
Protecting Web Usage of Credit Cards Using One-Time Pad
Cookie Encryption

Donghua Xu, Chenghuai Lu and Andre Dos Santos

College of Computing
Georgia Institute of Technology

U.S.A.
{xu,lulu,andre}@cc.gatech.edu

Abstract

The blooming e-commerce is demanding better
methods to protect online users' privacy, especially the
credit card information that is widely used in online
shopping. Holding all these data in a central database
of the web sites would attract hackers' attacks, impose
unnecessary liability on the merchant web sites, and
raise the customers' privacy concerns. In this paper we
introduce and discuss in details the secure distributed
storage of sensitive information using HTTP cookie
encryption. We are able to employ One-Time Pads to
encrypt the cookies, because encryption and
decryption are both done by the server, which is an
interesting characteristic overlooked by the existing
systems. We implemented this protocol and showed
that it is simple, fast and easy to program with.

1. Introduction

With the rapid expansion of the Internet, more and

more people realize the convenience and efficiency

brought by E-commerce. A recent study [2] showed

that the online retail sales were expected to reach 65

billion dollars in North America in 2001. Most of these

online transactions are carried out using credit cards.

When a user purchases an item on the a merchant web

site, she inputs her credit card number and expiration

date in her browser, then the merchant site will debit

her credit card account and ship the item to the user.

Most web sites store the credit card information in a

database after a transaction, in order to save the users

from inputting the same credit card information

repeatedly in the future. When the user makes a

purchase next time, the web site can directly use the

credit card information that she input last time.

With billions of dollars moving online by credit

card transactions, the online safety of credit card

numbers becomes a focus of public concern, especially

as more and more large-scale online credit card thefts

are reported. These thefts, as shown in Table 1, were

all due to the fact that credit card numbers were stored

in the merchant web sites’ central databases.

Date Web Site broken
into

Credit
Card
numbers
exposed

1/2000 CDUniverse.com 350,000
12/2000 CreditCards.com 55,000
12/2000 Egghead.com 3,700,000
3/2001 Bibliofind.com 98,000

Table 1:Exposed credit card numbers of hacked
web sites

Table 1 only shows the most well publicized

examples of the online credit card thefts. On one hand

people like the convenience of online shopping, on the

other hand they are worried about the safety of their

credit card numbers. The fear of online credit card

fraud has been holding back many people's desire to

shop online, and hampering the growth of the E-

commerce [6].

The reality of E-commerce is demanding a better

way to protect users' privacy (especially credit cards)

and reduce the merchant websites' liability. As a matter

of fact, the merchant web sites do not need the

customers credit card numbers after a transaction is

carried out. The web sites store the credit card

information only for the convenience of the same

customer’s next transaction. Unfortunately, as shown

above, storing this information in a central database

always introduces big troubles after an attacker breaks

into the server.

In this paper we introduce a scheme for distributed

storage of sensitive information, in specific a One-

Time Pad HTTP cookie encryption protocol, to avoid

gathering credit card in a central database, while

providing similar user convenience at the same time.

In essence, our approach encrypts the credit card

information using One-Time Pad, an unconditionally

secure encryption method, and stores this information

as cookies on the customers' computers. The central

database of the web site only stores the one-time keys

of the cookies, so even if an attacker breaks into the

server, what she would obtain are the one-time keys

which are just random strings to her without the

corresponding cookies.

Cookie encryption per se is not new. And Park and

Sandhu [5] also briefly mentioned a similar concept of

distributed storage of private information using

encrypted cookies. However they did not analyze the

pros and cons of this scheme, neither did they propose

any real life application of it. In this paper, we provide

detailed discussions of the main related issues of this

scheme, and introduce One-Time Pad to achieve

perfect secrecy for the encryption. In addition, the

credit card information that this scheme protects has its

own characteristics that make this scheme even more

secure in various respects, e.g. replay attack or

malleability issue.

The rest of the paper is organized as follows. In

section 2 we briefly introduce HTTP cookie and the

cookie encryption problem. In section 3 we present our

One-Time Pad encryption protocol. In section 4 we

discuss and analyze the pros and cons of this protocol.

Section 5 concludes this paper and briefly discusses

our future work.

2. HTTP Cookie and cookie encryption

The web tra ffic is mostly composed of HTTP

traffic. HTTP is a state-less protocol, so designed to

make it convenient for multiple clients to access

multiple servers arbitrarily. Each page-request from

the client is processed independently on the server. By

nature these HTTP page-requests are not associated

with each other. However sometimes - in fact,

nowadays most of the time - it is necessary for a server

to maintain the state of client accesses. Cookie [3] was

designed to help the server manage states. Cookies

work as follows: the server processes a page-request

from the client, then returns a cookie along with the

page that the client requested; the next time the client

sends a page-request to this server, the client sends that

cookie to the server as well. Thus, the server knows

what the state of this client on the last page-request

was. Cookies are now used extensively by Web

servers, to keep track of the clients' state and provide

more convenient service to users.

The clear-text nature of cookie implies that a

malicious intermediary between the client and the

server would be able to intercept/modify the cookies.

Therefore the standard specification of cookie [3]

emphasizes that “...information of a personal and/or

financial nature should only be sent over a secure

channel.”

However, even if the communication channel is

secure, cookies can still be easy targets on the users'

computers. There are various ways for a malicious

party to steal this kind of information from the users'

personal computers, ranging from Trojan horses to

java-script bug exploits. For example, the E*Trade

web site once encrypted users' passwords in cookies.

An E*Trade cookie could be hijacked by a malicious

third party using the ``cross-site scripting'' technique,

while the encryption of the password was so weak that

a cryptography expert could break it in 20 minutes

[12]. Therefore, if a cookie contains sensitive

information, it must be strongly encrypted.

One might argue that sensitive information should

never appear in cookies in the first place. Instead, the

server could generate a nonce string (or a Session ID),

and send this nonce string in the cookie to the client,

while storing this nonce string along with the sensitive

information itself in the local database. When the

cookie returns from the client, the server could extract

the nonce string from the cookie, and retrieve the

information corresponding to the nonce string from the

database. By doing this, the client side only stores a

nonce string in the cookie, which means nothing for an

intruder even if she took hold of the cookie.

However, sending only nonce strings in the cookies

implies storing all users' personal information in a

central database, and there are serious risks in putting

all eggs into one basket. A shopping web site with

thousands of customers might have thousands of credit

card numbers in its local database. Such databases are

always luring hacker attacks, and would cause big

troubles once the database servers were broken into, as

shown by the credit card theft examples in section 1.

Furthermore, because of privacy concerns, customers

might not like to have their credit card numbers

gathered in a remote database. Although web sites can

make promises that they will never mine or abuse

customers' private information, some customers would

feel more comfortable if the web sites simply erase

their private information as soon as the information is

used.

A better way for the merchant web site to reduce its

own liability and protect the users' privacy is to

strongly encrypt the sensitive information and send it

in a cookie back to the users' computers, instead of

storing the sensitive information in the web server's

database.

One notable example of the usage of cookie

encryption is Microsoft's Passport technology [4] that

allows a user to sign into multiple web sites by

inputting user id and password only once. The central

Passport server issues and authenticates encrypted

cookies with the user's browser, and the participating

web site only needs to redirect the browser to the

Passport server when authentication is needed.

However, this technology still maintains all users’

information in the Passport server's central database,

raising users' concern of privacy, luring hackers'

attacks, and forming an actual single point of failure on

the Internet. In comparison, what we are proposing is

to let the user keep her own sensitive information in a

manner that is guaranteed to be secure, and not to store

this information on the server at all.

Although Park and Sandhu [5] already mentioned

that cookie encryption could be used for distributed

storage of sensitive information, they did not propose

or analyze any specific case that this would bring

benefits over current use of nonces and session IDs. In

this paper we introduce a better encryption scheme –

One-Time Pad – and show where this would bring

benefit to real world applications/systems.

3. One-Time Pad Cookie Encryption

OTP(One-Time Pad) was first proposed in 1926 by

G. Vernam [10] to encrypt wire and radio

communications. In 1949 C. Shannon [8] proved the

perfect secrecy of OTP. The essence of OTP is to

generate a random string of at least the length of the

message to be the key of this message, then XOR the

key with the message to produce the ciphertext. In

order to decrypt the ciphertext, XOR the ciphertext

with the key again. It is impossible to crypt-analyze

OTP, since every message has a different random key,

and there is no way to distinguish the ciphertext from a

random string.

Although OTP is simple, fast and unconditionally

secure, it is not widely used. There are two obstacles

that prevent OTP from being used in generic

applications. The first is the generation of random

numbers. Although we recognize that this is a big

obstacle for using OTP encryption we do not address

any new solution for this problem in this paper. We

assume that if the second obstacle, the key distribution

problem, can be solved then pseudo random number

generator with periodic reseeding can be used.

Although the resulting algorithm would not be a one-

time pad on its most strict sense, it would provide a

reasonable approximation to the one-time pad.

In the usual scenario of secure communication,

encryption of a message is done by one party, and

decryption of the same message is done by another

party, with both parties sharing the same key for the

same message. However the OTP encryption requires a

new key for every new message, which in turn requires

a mechanism to distribute keys so that both parties can

have the same key for a message while no third party

could intercept or tamper with these keys. If such a

mechanism exists for generic applications, then the

encrypting party could have used this mechanism to

send the message directly without encryption. In

reality, no such practical mechanism exists a priori, so

the fear of leaking the keys out is keeping people from

using OTP extensively.

However, it is easy to notice that in applications

where encryption and decryption are performed by the

same party, the key distribution problem is not an issue

anymore. This means that we can employ OTP on such

encryption tasks, and achieve the perfect secrecy.

One application that shows such a characteristic is

cookie encryption: encryption and decryption of the

cookies are done by the same party – the server. The

client simply stores and sends back the cookie, but

does not participate in cookie encryption/decryption.

In other words, the client does not use the information

in the cookie. Therefore the keys are solely used by the

server, instead of being shared by two parties.

This characteristic shows up only when the party

that performs both encryption and decryption does not

want to or is not able to store the sensitive information

after its use. Otherwise, if the encrypting/decrypting

party can and wants to store the information, then this

party could have simply generated a nonce string to

send to the other party, while storing the real

information with the nonce string in the local database,

since the other party does not need the real information

anyway. What makes cookie encryption so special is

the web sites' motive that they should respect users'

privacy and reduce the web sites' own liability. This is

the main reason the web sites do not want to store

customers' credit card information after its use.

Based on this observation, we developed an OTP

cookie encryption protocol to protect online users'

privacy. The protocol is straightforward. In short, the

web server stores the OTP keys in a local database and

encrypt/decrypt the cookies using these keys. Figure 1

shows the flow charts for cookie encryption and Figure

2 shows the flow chart for decryption. When a web

server needs to encrypt a cookie before sending it out,

the web server follows the upper chart. When the web

server receives a cookie from a client, the web server

follows the lower chart to decrypt the cookie. Notice

that after the decryption, whether or not to remove the

key from the key database would depend on the web

designer's choice. More details will be discussed in

section 4.6.

The web server also runs a clean-up program

periodically to check the expiration times in the key

database against the current time, and deletes all the

expired keys. There are several reasons why a key

expires. The main security related reason is to provide

a mechanism to limit the time the server stores the key,

hence limiting the web server's liability in case an

attacker breaks into both the database and a user's

computer. Another reason is that sometimes users

might leave a web site and not come back anymore, or

chooses to clean her cookies even if she comes back

next time, or the users' system might simply crash, in

which cases the cookies would not return to the web

server anymore. Therefore the corresponding keys in

the web server's key database would become zombies,

occupying the disk space and the space of index string

unnecessarily. We should have a separate program to

clean up the zombie keys, in order to save disk space

and index string space over time.

Figure 1: Cookie Encryption

Figure 2: Cookie Decryption

Decompose the cookie into

index i and ciphertext C

Is i in the key

database?

Discard this

cookie and

return an error

message

Fetch the record (i, k, t)

from database

Is key expired?

(t > current time)

Decrypt the ciphertext:

p = k XOR C

Keep the

record?

Update (i, k, t) to (i, k, t’) where t’

is the new expiration time

Remove the

record (i, k, t)

Remove the

record (i, k, t)

End

YES

NO

YES

YES

NO

NO

Generate a random key k as long

as the cookie plaintext p

Encrypt the plaintext as

C = k XOR p

Generate an index string i not yet in

the database

Calculate an expiration time t , which

is usually a constant period after

current time

Store the 3-tuple (i, k, t) in the key

database with i being the index

Concatenate i and C to form the

value of outgoing cookie, and send

it to the client

End

4. Analysis

The protocol described on this paper was designed

to protect online usage of credit cards, and can be

generalized to be a scheme of distributed storage of

information that protects other kinds of sensitive

information. We will analyze and discuss the

advantages and related problems of this protocol in the

following subsections.

4.1. Advantages of Distributed Storage of
Sensitive Information

In general, the main advantage of distributed

storage of the customers' sensitive information is that,

the risk is also distributed, and the damage caused by

compromises is limited. If an attacker breaks into the

database server of the web site, she only gets a table of

the one-time keys, which is useless without the

corresponding encrypted cookies. If the attacker breaks

into the user's personal computer or by other means

gets hold of the user's encrypted cookie, she also has

no practical way to crack it. If the attacker breaks into

both the server and the user's computer, then this user's

cookie is compromised, but all the other users' cookies

are still safe, as long as the attacker is not able to get

their cookies. In the worst scenario the attacker breaks

into the server and has a way of listening to all the

traffic of this server. The clients that send the credit

card cookies to this server in this period would have

their credit cards exposed. However, the other users

that do not send the credit card cookies to this server in

this period are still safe. Hence the loss on the worst

case scenario is limited by the length of period that the

attacker can stay on the server. This is much better

than gathering all users' credit card numbers in a single

database, and exposing all of them once the server is

compromised.

In addition, there is a simple way for a merchant

web site to ensure that the credit card cookies are sent

to the web site only when necessary. The cookie has a

path option that specifies which path on the server

requires this cookie. The web site can single out the

program that processes the last step of a transaction,

which really requires credit card number, and place the

program in a path different from all other programs

and web pages. When the web server sends the credit

card cookie out, it sets the path option of the cookie to

the directory of the program that actually processes the

credit card. Thus, this cookie will only return to the

web site when a credit card number is actually needed.

An attacker could spoof the web site and trick the

user’s browser into sending the encrypted cookie. This

attack maps to the case where the user’s computer is

compromised, and will have limited effect as already

described.

Furthermore, the user has complete control over

their private information after it is used. She can

choose when to send a cookie, or even whether she

wants to keep this cookie. If the user decides to erase

it, then there are plenty of cookie management

software that can help her delete the cookies from the

local storage. As a result, the keys associated with

these deleted cookies will become zombies in the

server, and eventually be deleted too.

In summary, the distributed storage of credit card

numbers using OTP can provide nearly - perfect

secrecy of the user's privacy, and significantly reduce

the web sites' liability of the online theft.

4.2. Advantages of OTP's Resource
Requirement

For any encryption algorithm, using the same

master key to encrypt multiple messages is generally

not a good idea, since the more times a key is used

repeatedly, the more likely cryptanalysis can be carried

out. Using each key just once is a good way to make

cryptanalysis improbable. In fact, as long as each

encryption key is used only once, any other encryption

algorithm (e.g. DES, AES) could also be used to

achieve similar secrecy as OTP. However, compared

to the other encryption algorithms where multi-rounds

of complex logic/mathematical operations have to be

performed, OTP has the obvious tremendous

performance advantage. OTP is the fastest possible

encryption algorithm: the encryption/decryption are

both only a simple round of XOR operation on every

bit of the plain text.

The main factor that could impact OTP

performance is not the encryption/decryption

themselves, but the generation of the random keys. The

process of generating random numbers is usually far

slower than the OTP encryption/decryption itself.

Nevertheless, in case this becomes a major issue of the

overall real-time performance, web servers can always

choose to use pre-computed random number table to

save the time of random number generation.

One seeming drawback of OTP is that the keys are

as long as the plain texts, and have to occupy the

server's storage space that is as large as the plain texts.

In addition, since the keys are supposed to be random

strings with very high entropy, compression does not

work on the keys. However, the cookies that this

scheme is encrypting are not large anyway(each cookie

can be at most 4K bytes according the specification,

but the credit card information is only tens of bytes).

The storage requirement of the keys on the modern

web servers is very trivial, and should not be a serious

issue.

4.3. Randomness of OTP Keys

The perfect secrecy of OTP relies on the

randomness of key generation. If the keys are not

random, then the algorithm cannot be proven to

provide perfect secrecy. True random numbers can be

obtained by measuring a random physical process,

such as cosmic radiation, or thermal noise. A web

server connecting to such a measurement device might

seem weird at the first thought. But it is well worth it if

the web site is really concerned about the secrecy of its

traffic.

There are numerous ways to generate random

numbers [7] that a web site can choose from. The

hardware and software implementations such as

described in [9] are very easy, and a digital Geiger

counter package such as described in [1] costs only a

few hundred dollars. Therefore going for this kind of

randomness should not cause too much trouble to the

web site designers.

The other option is to use a good PRNG (Pseudo-

Random Number Generator, such as surveyed in [11]),

which from an initial state produces series of numbers

that appear to be random to an observer. In some cases,

using frequent re-seeding, the use of PRNGs can be

appropriate. If a PRNG is used, the perfect secrecy of

the algorithm cannot be achieved, but all other

properties described in this paper can.

Therefore we can be reasonably confident that OTP

encryption on cookies is unbreakable. The user's

privacy is hence strongly protected, and the web site's

liability is substantially reduced by the OTP

encryption.

4.4. Resistance against Replay Attacks

Assume that an attacker somehow grabs a

customer's cookie. Although the attacker would not be

able to decrypt it, she could still send the cookie to a

web site a number of times. If the cookie contains a

credit card number, this attack could cause unwanted

charges on the credit card accounts. Therefore web

sites should erase a key from the database immediately

after its use. In other words, the web server should

generate a different key to encrypt the credit card

number every time the web site receives an encrypted

cookie from the client. Although this scheme does not

solve all problems, an attacker would not be able to

replay an old cookie used by a client because the key

associated with this cookie will be deleted after the

actual user sends the cookie to the server. Replay

would only return an error message in this case.

However, the attacker can still succeed on replay

attacks by sending a captured encrypted cookie to the

web site before the actual user does so. Web sites

should be encouraged to keep shipping address

information linked to user ids to prevent this kind of

attacks. Thus the harm that the attack might bring is to

purchase an item that the customer actually does not

want, and charge the credit card account. Nevertheless

as the shipping address of the customer is not changed,

whatever item the attacker purchases would still be

delivered to the customer, not the attacker. Moreover,

since the usage of each encrypted cookie is valid to

only one web site, the attacker would not be able to use

this credit card to make purchases on other web sites.

In comparison, credit card information without site-

specific encryption would allow the attacker to use it

everywhere with her own shipping address, making the

purchased items delivered to the attacker instead of the

owner of the credit card.

4.5. Non-malleability

Other than trying to steal other people's credit card

numbers, a mischievous attacker might try to create

her own fake credit card cookie and send it to the web

server, using an existing index string in an existing

cookie, simply to create confusion on the web server.

However this attack does not work as long as the

attacker does not know the key of the cookie, because

the server only gets a random string after decrypting

the fake cookie. Since credit card numbers themselves

have built-in verification mechanism, there is a chance

that the random string would not turn out to be a valid

credit card number. In addition, it is very unlikely that

the expiration date will be valid or that the attacker can

guess the name of the owner of the card represented by

the mentioned random number. Some integrity

measures, such as hashing the credit card number,

could also be used as an extension of this scheme to

further reduce the chance that an attacker can fake

valid credit card information.

Notice that repeated attempts of this attack might

constitute a DoS (Denial of Service) attack. Preventing

DoS attack is out of the scope of this paper, since there

are many other ways that DoS attack can be carried out

too.

On the other hand, a more successful attack might

come from a customer that actually receives her own

credit card cookie from the web server. She could

compute the key of this cookie from the cookie and her

credit card number. And after she gets this key, she

could use the key to encrypt somebody else's credit

card number to form a new cookie, and send this

cookie back to the server. Then the server would

charge the victim's credit card account and ship the

purchased item to the attacker's address. However the

prerequisite of this attack is that the attacker knows the

victim's credit card number. And there is no effective

way to protect the victim in this case anyway, since the

attacker can virtually use the victim's credit card

anywhere. Even if our scheme adopts some sort of

authentication mechanism to allow the server to reject

a received cookie that is different from what is sent

out, it still cannot prevent the attacker from registering

with victim's credit card information all over again.

4.6. Recovery of Network Connection Problem

In this protocol, if the web server erases every key

after its associated cookie comes back, then the

customer has to have a good network connection to the

web server. Over a bad network connection, the

customer's computer might not receive a new cookie

from the server when loading a page; as a result the

customer would use the old cookie to access the web

server next time, and get an error message, since the

old key was already removed from the server's key

database. Then the customer would have to input the

credit card number again.

To ease (but not completely resolve) this problem,

the web server can choose not to delete the old key

from the database after generating the new key.

Instead, the server keeps the old key in the database

some time longer. Most users react to a network

connection failure by reloading the page in a short

time, in which case the old cookie would still be able

to find the old key in the database.

Keeping an old key after its use may imply that the

protection against replay attack is weakened. However,

we have already shown in section 4.4 that the impact

of replay attacks can be small as long as the web server

takes precaution to link user's shipping address. As in

many decisions that take security into consideration,

the web server needs to weight convenience against

security.

4.7. Same User from Different Computers

A user might want to access the same web site from

different computers, typically one home computer and

one office computer. As long as the cookies are not

synchronized between these computers, the user has to

input the credit card information once on each

computer the first time she uses that computer to

purchase something from a web site. Thus each

computer would store the same credit card number

encrypted with a different key, and the server would

keep the keys for all these cookies at the same time.

Inputting the same thing twice seems to be

inconvenient, comp ared to the currently most used

approach where all the credit card numbers are stored

on the web site, where a user can log in to the web site

from anywhere to make purchases without inputting

the credit card repeatedly. However, since users tend to

return to the same web site many times to purchase

more items, inputting credit card numbers twice in the

beginning should not really be a big issue.

5. Conclusions and Future Work

This paper gives a useful, real-world application of

secure distributed storage of sensitive information

using HTTP cookie encryption. A One-Time Pad

method to achieve perfect secrecy of cookie encryption

is proposed, based on the observation of the interesting

characteristic of cookie encryption: the encryption and

decryption are done by the same party. The pros and

cons of this protocol are analyzed, and the comparison

with the existing approaches shows that our protocol is

able to protects users' privacy and reduce web sites'

liability in a much stronger manner.

We have implemented this protocol as a C library,

and designed a simple web site to demo the OTP

cookie encryption. The library implements the key

database based on GDBM, and the encryption and

decryption functions can be called from the main CGI

programs of a web site directly.

As future work, on one hand we intend to improve

and expand this cookie encryption library and try to

apply it to real world web sites; on the other hand we

would like to apply similar OTP protocols to the other

online privacy protection problems, where the party

that repeatedly uses the sensitive information cannot or

does not want to store the information locally.

One example of this kind of problem is network

access proxy/anonymizer, where the proxy needs the

IP of a file-request's originator, in order to return the

file to the originator when the proxy gets the file; but

at the same time the proxy also wants to protect the

originator's privacy, and is not willing to store the

originator's IP locally. Applying OTP to this problem

might be especially helpful to peer-to-peer network's

privacy protection.

Another example is secure remote file storage,

where the user needs to download a file from a server

to a PC to access it, and for privacy concerns the user

does not want the server to store plain text of the file.

We will explore the possibilities to use the OTP

technique to address this issue in Microsoft's .NET

service and other similar services.

References

[1] Internet Website, "Gamma-Scout,"

http://www.gammascout.com/, 2002.

[2] Margaret Kane, "Online spending to hit $65 billion,”

CNet Online Article: http://news.cnet.com/

news/0-1007-200-5794394.html?tag=lh, 2001.

[3] D. Kristol and L. Montulli, “Internet RFC 2965: Http

state management mechanism,” Network Working Group,

October 2000.

[4] Microsoft, "Passport Homepage," Online at

http://www.passport.com/, 2001.

[5] Joon S. Park and Ravi Sandhu, "Secure Cookies on the

Web," IEEE Internet Computing, July-August 2000,

http://computer.org/internet, 2000.

[6] Reuters, "Fraud threat still haunts Net shoppers," CNet

Online Article: http://news.cnet.com/news/0-1007-200-

6270593.html, 2001.

[7] Terry Ritter, "Random Number Machines: A Literature

Survey," Online at http://www.io.com/~ritter/

RES/RNGMACH.HTM, 1997.

[8] C.E. Shannon, "Communication Theory of Secrecy

System," Bell Systems Technical Journal, 28:656-715, 1949.

Online version:

http://www.cs.ucla.edu/~jkong/research/security/shannon.ht

ml

[9] John Walker, "HotBits: Genuine random numbers,

generated by radioactive decay," Online at

http://www.fourmilab.com/hotbits/, 1999.

[10] G.S. Vernam, "Cipher printing telegraph systems for

secret wire and radio telegraphic communications," Journal
of American Institution of Electronic Engineering, 45:252-

259, 1926. Online introduction: http://www.pro-

technix.com/information/crypto/pages/vernam_base.html

[11] Terry Ritter, “The Efficient Generation of

Cryptographic Confusion Sequences”, Cryptologia. 15(2):

81-139. 1991.
[12] Stuart McClure and Joel Scambray, "Etrade makes the

'hit' parade: Client-side hacking captures a big-time victim,"

InfoWorld Online Article:

http://iwsun4.infoworld.com/articles/op/xml/00/10/09/00100

9opswatch.xml, 2000.

