
 Open access Journal Article DOI:10.1109/MDAT.2017.2766170

Protection Against Hardware Trojans With Logic Testing: Proposed Solutions and
Challenges Ahead — Source link

Sophie Dupuis, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre

Institutions: University of Montpellier

Published on: 01 Apr 2018 - IEEE Design & Test of Computers (IEEE)

Topics: Hardware Trojan and Logic gate

Related papers:

 Hardware Trojans: Lessons Learned after One Decade of Research

 A Survey of Hardware Trojan Taxonomy and Detection

 MERO: A Statistical Approach for Hardware Trojan Detection

 A Novel Technique for Improving Hardware Trojan Detection and Reducing Trojan Activation Time

 Trojan Detection using IC Fingerprinting

Share this paper:

View more about this paper here: https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-
4okvycmwkh

https://typeset.io/
https://www.doi.org/10.1109/MDAT.2017.2766170
https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-4okvycmwkh
https://typeset.io/authors/sophie-dupuis-2c7igx2ij0
https://typeset.io/authors/marie-lise-flottes-918wcknail
https://typeset.io/authors/giorgio-di-natale-2p9ceqn0pt
https://typeset.io/authors/bruno-rouzeyre-45wcbz4b67
https://typeset.io/institutions/university-of-montpellier-ckz1qiox
https://typeset.io/journals/ieee-design-test-of-computers-1zp7hs5t
https://typeset.io/topics/hardware-trojan-rzrfcxnu
https://typeset.io/topics/logic-gate-2jm053f7
https://typeset.io/papers/hardware-trojans-lessons-learned-after-one-decade-of-3skp968v8d
https://typeset.io/papers/a-survey-of-hardware-trojan-taxonomy-and-detection-4fn90ckd0z
https://typeset.io/papers/mero-a-statistical-approach-for-hardware-trojan-detection-3gp7gkfg0w
https://typeset.io/papers/a-novel-technique-for-improving-hardware-trojan-detection-3edybritw9
https://typeset.io/papers/trojan-detection-using-ic-fingerprinting-4p1lpfee2q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-4okvycmwkh
https://twitter.com/intent/tweet?text=Protection%20Against%20Hardware%20Trojans%20With%20Logic%20Testing:%20Proposed%20Solutions%20and%20Challenges%20Ahead&url=https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-4okvycmwkh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-4okvycmwkh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-4okvycmwkh
https://typeset.io/papers/protection-against-hardware-trojans-with-logic-testing-4okvycmwkh

HAL Id: lirmm-01688166
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01688166

Submitted on 19 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protection against Hardware Trojans with Logic
Testing: Proposed Solutions and Challenges Ahead
Sophie Dupuis, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre

To cite this version:
Sophie Dupuis, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre. Protection against Hardware
Trojans with Logic Testing: Proposed Solutions and Challenges Ahead. IEEE Design & Test, IEEE,
2018, 35 (2), pp.73-90. 10.1109/MDAT.2017.2766170. lirmm-01688166

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01688166
https://hal.archives-ouvertes.fr

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Due to the evolution in the Integrated Circuit (IC)

supply chain, soft/firm/hard cores involved in a system under

development and manufactured ICs come from numerous, and

possibly unreliable, sources. This loss of control over the entire

design/production flow leads to several threats including the

insertion by an attacker of malicious circuitries known as

Hardware Trojans. Hardware Trojan insertion modifies the

functionality of the circuit, possibly its reliability, in order to alter

its behavior, generate a denial of service or leak secret

information for instance. Numerous methods have been proposed

in the literature to detect the presence of such alterations, or

prevent their insertion. This paper focuses on methods based on

logic testing. Researches in this domain are surveyed and

remaining unresolved challenges are described along with

proposals to meet these challenges.

Index Terms—Hardware Trojan, Logic testing

I. INTRODUCTION

HE possible insertion of a Hardware Trojan (HT) in an

Integrated Circuit (IC) has been considered as a serious

threat for nearly a decade [1-5]. These malicious

modifications of an IC can be done during the design or the

fabrication steps. The insertion of a HT in an unreliable

foundry was initially considered as the most likely threat [6].

Outsourcing the manufacturing process to low-cost locations

has indeed become a major trend in the ICs industry given

manufacturing increasing cost with ever-shrinking transistor

technologies. This paper focuses on this insertion scenario. A

wide variety of HTs can be implemented in order to alter the

intended functionality of a design. Few additional logic gates

are indeed generally sufficient for inferring a behavior not

expected in the original specifications. The challenge lies in

HT detection or/and prevention knowing the stealthy nature of

that threat and the multiple possible forms of HTs.

Numerous techniques have been proposed to counteract

the potentially catastrophic effect of the insertion of a HT [5,

7-9]. Proposed methods are usually classified into three

categories: detection methods, split manufacturing and

prevention methods, called Design-for-Trust or Design-for-

Hardware-Trust (DfHT) methods. Detection methods aim to

S. Dupuis, M.-L. Flottes, G. Di Natale and B. Rouzeyre are with the

Microelectronics Department of the Institute of Computer Sciences,

Microelectronics and Robotics of Montpellier (LIRMM), Montpellier, France

(e-mail: firstname.lastname@lirmm.fr).

test ICs after their fabrication in order to ensure HT-free

circuitry. Split manufacturing consists in splitting the

manufacturing process to two foundries. DfHT aims to either

help detection methods or prevent the insertion of a HT [10].

This paper surveys related detection/prevention methods,

focusing on approaches based on logic testing. We also

propose some enhancements and highlight remaining

challenges. Detailed background information is given in

Section II. Detection methods are reviewed in Section III and

DfHT methods in Section IV. Section V summarizes the

limitations and challenges of logic testing in that field.

Eventually, Section VI concludes the paper.

II. CONTEXT

A. HT taxonomy

Due to the wide variety of HTs that can be created, with

various characteristics and various effects, several taxonomies

have been proposed in the literature. The goal was to properly

evaluate the threat and the effectiveness of the proposed

countermeasures.

HTs were initially classified in [11] according to their

physical aspects, action and activation characteristics (cf. Fig.

1). The physical characteristics of a HT include:

- its size,

- its type: a functional HT incorporates new gates in the

IC whereas a parametric HT modifies the existing

circuitry,

- its structure: a HT may change the original layout and

leads to geometric changes on placement and/or

routing,

- its distribution in the infected IC: a tight distribution

means that the components of the HT are close in the

layout as opposed to a loose distribution.

The HT’s action, called the payload, modifies the

functionality of the IC in order to produce erroneous

behaviors, e.g. denial of service, wrong outputs, or

transmission of confidential information. The payload can also

downgrade circuit performance. A HT can be either always

active or triggered by a specific condition, called the

triggering condition.

Eliminating unrealistic HTs can restrict this very general

taxonomy: those that can be easily detected. It will be

explained in this paper which physical characteristics must

have a HT in order to escape detection by different types of

detection methods.

Protection against Hardware Trojans

with Logic Testing:

Proposed Solutions and Challenges Ahead

Sophie Dupuis, Marie-Lise Flottes, Giorgio Di Natale and Bruno Rouzeyre

T

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Besides, this taxonomy focuses on HTs possibly inserted

in an unreliable foundry. All steps in the design are nowadays

considered as unreliable. To take into account these new

threats, new taxonomies were proposed to characterize HTs

inserted at design time, in a third party Intellectual Property

for instance. Abstraction level and insertion phase are taken

into account in such taxonomies [12]. These HTs are beyond

the scope of this paper.

Moreover, the knowledge of the circuit that an attacker

must have, depending on the desired functionality of the HT,

is presented in [12]. For example, the knowledge of the

functionality and/or the netlist is not necessary to notch a few

signals in order to cause an eventual failure. On the contrary,

this knowledge is necessary to modify the functionality, e.g. to

transmit a specific internal value at a given time.

B. Protection methods taxonomy

Many techniques have been proposed to counteract the

potentially catastrophic effect of the insertion of a HT in an

unreliable foundry. As described in [5], HTs protection

methods can be divided into three types: detection, split

manufacturing and DfHT (cf. Fig. 2).

1) Detection

Post-production methods analyze fabricated ICs in order to

ensure the absence of a HT. These methods are divided into

destructive and non-destructive methods.

Destructive methods are based on reverse engineering,

which allows extracting the netlist from an IC. It can

consequently be used to detect the presence of a HT by

comparing this netlist with the (trusted) original one [13].

However, reverse engineering is extremely time consuming

and costly. Furthermore, it destroys the IC under test. No

conclusion can thus be drawn on remaining ICs. It is therefore

not possible to use this kind of approach to evaluate a full

production.

As a result, non-destructive methods are needed to provide

post-fabrication tests on all the production before deployment

in the field. Related approaches are classified into side-

channel analysis [14-19], logic testing [20-27] and visual

inspection [28] (not present in Fig. 2).

a) Side channel analysis

Methods based on side channel analysis focus on

monitoring physical characteristics such as power

consumption [14], path delay [15-17] or electromagnetic

energy [17]. The characteristics of the IC under evaluation are

compared with the ones of “golden ICs” i.e. HT-free ICs. The

assumption is that the introduction of a malicious circuitry

should change power consumption, path delays or

electromagnetic emissions in such proportion that it is possible

to discriminate infected ICs from others.

The first weakness of detection methods based on side

channel analysis is that they rely on the comparison with the

characteristics of golden ICs, which are extremely difficult to

obtain [5]. It indeed requires comparisons with characteristics

extracted from “real” ICs and not from simulation [29]. The

process used to assure that an IC is HT-free relies on reverse

engineering, which is, as mentioned before, extremely costly

and time consuming.

The second weakness of detection methods based on side

channel analysis is that process and environmental variations

can mask the effect of a small HT in today’s nanoscale

technologies. Besides, measurement set up is also a major

challenge when looking for potential extra delay on short

paths due to HT insertion [7]. In order to take into account

variability and therefore be able to detect small HTs, it was

proposed to couple side-channel analysis methods with

patterns generation techniques in order to magnify the effect

of a HT [30-32]. However, the method in [31] for example

manages to magnify the power consumption of a HT

containing around twenty gates. Much smaller HTs can be

crafted that would evade being detected by these methods.

Gate-level characterization methods rely on several

characteristics [18, 19] to better take into account process

variations. Furthermore, there is no need for a golden model

since the comparison is made with gate properties. Even so,

the method presented in [19] detects HTs only if the HT-to-IC

ratio in terms of gate count exceeds 0.4%. This does not seem

to be a sufficiently small limit given today’s ICs size.

b) Logic testing

Methods based on logic testing consist in applying test

stimuli to ICs under evaluation and comparing the responses

with the expected ones, i.e. the ones pre-computed by

simulation. The HT will be detected if it affects the IC’s

Fig. 2. HT protection methods overview [5].

Fig. 1. HT taxonomy overview [11].

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

responses during this test procedure. Logic-testing methods

are therefore dedicated to HTs that change the functionality of

an IC. It is generally agreed that, in order to evade detection

during manufacturing test, an attacker creates a HT that is

dormant until a stealthy condition triggers it [20-27]. The goal

of detections methods is then to be able to activate potential

HTs within a reasonable test time, i.e. using a limited number

of test patterns. The strategy adopted for constraining test

pattern length consists in targeting most likely HTs triggering

conditions.

A possible model of these so-called “rare value” based

HTs is shown in Fig. 3: the stealthy triggering condition is a

rare value created by a set of internal signals’ logic values. In

[20-24], a common assumption is to create this rare value

using signals with low ‘0’ or ‘1’ controllability as trigger input

signals. The controllability indeed reflects the difficulty of

setting a signal to a particular value from primary inputs. A

combination of signals that are “difficult” to set to ’0’ or ’1’

therefore necessarily leads to creating a stealthy condition.

More recently, it was assumed in [25] that, in the specific

case of cryptographic circuits, since the key bits are unknown

to the attacker, he/she cannot control the signals influenced by

key bits and therefore cannot use such signals as trigger

inputs. Another assumption in [26, 27] is that an attacker may

not have access to the internal signals of an IC. The HT’s

trigger is in that case connected directly to the primary inputs.

Detection methods based on logic testing reach their limits

when considering HTs with an extremely stealthy trigger

requiring the control of numerous signals. The HTs detected in

[20, 21] have a trigger with only two or three input signals for

instance. Likewise, these methods are hardly effective on

sequential HTs triggers, which generate a combinatorial

explosion in the search for potential triggers. Furthermore, the

postulate that a combinatorial trigger is dependent on a

combination of low controllable signals is very restrictive.

These points are discussed in detail in Section III.

c) Visual inspection

It is stated in [28] that full reverse engineering is overkill

to detect a HT. The proposed idea is to only observe the top-

level metal layer and compare the ICs with the original layout.

Furthermore, such method does not destroy the IC under test,

as opposed to reverse engineering.

However, visual inspection cannot detect HTs designed on

low metal layers.

2) DfHT

Given the limitations of HT detection methods, the idea of

modifying the design has emerged. DfHT methods either

prevent HT insertion or help HT detection methods.

a) HT insertion prevention

To prevent HT insertion, or at least make the insertion

more difficult, a first idea is to hide the IC’s functionality.

Function hiding indeed prevents the creation of a HT requiring

a good understanding of the original functionality e.g. to

create a stealthy trigger. This can be done through the

modification of the state transition graph in order to obfuscate

the functionality of the IC [33-36]. This can also be done

through the modification of the layout of the standard cells in

order to camouflage their functionality [37, 38].

A second idea is to create a layout as dense as possible in

order to prevent an attacker from exploiting the available

spaces, after place and route [39-42]. By replacing “dummy”

filler cells by logical cells that can be tested, the replacement

of those cells by a HT would not be unnoticed at test time.

b) Detection facilitation

In order to support side channel analysis, the goal is to

magnify the difference between the characteristics of a HT-

free IC and the ones of an infected IC. In [43], logical gates

are inserted to include each signal in at least one short path.

The assumption is that a HT inserted on a short path is easier

to detect using delay analysis. However, this assumption

might be true from a mathematical point of view, but not from

a measurement set up point of view. An inverted voltage

scheme is presented in [44] that alternates levels in the circuit.

Coupled with a sustained vector simulation technique, the goal

is to exaggerate extraneous activity created by the HT to help

detection based on power analysis. A side effect is to help

logic testing, if the HT is fully activated.

In order to support logic testing, the idea that received the

most attention is to design the circuits in such a way that it is

much more difficult, if not impossible, for an attacker to create

a stealthy triggering condition. That way, the chances of

triggering potential HTs during testing are maximized [45-53].

Another idea is to allow runtime monitoring [54-58] in

order to detect a HT once the IC is in the field. This is the last

line of defense for critical applications. From a side channel

point of view, run time monitoring can use thermal sensors

once in the field [54]. From a test behavior point of view, run

time monitoring can be achieved thanks to the use of

differential cascade voltage switch logic (DCVSL) [55] to

produce complementary logic values. Run time monitoring

can also be achieved thanks to the use of real-time security

monitors [56] or through the addition of redundancy [57, 58].

This is conceptually similar to what has been done for several

decades to improve dependability by handling intermittent and

permanent faults [59, 60]. Methods based on redundancy are

detailed in Section IV.

3) Split manufacturing

More recently, split manufacturing has been proposed to

counteract the insertion of HTs [5, 42]. Split manufacturing

consists in fabricating the front end layers, transistors and

lower metal layers, in an unreliable foundry, while back end

layers, the higher metal layers, are fabricated by a reliable

foundry.

However, split manufacturing is very costly, due to the

need to use two foundries, including a more expensive

trustable one. Moreover, the task of the trusted foundry is

challenging due to, among others, the perfect alignment

needed to create the back end layers above the already existing

Fig. 3. “Rare value based” HT model

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

front end layers. Besides, it has been shown that split

manufacturing doesn’t provide the expected security [61]: an

attacker in the unreliable foundry can indeed guess most of the

missing connections. More research on split manufacturing is

still therefore needed, not only on 2D integration, but also on

3D integration [5].

C. Threat model

The remainder of this paper focuses on HTs possibly

introduced in an unreliable foundry. We assume that the

attacker does his/her best to craft a HT that will not be

detected by any existing method. The HT is therefore

supposed to be small enough to escape detection by methods

based on side channel analysis and visual inspection.

Besides, focus is made on methods based on logic testing

(cf. bolded rectangles in Fig. 2). The HTs covered by this type

of methods are supposed to be stealthy triggered HTs that

modify the functionality of the IC. In other words, an

erroneous output can be observed when the HT is triggered by

a stealthy condition (cf. bolded rectangles in Fig. 1). So that

the erroneous behavior is detected, a comparison is made with

the expected answers, known thanks to the test sequence. It

should be noted the “golden model” with which to compare is

not a HT free IC as for methods based on side channel

analysis. Only the expected behavior of the circuit is needed.

Since, in our threat model, no HT is supposed to be inserted

during the design, the golden model is the test sequence

generated from the HT free netlist by the trusted designer.

Based on these assumptions, the goal of the detection

methods is to generate a reduced set of test patterns dedicated

to the activation, and thus detection through output

observation, of potential HTs at test time. DfHT methods aim

at facilitating detection by preventing the attacker from

creating a stealthy condition, or/and allowing HT detection at

run-time.

The following sections provide a review of solutions from

the literature and discuss possible improvements.

III. DETECTION

This Section reviews HT detection methods based on logic

testing after showing similarities and difference with stuck-at

fault logic testing. Eventually, two limitations are put forward:

the difficulty of managing sequential triggers and triggers

based on controllable signals.

The challenge that face detection methods based on logic

testing is to activate HTs that have been designed to evade

detection during usual manufacturing tests. An example of HT

trigger evading detection during single stuck-at-fault

procedures is presented in Fig. 4. The circuit is composed of

two OR trees feeding an AND gate. The AND gate is totally

tested w.r.t. stuck-at-0/1 on both inputs and output using

patterns (e1, e2) = {(0, 1), (1, 0), (1, 1)}. As a consequence,

the pattern that produces (e1, e2) = (0, 0) does not necessarily

belong to the test patterns set. Since e1 and e2 have low ‘0’

controllabilities due to upstream OR trees, a stealthy triggering

condition can be created using (e1, e2) = (0, 0) to control an

extra NOR gate as trigger (cf. dotted gate in Fig. 4). This

triggering condition can perfectly escape detection during

single stuck-at-fault test. Although rare, this triggering

condition can easily be activated by the attacker by controlling

all OR trees primary inputs to ‘0’.

The main difference between single stuck-at faults and

HTs is that former ones require the sensitization of one signal

to be detected (e.g. to detect a stuck-at-1 fault on a signal, that

signal must be set to ‘0’), while latter ones require the

sensitization of several triggering input signals. In that sense,

test pattern generation for HT detection is similar to test

pattern generation for multiple stuck-at-faults (several signals

stuck-at-0/1 concurrently). This problem is well known to be

computationally intensive when every combination of any

number of signals has to be taken into account. For example,

considering only 100 signals and combinations of 2 to 4

signals to limit the HT’s size, more than 4 millions

combinations exist. With respect to HT detection, since the

HT’s trigger and its triggering value are not known at test

time, assumptions have to be made about potential triggering

conditions in order to limit test generation and test time. In

addition to the stealthiness of the triggering condition and the

restricted number of trigger input signals that should be taken

into account, other restrictions have been proposed as

described afterwards.

To the best of our knowledge, the first HT detection

method based on logic test was presented in [20]. The

assumption introduced in this work, and widely used ever

since, is that a HT’s trigger depends on a combination of low

controllable signals. A less common assumption also

introduced is that the payload is stitched to a low observable

signal. In [20], simulation data are used to determine low

controllable signals. Then, potential triggers are defined as

combinations of these signals. A fault simulator is used to

identify low observable signals. Potential HTs are then a

combination of each trigger and each payload found. An

ATPG tool is finally used to produce the test patterns that

provide the expected values for each potential trigger and that

propagate each payload to an output.

Based on the same assumption that HT’s trigger input

signals are low controllable, the approaches presented

hereinafter aim to improve either the search of low

controllable signals, the way to combine these signals to create

stealthy triggering conditions (e.g. by taking into account the

constraints a foundry attacker can face) or test pattern

generation. In this last case, the goal is to cover as many

potential triggers as possible while minimizing the number of

test patterns needed.

In order to improve the identification of potential input

trigger signals and the creation of potential triggers, several

criteria are considered in [21]. The goal is to better reflect the

choices that could be made by an attacker in an unreliable

foundry for inserting a HT. The assumption is that a HT’s

trigger is composed of (1) signals with low controllability, and

Fig. 4. Example of trigger condition that evades detection during

functional test.

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

(2) signals on non-critical paths, and created by combining (3)

multiple signals that are close from each other in the IC’s

layout. From the attacker’s point of view, the goal is to insert a

HT as stealthy as possible in terms of impact on the function,

the performances and the physical implementation on the

layout. From the defender point of view, all of these criteria

allow reducing the number of potential triggers to analyze.

Besides, low controllable signals are identified thanks to a

probabilistic COP-like [62] testability analysis in order to

prevent biased results obtained from simulation of random

data.

Low controllable signals are searched in [22] thanks to the

statistical behavioral correlation between signals i.e. the

relationship between signals’ behaviors during a simulation.

This correlation information was initially proposed in [63] in

order to detect HTs introduced at design time. Based on

simulation data, clusters are created to represent the

correlation between every signal according to their behavior.

In other words, clusters of functionally related signals are

created. Signals inside a HT are “outliers” i.e. signals that are

pushed with high-reachability distances to the border of the

clusters because they have a weak statistical correlation with

the rest of the circuit. Experiments in [22] show that outliers

are also found in HT-free circuits and that these “false

positives” are low controllable signals.

In order to improve the test patterns generation step, the

assumption in [23] is that the chances to activate a trigger

increase with the number of times each signal composing the

trigger is activated. The idea is conceptually similar to the n-

detect approach that targets stuck-at faults several times to

increase the probability of detecting the faults. The simulation-

based procedure starts from an initial set of random patterns, a

list of low-controllable signals and a number of times each

low controllable signal has to be set to its value. The set of

patterns is modified by changing one bit at a time of the

patterns for which the largest number of signals is forced to

their rare value. The modification stops when each signal

satisfies its rare value condition for the desired number of

times.

In [24], a Genetic Algorithm (GA) is combined with

Boolean satisfiability (SAT). GA is used to quickly obtain the

test vectors to excite most of the possible triggers conditions

while SAT handles the triggers that are the most hard to

activate. Payloads are also investigated in [24] in which the

assumption is that a trigger may not be associated to any

payload in a circuit. In other words, the signal on which the

payload is attached must be carefully chosen so that the

pattern that activates the trigger also propagates the payload

value to an output. To do so, for each trigger found, a fault

simulator is used to assess if each of the downstream signal

can be a valid signal. Experimental results show that the

proposed method has better results than MERO in terms of HT

triggering.

Other types of methods do not use controllability metrics.

It was assumed in [25] that, in the specific case of

cryptographic circuits, since the key bits are unknown to the

attacker, he cannot control the signals influenced by key bits

and therefore cannot use such signals as trigger inputs. Since

the first step of the AES is to XOR the plaintext with the key,

the plaintext bits are the only viable potential input signals.

This allows restricting the total number of potential trigger

input signals. For example, a 2
13

 patterns set is needed to

exhaustively test HTs with triggers composed of 4 signals,

with 128 possible trigger input signals.

Similarly, it was assumed in [26, 27] that an attacker may

not have access to the internal signals of an IC. The HT’s

trigger is in that case connected directly to the primary inputs

of the IC. Combinatorial testing is used to produce an efficient

set of patterns. Combinatorial testing models dependencies of

inputs and produces a set of patterns with mathematical

guarantees of input space coverage.

However, the assumption of using only primary inputs

seems too restrictive, if the circuits under consideration are not

restricted to cryptographic ones. While triggering conditions

relying on primary input values may be easier to set up, the

possibilities for an attacker to create a stealthy condition are

reduced. An attacker may be obliged to use a large number of

inputs and therefore create a large HT. Using internal signals

to create a trigger may be more difficult from a crafting point

of view and require deeper circuit analysis but this assumption

seems nevertheless more realistic for the creation of stealthy

HTs.

An important limitation of these methods is their inability

to handle “sequential triggers” built from extra flip-flops and

combinational logics. Assuming that trigger’s sequential

elements are not inserted in the scan chain by the attacker, a

state-machine based trigger can be very difficult to set to its

triggering condition. The same limitation affects sequential

test pattern generation for stuck-at-faults. The only mention to

sequential trigger detection is made in [25] in which the

sequential trigger condition is assumed to be the same pattern

repeated. This limitation is chosen to limit the HT’s size.

Experimental results show that sequential HTs activated by

sequences of different patterns are far larger than HTs

activated by a sequence of several times the same pattern.

One may therefore argue that methods based on logic

testing are not dedicated to handle sequential triggers like

combinatorial triggers based on a large number of inputs.

These kinds of triggers are indeed necessarily big enough to

be detected by side-channel analysis methods [64].

Another limitation of most of the mentioned methods is the

very strict initial postulate: a stealthy HT’s trigger is

dependent on a combination of low controllable signals. Using

low controllable signals indeed necessarily leads to a stealthy

condition, but the reverse is not true. A set of signals, perfectly

controllable to both values, may obviously lead to a low

controllable triggering condition. However, looking for a low

controllable condition issued from any combination of

controllable signals is computationally intensive, as already

mentioned. Additional criteria are therefore needed to restrict

the search space. Note that, from the attacker point of view,

building a rare value using only controllable signals is not

straightforward either. However, he/she may limit his/her

procedure since he/she only has to find one rare combination

of controllable signals while the “defender” must find all of

them in order to propose a related test procedure.

To the best of our knowledge, identification of rare

conditions composed of controllable signals has not been

intensively explored. In [21, 25-27], the controllability of

individual signals in the circuit is not taken into account.

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Exploration of potential triggering conditions is driven by a

signal proximity criterion in [21], assuming that it is easier for

an attacker to use nearby signals. Only primary inputs are

considered in [26, 27] (also from a easiness point of view for

the attacker) and in [25] (specific case of cryptographic

circuits).

Behavioral correlation between signals is proposed in [22]

as a potential criterion to limit the number of triggering

conditions to explore. However, we show in the following

example and experiment that rare values can be created

whatever the behavioral correlation between these signals.

In the example of Fig.5, primary inputs a, b, c, d and

signals x, y, z are controllable, x and y are correlated (i.e.

functionally related), x and z are not. Controllable and

correlated signals x and y can be used to control a HT’s trigger

T1=𝑥.y, such as T1 is activated thanks to the rare condition (x,

y)=(0,1). In the same way, controllable but uncorrelated

signals x and z can be used to control a HT’s trigger T2=𝑥.𝑧

such that T2 is activated thanks to the rare condition (x,

z)=(0,0).

Experiments on three ISCAS benchmarks (c432, c1355,

c3540) aim to evaluate the proportion of rare values that can

be built from two controllable signals according to their

correlation. They also aim to confirm that there is no link

between the behavioral correlation between the signals and the

creation of a rare value. HT triggers are created based on two

controllable signals, chosen according to several behavioral

correlations. To evaluate the stealth or not of the created

triggers, a one million random patterns simulation is run. A

trigger is considered as a rare value if it is never activated

during the simulation and can nevertheless be activated. The

results are presented in Fig. 6. The percentage of rare values in

relation to the total number of triggers created are presented,

depending on the correlation between the two signals

composing the trigger, from highly correlated signals to highly

uncorrelated signals. For example, for benchmark c432, 1% of

the triggers created based on highly correlated signals are rare

values whereas 2,8% of the triggers created based on highly

uncorrelated signals are rare values. From these

experimentations, two conclusions can be drawn. Firstly, the

number of rare values found based on controllable signals

(2.5% of the triggers created) confirms that this assumption is

worth to be studied. Secondly, there is no link between the

signals correlation and the possibility to create a rare condition

based on controllable signals, since low controllable values are

created regardless of the correlation. Correlation is therefore

not a criterion allowing reducing the search space.

A summary of HT detection using logic testing is proposed

in Table I. Wolff et al. [20] introduced the idea of using logic

testing to detect HTs. They also introduced the idea that a HT

trigger is composed of low controllable signals. Later, Dupuis

et al. [21], Lesperance et al. [25] and Kitsos et al. [26, 27]

simultaneously introduced the idea that a trigger can also be

composed of controllable signals. Wolf et al. [20] and Saha et

al. [24] took also into account potential payloads: stitched to

low observable signals and that can be propagated by the

pattern that activates the trigger. Chakraborty et al. [23], Saha

et al. [24] and Kitsos et al. [26, 27] proposed test patterns

generation techniques to achieve a good triggers’ coverage

with a reduced number of test patterns. Dupuis et al. [21]

proposed to use layout information to reduce the search space.

As yet, there is not method that manages sequential triggers –

only evoked in [25] – and trigger based on controllable signals

– only with a layout criterion in [21] and using only primary

inputs in [25-27].

(a) Circuit

a b c d x =

a + b

y =

a + b + c.d

z =

c + d

T1 =

�̅�.y

T2 =

�̅�.𝑧 ̅

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b) Truth table

Fig. 5. Example of rare condition creation, regardless from the correlation

Fig. 6. Percentage of rare values created from two signals for highly (a)

correlated signals, (b) correlated signals, (c) uncorrelated signals and (d)

highly uncorrelated signals

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

IV. DFHT

A. Logic testing

This sub-section reviews prevention methods that aim to

enhance HT detection. In order to help detection with logic

testing, all these methods share the common goal to facilitate

the activation of potential HTs. Still assuming that stealthy

triggers are controlled by low controllable signals, prevention

techniques consist in increasing the controllability of low

controllable signals such that HT triggering is more likely to

happen during any test procedure (including random testing).

Controllability improvement is easily achieved thanks to

Design-for-Testability (DfT) methods commonly used for

improving test pattern generation for stuck-at fault testing

such as test point insertion [65] and partitioning [66]. Note

that, unlike detection methods, these two types of methods are

not specifically adapted to the problem of HT detection. These

methods are intrinsically suited to the problem, and their use

in this context is evaluated. Duality, initially dedicated to

circuits’ reliability [59] is also explored as a way to help

detection methods; so is logic masking, initially dedicated to

counteract overproduction [67]. After reviewing proposed

prevention methods, an improvement of test point insertion is

proposed. Finally, one limitation is put forward: the difficulty

of preventing triggers based on controllable signals.

The idea of using test point insertion to detect HT insertion

has been introduced in [45, 46]. The transition probabilities of

all signals are calculated using a COP-like testability analysis.

Then, signal probabilities are balanced above a given

threshold thanks to extra AND/OR gates controlled by so-

called ”dummy scan Flip-Flops (FFs)” (cf. Fig. 7). The FFs

are supplied by the Scan Input pin at test time to allow the

AND (resp. OR) gates increasing the probability to set one

signal to ’0’ (resp. ’1’). At run time, the FFs are supplied by

’0’ or ’1’, depending on the extra gate type, to ensure expected

behavior. An iterative process inserts these test points,

beginning with signals with the most unbalanced probabilities.

Experimental results show the difference in HTs activation

between ICs without and with test point insertion, showing

that: 1) the higher the probability threshold, the more HTs

triggered and 2) bigger the HT, harder the triggering.

However, the HTs are inserted on the original circuit and the

test point insertion is performed after HT insertion. These

experiments are then not valid assuming the scenario of a HT

inserted in a foundry, in which the attacker would not choose

these signals.

The following methods propose variants of test point

insertion in order to improve it by limiting the number of extra

gates, and thus the cost of the DfT.

In [47], AND/OR gates are used in the same way as in [45,

46] but are controlled by non-expensive transmission gates

instead of FFs. In [48, 49], dummy FFs are inserted along with

multiplexers instead of AND/OR gates. Furthermore, an

iterative process starts from low controllable signals with

minimal logical depth. This solution provides lower area

overhead that [45, 46] thanks to the more efficient iterative

process.

Partitioning was explored for HT detection in [50].

SCOAP testability measures are used to detect low

controllable signals. Then, the partitioning is done, using

multiplexers as partition points, considering five factors:

hardware overhead, testing time, longest path and

improvements of transition probabilities and controllability.

The goal is to reduce test time while increasing the probability

to activate a HT, as for previously described methods based on

test point insertion. Experimentation on ISCAS’85

benchmarks show that the partitioning allows reducing the

number of test vectors needed and increasing the transition

probability of all gates. However, no experiments are

proposed regarding HT insertion. It is logical to assume that a

HT within a partition would be detected since each partition is

exhaustively tested, but what about a HT positioned on two

partitions?

The idea of designing a circuit with a dual is introduced in

[51]. The goal is to design a dual so that a stealthy HT during

test is not stealthy in the dual. Duality is presented at gate

level. For example, a proposed dual for a NOR gate is a AND

gate so that the signals to activate a HT using a NOR gate

should be inverted to hide the “dual HT” using a AND gate.

Experiments are made with circuits created only with NOR

gates and with HTs creating stuck-at faults. These experiments

show that the number of test patterns needed to detect the HT

depends on the quality of the dual.

The principle of duality seems promising, but more

developments need to be done to assess the quality of the

method with a complete standard-cells library created, as well

(a) Test point for a “rare 0” (b) Test point for a “rare 1”

Fig. 7. Test point insertion structure in [45, 46].

TABLE I

DETECTION METHODS CHARACTERISTICS
 Wolff

et al.

[20]

Dupuis

et al.

[21]

Ba

et al.

[22]

Chakraborty

et al.

[23]

Saha

et al.

[24]

Lesperance

et al.

[25]

Kitsos

et al.

[26, 27]

Triggers based on low controllable signals ✔ ✔ ✔

Triggers based on controllable signals ✔ ✔ ✔

Sequential triggers ✔

Payloads taken into account ✔ ✔

Test patterns generation ✔ ✔ ✔ ✔

✔ The method proposes a novel way to handle the problem

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

as the overhead associated.

Two variants of test point insertion are proposed in [52,

53], based on logic masking. Logic masking consists in

inserting in the design extra logical gates and primary inputs

to control them in order to change the behavior of the IC if the

extra inputs are not controlled by an appropriate “secret key”

[67].

In [52], a FSM is inserted controlled by a secret sequential

key, that allows entering in a special operating mode upon the

application of the right key (a specific sequence of inputs). In

the special mode, called transparent mode, the least

controllable signals are forced to their rare value and the least

observable signals are compacted into a signature. As for

some detection methods, potential payloads are taken into

account. Due to the management of the transparent mode

activation, and the management of both triggers and payloads,

this method is more costly. However, it also provides the

obfuscation of the initial design, as presented in the

experimental results. Experiments regarding HT insertion are

also proposed; however, the HT insertion is made randomly,

which does not illustrate the behavior of an attacker.

AND/OR gates are inserted in [53], controlled by a

combinational key, in order to remove low controllable

signals. When the key bit is set to the non-dominant value, the

signal can be controlled to its low controllable value,

otherwise, the circuit behaves as defined by the specification.

These methods counteract both overproduction and HT

insertion. Note that the protection against overproduction is

thwarted if the attacker is able to retrieve the value of the key.

However, the protection against HT insertion is not thwarted

since, even if he/she knows which signals are not controllable

in normal mode, this does not prevent these signals from being

controlled during test by changing the value of the key.

Protection against overproduction is beyond the scope of this

paper, interested readers can refer to proposed methods [68-

70], attacks [70, 71] and counterattacks [72-74].

In all proposed methods based on test point insertion, a 2-

input gate is introduced in the circuit. In this paper, we

propose a new solution leading to less area overhead and far

better probabilities improvements. Let us consider the circuit

example in Fig. 8. Assuming a probability threshold T=1/32,

which means that any signal with a probability P0 (or P1)

lower than 1/32 is considered as a low controllable signal:

— Given the chosen threshold, P1(x)<T (whereas P1(v)>T and

P1(w)>T) (cf. Fig. 8.a). A test point has therefore to be

inserted in order to balance the probabilities of signal x.

— In order to modify signal x’s 1-probability, it is proposed in

the literature to insert a test point on one of its upstream

signals: v or w. The upstream signal v with the most

unbalanced probabilities is chosen. These probabilities

modifications will have the greatest impact on downstream

signals. An OR gate can be used as proposed in [45, 46]

(cf. Fig. 8.b) leading to new 1-probabilities of 17/32 for v

and 17/128 for x. The use of a multiplexer as in [48, 49]

leads to new 1-probabilities of 16/32 for v and 16/128 for

x.

— The proposed solution consists in inserting a test point on

signal x. To do so, an OR gate is added, leading to a new

probability of 65/128. To prevent signal x from remaining

in the netlist, the OR gate is aggregated with the gate

driving signal x, creating a gate with the functionality A.B	+	

C in this example. The gate driving x is therefore changed

into this new gate and low controllable signal x is no

longer in the netlist (cf. Fig. 8.c). Furthermore, this

modification generates less additional cost surface than

adding an OR gate. Note that if the use of a 3-input gate is

not possible (typically when the required 3-input gate does

not exist in the library), the insertion of a test point on an

upstream signal can be done.

The proposed approach differs from related works in its

use of 3-input gates that leads to far better probabilities

enhancements than the insertion of a gate on an upstream

signal.

We have developed the proposed test point insertion, with

an iterative process beginning with the signals closest to the

primary inputs. Experimental results are described in Table II.

For each benchmark, the probability threshold chosen for each

experiment is presented, along with the number of low

controllable signals (i.e. signals with a probability beyond this

threshold), before and after test point insertion, the number of

test points added and the improvements in probabilities. Two

sets of experiments have been performed: the first ones

without constraints regarding the number of test points to

insert (first 6 benchmarks) and the second one, with a

limitation in the number of test points allowed (last 3

benchmarks). The goal is to better assess the interest of the

iterative algorithm beginning with signals close to the inputs.

As one can see, fewer test points are needed than the number

of signals with unbalanced probabilities, showing the

(a) Example (0-probability, 1- probability)

(b) Test point on an upstream signal (in dotted lines)

(c) Test point on the rare signal (in dotted lines)

Fig. 8. Test points insertion proposition.

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

capacities of the iterative algorithm: for example, for apex2

benchmark, only 26 test points allow to balance the

probabilities of 103 signals. Only drastic constraints result in

circuits with signals with unbalanced probabilities remaining.

In summary, an average of 56 test points balance 117 signals’

probabilities. Besides, an average increase in probabilities of

0.39 is obtained. This shows that the test point insertion allows

a significant balancing of the probabilities. Signals’

probabilities must indeed be well balanced so that the test

point insertion cannot be neutralized at low cost. If the chosen

probability threshold is too small, an attacker can still create a

rare trigger by rendering the signal low controllable again

[75]. The method we propose allows balancing the

probabilities in a better way than previous proposed methods,

which helps counteract this attack.

To show that it is more difficult for an attacker to create a

stealthy trigger based on low controllable signals on a circuit

after test point insertion, we inserted three HTs in two

benchmarks, with and without test point insertion (with a

threshold of 0.2). Three kinds of HTs were inserted. They

consist in a 2-input (resp. 3-input, 4-input) AND gate for the

trigger and a XOR gate for the payload. The signals with the

lowest probabilities to be set to ’1’ were chosen as trigger

input signals. Then, an ATPG tool was used on the infected

circuits to make sure that one pattern could activate the HTs.

Finally, a simulation of 100 000 random patterns was run to

asses the stealth (or not) of the HTs. Table III shows the

number of times each HT’s trigger was activated during these

simulations. As one can see, in all experiments with test point

insertion, the HTs triggers were activated, proving the

difficulty of inserting a stealthy HT in a circuit in which all

signals’ probabilities have been increased above 0.2. In

contrast, a stealthy HT was created in all circuits without test

point.

No work ever handled rare conditions based on

controllable signals as previously introduced. Since the

purpose of the test point insertion is to remove uncontrollable

signals and it has been shown that it is possible to create rare

conditions with controllable signals, it is logical that this type

of approach does not prevent the creation of such conditions.

We have made some experiments to see if, as expected,

such conditions could still be found after test point insertion.

The benchmark of Fig. 6 in which several rare conditions

based on controllable signals were found was used. Results are

shown in Table IV. The first line presents the number of

triggers created based on controllable signals. The second line

presents the triggers that, among these, are stealthy. The last

line presents the corresponding percentage. The two columns

“Without test points” and “With test points” present the same

experiments on a circuit without and with test points inserted

(with a probability threshold of 0.2). As one can see, after test

point insertion, five stealthy triggers were created, based on

controllable signals. This suggests that, as expected, test point

insertion methods may decrease the possibility to create rare

conditions with controllable signals, but does not totally

prevent their creation.

Prevention methods that aim to help detection methods

based on logic testing are mostly based on design for

testability methods initially dedicated to improve test sequence

by increasing signals controllability. These methods are

intrinsically suited to the problem, and their use in the context

of HT detection is evaluated. In the case of HT detection, the

goal of controllability increase is to increase the chances to

activate a HT during logic testing. Test point insertion was the

most studied method. Other methods were proposed such as

partitioning and duality.

B. Run-time monitoring

Since HT detection before deployment in the field is a very

challenging task, the methods proposed up to now aim to

improve the level of confidence that no HT is present in the

circuit, but no method offers 100% confidence. This level of

security may not be sufficient for critical applications. The last

line of defense is therefore to monitor the ICs once in the field.

In this sub-section, proposed prevention methods that

allow run-time monitoring are reviewed. The methods

described afterwards rely on design techniques preliminary

used for reliability and dependability, such as Concurrent

Error Detection (CED) techniques, which introduce

redundancy through parity codes or hardware duplication

TABLE II

PROPOSED TEST POINT INSERTION RESULTS
 Probability

threshold

“Rare Signals” Test

points

Probability

changes Before After

Apex2

Apex4

C432

C2670

C5315

C7552

0.01

0.05

0.01

0.05

0.1

0.2

0.001

0.01

0.01

0.1

0.01

0.05

21

103

58

683

7

53

28

33

19

36

45

77

0

0

0

0

0

0

0

0

0

0

0

0

8

26

29

229

4

31

11

12

7

20

17

49

+0.39

+0.40

+0.50

+0.44

+0.27

+0.34

+0.45

+0.46

+0.42

+0.44

+0.42

+0.44

C1355

C1908

C3540

0.1

0.2

0.1

0.2

0.05

0.1

64

112

31

110

204

428

32

0

6

9

1

4

32

64

16

64

128

256

+0.25

+0.31

+0.32

+0.25

+0.51

+0.36

Average 117 3 56 0.39

TABLE III

RARE TRIGGERS BASED ON LOW CONTROLABLE SIGNALS

AFTER PROPOSED TEST POINT INSERTION
 HT inserted HTs’ activation

 Without test point With test points

C1355

C1908

HT 1

HT 2

HT 3

HT 1

HT 2

HT 3

0

0

0

0

0

0

4 393

966

211

8 797

5 014

2 506

TABLE IV

RARE TRIGGERS BASED ON CONTROLABLE SIGNALS

AFTER PROPOSED TEST POINT INSERTION
 Without

test point

With

test points

C432 NB triggers

NB rare Triggers

Percentages

2 285

21

0.92%

2 603

5

0.19%

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

along with a checker [76]. Then, the limitation of duplication

is put forward: the difficulty of creating two "different"

replicates of the same circuit in order to prevent an attacker

from creating an identical HT in both replicates.

In [57], the proposed CED technique consists in a

duplication-based on one-to-many code in order to protect the

most “valuable” words that may appear on the ICs’ outputs.

To do so, the IC is composed of two sub-circuits producing

each a subgroup of the outputs (with the corresponding

redundancy bits). A checker is then used to check the

codewords. However, in order to limit the cost of the

implementation, one has to choose the set of protected words

(e.g. the most valuable or probable that appear on the outputs).

Furthermore, the HT has to be activated for a certain period of

time in order to be detected. The proposed method does not

deal with HTs activated for a single cycle.

Hardware duplication is proposed [58]. The idea is to

create a redundant and functionally equivalent circuit to the

original one along with a comparator. If a HT is inserted in

one of the two replicates, the comparator reports the abnormal

behavior once the HT is activated and both replicates do not

provide the same value. For this technique not to be countered

by the attacker, he/she must not be able to create an identical

HT in both replicates or tamper the comparator. The authors

give leads to follow in order to create different replicates:

different synthesis tools, different restrictions on the standard

cell library, different design constraints, different state

encoding (for finite-state-machines). Then, experimental data

results are given to assess the difference between two

replicates in terms of number of cells and area.

The idea introduced in [58] of using redundancy in order to

hinder HT insertion is appealing. However, the experiments

proposed to affirm that it is impossible for an attacker to create

the same stealthy trigger in both replicates are not sufficient.

With the assumption that an attacker is able to identify the

two replicates, we have developed an algorithm that assesses

possible correspondence (in terms of behavior) between all

signals of the two replicates, when the same inputs patterns are

injected. Based on this new metric, we have explored two

leads proposed in [58] and obtained the percentage of signals

with the same behavior in each case: the smaller the

percentage is, the better. These results are described in Table

V. Three benchmarks were used and nine comparisons were

made. We firstly investigated the effect of constraining a

library to only one gate (NOR or NAND). We then

investigated the use of two different synthesis tools: DC

Compiler from Synopsys (called “DC”) and RTL Compiler

from Cadence (called “RTL”). As one can see:

- The use of two different tools leads to better results than

the use of a unique tool,

- Restraining the library leads to better results that using the

whole library.

The best results obtained compare RTL compiler using

only NAND gates and DC compiler using only NOR gates.

However, restraining a design to only NOR of NAND gates

makes the layout at least twice as big [77] as with a full

library. Creating one replicate with NAND gates and the other

one with NOR gates, along with a comparator, generates a

design roughly five times bigger than the original design,

which is far more expensive than the area multiplied by 2

announced in [58]. Furthermore, the smallest percentages

obtained are far from being null, showing the degree of

difficulty of creating two “perfectly different” netlists with no

signals having the same behavior. Rather than restricting the

library (which is very expensive regarding the area overhead),

it could be envisaged to couple duplication with logic masking

in order to minimize the corresponding signals.

Last but not least, an attacker could easily bypass the

protection of the comparator proposed in [58]. Other solutions

have to be proposed to protect the comparator for this solution

to be viable.

Run-time monitoring has been little studied in the literature

to detect HT. Hardware duplication must be improved to

prevent the insertion of the same HT in both duplicates.

V. SUMMARY AND CHALLENGES

Two types of methods have been detailed that counteract

the insertion of a HT in an untrusted foundry.

Firstly, detection methods based on logic testing aim to

detect the presence of a HT in a fabricated IC. These methods

need the activation of the HT in order to observe its effect on

outputs behavior. These methods are therefore dedicated to

HT having an effect on the functionality of the circuit. Other

types of HTs, such as analog HTs, cannot be detected by logic

testing [78]. Dedicated test procedures that focus on these

stealthy combinations have been proposed in the literature.

HTs are indeed designed to be stealthy enough to evade

detection by manufacturing test. The challenge remaining is to

widen the model for HTs triggers: a combination of low

controllable signals is far too restrictive as well as a

combination of primary inputs. HT triggers can still be created

that evade proposed test procedures. Methods need to be

developed that avoid the combinatorial explosion that results

from a wider model. Furthermore, proposed test methods can

also be applied by the attacker to validate the non-detection of

their HT. The goal is that the set of proposed methods greatly

restricts the insertion possibilities for an attacker, forcing

him/her e.g. to create a larger HT. Besides, sequential triggers

TABLE V

CORRESPONDENCE PERCENTAGE BETWEEN REPLICATES
 DC_full

Vs

DC_nor

RTL_full

Vs

RTL_nor

RTL_full

Vs

RTL_nand

RTL_nand

Vs

RTL_nor

DC_full

Vs

RTL_full

DC_full

Vs

RTL_nor

RTL_full

Vs

DC_nor

RTL_nor

Vs

DC_nor

RTL_nand

Vs

DC_nor

Antilog2 89% 98% 89% 78% 44% 45% 39% 25% 21%

Ca_prng 100% 74% 70% 67% 50% 56% 49% 38% 37%

Vedic8x8 100% 100% 100% 100% 93% 98% 95% 82% 82%

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

are even more difficult to find. They are commonly supposed

to be large enough to be found by methods based on side-

channel analysis, however, the perfect complementarity of the

two types of methods has never been shown.

Secondly Design-for-Hardware-Trust methods enhance the

design flow to prevent the insertion of a HT, help detection

methods or allow run-time monitoring. In order to help

detection based on logic testing, the goal is to remove low

controllable signals in a circuit to prevent the creation of a

stealthy condition based on low controllable signals. The

limitations lie in the same initial postulate regarding the way

to create HTs triggers. In order to allow run-time monitoring,

CED techniques have been proposed. They generate a large

increase in area and do not provide a satisfactory solution for

totally preventing the insertion of a HT.

One should notice that a HT must also escape detection by

methods based on side-channel analysis. The HT must

therefore be small enough to hidden within manufacturing

variability. Logic testing and side-channel analysis are

commonly described as complementary. However, to the best

of our knowledge, no study has shown that the limits of one

method fit perfectly within the abilities of the other.

VI. CONCLUSION

Being able to detect a HT introduced in an unreliable

foundry during manufacturing test is a very challenging

problem. For the past ten years, detection methods based on

logic testing have been proposed. These methods allow

assuring with a good degree of confidence that no HT has been

inserted. Other detection methods, such as side-channel

analysis, are also useful to detect other types of HTs.

Furthermore, DfHT methods have been proposed to harden the

insertion of a HT or to enhance detection methods capabilities.

Besides, if detection at test time is not sufficient (e.g. for

critical applications), detection at run-time has also been

proposed in order to continuously monitor the ICs once in the

field.

Given the diversity of possible types of HTs, one unique

method cannot be effective for all HTs. Each method focuses

on a particular type of HT. Ensuring 100% detectability seems

impossible. Methods have to be combined to state with a great

degree of confidence that no HT has been inserted. The task of

an attacker is indeed rendered a lot more difficult, with great

limits to what he can do due to various protections

incorporated into the ICs: the HT has to be as small as

possible to evade being detected by side channel analysis or

visual inspection, and as stealthy as possible to evade being

detected by logic testing.

In this paper, we have reviewed several methods proposed

in the literature over the last decade, focusing on methods

based on logic testing. The goal in that case is to generate

reduced sets of test patterns that are likely to activate potential

HTs activated by a stealthy condition. Most proposals are

inspired by Design-for-Testability methods or methods that

enhance reliability. They have been adapted for dealing with

HTs. We have proposed enhancements for some methods and

have also pointed the challenges that have not been resolved

yet.

Besides, HTs inserted in unreliable foundries were the first

threat to be studied extensively; it was more recently

considered that the threat might as well come from the design

phase where a HT can be introduced by a rogue designer or

through an IP from third party providers [5, 79-82].

ACKNOWLEDGMENTS

The authors would like to thank Dr. Papa-Sidy Ba and M.

Bastien Deveautour for their valuable work regarding the

proposed experimentations.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection”, In IEEE Design & Test of Computer, 27:10–

25, 2010.

[2] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor and Y.

Makris, “Counterfeit integrated circuits: a rising threat in the global
semicondictor supply chain”, In Proceedings of the IEEE, Special Issue

on Trustworthy Hardware, 102(8):1207–1228, 2014.

[3] S. Bhunia, M. S. Hsiao, M. Banga, S. Narasimhan, “Hardware Trojan
Attacks: Threat Analysis and Countermeasures”, In Proceedings of the

IEEE, Special Issue on Trustworthy Hardware, 102(8):1229–1247, 2014.

[4] H. Li, Q. Liu and J. Zhang, “A Survey of hardware Trojan threat and
defense”, In Integration, the VLSI journal (2016),

http://dx.doi.org/10.1016/j.vlsi.2016.01.004

[5] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia and M. Tehranipoor,
“Hardware Trojans: Lessons Learned after One Decade of Research”, In

ACM Transactions od Design Automation of Electronic Systems,
22(1):1–23, 2016.

[6] R. S. Chakraborty, S. Narasimhan and S. Bhunia, “Hardware Trojan:

Threats and Emerging Solutions”, In IEEE International High Level
Design Validation and Test Workshop (HLDVT’09), pp. 166–171,

2009.

[7] M Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. Rajendran
and K. Rosenfeld, “Trustworthy Hardware: Trojan Detection and

Design-for-Trust Challenges”, In IEEE Computer, pp. 66–74, 2011.

[8] S. Moein, J. Subramnian, T.A. Gulliver, F. Gebali and M.W. El-

Kharashi, “Classification of Hardware Trojan Detection Techniques”, In
International Conference on Computer Engineering and Systems, pp.

357–362, 2015.

[9] J. Francq and F. Frick, “Introduction to Hardware Trojan Detection
Methods”, In Design Automation & Test in Europe (DATE’15), pp.

770–775, 2015.

[10] J. Rajendran, O. Sinanoglu and R. Karri, “Regaining Trust in VLSI
Design: Design-for-Trust Techniques“, In Proceedings of the IEEE,

Special Issue on Trustworthy Hardware, 102(8):1266–1282, 2014.

[11] X. Wang, M. Tehranipoor and J. Plusquellic, “Detecting Malicious
Inclusion in Secure Hardware: Challenges and Solutions”, In IEEE

International Workshop on Hardware-Oriented Security and Trust
(HOST’08), pp. 15–19, 2008.

[12] R. Karri, J. Rajendran, K. Rosenfeld and M. Tehranipoor, “Trustworthy

Hardware: Identifying and Classifying Hardware Trojans”, In IEEE
Computer, pp. 39–46, 2010.

[13] C. Bao, D. Forte and A. Srivastava, “On Reverse Engineering-Based

Hardware Trojan Detection”, In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Sytems, 35(1):49–57, 2016.

[14] D.Agrawal, S.Baktir, D.Karakoyunlu, P.Rohatgi, and B.Sunar, “Trojan
detection using IC fingerprinting“, In IEEE Symposium on Security and

Privacy (SP’07), pp. 296–310, 2007.

[15] Y. Jin and Y. Makris, “Hardware Trojan Detection Using Path Delay
Fingerprint“, In IEEE International Workshop on Hardware-Oriented

Security and Trust (HOST’08), pp. 51–57, 2008.

[16] I. Exurville, L. Zussa, J.B. Rigaud and B. Robisson, “Resilient Hardware
Trojans Detection based on Path Delay Measurement”, In International

symposium on Hardware-Oriented Security and Trust (HOST’15), pp.
151–156, 2015.

[17] X.T. Ngo, I. Exurville, S. Bhasin, J.L. Danger, S. Guilley, Z. Najm, J.B.

Rigaud and B. Robisson, “Hardware Trojan Detection by Delay and
Electromagnetic Measurements”, In Design Automation & Test in

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Europe (DATE’15), pp. 782–787, 2015.

[18] M. Potkonjak, A. Nahapetian, M. Nelson and T. Massey, “Hardware
Trojan Horse Detection Using Gate-Level Characterisation”, In

ACM/IEEE Design Automation Conference (DAC’09), pp. 688–693,
2009.

[19] L. Zhang and C.-H. Chang, “Hardware Trojan Detection with Linear

Regression Based Gate-Level Characterisation”, In IEEE Asia Pacific
Conference on Circuit sand Systems (APCCAS’14), pp. 256–259, 2014.

[20] F. Wolf, C. Papachristou, S. Bhunia and R. S. Chakraborty, “Towards

Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme“, In
Design, Automation and Test in Europe (DATE’08), pp. 1362–1365,

2008.

[21] S. Dupuis, P.-S. Ba, M.-L. Flottes, G. Di Natale and B. Rouzeyre, “New
Testing Procedure for Finding Insertion Sites of Stealthy Hardware

Trojans”, In Design Automation & Test in Europe (DATE’15), pp. 776–
781, 2015.

[22] P.-S. Ba, S. Dupuis, a, M.-L. Flottes, G. Di Natale and B. Rouzeyre,

“Using Outliers to Detect Stealthy Hardware Trojan Triggering?”, In
IEEE International Vefirication and Security Workshop (IVSW’16), pp.

39–44, 2016.

[23] R.S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,

“MERO: a Statistical Approach for Hardware Trojan Detection“, In
International Conference on Cryptographic Hardware and Embedded

Systems (CHES’09), pp. 396–410, 2009.

[24] S. Saha, R.S. Chakraborty, S. Shashank, N. Anshul and D.
Mukhopadhyay, “Improved Test Pattern Generation for Hardware

Trojan Detection Using Genetic Algorithm and Boolean Satisfability”,
In Cryptographic Hardware and Embedded Systems (CHES’15), pp.

577–596, 2015.

[25] N. Lesperance, S. Kulkarni and K.T. Cheng, “Hardware Trojan
Detection Using Exhaustive Testing of k-bit Subspaces”, In Asia and

South Pacific Design Automation Conference (ASP-DAC’15), 2015.

[26] P. Kitsos, D.E. Simos, J. Torres-Jimenez and A.G. Voyiatzis, “Exciting
FPGA Cryptographic Trojans using Combinatorial Testing”, In IEEE

International Symposium on Software Reliability Engineering
(ISSRE’15), 2015.

[27] A.G. Voyiatzis, K.G. Stefanidis and P. Kitsos, “Efficient Triggering of

Trojan Hardware Logic”, In International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS’16), pp. 200–

205, 2016.

[28] S. Bhasin, J.L. Danger, X.T. Ngo and S. Guilley, “Hardware trojans
horses in cryptographic IP cores”, In Fault Diagnostic and Tolerance in

Cryptography (FDTC’13), pp. 15–29, 2013.

[29] S. Dupuis, G. Di Natale, M.-L. Flottes and B. Rouzeyre, “On the

Effectiveness of Hardware Trojan Horse Detection via Side-Channel
Analysis”, In Information Security Journal: A Global Perspective, 22(5–

6):226–236, 2013.

[30] M. Banga, M. Chandrasekar, L. Fang and M.S. Hsiao, “Guided Test
Generation for Isolation and Detection of Embedded Trojans in ICs”, In

ACM Great Lakes Symposium on VLSI (GLSVLSI’08), pp. 363–366,
2008.

[31] M. Banga and M.S Hsiao, “A Novel Sustained Vector Technique for the

Detection of Hardware Trojans”, In International Conference on VLSI
Design (VLSI’09), pp. 327–332, 2009.

[32] X. Mingfu, H. Aiqun, H. Yi and L. Guyue, “Monte Carlo based Test

Pattern Generation for Harware Trojan Detection”, In IEEE International
Conference on Dependable, Automotic and Secure Computing

(DASC’13), pp. 131–136, 2013.

[33] R.S Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection”, In IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(10):1493–1502, 2009.

[34] R.S. Chakraborty and S. Bhunia, “Security Against Hardware Trojan

Attacks Using Key-Based Design Obfuscation”, In Journal of Electronic
Testing, 27(6):767–785, 2011.

[35] X.T. Ngo, S. Bhasin, J.L. Danger, S. Guilley and Z. Najm, “Linear
Complementary Dual Code Improvement to Strenghten Encoded

Circuits against Hardware Trojan horses”, In IEEE International
Workshop on Hardware-Oriented Security and Trust (HOST’15), pp.

82–87, 2015.

[36] J. Dofe, Y. Zhang and Q. Yu, “DSD: A Dynamic State-Deflection

Method for Gate-Level Netlist Obfuscation”, In IEEE Computer Society
Annual Symposium on VLSI (ISVLSI’16), pp. 565–570, 2016.

[37] J. Rajendran, M. Sam, O. Sinagolu and R. Karri, “Security Analysis of

Integrated Circuit Camouflaging”, In ACM SIGSAC Conference on
Computer & Communications Security (CCS’13), pp. 709–720, 2013.

[38] M.I.R. Collantes, M.E. Massad and S. Garg, “Threshold Dependent

Camouflaged Cells to Secure Circuits against Reverse Engineering
Attacks”, In IEEE Computer Society annual Symposium on VLSI

(ISLVI’16), pp. 443–448, 2016.

[39] K. Xiao and M. Tehranipoor, “BISA: Built-in Self-Authentication for
Preventing Hardware Trojan Insertion”, In International Symposium on

Hardware-Oriented Security and Trust (HOST’13), pp. 45–50, 2013.

[40] K. Xiao, D. Forte and M. Tehranipoor, “A Novel Built-In Self-
Authentication Technique to Prevent Inserting Hardware Trojans”, In

IEEE Transactions on Computer-aided Design of Integraded Circuits,
33(12):1778–1791, 2014.

[41] P.S. Ba, S. Dupuis, P. Manikandan, M.L. Flottes, G. Di Natale and B.

Rouzeyre, “Hardware Trust through Layout Filling: a Hardware Trojan
Prevention Technique”, In IEEE Computer Society annual Symposium

on VLSI (ISLVI’16), pp. 254–259, 2016.

[42] K. Xiao, D. Forte and M. Tehranipoor, “Efficient and Secure Split

Manufacturing via Obfuscated Built-In Self-Authentication”, In IEEE
International Symposium on Hardware-Oriented Security and Trust

(HOST’15), pp. 14–19, 2015.

[43] A. Nejat, D. Hely and V. Beroulle, “Facilitating Side Channel Analysis
by Obfuscation for Hardware Trojan Detection”, In International Design

& Test Symposium (IDT’15), pp. 129–134, 2015.

[44] M. Banga and M. S. Hsiao, “VITAMIN: Voltage Inversion Technique to
Ascertain Malicious Insertions in ICs”, In IEEE International Workshop

on Hardware-Oriented Security and Trust (HOST’09), pp. 104–107,
2009.

[45] H. Salmani, M. Tehranipoor and J. Plusquellic, “New Design Strategy

for Improving Hardware Trojan Detection and Reducing Trojan
Activation Time”, In IEEE International Workshop on Hardware-

Oriented Security and Trust (HOST’09), pp. 66–73, 2009.

[46] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel Technique for
Improving Hardware Trojan Detection and Reducing Trojan Activation

Time“, In IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 20(1):112–125, 2012.

[47] H. Xue, T. Moody, S. Li, X. Zhang and S. Ren, “Low Overhead Design

for Improving Hardware Trojan Detection Efficiency”, In Aerospace and
Electronics Conference (NAECON’14), pp. 379–383, 2014.

[48] B. Zhou, W. Zhang, S. Thambipillai and J.K.J. Teo, “A Low Cost
Acceleration Method for Hardware Trojan Detection Based on Fan-Out

Cone Analysis”, In International Conference on Hardware/Software
Codesign and System Synthesis (CODES’14), 2014.

[49] B. Zhou, W. Zhang, S. Thambipillai, J.T.K Jin, V. Chaturvedi and T.

Luo, “Cost Efficient Acceleration of Hardware Trojan Detection through
Fan-out Cone Analysis and Weighted Random Pattern Technique”, In

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(5):792– 805, 2015.F. Nejadmoghadam, A. Mahani and

Y.S. Kavian, “A New Testing Method for Hardware Trojan Detection”,
In Procedia Technology 17:713–719, 2014.

[50] Y. Alkabani, “Trojan immune circuits using duality”, In Euromocro

Conference on Digital System Design (DSD’12), pp. 177–184, 2012.

[51] R.S. Chakraborty, S. Paul and S. Bhunia, “On-Demand Transparency for
Improving Hardware Trojan Detectability”, In IEEE International

Workshop on Hardware-Oriented Security and Trust (HOST’08), pp.
48–50, 2008.

[52] S. Dupuis, P.S. Ba, G. Di Natale, , M.L. Flottes, and B. Rouzeyre, “A

Novel Hardware Logic Encryption Technique for Thwarting Illegal
Overproduction and Hardware Trojans“, In IEEE International On-Line

Testing Symposium (IOLTS’14), 2014.

[53] C. Bao, D. Forte and A. Srivastava, “Temperature Tracking: Twoard
Robust Run-Time Detection of Hardware Trojans”, In IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems 34(10):1577–1585, 2015.

[54] W. Danesh, J. Dofe and Q. Yu, “Efficient Hardware Trojan Detection
with Differential Cascade Voltage Switch Logic”, In VLSI Design,

Special Issue on Advanced VLSI Architecture Design for Emerging
Digital Systems, 2014.M.

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

[55] Abramovici and P. Bradey, “Integrated Circuit Security – New Threats
and Solutions”, In Cyber Security and Information Intelligence Research

Workshop (CSIIRW’09), 2009.

[56] O. Keren, I. Levin and M. Karpovsky, “Duplication Based One-to-many
Coding for Trojan HW Detection”, In IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT’10), pp. 160–166,
2010

[57] M. Palanichamy, P.S. Ba, S. Dupuis, M.L. FLottes, G. Di Natale and B.

Rouzeyre, “Duplication-based Concurrent Detection of Hardware
Trojans in Integrated Circuits”, In Workshop on Trustworthy

Manufacturing and Utilization of Secure Devices (TRUDEVICE’16),
2016.

[58] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability”,

In IEEE Micro, 23(4):14–19, 2003.

[59] J. Biernat, “Self-Dual Modules in Design of Dependable Digital
Devices”, In International Conference on Dependability of Computer

Systems (DepCos-RELCOMEX’06), 2006.

[60] J. Rajendran, O. Sinagolu and R. Karri, “Is Manufacturing Secure?”, In
Design, Automation & Test in Europe (DATE’15), pp. 1259–1264,

2013.

[61] F. Brglez, P. Pownall and H. Hum, “Applications of testability analysis:

from ATPG to critical delay path tracing”, In International Test
Conference (ITC’84), pp.705–712, 1984.

[62] B. Cakir and S. Malik, “Hardware Trojan Detection for Gate-level ICs

using Signal Correlation based Clustering”, In Design, Automation &
Test in Europe (DATE’15), pp. 471–476, 2015.

[63] S. Narasimhan, X. Wang, D. Du, R.S. Chakraborty and S. Bhunia,

“TeSR: A Robust Temporal Self-Referencing Approach for Hardware
Trojan Detection”, In IEEE International Workshop on Hardware-

Oriented Security and Trust (HOST’11), pp.71–74, 2011.

[64] M. Abramovici, M.A. Breuer and A.D. Friedman, Digital Systems
Testing and Testable Design, IEEE Press, Revised Printing 1994.

[65] E.J. McCluskey and S. Bozorgui-Nesbat, “Design for Autonomous

Test”, In IEEE Transactions on Circuits and Systems, 28(11):1070–
1079, 1981.

[66] B. Colombier, L. Bossuet and D. Hely, “From secured logic to IP

protection”, In Microprocessors and Microsytems, 2016.

[67] J.A. Roy, F. Koushanfar and I.L. Markov, “EPIC: Ending Piracy of

Integrated Circuits”, In Design Automation & Test in Europe
(DATE’08), pp. 1069–1074, 2008.

[68] J. Rajendran, Y. Pino, O. Sinagolu and R. Karri, “Logic Encryption: A

Fault Analysis Perspective”, In Design Automation & Test in Europe
(DATE’12), pp. 953–958, 2012.

[69] J. Rajendran, Y. Pino, O. Sinagolu and R. Karri, “Security Analysis of

Logic Obfuscation”, In ACM/IEEE Design Automation Conference
(DAC’12), pp. 83–89, 2012.

[70] P. Subramanyan, S. Ray and S. Malik, “Evaluating the Security of Logic

Encryption Algorithms”, In IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST’15), pp. 137–143, 2015.

[71] M. Yasin, J. Rajendran, O. Sinagolu and R. Karri, “On Improving the

Security of Logic Locking”, In ITTT Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(9):1411– 1424, 2016.

[72] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking”,

In Conference on Cryptographic Hardware and Embedded Systems
(CHES’16), pp. 127–146, 2016.

[73] M. Yasin, B. Mazumdar, J. Rajendran and O. Sinagolu, “SARLock:
SAT Attack Resistant Logic Locking”, In IEEE International

Symposium on Hardware-Oriented Security and Trust (HOST’16), pp.
236–241, 2016.

[74] S.M.H. Shekarian, M.S. Zamani and S. Alami, “Neutralizing a Design-

for-Hardware-Trust Technique”, In International Symposium on
Computer Architecture & Digital Systems (CADS’13), pp. 73–78, 2013.

[75] S. Mitra and E.J. McCluskey, “Which concurrent error detection scheme

to choose?”, In IEEE International Test Conference (TC’00), 2000.

[76] S. Dupuis, L. Noury and N. Fel, “A regular fabric design methodology
for applications requiring specific layout-level design rules”, In

Microelectronics Journal, 45(2):217– 225, 2014.

[77] K. Yang, M. Hicks, Q. Dong, T. Austin and D. Sylvester, “A2: Analogic
Malicious Hardware”, In IEEE Symposium on Security and Piracy

(SP’16), 2016.

[78] M. Banga and M.S. Hsiao, “TrustedRTL: Trojan Detection
Methodology in Pre-Silicon Designs”, In IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST’10), pp.56–59, 2010.

[79] X. Zhang and M. Tehranipoor, “Case Study: Detecting Hardware
Trojans in Third-Party Digital IP Cores”, In IEEE International

Symposium on Hardware-Oriented Security and Trust (HOST’11), pp.
67–70, 2011.

[80] Y. Jin and Y. Makris, “Proof Carrying-Based Information Flow

Tracking for Data Secrecy Protection and Hardware Trust”, In IEEE
VLSI Test Symposium (VTS’12), pp. 252–257, 2012.

[81] N. Jacob, D. Merli, J. Heiszl and G. Sigl, “Hardware Trojans: current

challenges and approaches”, in IET Computers & Digital Techniques,
8(6):264– 273, 2014.

Sophie Dupuis received the Ph.D. degree

from the Pierre & Marie Curie University,

Paris, France, in 2009.

 Since 2011, she has been an Associate

Professor with the Institute of Computer

Sciences, Microelectronics and Robotics

of Montpellier (LIRMM), France. Her

current research interests include design

and test of integrated circuits and

hardware security.

Marie-Lise Flottes received the Ph.D.
degree in 1990 from the University of
Montpellier.
 She is a researcher for the French
National Research Center (CNRS). Since
1990, she has been conducting research at
LIRMM, France. Her interests include
Design for testability, testability and
dependability of secure circuits, test data

compression and test management for SoC and SiP.

Giorgio Di Natale received the Ph.D.
degree in Computer Engineering from the
Politecnico di Torino, Italy, in 2003.
 Since 2007, he has been a researcher for
the French National Research Center
(CNRS). His research interests include
memory testing, fault tolerance, software
implemented hardware fault tolerance and
secure circuits.

Bruno Rouzeyre received the Ph.D.
degree on CAD from the University of
Montpellier, France, in 1984.

 He is a Professor at LIRMM, France.
His research interests include several
aspects of CAD for digital circuits and are
particularly oriented toward optimization,
verification, test and test synthesis of
digital and secure circuits.

