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Abstract— Due to the evolution in the Integrated Circuit (IC) 

supply chain, soft/firm/hard cores involved in a system under 

development and manufactured ICs come from numerous, and 

possibly unreliable, sources. This loss of control over the entire 

design/production flow leads to several threats including the 

insertion by an attacker of malicious circuitries known as 

Hardware Trojans. Hardware Trojan insertion modifies the 

functionality of the circuit, possibly its reliability, in order to alter 

its behavior, generate a denial of service or leak secret 

information for instance. Numerous methods have been proposed 

in the literature to detect the presence of such alterations, or 

prevent their insertion. This paper focuses on methods based on 

logic testing. Researches in this domain are surveyed and 

remaining unresolved challenges are described along with 

proposals to meet these challenges. 

 
Index Terms—Hardware Trojan, Logic testing 

I. INTRODUCTION 

HE possible insertion of a Hardware Trojan (HT) in an 

Integrated Circuit (IC) has been considered as a serious 

threat for nearly a decade [1-5]. These malicious 

modifications of an IC can be done during the design or the 

fabrication steps. The insertion of a HT in an unreliable 

foundry was initially considered as the most likely threat [6]. 

Outsourcing the manufacturing process to low-cost locations 

has indeed become a major trend in the ICs industry given 

manufacturing increasing cost with ever-shrinking transistor 

technologies. This paper focuses on this insertion scenario. A 

wide variety of HTs can be implemented in order to alter the 

intended functionality of a design. Few additional logic gates 

are indeed generally sufficient for inferring a behavior not 

expected in the original specifications. The challenge lies in 

HT detection or/and prevention knowing the stealthy nature of 

that threat and the multiple possible forms of HTs. 

Numerous techniques have been proposed to counteract 

the potentially catastrophic effect of the insertion of a HT [5, 

7-9]. Proposed methods are usually classified into three 

categories: detection methods, split manufacturing and 

prevention methods, called Design-for-Trust or Design-for-

Hardware-Trust (DfHT) methods. Detection methods aim to 
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test ICs after their fabrication in order to ensure HT-free 

circuitry. Split manufacturing consists in splitting the 

manufacturing process to two foundries. DfHT aims to either 

help detection methods or prevent the insertion of a HT [10]. 

This paper surveys related detection/prevention methods, 

focusing on approaches based on logic testing. We also 

propose some enhancements and highlight remaining 

challenges. Detailed background information is given in 

Section II. Detection methods are reviewed in Section III and 

DfHT methods in Section IV. Section V summarizes the 

limitations and challenges of logic testing in that field. 

Eventually, Section VI concludes the paper. 

II. CONTEXT 

A. HT taxonomy 

Due to the wide variety of HTs that can be created, with 

various characteristics and various effects, several taxonomies 

have been proposed in the literature. The goal was to properly 

evaluate the threat and the effectiveness of the proposed 

countermeasures. 

HTs were initially classified in [11] according to their 

physical aspects, action and activation characteristics (cf. Fig. 

1). The physical characteristics of a HT include: 

- its size, 

- its type: a functional HT incorporates new gates in the 

IC whereas a parametric HT modifies the existing 

circuitry, 

- its structure: a HT may change the original layout and 

leads to geometric changes on placement and/or 

routing, 

- its distribution in the infected IC: a tight distribution 

means that the components of the HT are close in the 

layout as opposed to a loose distribution. 

The HT’s action, called the payload, modifies the 

functionality of the IC in order to produce erroneous 

behaviors, e.g. denial of service, wrong outputs, or 

transmission of confidential information. The payload can also 

downgrade circuit performance. A HT can be either always 

active or triggered by a specific condition, called the 

triggering condition. 

Eliminating unrealistic HTs can restrict this very general 

taxonomy: those that can be easily detected. It will be 

explained in this paper which physical characteristics must 

have a HT in order to escape detection by different types of 

detection methods. 
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Besides, this taxonomy focuses on HTs possibly inserted 

in an unreliable foundry. All steps in the design are nowadays 

considered as unreliable. To take into account these new 

threats, new taxonomies were proposed to characterize HTs 

inserted at design time, in a third party Intellectual Property 

for instance. Abstraction level and insertion phase are taken 

into account in such taxonomies [12]. These HTs are beyond 

the scope of this paper. 

Moreover, the knowledge of the circuit that an attacker 

must have, depending on the desired functionality of the HT, 

is presented in [12]. For example, the knowledge of the 

functionality and/or the netlist is not necessary to notch a few 

signals in order to cause an eventual failure. On the contrary, 

this knowledge is necessary to modify the functionality, e.g. to 

transmit a specific internal value at a given time. 

B. Protection methods taxonomy 

Many techniques have been proposed to counteract the 

potentially catastrophic effect of the insertion of a HT in an 

unreliable foundry. As described in [5], HTs protection 

methods can be divided into three types: detection, split 

manufacturing and DfHT (cf. Fig. 2). 

1) Detection 

Post-production methods analyze fabricated ICs in order to 

ensure the absence of a HT. These methods are divided into 

destructive and non-destructive methods. 

Destructive methods are based on reverse engineering, 

which allows extracting the netlist from an IC. It can 

consequently be used to detect the presence of a HT by 

comparing this netlist with the (trusted) original one [13]. 

However, reverse engineering is extremely time consuming 

and costly. Furthermore, it destroys the IC under test. No 

conclusion can thus be drawn on remaining ICs. It is therefore 

not possible to use this kind of approach to evaluate a full 

production.  

As a result, non-destructive methods are needed to provide 

post-fabrication tests on all the production before deployment 

in the field. Related approaches are classified into side-

channel analysis [14-19], logic testing [20-27] and visual 

inspection [28] (not present in Fig. 2). 

a) Side channel analysis 

Methods based on side channel analysis focus on 

monitoring physical characteristics such as power 

consumption [14], path delay [15-17] or electromagnetic 

energy [17]. The characteristics of the IC under evaluation are 

compared with the ones of “golden ICs” i.e. HT-free ICs. The 

assumption is that the introduction of a malicious circuitry 

should change power consumption, path delays or 

electromagnetic emissions in such proportion that it is possible 

to discriminate infected ICs from others. 

The first weakness of detection methods based on side 

channel analysis is that they rely on the comparison with the 

characteristics of golden ICs, which are extremely difficult to 

obtain [5]. It indeed requires comparisons with characteristics 

extracted from “real” ICs and not from simulation [29]. The 

process used to assure that an IC is HT-free relies on reverse 

engineering, which is, as mentioned before, extremely costly 

and time consuming. 

The second weakness of detection methods based on side 

channel analysis is that process and environmental variations 

can mask the effect of a small HT in today’s nanoscale 

technologies. Besides, measurement set up is also a major 

challenge when looking for potential extra delay on short 

paths due to HT insertion [7]. In order to take into account 

variability and therefore be able to detect small HTs, it was 

proposed to couple side-channel analysis methods with 

patterns generation techniques in order to magnify the effect 

of a HT [30-32]. However, the method in [31] for example 

manages to magnify the power consumption of a HT 

containing around twenty gates. Much smaller HTs can be 

crafted that would evade being detected by these methods. 

Gate-level characterization methods rely on several 

characteristics [18, 19] to better take into account process 

variations. Furthermore, there is no need for a golden model 

since the comparison is made with gate properties. Even so, 

the method presented in [19] detects HTs only if the HT-to-IC 

ratio in terms of gate count exceeds 0.4%. This does not seem 

to be a sufficiently small limit given today’s ICs size. 

b) Logic testing 

Methods based on logic testing consist in applying test 

stimuli to ICs under evaluation and comparing the responses 

with the expected ones, i.e. the ones pre-computed by 

simulation. The HT will be detected if it affects the IC’s 

 
Fig. 2.  HT protection methods overview [5]. 

 
Fig. 1.  HT taxonomy overview [11]. 
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responses during this test procedure. Logic-testing methods 

are therefore dedicated to HTs that change the functionality of 

an IC. It is generally agreed that, in order to evade detection 

during manufacturing test, an attacker creates a HT that is 

dormant until a stealthy condition triggers it [20-27]. The goal 

of detections methods is then to be able to activate potential 

HTs within a reasonable test time, i.e. using a limited number 

of test patterns. The strategy adopted for constraining test 

pattern length consists in targeting most likely HTs triggering 

conditions. 

A possible model of these so-called “rare value” based 

HTs is shown in Fig. 3: the stealthy triggering condition is a 

rare value created by a set of internal signals’ logic values. In 

[20-24], a common assumption is to create this rare value 

using signals with low ‘0’ or ‘1’ controllability as trigger input 

signals. The controllability indeed reflects the difficulty of 

setting a signal to a particular value from primary inputs. A 

combination of signals that are “difficult” to set to ’0’ or ’1’ 

therefore necessarily leads to creating a stealthy condition. 

More recently, it was assumed in [25] that, in the specific 

case of cryptographic circuits, since the key bits are unknown 

to the attacker, he/she cannot control the signals influenced by 

key bits and therefore cannot use such signals as trigger 

inputs. Another assumption in [26, 27] is that an attacker may 

not have access to the internal signals of an IC. The HT’s 

trigger is in that case connected directly to the primary inputs. 

Detection methods based on logic testing reach their limits 

when considering HTs with an extremely stealthy trigger 

requiring the control of numerous signals. The HTs detected in 

[20, 21] have a trigger with only two or three input signals for 

instance. Likewise, these methods are hardly effective on 

sequential HTs triggers, which generate a combinatorial 

explosion in the search for potential triggers. Furthermore, the 

postulate that a combinatorial trigger is dependent on a 

combination of low controllable signals is very restrictive. 

These points are discussed in detail in Section III. 

c) Visual inspection 

It is stated in [28] that full reverse engineering is overkill 

to detect a HT. The proposed idea is to only observe the top-

level metal layer and compare the ICs with the original layout. 

Furthermore, such method does not destroy the IC under test, 

as opposed to reverse engineering. 

However, visual inspection cannot detect HTs designed on 

low metal layers. 

2) DfHT 

Given the limitations of HT detection methods, the idea of 

modifying the design has emerged. DfHT methods either 

prevent HT insertion or help HT detection methods. 

a) HT insertion prevention 

To prevent HT insertion, or at least make the insertion 

more difficult, a first idea is to hide the IC’s functionality. 

Function hiding indeed prevents the creation of a HT requiring 

a good understanding of the original functionality e.g. to 

create a stealthy trigger. This can be done through the 

modification of the state transition graph in order to obfuscate 

the functionality of the IC [33-36]. This can also be done 

through the modification of the layout of the standard cells in 

order to camouflage their functionality [37, 38]. 

A second idea is to create a layout as dense as possible in 

order to prevent an attacker from exploiting the available 

spaces, after place and route [39-42]. By replacing “dummy” 

filler cells by logical cells that can be tested, the replacement 

of those cells by a HT would not be unnoticed at test time. 

b) Detection facilitation 

In order to support side channel analysis, the goal is to 

magnify the difference between the characteristics of a HT-

free IC and the ones of an infected IC. In [43], logical gates 

are inserted to include each signal in at least one short path. 

The assumption is that a HT inserted on a short path is easier 

to detect using delay analysis. However, this assumption 

might be true from a mathematical point of view, but not from 

a measurement set up point of view. An inverted voltage 

scheme is presented in [44] that alternates levels in the circuit. 

Coupled with a sustained vector simulation technique, the goal 

is to exaggerate extraneous activity created by the HT to help 

detection based on power analysis. A side effect is to help 

logic testing, if the HT is fully activated. 

In order to support logic testing, the idea that received the 

most attention is to design the circuits in such a way that it is 

much more difficult, if not impossible, for an attacker to create 

a stealthy triggering condition. That way, the chances of 

triggering potential HTs during testing are maximized [45-53]. 

Another idea is to allow runtime monitoring [54-58] in 

order to detect a HT once the IC is in the field. This is the last 

line of defense for critical applications. From a side channel 

point of view, run time monitoring can use thermal sensors 

once in the field [54]. From a test behavior point of view, run 

time monitoring can be achieved thanks to the use of 

differential cascade voltage switch logic (DCVSL) [55] to 

produce complementary logic values. Run time monitoring 

can also be achieved thanks to the use of real-time security 

monitors [56] or through the addition of redundancy [57, 58]. 

This is conceptually similar to what has been done for several 

decades to improve dependability by handling intermittent and 

permanent faults [59, 60]. Methods based on redundancy are 

detailed in Section IV. 

3) Split manufacturing 

More recently, split manufacturing has been proposed to 

counteract the insertion of HTs [5, 42]. Split manufacturing 

consists in fabricating the front end layers, transistors and 

lower metal layers, in an unreliable foundry, while back end 

layers, the higher metal layers, are fabricated by a reliable 

foundry. 

However, split manufacturing is very costly, due to the 

need to use two foundries, including a more expensive 

trustable one. Moreover, the task of the trusted foundry is 

challenging due to, among others, the perfect alignment 

needed to create the back end layers above the already existing 

 
Fig. 3.  “Rare value based” HT model 
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front end layers. Besides, it has been shown that split 

manufacturing doesn’t provide the expected security [61]: an 

attacker in the unreliable foundry can indeed guess most of the 

missing connections. More research on split manufacturing is 

still therefore needed, not only on 2D integration, but also on 

3D integration [5]. 

C. Threat model 

The remainder of this paper focuses on HTs possibly 

introduced in an unreliable foundry. We assume that the 

attacker does his/her best to craft a HT that will not be 

detected by any existing method. The HT is therefore 

supposed to be small enough to escape detection by methods 

based on side channel analysis and visual inspection. 

Besides, focus is made on methods based on logic testing 

(cf. bolded rectangles in Fig. 2). The HTs covered by this type 

of methods are supposed to be stealthy triggered HTs that 

modify the functionality of the IC. In other words, an 

erroneous output can be observed when the HT is triggered by 

a stealthy condition (cf. bolded rectangles in Fig. 1). So that 

the erroneous behavior is detected, a comparison is made with 

the expected answers, known thanks to the test sequence. It 

should be noted the “golden model” with which to compare is 

not a HT free IC as for methods based on side channel 

analysis. Only the expected behavior of the circuit is needed. 

Since, in our threat model, no HT is supposed to be inserted 

during the design, the golden model is the test sequence 

generated from the HT free netlist by the trusted designer. 

Based on these assumptions, the goal of the detection 

methods is to generate a reduced set of test patterns dedicated 

to the activation, and thus detection through output 

observation, of potential HTs at test time. DfHT methods aim 

at facilitating detection by preventing the attacker from 

creating a stealthy condition, or/and allowing HT detection at 

run-time. 

The following sections provide a review of solutions from 

the literature and discuss possible improvements. 

III. DETECTION 

This Section reviews HT detection methods based on logic 

testing after showing similarities and difference with stuck-at 

fault logic testing. Eventually, two limitations are put forward: 

the difficulty of managing sequential triggers and triggers 

based on controllable signals. 

The challenge that face detection methods based on logic 

testing is to activate HTs that have been designed to evade 

detection during usual manufacturing tests. An example of HT 

trigger evading detection during single stuck-at-fault 

procedures is presented in Fig. 4. The circuit is composed of 

two OR trees feeding an AND gate. The AND gate is totally 

tested w.r.t. stuck-at-0/1 on both inputs and output using 

patterns (e1, e2) = {(0, 1), (1, 0), (1, 1)}. As a consequence, 

the pattern that produces (e1, e2) = (0, 0) does not necessarily 

belong to the test patterns set. Since e1 and e2 have low ‘0’ 

controllabilities due to upstream OR trees, a stealthy triggering 

condition can be created using (e1, e2) = (0, 0) to control an 

extra NOR gate as trigger (cf. dotted gate in Fig. 4). This 

triggering condition can perfectly escape detection during 

single stuck-at-fault test. Although rare, this triggering 

condition can easily be activated by the attacker by controlling 

all OR trees primary inputs to ‘0’. 

The main difference between single stuck-at faults and 

HTs is that former ones require the sensitization of one signal 

to be detected (e.g. to detect a stuck-at-1 fault on a signal, that 

signal must be set to ‘0’), while latter ones require the 

sensitization of several triggering input signals. In that sense, 

test pattern generation for HT detection is similar to test 

pattern generation for multiple stuck-at-faults (several signals 

stuck-at-0/1 concurrently). This problem is well known to be 

computationally intensive when every combination of any 

number of signals has to be taken into account. For example, 

considering only 100 signals and combinations of 2 to 4 

signals to limit the HT’s size, more than 4 millions 

combinations exist. With respect to HT detection, since the 

HT’s trigger and its triggering value are not known at test 

time, assumptions have to be made about potential triggering 

conditions in order to limit test generation and test time. In 

addition to the stealthiness of the triggering condition and the 

restricted number of trigger input signals that should be taken 

into account, other restrictions have been proposed as 

described afterwards. 

To the best of our knowledge, the first HT detection 

method based on logic test was presented in [20]. The 

assumption introduced in this work, and widely used ever 

since, is that a HT’s trigger depends on a combination of low 

controllable signals. A less common assumption also 

introduced is that the payload is stitched to a low observable 

signal. In [20], simulation data are used to determine low 

controllable signals. Then, potential triggers are defined as 

combinations of these signals. A fault simulator is used to 

identify low observable signals. Potential HTs are then a 

combination of each trigger and each payload found. An 

ATPG tool is finally used to produce the test patterns that 

provide the expected values for each potential trigger and that 

propagate each payload to an output. 

Based on the same assumption that HT’s trigger input 

signals are low controllable, the approaches presented 

hereinafter aim to improve either the search of low 

controllable signals, the way to combine these signals to create 

stealthy triggering conditions (e.g. by taking into account the 

constraints a foundry attacker can face) or test pattern 

generation. In this last case, the goal is to cover as many 

potential triggers as possible while minimizing the number of 

test patterns needed. 

In order to improve the identification of potential input 

trigger signals and the creation of potential triggers, several 

criteria are considered in [21]. The goal is to better reflect the 

choices that could be made by an attacker in an unreliable 

foundry for inserting a HT. The assumption is that a HT’s 

trigger is composed of (1) signals with low controllability, and 

 

Fig. 4.  Example of trigger condition that evades detection during 

functional test. 
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(2) signals on non-critical paths, and created by combining (3) 

multiple signals that are close from each other in the IC’s 

layout. From the attacker’s point of view, the goal is to insert a 

HT as stealthy as possible in terms of impact on the function, 

the performances and the physical implementation on the 

layout. From the defender point of view, all of these criteria 

allow reducing the number of potential triggers to analyze. 

Besides, low controllable signals are identified thanks to a 

probabilistic COP-like [62] testability analysis in order to 

prevent biased results obtained from simulation of random 

data. 

Low controllable signals are searched in [22] thanks to the 

statistical behavioral correlation between signals i.e. the 

relationship between signals’ behaviors during a simulation. 

This correlation information was initially proposed in [63] in 

order to detect HTs introduced at design time. Based on 

simulation data, clusters are created to represent the 

correlation between every signal according to their behavior. 

In other words, clusters of functionally related signals are 

created. Signals inside a HT are “outliers” i.e. signals that are 

pushed with high-reachability distances to the border of the 

clusters because they have a weak statistical correlation with 

the rest of the circuit. Experiments in [22] show that outliers 

are also found in HT-free circuits and that these “false 

positives” are low controllable signals. 

In order to improve the test patterns generation step, the 

assumption in [23] is that the chances to activate a trigger 

increase with the number of times each signal composing the 

trigger is activated. The idea is conceptually similar to the n-

detect approach that targets stuck-at faults several times to 

increase the probability of detecting the faults. The simulation-

based procedure starts from an initial set of random patterns, a 

list of low-controllable signals and a number of times each 

low controllable signal has to be set to its value. The set of 

patterns is modified by changing one bit at a time of the 

patterns for which the largest number of signals is forced to 

their rare value. The modification stops when each signal 

satisfies its rare value condition for the desired number of 

times. 

In [24], a Genetic Algorithm (GA) is combined with 

Boolean satisfiability (SAT). GA is used to quickly obtain the 

test vectors to excite most of the possible triggers conditions 

while SAT handles the triggers that are the most hard to 

activate. Payloads are also investigated in [24] in which the 

assumption is that a trigger may not be associated to any 

payload in a circuit. In other words, the signal on which the 

payload is attached must be carefully chosen so that the 

pattern that activates the trigger also propagates the payload 

value to an output. To do so, for each trigger found, a fault 

simulator is used to assess if each of the downstream signal 

can be a valid signal. Experimental results show that the 

proposed method has better results than MERO in terms of HT 

triggering. 

Other types of methods do not use controllability metrics. 

It was assumed in [25] that, in the specific case of 

cryptographic circuits, since the key bits are unknown to the 

attacker, he cannot control the signals influenced by key bits 

and therefore cannot use such signals as trigger inputs. Since 

the first step of the AES is to XOR the plaintext with the key, 

the plaintext bits are the only viable potential input signals. 

This allows restricting the total number of potential trigger 

input signals. For example, a 2
13

 patterns set is needed to 

exhaustively test HTs with triggers composed of 4 signals, 

with 128 possible trigger input signals. 

Similarly, it was assumed in [26, 27] that an attacker may 

not have access to the internal signals of an IC. The HT’s 

trigger is in that case connected directly to the primary inputs 

of the IC. Combinatorial testing is used to produce an efficient 

set of patterns. Combinatorial testing models dependencies of 

inputs and produces a set of patterns with mathematical 

guarantees of input space coverage. 

However, the assumption of using only primary inputs 

seems too restrictive, if the circuits under consideration are not 

restricted to cryptographic ones. While triggering conditions 

relying on primary input values may be easier to set up, the 

possibilities for an attacker to create a stealthy condition are 

reduced. An attacker may be obliged to use a large number of 

inputs and therefore create a large HT. Using internal signals 

to create a trigger may be more difficult from a crafting point 

of view and require deeper circuit analysis but this assumption 

seems nevertheless more realistic for the creation of stealthy 

HTs. 

An important limitation of these methods is their inability 

to handle “sequential triggers” built from extra flip-flops and 

combinational logics. Assuming that trigger’s sequential 

elements are not inserted in the scan chain by the attacker, a 

state-machine based trigger can be very difficult to set to its 

triggering condition. The same limitation affects sequential 

test pattern generation for stuck-at-faults. The only mention to 

sequential trigger detection is made in [25] in which the 

sequential trigger condition is assumed to be the same pattern 

repeated. This limitation is chosen to limit the HT’s size. 

Experimental results show that sequential HTs activated by 

sequences of different patterns are far larger than HTs 

activated by a sequence of several times the same pattern.  

One may therefore argue that methods based on logic 

testing are not dedicated to handle sequential triggers like 

combinatorial triggers based on a large number of inputs. 

These kinds of triggers are indeed necessarily big enough to 

be detected by side-channel analysis methods [64]. 

Another limitation of most of the mentioned methods is the 

very strict initial postulate: a stealthy HT’s trigger is 

dependent on a combination of low controllable signals. Using 

low controllable signals indeed necessarily leads to a stealthy 

condition, but the reverse is not true. A set of signals, perfectly 

controllable to both values, may obviously lead to a low 

controllable triggering condition. However, looking for a low 

controllable condition issued from any combination of 

controllable signals is computationally intensive, as already 

mentioned. Additional criteria are therefore needed to restrict 

the search space. Note that, from the attacker point of view, 

building a rare value using only controllable signals is not 

straightforward either. However, he/she may limit his/her 

procedure since he/she only has to find one rare combination 

of controllable signals while the “defender” must find all of 

them in order to propose a related test procedure. 

To the best of our knowledge, identification of rare 

conditions composed of controllable signals has not been 

intensively explored. In [21, 25-27], the controllability of 

individual signals in the circuit is not taken into account. 
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Exploration of potential triggering conditions is driven by a 

signal proximity criterion in [21], assuming that it is easier for 

an attacker to use nearby signals. Only primary inputs are 

considered in [26, 27] (also from a easiness point of view for 

the attacker) and in [25] (specific case of cryptographic 

circuits).   

Behavioral correlation between signals is proposed in [22] 

as a potential criterion to limit the number of triggering 

conditions to explore. However, we show in the following 

example and experiment that rare values can be created 

whatever the behavioral correlation between these signals. 

In the example of Fig.5, primary inputs a, b, c, d and 

signals x, y, z are controllable, x and y are correlated (i.e. 

functionally related), x and z are not. Controllable and 

correlated signals x and y can be used to control a HT’s trigger 

T1=𝑥.y, such as T1 is activated thanks to the rare condition (x, 

y)=(0,1). In the same way, controllable but uncorrelated 

signals x and z can be used to control a HT’s trigger T2=𝑥.𝑧 

such that T2 is activated thanks to the rare condition (x, 

z)=(0,0). 

Experiments on three ISCAS benchmarks (c432, c1355, 

c3540) aim to evaluate the proportion of rare values that can 

be built from two controllable signals according to their 

correlation. They also aim to confirm that there is no link 

between the behavioral correlation between the signals and the 

creation of a rare value. HT triggers are created based on two 

controllable signals, chosen according to several behavioral 

correlations. To evaluate the stealth or not of the created 

triggers, a one million random patterns simulation is run. A 

trigger is considered as a rare value if it is never activated 

during the simulation and can nevertheless be activated. The 

results are presented in Fig. 6. The percentage of rare values in 

relation to the total number of triggers created are presented, 

depending on the correlation between the two signals 

composing the trigger, from highly correlated signals to highly 

uncorrelated signals. For example, for benchmark c432, 1% of 

the triggers created based on highly correlated signals are rare 

values whereas 2,8% of the triggers created based on highly 

uncorrelated signals are rare values. From these 

experimentations, two conclusions can be drawn. Firstly, the 

number of rare values found based on controllable signals 

(2.5% of the triggers created) confirms that this assumption is 

worth to be studied. Secondly, there is no link between the 

signals correlation and the possibility to create a rare condition 

based on controllable signals, since low controllable values are 

created regardless of the correlation. Correlation is therefore 

not a criterion allowing reducing the search space. 

A summary of HT detection using logic testing is proposed 

in Table I. Wolff et al. [20] introduced the idea of using logic 

testing to detect HTs. They also introduced the idea that a HT 

trigger is composed of low controllable signals. Later, Dupuis 

et al. [21], Lesperance et al. [25] and Kitsos et al. [26, 27] 

simultaneously introduced the idea that a trigger can also be 

composed of controllable signals. Wolf et al. [20] and Saha et 

al. [24] took also into account potential payloads: stitched to 

low observable signals and that can be propagated by the 

pattern that activates the trigger. Chakraborty et al. [23], Saha 

et al. [24] and Kitsos et al. [26, 27] proposed test patterns 

generation techniques to achieve a good triggers’ coverage 

with a reduced number of test patterns. Dupuis et al. [21] 

proposed to use layout information to reduce the search space. 

As yet, there is not method that manages sequential triggers – 

only evoked in [25] – and trigger based on controllable signals 

– only with a layout criterion in [21] and using only primary 

inputs in [25-27].  

 
(a) Circuit 
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(b) Truth table 

Fig. 5.  Example of rare condition creation, regardless from the correlation 

 

 
Fig. 6.  Percentage of rare values created from two signals for highly (a) 

correlated signals, (b) correlated signals, (c) uncorrelated signals and (d) 

highly uncorrelated signals 

 



2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2766170, IEEE Design

and Test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

IV. DFHT 

A. Logic testing 

This sub-section reviews prevention methods that aim to 

enhance HT detection. In order to help detection with logic 

testing, all these methods share the common goal to facilitate 

the activation of potential HTs. Still assuming that stealthy 

triggers are controlled by low controllable signals, prevention 

techniques consist in increasing the controllability of low 

controllable signals such that HT triggering is more likely to 

happen during any test procedure (including random testing). 

Controllability improvement is easily achieved thanks to 

Design-for-Testability (DfT) methods commonly used for 

improving test pattern generation for stuck-at fault testing 

such as test point insertion [65] and partitioning [66]. Note 

that, unlike detection methods, these two types of methods are 

not specifically adapted to the problem of HT detection. These 

methods are intrinsically suited to the problem, and their use 

in this context is evaluated. Duality, initially dedicated to 

circuits’ reliability [59] is also explored as a way to help 

detection methods; so is logic masking, initially dedicated to 

counteract overproduction [67]. After reviewing proposed 

prevention methods, an improvement of test point insertion is 

proposed. Finally, one limitation is put forward: the difficulty 

of preventing triggers based on controllable signals. 

The idea of using test point insertion to detect HT insertion 

has been introduced in [45, 46]. The transition probabilities of 

all signals are calculated using a COP-like testability analysis. 

Then, signal probabilities are balanced above a given 

threshold thanks to extra AND/OR gates controlled by so-

called ”dummy scan Flip-Flops (FFs)” (cf. Fig. 7). The FFs 

are supplied by the Scan Input pin at test time to allow the 

AND (resp. OR) gates increasing the probability to set one 

signal to ’0’ (resp. ’1’). At run time, the FFs are supplied by 

’0’ or ’1’, depending on the extra gate type, to ensure expected 

behavior. An iterative process inserts these test points, 

beginning with signals with the most unbalanced probabilities. 

Experimental results show the difference in HTs activation 

between ICs without and with test point insertion, showing 

that: 1) the higher the probability threshold, the more HTs 

triggered and 2) bigger the HT, harder the triggering. 

However, the HTs are inserted on the original circuit and the 

test point insertion is performed after HT insertion. These 

experiments are then not valid assuming the scenario of a HT 

inserted in a foundry, in which the attacker would not choose 

these signals. 

The following methods propose variants of test point 

insertion in order to improve it by limiting the number of extra 

gates, and thus the cost of the DfT. 

In [47], AND/OR gates are used in the same way as in [45, 

46] but are controlled by non-expensive transmission gates 

instead of FFs. In [48, 49], dummy FFs are inserted along with 

multiplexers instead of AND/OR gates. Furthermore, an 

iterative process starts from low controllable signals with 

minimal logical depth. This solution provides lower area 

overhead that [45, 46] thanks to the more efficient iterative 

process. 

Partitioning was explored for HT detection in [50]. 

SCOAP testability measures are used to detect low 

controllable signals. Then, the partitioning is done, using 

multiplexers as partition points, considering five factors: 

hardware overhead, testing time, longest path and 

improvements of transition probabilities and controllability. 

The goal is to reduce test time while increasing the probability 

to activate a HT, as for previously described methods based on 

test point insertion. Experimentation on ISCAS’85 

benchmarks show that the partitioning allows reducing the 

number of test vectors needed and increasing the transition 

probability of all gates. However, no experiments are 

proposed regarding HT insertion. It is logical to assume that a 

HT within a partition would be detected since each partition is 

exhaustively tested, but what about a HT positioned on two 

partitions? 

The idea of designing a circuit with a dual is introduced in 

[51]. The goal is to design a dual so that a stealthy HT during 

test is not stealthy in the dual. Duality is presented at gate 

level. For example, a proposed dual for a NOR gate is a AND 

gate so that the signals to activate a HT using a NOR gate 

should be inverted to hide the “dual HT” using a AND gate. 

Experiments are made with circuits created only with NOR 

gates and with HTs creating stuck-at faults. These experiments 

show that the number of test patterns needed to detect the HT 

depends on the quality of the dual. 

The principle of duality seems promising, but more 

developments need to be done to assess the quality of the 

method with a complete standard-cells library created, as well 

  
(a) Test point for a “rare 0”                (b) Test point for a “rare 1” 

Fig. 7.  Test point insertion structure in [45, 46]. 

TABLE I 

DETECTION METHODS CHARACTERISTICS 
 Wolff 

et al. 

[20] 

Dupuis 

et al. 

[21] 

Ba 

et al. 

[22] 

Chakraborty 

et al. 

[23] 

Saha 

et al. 

[24] 

Lesperance 

et al. 

[25] 

Kitsos 

et al. 

[26, 27] 

Triggers based on low controllable signals ✔ ✔ ✔     

Triggers based on controllable signals  ✔    ✔ ✔ 

Sequential triggers      ✔  

Payloads taken into account ✔    ✔   

Test patterns generation ✔   ✔ ✔  ✔ 

✔ The method proposes a novel way to handle the problem 
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as the overhead associated. 

Two variants of test point insertion are proposed in [52, 

53], based on logic masking. Logic masking consists in 

inserting in the design extra logical gates and primary inputs 

to control them in order to change the behavior of the IC if the 

extra inputs are not controlled by an appropriate “secret key” 

[67]. 

In [52], a FSM is inserted controlled by a secret sequential 

key, that allows entering in a special operating mode upon the 

application of the right key (a specific sequence of inputs). In 

the special mode, called transparent mode, the least 

controllable signals are forced to their rare value and the least 

observable signals are compacted into a signature. As for 

some detection methods, potential payloads are taken into 

account. Due to the management of the transparent mode 

activation, and the management of both triggers and payloads, 

this method is more costly. However, it also provides the 

obfuscation of the initial design, as presented in the 

experimental results. Experiments regarding HT insertion are 

also proposed; however, the HT insertion is made randomly, 

which does not illustrate the behavior of an attacker. 

AND/OR gates are inserted in [53], controlled by a 

combinational key, in order to remove low controllable 

signals. When the key bit is set to the non-dominant value, the 

signal can be controlled to its low controllable value, 

otherwise, the circuit behaves as defined by the specification.  

These methods counteract both overproduction and HT 

insertion. Note that the protection against overproduction is 

thwarted if the attacker is able to retrieve the value of the key. 

However, the protection against HT insertion is not thwarted 

since, even if he/she knows which signals are not controllable 

in normal mode, this does not prevent these signals from being 

controlled during test by changing the value of the key. 

Protection against overproduction is beyond the scope of this 

paper, interested readers can refer to proposed methods [68-

70], attacks [70, 71] and counterattacks [72-74]. 

In all proposed methods based on test point insertion, a 2-

input gate is introduced in the circuit. In this paper, we 

propose a new solution leading to less area overhead and far 

better probabilities improvements. Let us consider the circuit 

example in Fig. 8. Assuming a probability threshold T=1/32, 

which means that any signal with a probability P0 (or P1) 

lower than 1/32 is considered as a low controllable signal: 

— Given the chosen threshold, P1(x)<T (whereas P1(v)>T and 

P1(w)>T) (cf. Fig. 8.a). A test point has therefore to be 

inserted in order to balance the probabilities of signal x. 

— In order to modify signal x’s 1-probability, it is proposed in 

the literature to insert a test point on one of its upstream 

signals: v or w. The upstream signal v with the most 

unbalanced probabilities is chosen. These probabilities 

modifications will have the greatest impact on downstream 

signals. An OR gate can be used as proposed in [45, 46] 

(cf. Fig. 8.b) leading to new 1-probabilities of 17/32 for v 

and 17/128 for x. The use of a multiplexer as in [48, 49] 

leads to new 1-probabilities of 16/32 for v and 16/128 for 

x. 

— The proposed solution consists in inserting a test point on 

signal x. To do so, an OR gate is added, leading to a new 

probability of 65/128. To prevent signal x from remaining 

in the netlist, the OR gate is aggregated with the gate 

driving signal x, creating a gate with the functionality A.B	+	

C in this example. The gate driving x is therefore changed 

into this new gate and low controllable signal x is no 

longer in the netlist (cf. Fig. 8.c). Furthermore, this 

modification generates less additional cost surface than 

adding an OR gate. Note that if the use of a 3-input gate is 

not possible (typically when the required 3-input gate does 

not exist in the library), the insertion of a test point on an 

upstream signal can be done. 

The proposed approach differs from related works in its 

use of 3-input gates that leads to far better probabilities 

enhancements than the insertion of a gate on an upstream 

signal. 

We have developed the proposed test point insertion, with 

an iterative process beginning with the signals closest to the 

primary inputs. Experimental results are described in Table II. 

For each benchmark, the probability threshold chosen for each 

experiment is presented, along with the number of low 

controllable signals (i.e. signals with a probability beyond this 

threshold), before and after test point insertion, the number of 

test points added and the improvements in probabilities. Two 

sets of experiments have been performed: the first ones 

without constraints regarding the number of test points to 

insert (first 6 benchmarks) and the second one, with a 

limitation in the number of test points allowed (last 3 

benchmarks). The goal is to better assess the interest of the 

iterative algorithm beginning with signals close to the inputs. 

As one can see, fewer test points are needed than the number 

of signals with unbalanced probabilities, showing the 

 
(a) Example (0-probability, 1- probability) 

 

 
(b) Test point on an upstream signal (in dotted lines) 

 

 
(c) Test point on the rare signal (in dotted lines) 

Fig. 8.  Test points insertion proposition. 
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capacities of the iterative algorithm: for example, for apex2 

benchmark, only 26 test points allow to balance the 

probabilities of 103 signals. Only drastic constraints result in 

circuits with signals with unbalanced probabilities remaining. 

In summary, an average of 56 test points balance 117 signals’ 

probabilities. Besides, an average increase in probabilities of 

0.39 is obtained. This shows that the test point insertion allows 

a significant balancing of the probabilities. Signals’ 

probabilities must indeed be well balanced so that the test 

point insertion cannot be neutralized at low cost. If the chosen 

probability threshold is too small, an attacker can still create a 

rare trigger by rendering the signal low controllable again 

[75]. The method we propose allows balancing the 

probabilities in a better way than previous proposed methods, 

which helps counteract this attack. 

To show that it is more difficult for an attacker to create a 

stealthy trigger based on low controllable signals on a circuit 

after test point insertion, we inserted three HTs in two 

benchmarks, with and without test point insertion (with a 

threshold of 0.2). Three kinds of HTs were inserted. They 

consist in a 2-input (resp. 3-input, 4-input) AND gate for the 

trigger and a XOR gate for the payload. The signals with the 

lowest probabilities to be set to ’1’ were chosen as trigger 

input signals. Then, an ATPG tool was used on the infected 

circuits to make sure that one pattern could activate the HTs. 

Finally, a simulation of 100 000 random patterns was run to 

asses the stealth (or not) of the HTs. Table III shows the 

number of times each HT’s trigger was activated during these 

simulations. As one can see, in all experiments with test point 

insertion, the HTs triggers were activated, proving the 

difficulty of inserting a stealthy HT in a circuit in which all 

signals’ probabilities have been increased above 0.2. In 

contrast, a stealthy HT was created in all circuits without test 

point. 

No work ever handled rare conditions based on 

controllable signals as previously introduced. Since the 

purpose of the test point insertion is to remove uncontrollable 

signals and it has been shown that it is possible to create rare 

conditions with controllable signals, it is logical that this type 

of approach does not prevent the creation of such conditions.  

We have made some experiments to see if, as expected, 

such conditions could still be found after test point insertion. 

The benchmark of Fig. 6 in which several rare conditions 

based on controllable signals were found was used. Results are 

shown in Table IV. The first line presents the number of 

triggers created based on controllable signals. The second line 

presents the triggers that, among these, are stealthy. The last 

line presents the corresponding percentage. The two columns 

“Without test points” and “With test points” present the same 

experiments on a circuit without and with test points inserted 

(with a probability threshold of 0.2). As one can see, after test 

point insertion, five stealthy triggers were created, based on 

controllable signals. This suggests that, as expected, test point 

insertion methods may decrease the possibility to create rare 

conditions with controllable signals, but does not totally 

prevent their creation. 

Prevention methods that aim to help detection methods 

based on logic testing are mostly based on design for 

testability methods initially dedicated to improve test sequence 

by increasing signals controllability. These methods are 

intrinsically suited to the problem, and their use in the context 

of HT detection is evaluated. In the case of HT detection, the 

goal of controllability increase is to increase the chances to 

activate a HT during logic testing. Test point insertion was the 

most studied method. Other methods were proposed such as 

partitioning and duality. 

B. Run-time monitoring 

Since HT detection before deployment in the field is a very 

challenging task, the methods proposed up to now aim to 

improve the level of confidence that no HT is present in the 

circuit, but no method offers 100% confidence. This level of 

security may not be sufficient for critical applications. The last 

line of defense is therefore to monitor the ICs once in the field.  

In this sub-section, proposed prevention methods that 

allow run-time monitoring are reviewed. The methods 

described afterwards rely on design techniques preliminary 

used for reliability and dependability, such as Concurrent 

Error Detection (CED) techniques, which introduce 

redundancy through parity codes or hardware duplication 

TABLE II 

PROPOSED TEST POINT INSERTION RESULTS 
 Probability 

threshold 

“Rare Signals” Test 

points 

Probability 

changes  Before After 

Apex2 

 

Apex4 

 

C432 

 

C2670 

 

C5315 

 

C7552 

 

0.01  

0.05 

0.01 

0.05 

0.1 

0.2 

0.001 

0.01 

0.01 

0.1 

0.01 

0.05 

21 

103 

58 

683 

7 

53 

28 

33 

19 

36 

45 

77 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

8 

26 

29 

229 

4 

31 

11 

12 

7 

20 

17 

49 

+0.39 

+0.40 

+0.50 

+0.44 

+0.27 

+0.34 

+0.45 

+0.46 

+0.42 

+0.44 

+0.42 

+0.44 

C1355 

 

C1908 

 

C3540 

0.1 

0.2 

0.1 

0.2 

0.05 

0.1 

64 

112 

31 

110 

204 

428 

32 

0 

6 

9 

1 

4 

32 

64 

16 

64 

128 

256 

+0.25 

+0.31 

+0.32 

+0.25 

+0.51 

+0.36 

Average  117 3 56 0.39 

TABLE III 

RARE TRIGGERS BASED ON LOW CONTROLABLE SIGNALS 

AFTER PROPOSED TEST POINT INSERTION  
 HT inserted HTs’ activation 

 Without test point With test points 

C1355 

 

 

C1908 

 

 

HT 1 

HT 2 

HT 3 

HT 1 

HT 2 

HT 3 

0 

0 

0 

0 

0 

0 

4 393 

966 

211 

8 797 

5 014 

2 506 

TABLE IV 

RARE TRIGGERS BASED ON CONTROLABLE SIGNALS 

AFTER PROPOSED TEST POINT INSERTION 
  Without 

test point 

With 

test points 

C432 NB triggers 

NB rare Triggers 

Percentages 

2 285 

21 

0.92% 

2 603 

5 

0.19% 
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along with a checker [76]. Then, the limitation of duplication 

is put forward: the difficulty of creating two "different" 

replicates of the same circuit in order to prevent an attacker 

from creating an identical HT in both replicates. 

In [57], the proposed CED technique consists in a 

duplication-based on one-to-many code in order to protect the 

most “valuable” words that may appear on the ICs’ outputs. 

To do so, the IC is composed of two sub-circuits producing 

each a subgroup of the outputs (with the corresponding 

redundancy bits). A checker is then used to check the 

codewords. However, in order to limit the cost of the 

implementation, one has to choose the set of protected words 

(e.g. the most valuable or probable that appear on the outputs). 

Furthermore, the HT has to be activated for a certain period of 

time in order to be detected. The proposed method does not 

deal with HTs activated for a single cycle. 

Hardware duplication is proposed [58]. The idea is to 

create a redundant and functionally equivalent circuit to the 

original one along with a comparator. If a HT is inserted in 

one of the two replicates, the comparator reports the abnormal 

behavior once the HT is activated and both replicates do not 

provide the same value. For this technique not to be countered 

by the attacker, he/she must not be able to create an identical 

HT in both replicates or tamper the comparator. The authors 

give leads to follow in order to create different replicates: 

different synthesis tools, different restrictions on the standard 

cell library, different design constraints, different state 

encoding (for finite-state-machines). Then, experimental data 

results are given to assess the difference between two 

replicates in terms of number of cells and area. 

The idea introduced in [58] of using redundancy in order to 

hinder HT insertion is appealing. However, the experiments 

proposed to affirm that it is impossible for an attacker to create 

the same stealthy trigger in both replicates are not sufficient. 

With the assumption that an attacker is able to identify the 

two replicates, we have developed an algorithm that assesses 

possible correspondence (in terms of behavior) between all 

signals of the two replicates, when the same inputs patterns are 

injected. Based on this new metric, we have explored two 

leads proposed in [58] and obtained the percentage of signals 

with the same behavior in each case: the smaller the 

percentage is, the better. These results are described in Table 

V. Three benchmarks were used and nine comparisons were 

made. We firstly investigated the effect of constraining a 

library to only one gate (NOR or NAND). We then 

investigated the use of two different synthesis tools: DC 

Compiler from Synopsys (called “DC”) and RTL Compiler 

from Cadence (called “RTL”). As one can see: 

- The use of two different tools leads to better results than 

the use of a unique tool, 

- Restraining the library leads to better results that using the 

whole library. 

The best results obtained compare RTL compiler using 

only NAND gates and DC compiler using only NOR gates. 

However, restraining a design to only NOR of NAND gates 

makes the layout at least twice as big [77] as with a full 

library. Creating one replicate with NAND gates and the other 

one with NOR gates, along with a comparator, generates a 

design roughly five times bigger than the original design, 

which is far more expensive than the area multiplied by 2 

announced in [58]. Furthermore, the smallest percentages 

obtained are far from being null, showing the degree of 

difficulty of creating two “perfectly different” netlists with no 

signals having the same behavior. Rather than restricting the 

library (which is very expensive regarding the area overhead), 

it could be envisaged to couple duplication with logic masking 

in order to minimize the corresponding signals. 

Last but not least, an attacker could easily bypass the 

protection of the comparator proposed in [58]. Other solutions 

have to be proposed to protect the comparator for this solution 

to be viable. 

Run-time monitoring has been little studied in the literature 

to detect HT. Hardware duplication must be improved to 

prevent the insertion of the same HT in both duplicates. 

V. SUMMARY AND CHALLENGES 

Two types of methods have been detailed that counteract 

the insertion of a HT in an untrusted foundry. 

Firstly, detection methods based on logic testing aim to 

detect the presence of a HT in a fabricated IC. These methods 

need the activation of the HT in order to observe its effect on 

outputs behavior. These methods are therefore dedicated to 

HT having an effect on the functionality of the circuit. Other 

types of HTs, such as analog HTs, cannot be detected by logic 

testing [78]. Dedicated test procedures that focus on these 

stealthy combinations have been proposed in the literature. 

HTs are indeed designed to be stealthy enough to evade 

detection by manufacturing test. The challenge remaining is to 

widen the model for HTs triggers: a combination of low 

controllable signals is far too restrictive as well as a 

combination of primary inputs. HT triggers can still be created 

that evade proposed test procedures. Methods need to be 

developed that avoid the combinatorial explosion that results 

from a wider model. Furthermore, proposed test methods can 

also be applied by the attacker to validate the non-detection of 

their HT. The goal is that the set of proposed methods greatly 

restricts the insertion possibilities for an attacker, forcing 

him/her e.g. to create a larger HT. Besides, sequential triggers 

TABLE V 

CORRESPONDENCE PERCENTAGE BETWEEN REPLICATES 
 DC_full 

Vs 

DC_nor 

RTL_full 

Vs 

RTL_nor 

RTL_full 

Vs 

RTL_nand 

RTL_nand 

Vs 

RTL_nor 

DC_full 

Vs 

RTL_full 

DC_full 

Vs 

RTL_nor 

RTL_full 

Vs 

DC_nor 

RTL_nor 

Vs 

DC_nor 

RTL_nand 

Vs 

DC_nor 

Antilog2  89% 98% 89% 78% 44% 45% 39% 25% 21% 

Ca_prng 100% 74% 70% 67% 50% 56% 49% 38% 37% 

Vedic8x8 100% 100% 100% 100% 93% 98% 95% 82% 82% 
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are even more difficult to find. They are commonly supposed 

to be large enough to be found by methods based on side-

channel analysis, however, the perfect complementarity of the 

two types of methods has never been shown. 

Secondly Design-for-Hardware-Trust methods enhance the 

design flow to prevent the insertion of a HT, help detection 

methods or allow run-time monitoring. In order to help 

detection based on logic testing, the goal is to remove low 

controllable signals in a circuit to prevent the creation of a 

stealthy condition based on low controllable signals. The 

limitations lie in the same initial postulate regarding the way 

to create HTs triggers. In order to allow run-time monitoring, 

CED techniques have been proposed. They generate a large 

increase in area and do not provide a satisfactory solution for 

totally preventing the insertion of a HT. 

One should notice that a HT must also escape detection by 

methods based on side-channel analysis. The HT must 

therefore be small enough to hidden within manufacturing 

variability. Logic testing and side-channel analysis are 

commonly described as complementary. However, to the best 

of our knowledge, no study has shown that the limits of one 

method fit perfectly within the abilities of the other. 

VI. CONCLUSION 

Being able to detect a HT introduced in an unreliable 

foundry during manufacturing test is a very challenging 

problem. For the past ten years, detection methods based on 

logic testing have been proposed. These methods allow 

assuring with a good degree of confidence that no HT has been 

inserted. Other detection methods, such as side-channel 

analysis, are also useful to detect other types of HTs. 

Furthermore, DfHT methods have been proposed to harden the 

insertion of a HT or to enhance detection methods capabilities. 

Besides, if detection at test time is not sufficient (e.g. for 

critical applications), detection at run-time has also been 

proposed in order to continuously monitor the ICs once in the 

field. 

Given the diversity of possible types of HTs, one unique 

method cannot be effective for all HTs. Each method focuses 

on a particular type of HT. Ensuring 100% detectability seems 

impossible. Methods have to be combined to state with a great 

degree of confidence that no HT has been inserted. The task of 

an attacker is indeed rendered a lot more difficult, with great 

limits to what he can do due to various protections 

incorporated into the ICs: the HT has to be as small as 

possible to evade being detected by side channel analysis or 

visual inspection, and as stealthy as possible to evade being 

detected by logic testing. 

In this paper, we have reviewed several methods proposed 

in the literature over the last decade, focusing on methods 

based on logic testing. The goal in that case is to generate 

reduced sets of test patterns that are likely to activate potential 

HTs activated by a stealthy condition. Most proposals are 

inspired by Design-for-Testability methods or methods that 

enhance reliability. They have been adapted for dealing with 

HTs. We have proposed enhancements for some methods and 

have also pointed the challenges that have not been resolved 

yet. 

Besides, HTs inserted in unreliable foundries were the first 

threat to be studied extensively; it was more recently 

considered that the threat might as well come from the design 

phase where a HT can be introduced by a rogue designer or 

through an IP from third party providers [5, 79-82]. 
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