; hence, when the pro-
gram is run to assess the location privacy that user a has, HashMap must be
re-instantiated for the next user. At least, the generated traces are kept in a
separate data structure, so that they can be reused for each user’s location
privacy assessment.
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In the “no generation of traces” approach, we do not generate traces out
of the observed events, instead, we look at the user and the time instance,
and assign probabilities to different paths. The mapping is done from String
to Float[] (array of Float), again by using a HashMap<>. An example for
String object is “(0,0)”, which means that “first user at first time instance”.
An example of mapping is <“(0,1)”, [1.0, 0.0]>, which means that “first user
chooses to follow the first path at the second time instance”. This example
is again from the strong adversary, as he/she knows the path that user a has
followed.

The comparison of two approaches tells us that the outcome of mapping
could be the same at different costs. In the first example, traces are gen-
erated once and probability assignments are renewed for each user. This
approach is pretty simple to write and understand, however the time it takes
to exponentially generate all traces grows extremely fast and forms a bot-
tleneck in the performance of the application. It could be used for simple
scenarios, in which there are few events; but definitely not for thousands or
more events. On the other hand, there is no need to generate traces in the
second approach, but the probability tables for each user become quite big
as the number of events increase and it gets more complex, in the code, to
handle all of those tables at one run. In other words, the second approach
does not require renewal of probability assignments and rerun of the program
for each user. Every user could be taken into consideration in an efficient
manner at one run; however the program becomes too complicated and the
time it takes to write and debug the code is longer than the first approach.

9.1 Adversary Modeling

The investigation on existing protocols showed that there are many variables
in a system that tries to preserve the location privacy of users. The variation
leads to many assumptions in every study. For example, the adversary model
of the study is a variable. Some of the papers might not give away the details
of their adversary model and others might consider simple models as their
work is mostly on the protection mechanism. Building a realistic adversary
is hard and takes too much time and effort.

In this project, we choose to consider 3 different adversary models, which
are strong, weak and in between them. Strong adversary knows a lot about
the users and has high certainty on users’ traces. On the other hand weak
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adversary knows nothing in addition to the observed events and has high
uncertainty on traces of users. The adversary’s knowledge of users is trans-
formed into a probability distribution function that we explain previously.
The probability distribution functions that we have considered are in some
regular shape such that it fits a curve or a line. However it might not be that
simple, because even if all traces look somehow probabilistically related to a
user, an adversary might eliminate some of them according to his/her knowl-
edge. In that case, a probability function might not reflect the adversary in
the same way, as it is mentioned before. When the order and the number of
traces change, the probability function also needs to be updated. It might
be useful to combine several functions so that the probability function is
resistant to changes or noises.

Figure 9.2: Adversary Modeling

In Figure 9.2, different adversary models are presented theoretically. In
x axis, the traces are sorted according to their similarity to the actual trace
in descending order. The weaker adversary model in Figure 9.2 corresponds
to the uniform distribution. As the peak of the curves rises, strength of the
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adversary increases or, in other words, knowledge of the adversary increases.
Figure 9.2 is plotted for only one user. As adversary’s knowledge of users
change, the graphs also look different.
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Chapter 10

Distance Metric

The distance metric is another crucial part of the location privacy evaluation
of a user, as it has direct impact on the results. We have witnessed this
impact at a stage of the project, because while trying to reflect Distortion-
Based Metric [38] in the implementation, there was a misunderstanding of the
distance measure that is mentioned in the paper. The purpose of this section
is to share our experience of trying to understand the distance metric, which
consumed too much time, and make the distance metric easier to understand.

The paper uses distance to tail for each trace; but the tail is not the tail
of the actual trace. They consider each user and time instance, in order to
figure out small traces, which is actually named Tpath [38] by them. Each
small trace is part of the actual trace. They predict a location for user u
before time t, make that location as the head of the trace and then consider
a tail at time t. There is only one time difference between events, so the tail
is the next event after the last prediction. However, this was not understood
at the early stage of the project.

At first, there was nine events of three users at three time instances,
which means 27 (33) traces, in our scenario. Having few events and traces
did not make the problem very obvious. It could be motivated as the adver-
sary knows the tail of the trace and tries to predict the trace according to the
tail. However it was necessary to run simulations in order to understand the
problem and the reason behind it. Nine events were input to the simulation
and the adversary was defined as weak. In the scenario, there were three
users, which are a, b and c. User a and b followed almost similar traces
and their paths overlapped between two time instances. User c followed a
completely different trace, which only crossed traces of user a and b perpen-
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dicularly while they were moving together. Since the adversary is unable
to distinguish between users and, users a and b followed similar traces, the
expectation was user c would have the highest location privacy. The result
was completely the opposite of the expectation. The reason user c had the
lowest location privacy was locations of tail events of users a and b; because
they were very close to the second event of c. Thus at every time instance
user c experienced low distance to tail events.

Considering only the tail event was not enough, so in the next run, both
head and tail events were introduced to the distance metric, as if the adver-
sary knew them and tried to fill in between those events. While assessing the
location privacy of users, at each time instance the distances from observed
event to head and tail events were measured. The result made more sense
than the previous one. The gap between location privacy values of three
users was reduced; but it still was not as expected.

In the next run, three locations are considered at each time instance.
These locations belonged to actual events at the beginning of the trace
(head), at the time instance that is considered and at the end of the trace
(tail). Result of this run met with our expectation; however the values were
low, because of the aggregation of three different locations.

Finally, head and tail events of the actual trace are removed from the
measurement, which means that the only distance at each time instance is
the one that is between actual and observed events. By this way, the results
were as expected and higher than the previous ones.

After completing all of these simulations, distance calculation in [38] is
reconsidered and made complete sense. Thus, as it is mentioned in [38], all
of the possible traces of all users are not considered at once while trying to
evaluate the location privacy of a user. An event is selected as a starting point
and the distance to other events at the same time instance are calculated. The
distances are weighted in a probabilistic manner according to the adversary’s
knowledge of the specific user. This procedure is repeated for every time
instance until a specific time t. The distance to tail, which is included in
[38], means the distance to the event at the next time instance, as the time
instances are incremented by one at each iteration of the algorithm [38].
Therefore, the observed trace of a user is evaluated as a sequence of atomic
distance calculations at each time instance.

67



Chapter 11

Results

11.1 K-Anonymity Results

In the simulations, the number of users and time instances, sequentially, are
defined as 12 and 10. As the number of users are defined as 12, k values that
are considered are 2, 3, 4, 6 and 12, in order to serve all of the users with
K-anonymity. If k value is not a multiple of users, then some of the users
are left out alone, as K-anonymity works on a first come first serve basis.
For example, if we use k equals to five, then ten users are served in groups
of two and the remaining two users have to try their luck with k equals one,
which means no cloaking. They cannot be served in a group of five, because
the events that come after those two belong to next time instance and the
toleration in time space does not allow cloaking with them.

The simulations are run for 30 times, because of 5 different k values, 3
different trace models and 2 different adversary models. For each run of
the simulation, the program is automatically repeated 10 times; because the
traces are generated randomly. Even if the trace model is defined for each
run, the locations of events are randomly assigned. Since we do not want
to suffer from an extreme spread of locations, we run the tests 10 times all
over again. Very closely or widely spread events are two examples of extreme
cases. If all of the events are located very closely, then the cloaking area
would be very small leading to very low location privacy values. On the
other hand, if all of the events are spread in a very wide area, then the
cloaking area would be very big leading to very high location privacy values.

3600 (12 users * run for 10 times * 5 different k values * 3 different
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trace models * 2 different adversary models) results are obtained from the
simulations of our simplified K-anonymity implementation. The simulation
results are consistent with the papers on K-anonymity; such that when k
value increases, the location privacy values, which users can expect, also
increases. This is because of the widened area in order to cloak all 12 users
at once. The automated generation of traces gives well spread locations most
of the time as we use uniform distribution for the randomness of them. As
the points are uniformly distributed, one can imagine that the area, which
covers two points, is smaller than the area, which covers twelve points. Even
if we pick a random point within an area, we can see the increasing trend for
increasing k value.

Figure 11.1: Statistical information, such as maximum (blue line), average
(orange line) and minimum (yellow line), from simulations of circular traces
and strong adversary

In Figure 11.1, statistical information, such as maximum, average and
minimum location privacy values, is extracted from the simulation results of
simple K-anonymity implementation. In this simulation, circular traces of
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users are generated for 12 users and 10 time instances, which means that there
are 120 events in the simulation. The points in the graph could be interpreted
as the maximum, average and minimum location privacy values when k equals
to an integer value. For example, when k equals to 2, maximum, average and
minimum location privacy values are, sequentially, 0.717, 0.631 and 0.481.
When k equals to 12, the values are 1.2, 1.16 and 1.08. These values are
extracted from average values of 12 users overall 10 runs. Thus one can
imagine that there are even higher values than the maximum and lower values
than the minimum among the simulation results, but those values are caused
by random generation of actual events. Therefore, average location privacy
values of each user is extracted at first and then the result is statistically
analyzed.

The adversary model that is used in the simulation of Figure 11.1 is strong
adversary, who knows or guesses exactly in which cloak a user is hidden. That
is to say, even if there are several distinct cloaks at a time instance, the ad-
versary only considers the cloak, in which the targeted user is protected. For
example, when k equals to six, there are two cloaks at each time instance
and if a user is placed in the first cloak, the adversary considers that cloak in
order to reach the user. In technical terms, as distortion is calculated by mul-
tiplying the distance and the assigned probability, the expected distortion,
which the adversary experiences for tracking the user, is only the distance
between actual and observed events of the user; because the probability is 1
for all observed events of the user. Since expected distortion is calculated for
a specific time, the location privacy of the user is calculated by taking the
average of all expected distortions at all time instances. [38]

The location privacy values are plotted in y axis of Figure 11.1. The loca-
tion privacy values that are plotted on the graph are dependent on the trace
model and not normalized. The values are dependent on the trace model,
because the events are plotted on the unit circle, which is a restricted area
that covers a maximum distance of 2. If this model is applied to a real world
scenario, the circle needs to be expanded to fit the area. In that case, the
results are again dependent on the scenario, as the distance between events
are considered to calculate the distortion and, of course, the location privacy
of the user. If we were to normalize the location privacy values, it would
have been dependent on the distance unit. In our case, the normalization
factor could be slightly greater than 2, because the longest distance on the
circle is 2, however the smallest box that contains the actual events might
go beyond the boundaries of the circle. It is still not a very important detail
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in this case, because the increasing trend of the location privacy (on y axis)
according to the increasing k value (on x axis) is present regardless of the
normalization. Increasing trend is visible because as k value increases, more
users are cloaked together and the area of the cloaks gets larger in order to
include more users inside them. When the area gets larger, randomly picked
observed events lead to increased distance to actual events of users on aver-
age. There might be cases in which distances to observed events are short or
long, however the important thing is to see how it scales in many runs.

The simulation, which provides the results that are presented in Figure
11.1, is also run for cross and parallel trace models. The results show that
location privacy is improved when more users are cloaked together regardless
of the trace model, however the amount of increase and the location privacy
values are different from Figure 11.1.

Figure 11.2: Average location privacy achieved in different trace models when
adversary is strong. Circular traces (blue line), cross traces (orange line) and
parallel traces (yellow line)

In Figure 11.2, average location privacy values that are achieved by con-
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sidering different trace models are presented. When a user crosses another
user’s trace, the location privacy values that each user experiences, on av-
erage, is the lowest in comparison to parallel and circular traces; because
users get closer to each other while crossing each other and when they do,
they cause cloaking boxes to be very small in area. When cloaking boxes
get smaller, distances between actual and observed events become shorter
which leads to small distortion and in return less location privacy. When
a user follows a trace, which is parallel to other users’ traces, he/she stays
distant to other users. In this case, the cloaking box can cover larger area, in
which users could enjoy higher location privacy values. However, the users
are still located inside the circle most of the time, thus the location privacy
values are a little bit higher than the ones in cross traces. The highest lo-
cation privacy values are achieved in circular traces that are composed of
events which are located on the circle. When actual events are located at the
edge of the circle, the distances between actual and observed events could be
maximized leading to high distortion in the eye of the adversary. The reason
for observing greater amount of increase in plotting of circular traces might
be the independence of starting at any point on the circle. The points are
randomly distributed among 360 degrees for circular traces whereas they are
distributed among 180 degrees for cross and parallel traces. Taking paths
inside the circle is much restricted than wandering around the circle.
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Figure 11.3: Statistical information, such as maximum (blue line), average
(orange line) and minimum (yellow line), from simulations of circular traces
and weak adversary

The only difference between Figure 11.1 and 11.3 is the adversary model.
In Figure 11.1, the adversary is able to track the user successfully. The
only thing that prevents the adversary from exactly locating the targeted
user is the distortion that is caused by the cloaking box of K-anonymity. In
Figure 11.3, the adversary is weak meaning that he/she cannot distinguish
a user from the other ones. In this case, each user has (1/number of users)
chance of being the targeted one by the adversary. Therefore, the adversary
needs to consider every cloak at each time instance. Distortion, or in other
words adversary’s expected error in finding a specific user, is calculated by
multiplying the distance of cloaks to the actual event of the user with the
probability of the user, which is 1/12 in our scenario. When Figure 11.1
and 11.3 are compared, it is obvious that users enjoy higher location privacy
as the strength of the adversary weakens. One of the important details in
Figure 11.3 is the location privacy values that are achieved when k equals
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to 12. Since there is only one cloak when k value equals to the number of
users, the difference between the strong and weak adversaries disappears.
Furthermore, Figure 11.3 reflects the claim of Shokri et al. [38] about K-
anonymity, which means that the adversary’s probability assignment of users
is not visible when K-anonymity is applied; because all of the observed events
of the users look equally probable. They also say that K- anonymity provide
somewhat constant level of location privacy independent of the adversary’s
choices. One can see that when all of the observed events are treated equally,
the level of location privacy does not change much. Shokri et al. thinks that
the adversary might be able to distinguish a user by looking at different
parameters of the observed events and/or having extra knowledge about the
user, but this is something that Figure 11.3 cannot reflect.

Figure 11.4: Average location privacy achieved in different trace models when
adversary is weak. Circular traces (blue line), cross traces (orange line) and
parallel traces (yellow line)

It is, again, possible to see different levels of location privacy achieved
in different trace models when the adversary seems weak. A careful reader

74



might notice that the orange line in Figure 11.3 is the blue line in Figure 11.4.
In the same way, one could imagine graphs of cross and parallel traces very
similar to Figure 11.3; but having lower location privacy values and slight
increase in them as k value increases.
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11.2 The Performance Analysis of Automated

Generation of Traces

The automated generation of traces are tested for various numbers of users
and time instances. The results of the tests will be presented and explained
in this section.

Figure 11.5: Performance graph of generated events of 100 users for 50, 100,
200 and 400 time instances.

In Figure 11.5, there are 100 users and events of each user is generated
for 50, 100, 200 and 400 time instances. Number of events equals to number
of users multiplied by number of time instances. Number of traces equals
to number of users as each user has one actual trace, which is a sequence
of events for the number of time instances specified. The computation time
that it takes to generate events is visible on y axis of the graph. Generating
40 000 events takes even less than one quarter of a second, which might be
regarded as a reasonable performance. The reason why cross traces has a
different curve in Figure 11.5 might be because of different calculations for
each trace model. For example, cross traces require much more “if” checks
and computations, which require method calls from Math library of Java [8],
in comparison to other trace models.
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Figure 11.6: Performance graph of generated events of 100, 200, 400 and 800
users for 50 time instances

In Figure 11.6, the number of events are kept the same as in Figure 11.5;
however, in this graph, the number of time instances are kept the same (50)
and the number of users are doubled at each step (100, 200, 400 and 800).
Even if the values are almost the same in Figures 11.5 and 11.6, there is
almost linearly increasing trend in Figure 11.6, where as in Figure 11.5 there
is not. Probable reason for observing this difference between two graphs
is basic dependency of generation algorithms on the number of users. All
of the algorithms start with a for loop, that iterates for each user, so that
starting point of each user is selected. The number of times is considered
inside that for loop. Thus, the computation time of generation of traces is
linearly dependent on the number of users.
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Figure 11.7: Performance graph of generated events of doubled users and
time instances (100 users, 50 times), (200 users, 100 times), (400 users, 200
times) and (800 users, 400 times)

In Figure 11.7, the number of users starts from 100 and the number of
time instances start from 50. Both the number of users and time instances
are doubled at each run. The faster the number of events increase, the
faster the computation time rises. The maximum number of events that are
generated using the abstract model is 320,000 and the process takes about
2400 milliseconds.
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Chapter 12

Conclusion

In this project, we have investigated 22 papers on location privacy. As a
result of our study of these papers, we notice that there are approaches from
different layers of communication stack and architectures. Moreover, some of
the studies try to protect traces of users, whereas some others try to protect
users at a location and time by forming cloaks of them or altering users’
location and time information.

According to our analysis of related work on the location privacy, we de-
cided to implement the location privacy evaluation model of Distortion-Based
Metric [38], which we used to assess our implementation of K-anonymity solu-
tion. The modifications that we have done on K-anonymity implementation
of [20] were elimination of personalization and adaptation to the evaluation
model of Distortion-Based Metric. We have eliminated personalization from
K-anonymity; because we aimed to observe results of K-anonymity proto-
col when it covers k-many users at a time, hence we made it work in all
cases. If K-anonymity works in all cases, then personalization factor might
not be a very interesting feature. By this way, we wanted to see best re-
sults one can achieve with K-anonymity. We assessed the location privacy
values of the simplified K-anonymity implementation after adaptation to the
Distortion-Based Metric; because we wanted to check validity of the claims
made in [39]. The results confirmed both the claims made in [39] and the
general view, which is location privacy increases when k value increases [20],
on K-anonymity.

Furthermore, we implemented three different abstract models, which are
circular, cross and parallel trace models, for generating traces of users. The
events/traces that are generated by the algorithm is tested, evaluated for

80



performance and then used in the simulations of the simple K-anonymity
implementation.

We also considered and examined effects of essential aspects, such as
different adversary models and distance metrics, in the simulations. These
parts have direct impact, which must be well understood and motivated in
a similar study, on the location privacy results of the simulations.
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Chapter 13

Contributions of the Thesis

There could be three contributions of this master thesis in comparison to
other works on similar problems and these contributions could be mentioned
as generation of events/traces of users based on abstract model, adaptation
of a simple K-anonymity implementation to Distortion-Based Metric and
consideration of different probability distribution functions for modeling ad-
versary. After looking at many papers on location privacy, we decided that
we could consider these three aspects in order to gain more insight about the
problem of location privacy.

Generation of events/traces of users based on abstract model could be
useful because the simulations show that specific traces of users match specific
patterns when the location privacy values are plotted on a graph. There
might be differences between the values that are computed from realistic
scenarios and the scenarios that are created according to the abstract model;
but the difference might not be big and the pattern might still be notable at
the end. Most of the works on location privacy consider few users and events
so that their evaluation could be done efficiently within the scope of a ten
page paper. Since the abstract model automates the generation of events of
users and it works quickly, one can generate traces in any shape easily. One
can also look at different scenarios, in which there are different numbers of
users and events. After having generated events of users, the emphasis could
be on protecting those events and evaluating the protection mechanism.

As we have discussed in related work section, K-anonymity is not suit-
able for protecting traces of users, hence, it is hard to measure the location
privacy that K-anonymity offers by using a metric, which considers traces of
users. The ways to measure effectiveness of K-anonymity are looking at how
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many queries are cloaked, how many anonymity levels, spatial and tempo-
ral resolution are achieved. [21] Since we want to evaluate different location
privacy mechanisms in a similar way, we modified the output of a simplified
K-anonymity implementation so that it can be evaluated as in the Distortion-
Based Metric. Adaptation of a simplified K-anonymity implementation to
Distortion-Based Metric helps to understand the problem of providing lo-
cation privacy to users in a better way, because even if two solutions take
different measures and provide different results they aim to address the same
problem. It might be useful to be able to compare these two solutions in
order to, at least, gain more insight about the location privacy problem.

Consideration of different probability distribution functions for modeling
adversary is another interesting aspect of the location privacy problem. Since
defining an adversary is a very hard task, considering different probability
distribution functions for adversary let us learn more about how to provide
location privacy to users. When a specific probability distribution function
is selected, one might observe how the location privacy of a user changes,
how effective the protection mechanism is, what kind of user patterns the
distribution matches and if it could be possible to take precaution in the
protection mechanism for such distribution. These questions could be an-
swered by analyzing actual and observed events of users and the location
privacy distribution among users. For example, we observed that when bi-
nomial distribution is used, the location privacy values of users are spread
more closely that leads to smoother curves when plotting on a graph. On
the other hand, when unit impulse function is used, the plotting of the loca-
tion privacy values of users is composed of sharp rises and drops. Moreover,
when unit impulse function is applied, the variation in the results is higher
in comparison to the application of binomial distribution.

One more contribution of this project might also be helping students,
who aim to work on location privacy, by showing them a clear analysis of
the problem. There are several strong papers, which are well structured and
motivated, on the location privacy subject. During this project, we studied
22 papers on location privacy and there are at least 10 more interesting
papers that are noticed. We took note of interesting ideas from different
papers and also tried to be creative while working on the code. We have
worked on unclear or open parts from the papers that we have read and also
considered most of the varying and, at the same time, essential parts of the
location privacy problem. The work done in this project could be very useful
for people who are introduced to the location privacy problem newly, because

83



most of their questions on the subject would probably be answered by our
study and also they would have a wide range of possibilities for selecting a
part of the problem that they could study.
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Chapter 14

Future Work

This master thesis is only a starting point to study the location privacy prob-
lem. There are still many aspects to consider. Some of the future work that
we consider are building more advanced adversary and trace models, devel-
oping an application in which several LPPM could be combined, considering
distributed architectures and upgrading the single threaded implementation
to a multi-threaded one.

The adversary models that we have considered so far are not very com-
plex. Building an adversary model for the location privacy applications would
be a very interesting problem to look at. It could be a very hard problem,
however the adversary could be built using combination of different proba-
bility distributions.

More advanced trace models could be built and assessed. We have only
covered basic traces of user that are cross, parallel and circular traces. One
could look at different shapes of traces such as ellipse or parallelogram or an
irregular shape. Traces of the users probably depend on the environments
that users are visiting. Different cities have different arrangement of roads
and structures that might affect the traces of users. These details could be
considered while building trace models for users.

Combination of different location privacy metrics into one application us-
ing fuzzy logic could be another interesting study. We aimed to achieve this;
but unfortunately limited time and complexity of the subject did not allow us.
Each existing protocol on location privacy tries to address a different aspect
of the same problem, which is providing location privacy to users querying
the LBS, and has different complexity, strengths and weaknesses in compari-
son to the other ones. In some cases, it might be meaningful to use protocols
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that consider traceability, whereas in another case K-anonymity might be
an efficient and satisfactory solution. The fuzzy logic is necessary for un-
derstanding the scenario, so that proper protection mechanism(s) could be
taken. The situation a user is in could be assessed according to the gathered
information from the users and recommendation could be made to the user
or it could be directly applied. A unified evaluation framework for location
privacy is probably needed for such an application. Different location privacy
mechanisms could be compared in effectiveness under certain circumstances.
This is similar to our adaptation of K-anonymity to Distortion-Based Metric
in order to assess the location privacy of users. Other location privacy solu-
tions could be adapted as well, so that they could be compared not just on
paper but in an application, hence they could be combined in one application
to work together simultaneously.

The focus of this project stayed on centralized architecture, because of
time constraint and wide range of details in the problem. There are also
distributed architectures for location based services. One could investigate
them in order to understand their strengths and weaknesses, and also com-
pare with centralized architecture. There could be things that are important
in a centralized architecture but not in distributed ones or vice versa.

The implementation so far is run using a single thread in this project,
as the CPU of the machine that is used for it is single core. A machine
with multiple core CPU could be used and different parts of the application
could be implemented in a multi-threaded way. One benefit of this modifi-
cation could be speeding up the application so that more complex scenarios,
mechanisms and evaluation methods could be used. For example, now, every
component of the system run in sequence in the order of generate events,
apply location privacy preserving mechanism (LPPM), simulate adversary
and assess location privacy. Generation of actual events can be done on one
thread and as this thread works actual events can be handed to the LPPM,
which can run on another thread and place observable events in a queue or
buffer that the adversary is watching on another thread. The assessment
mechanism can run on a different thread and assess adversarys success rate
in time. There might be another benefit of the modification, which leads
to interesting results such as adversary might not be able to deduce much
until a point in time; but after that point he/she might learn about a user
instantly. The implementation that is done for this project can be seen as
an offline analysis of the situation, because all of the actual events are trans-
formed into observable events and then adversary observes them and then
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only we can assess the situation. If a multi-threaded implementation could
be developed, it would be possible to monitor the adversary’s view of users
in time. It might not be possible for the adversary to learn about a user in
a short time.
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