This document was Originally prepared Q[f_line_ Thlsﬁle This is the author's original version of the paper. A revised version was published in Communications
y y - . . i . . .

is the result of scan, OCR, and manual touchup, starting of the ACM 17, 7 (July 1974) pages 388-402. http://doi.acm.org/10.1145/361011.361067

with an original paper copy dated August 10, 1973.

PROTECTION AND CONTROL
OF
INFORMATION SHARING IN MULTICS

by

Jerome H. Saltzer

Massachusetts Institute of Technology
Department of Electrical Engineering and Project MAC

ABSTRACT

This paper describes the design of mechanisms to control sharing of Information in the Multics system.
Seven design principles help provide insight into the tradeoffs among different possible designs. The key
mechanisms described include access control lists, hierarchical control of access specifications, identifi-
cation and authentication of users, and primary memory protection. The paper ends with a discussion of
several known weaknesses in the current protection mechanism design.

An essential part of a general-purpose computer What is new?
utility system is a set of protection mechanisms
which control the transfer of information among the
users of the utility. The Multics system*, a proto-
type computer utility, serves as a useful case
study of the protection mechanisms needed to permit
controlled sharing of information in an on-line,
general-purpose, information-storing system. This
paper provides a survey of the various techniques
currently used in Multics to provide controlled
sharing, user authentication, inter-user isolation,
supervisor-user protection, user-written proprie-
tary programs, and control of special privileges.

In trying to identify the ideas related to
protection which were first introduced by Multics,
a certain amount of confusion occurs. The design
was initially laid out in 1964-1967, and ideas
were borrowed from many sources and embellished,
and new ideas were added. Since then, the system
has been available for study to many other system
designers, who have in turn borrowed and embellished
upon the ideas they found in Multics while construc-
ting their own systems. Thus some of the ideas
reported here have already appeared in the litera-
ture. Of the ideas reported here, the following
Controlled sharing of information was a goal seem to be both novel and previously unreported:
in the initial specifications of Multics[8, 11],
and thus has influenced every stage of the system
design, starting with the hardware modifications to
the General Electric 635 computer which produced

- The notion of designing a comprehensive com-
puter utility with Information protection as
a fundamental objective.

the original GE 645 base for Multics. As a result, - Operation of the supervisor under the same
information protection is more thoroughly inte- hardware constraints as user programs, under
grated into the basic design of Multics than is the descriptor control and in the same address
case for those commercial systems whose original space as the user.

specifications did not include comprehensive con-

. . . . . - Facilities for user-constructed protected
sideration of information protection. P

subsystems.
Multics is an evolving system, so any case
study must be a snapshot taken at some specific
time. The time chosen for this snapshot is
summer, 1973, at which time Multics is operating - Extensive human engineering of the user authen-
at M.I.T. using the Honeywell 6180 computer system. tication (password) interface.
Rather than trying to document every detail of a
changing environment, this paper concentrates on
the protection strategy of Multics, with the goal
of communicating those ideas which can be applied - Ability to allow or revoke access with
or adapted to other operating systems. immediate effect.

- An access control system applicable to batch
as well as on-line jobs.

- Decentralization of administrative control of
the protection mechanisms.

Multics is unique in the extent to which infor-
mation protection has been permitted to influence

This research was supported by the Advanced Research the entire system design. By describing the range
Projects Agency of the Department of Defense under of protection ideas embedded in Multics, the ex-
ARPA Order No. 2095 which was monitored by ONR tent of this influence should become apparent.

Contract No. NOQ014-70-A-0362-0006. . . .

Design Principles
* A brief description of Multics, and a more com-
plete bibliography, are given in the paper by
Corbat6, Saltzer, and Clingen[6].

Before proceeding, it is useful to review
several design principles which were used in the
development of facilities for information protec-
tion in Multics. These design principles provided
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guidance in many decisions, although admittedly
some of the principles were articulated only
during the design, rather than in advance.

1. Every designer should know and understand the
protection objectives of the system. At the
present rather shaky stage of understanding of
operating system engineering, there are many
points at which an apparently "don't care"
decision actually has a bearing on protection.
Although these decisions will eventually come
to light as the system design is integrated, a
system design cannot withstand very many rever-
sals of early design decisions if it is to be
completed on a reasonable schedule and within
a budget. By keeping all designers aware of
the protection objectives, the early decisions
are more likely to be made correctly.

2. Keep the design as simple and small as possible.
This principle is stated so often that it be-
comes tiresome to hear. However, it bears
repeating with respect to protection mechanisms,
since there is a special problem: design and
implementation errors which result in unwanted
access paths will not be immediately noticed
during routine use, since routine use usually
does not include attempts to utilize improper
access paths. Therefore, techniques such as
complete, line-by-line auditing of the protec-
tion mechanisms are necessary; for such
techniques to be successful, a small and simple
design is essential.

3. Protection mechanisms should be based on per-
mission rather than exclusion. This principle
means that the default situation is lack of
access, and the protection scheme provides
selective permission for specific purposes.
The alternative, in which mechanisms attempt
to screen off sections of an otherwise open
system, seems to present the wrong psychologi-
cal base for secure system design. A conser-
vative design must be based on arguments on
why objects should be accessible, rather than
on why they should not; in a large system some
objects will be inadequately considered and a
default of lack of access is more fail-safe.
Along the same line of reasoning, a design or
implementation mistake in a mechanism which
gives explicit permission tends to fail by re-
fusing permission, a safe situation, since it
will be quickly detected. On the other hand
a design or implementation mistake in a
mechanism which explicitly excludes access
tends to fail by not excluding access, a fail-
ure which may go unnoticed.

4. Every access to every object must be checked
for authority. This principle, when applied
methodically, is the primary underpinning of
the protection system. It forces a system-
wide view of access control which includes
initialization, recovery, shutdown, and main-
tenance. It also implies that a foolproof
method of identifying the source of every re-
quest must be devised. In a system designed
to operate continuously, this principle re-
quires thai when access decisions are remem-
bered for future use, careful consideration
be given to how changes in authority are pro-
pagated into such local memories.

5. The design is not secret. The mechanisms do
not depend on the ignorance of potential
attackers, but rather on possession of speci-
fic, more easily protected, protection keys or
passwords. This strong decoupling between pro-
tection mechanisms and protection keys permits
the mechanisms to be reviewed and examined by
as many competent authorities as possible,
without concern that such review may itself
compromise the safeguards. Peters[19] and
Baran[2] discuss this point further.

6. The principle of least privilege. Every pro-
gram and every privileged user of the system
should operate using the least amount of privi-
lege necessary to complete the job. If this
principle is followed, the effect of accidents
is reduced. Also, if a question related to
misuse of a privilege occurs, the number of
programs which must be audited is minimized.
Put another way, if one has a mechanism avail-
able which can provide "firewalls", the prin-
ciple of least privilege provides a rationale
for where to install the firewalls.

7. Make sure that the design encourages correct
behavior in the users, operators, and admin-
istrators of the system. Experience with
systems which did not follow this principle
revealed numerous examples in which users ig-
nored or bypassed protection mechanisms for
the sake of convenience. It is essential that
the human interface be designed for natural-
ness, ease of use, and simplicity, so that
users will routinely and automatically apply
the protection mechanisms.

The application of these seven design principles
will be evident in many of the specific mechanisms
described in this paper.

Finally, in the design of Multics there were
two additional functional objectives worth dwelling
upon. The first of these was to provide the option
of complete decentralization of the administration
of protection specifications. If the system design
forces all administrative decisions (e.g., protec-
tion specifications) to be set by a single adminis-
trator, that administrator quickly becomes a bottle-
neck and an impediment to effective use of the
system, with the result that users begin adopting
habits which bypass the administrator, often com-
promising protection in the bargain. Even if re-
sponsibility can be distributed among several ad-
ministrators, the same effects may occur. Only by
permitting the individual user some control of his
own administrative environment can one insist that
he take responsibility for his work. Of course,
centralization of authority should be available as
an option. It is easy to limit decentralization;
it seems harder to adapt a centralized design to
an environment in which decentralization is needed.

The second additional functional objective
was to assume that some users will require protec-
tion schemes not anticipated in the original design.
This objective requires that the system provide a
complete set of handholds so that the user, without
exercising special privileges, may construct a pro-
tection environment which can interpret access re-
quests however he desires. The method used is to
permit any user to construct a protected subsystem,
which is a collection of programs and data with
the property that the data may be accessed



only by programs in the subsystem, and the programs
may be entered only at designated entry points. A
protected subsystem can thus be used to program
any desired access control scheme.

The Storage System and Access Control Lists

The central fixture of Multics is an organized
information storage system.[8] Since the storage
system provides both reliability and protection
from unauthorized information release, the user is
thereby encouraged to make it the repository of all
of his programs and data files. All use of infor-
mation in the storage system is implemented by
mapping the information into the virtual memory of
some Multics process. Physical storage location is
automatically determined by activity. As a result,
the storage system is also used for all system data
bases and tables, including those related to protec-
tion. The consequence of these observations is that
one access control mechanism, that of the storage
system, handles almost all of the protection
responsibility in Multics.

Storage is logically organized in separately
named data storage segments, each of which contains
up to 262,144 36-bit words. A segment is the cata-
loguing unit of the storage system, and it is also
the unit of separate protection. Associated with
each segment is an access control list, an open-
ended list of names of users who are permitted to
reference the segment*. To understand the struc-
ture of the access control list, first consider
that every access to a stored segment is actually
made by a Multics process. Associated with each
process is an unforgeable character string identi-
fier, assigned to the process when it was created.
In its simplest form, this identifier might consist
of the personal name of the individual responsible
for the actions of the process. (This responsible
person is commonly called the principal, and the
identifier the principal identifier.) Whenever
the process attempts to access a segment or other
object catalogued by the storage system, the prin-
cipal identifier of the process is compared with
those appearing on the access control list of the
object; if any match is found access is granted.

Actually Multics uses a more flexible scheme
which facilitates granting access to groups of
users, not all of whose members are known, and
which may have dynamically varying membership. A
principal identifier in Multics consists of several
parts; each part of the identifier corresponds to
an independent, exhaustive partition of all users
into named groups. At present, the standard
Multics principal identifier contains three parts,
corresponding to three partitions:

1. The first partition places every individual
user of the installation in a separate access
control group by himself, and names the group
with his personal name. (This partition is
identical to Lhe simple mechanism of the
previous paragraph.)

2. The second partition places users in groups
called projects, which are basically sets of
users who cooperate in some activity such as
constructing a compiler or updating an

* The Multics access control list corresponds
roughly to a column of Lampson's protection
matrix. [16]

inventory file. One person may be a member of
several projects, although at the beginning of
any instance of his use of Multics he must de-
cide under which project he is operating.

3. The third partition allows an individual user
to create his own, named protection compart-
ments. Private compartments are chiefly use-
ful for the user who has borrowed a program
which he has not audited, and wishes to insure
that the borrowed program does not access cer-
tain of his own files. The user may designate
which of his own partitions he wishes to use
at the time he authenticates his identity*.

Although the precise description in terms of
exhaustive partitions sounds formidable, in practice
a relatively easy-to-use mechanism results. For
example, the user named "Jones" working on the pro-
ject named "Inventory" and designating the personal
compartment named "a" would be assigned the princi-
pal identifier:

Jones.Inventory.a

Whenever his process attempts to access an object
catalogued by the storage system, this three part
principal identifier is first compared with succes-
sive entries of the access control list for the
object. An access control list entry similarly has
three parts, but with the additional convention
that any or all of the parts may carry a special
flag to indicate "don't care" for that particular
parLition. (We represent the special flag with an
asterisk in the following examples.) Thus, the
access control list entry

Jones.Inventory.a

would permit access to exactly the principal of our
earlier example. The access control list entry

Jones.*.*

would permit access to Jones no matter what project
he is operating under, and independent of his per-
sonally designated compartment. Finally, the access
control list entry

*.Inventory.*

would permit access to all users of the "Inventory"
project. Matching is on a part by part basis, so
there is no confusion if there happens to be a
project named "Jones".

Using multi-component principal identifiers it
is straightforward to implement a variety of stan-
dard security mechanisms. For example, the military
"need-to-know" list corresponds to a series or
access control list entries with explicit user names
but (possibly) asterisks in the remaining fields.
The standard government security compartments are
examples of additional partitions, and would be
implemented by extending the principal identifier
to four or more parts, each additional part corres-
ponding to one compartment in use at a particular
installation. (Every person would be either in or
out of each such compartment.) A restriction of
access to users who are simultaneously in two or
more compartments is then easily expressed.

* The third partition has not yet been completely
implemented. The current system uses the third
partition only to distinguish between interactive
and absentee use of the system.



We have used the term "object" to describe the
entities catalogued by the storage system with the
intent of implying that segments are not the only
kinds of objects. Currently, four kinds of objects
are implemented or envisioned:

1. Segments
2. Message queues (experimental implementation)
3. Directories (called catalogues in some systems)

4. Removable media descriptors (not yet imple-
mented)

For each object, there are several separately
controllable modes of access to the object. For
example, a segment may be read, written, or exe-
cuted as a procedure. If we use letters r, w,
and e for these three modes of access, an access
control list entry fur a segment may specify any of
the combinations of access in table I. Certain
access mode combinations are prohibited either be-
cause they make no sense (e.g. write only) or cor-
rect implementation requires more sophisticated
machinery than implied by the simple mode settings.
(For example, an execute-only mode, while appealing
as a method for obtaining proprietary procedures,
leaves unsolved certain problems of general pro-
prietary procedures, such as protection of return
points of calls to other procedures. The protec-
tion ring mechanism described later is used in
Multics to implement proprietary procedures. The
execute-only mode, while probably useful for less
general cases, has not been pursued.)

Mode | Typical use
(none) | access denied

r | read-only data
re | pure procedure
w | writeable data
rew | impure procedure

Table I: Acceptable combinations of access
modes for a segment.

In a similar way, message queues permit sepa-
rate control of enqueueing and dequeueing of
messages, tape reel media descriptors permit
separate control of reading, writing, and appending
to the end of a tape reel, and directories permit
separate control of listing of contents, modifying
existing entries, and adding new entries. Control
of these various forms of access to objects is pro-
vided by extending each access control list entry
Co Include access mode indicators. Thus, the access
control list entry

Smith.*.* rw

permits Smith to read and write the data segment
associated with the entry.

It would have been simpler to associate an

access mode with the object itself, rather than
with each individual access control list entry, but
the flexibility of allowing different users to have
different access modes seems useful. It also makes
possible exceptions to the granting of access to
all members of a group. In the case where more
than one access control list entry applies, with
different access modes, the convention is made that
the first access control list entry which matches

the principal identifier of the requesting process
is the one which applies. Thus, the pair of access
control list entries:

Smith.Inventory.* (none)
*.Inventory.* rw

would deny access to Smith, while permitting all
other members of the "Inventory" project to read
and write the segment*. To insure that such con-
trol is effective, when an entry is added to an
access control list, it is sorted into the list
according to how specific the entry is by the fol-
lowing rule: all entries containing specific names
in the first part are placed before those with
"don't cares" in the first part. Each of those
subgroups is then similarly ordered according to
the second part, and so on. The purpose of this
sorting is to allow very specific additions to an
access control list to tend to take precedence over
previously existing (perhaps by default) less
specific entries, without requiring that the user
master a language which permits him arbitrary
ordering of entries. The result is that most com-
mon access control intentions are handled correctly
automatically, and only unusually sophisticated
intentions require careful analysis by the user to
get them to come out right.

To minimize the explicit attention which a
user must give to setting access control lists,
every directory contains an "initial access control
list". Whenever a new object is created in that
directory, the contents of the initial access con-
trol list are copied into the access control list
of the newly created object**. Only if the user
wishes access to be handled differently than this
does he have to take explicit action. Permission
to modify a directory's contents implies also
permission to modify its initial access control
list.

The access control list mechanism illustrates
an interesting subtlety. One might consider pro-
viding, as a convenience, checking of new access
control list entries at the time they are made, for
example to warn a user that he has just created an
access control list entry for a non-existent person.
Such checks were initially implemented in Multics,

* This feature violates design principle three,
which proscribes selective exclusion from an other-
wise open environment because of the risk of un-
detected errors. The feature has been provided
nevertheless, because the alternative of listing
every user except the few excluded seems clumsy.

** An earlier version of Multics did not copy the
initial access control list, but instead considered
it to be a common appendix to every access control
list in that directory. That strategy made auto-
matic sorting of access control list entries in-
effective, so sorting was left to the user. As a
result, the net effect of a single change to the
common appendix could be different for every object
in the directory, leading to frequent mistakes and
confusion, in violation of the seventh design prin-
ciple. Since in the protection area, it is essen-
tial that a user be able to easily understand the
consequences of an action, this apparently more
flexible design was abandoned in favor of the less
flexible but more understandable one.



but it was quickly noticed that they represented a
kind of compromise of privacy: by creating an
access control list entry naming an individual, the
presence or absence of an error message would tell
whether or not that individual was a registered
user of the system, thereby possibly compromising
his privacy. For this reason, a name-encoding
scheme which required checking of access control
entry names at the time they were created was
abandoned.

It is also interesting to compare the Multics
access control scheme with that of the earlier CTSS
system[6]. In CTSS, each file had a set of access
restriction bits, applying to all users. Sharing
of files was accomplished by permitting other users
to place in their directories special entries
called links, which named the original file, and
typically contained further restrictions on allow-
able access modes. The CTSS scheme had several de-
fects not present in the Multics arrangement:

1. Once a link was in place there was no way to
remove it without modifying the borrower's
directory. Thus, revocation of access was
awkward.

2. A single user, using the same file via differ-
ent links, could have different access privi-
leges, depending un which link he used.
Allowing access rights to depend on the name
which happens to be used for an object cer-
tainly introduced an extra degree of flexi-
bility, but this flexibility more often re-
sulted in mistakes than in usefulness.

3. As part of a protection audit, one would like
to be able to obtain a list of all users who
can access a file. To construct that list,
on CTSS, one had to search every directory in
the system to make a list of links. Thus such
an audit was expensive and also compromised
other users' privacy.

Multics retains the concept of a link as a naming
convenience, but the Multics link confers no access
privileges -- it is only an indirect address.

Early in the design of Multic«[8] an additional
extension was proposed for an access control list
entry: the "trap" extension, consisting of a one-
bit flag and the name of a procedure. The idea

was that for all users whose principal identifier
matched with that entry, if the trap flag were on
the procedure named in the trap extension should

be called before access be granted. The procedure,
supplied by the setter of the access control list
entry, could supply arbitrary access constraints,
such as permitting access only during certain hours
or only after asking another logged in user for an
OK. This idea, like that of the execute-only pro-
cedure, is appealing but requires an astonishing
amount of supporting mechanism. The trap proce-
dure cannot be run in the requesting user's address-
ing and protection environment, since he is in con-
trol of the environment and could easily subvert
the trap procedure. Since the trap procedure is
supplied by another user, it cannot be run in the
supervisor's protection environment, either, so a
separate, protected subsystem environment is called
for. Since the current Multics protected subsystem
scheme allows a subsystem to have access to all of
its user's files, implementation of the trap exten-
sion could expose a user to unexpected threats from
trap procedures on any data segment he touches.

Therefore, at the least, a user should be able to
request that he be denied access to objects pro-
tected by trap extensions, rather than be subject
to unexpected threats from trap procedures. Finally,
if such a trap occurs on every read or write refer-
ence to the segment, the cost would seem to be high.
On the other hand, if the trap occurs only at the
time the segment is mapped into a user's address
space*, then design principle four, that every
reference be validated, is violated; revocation of
access becomes difficult especially if the system
is operated continuously for long periods. The sum
total of these considerations led to temporarily
abandoning the idea of the trap extension, perhaps
until such time as a more general domain scheme,
such as that suggested by Schroeder[21] is
available.

Both backup copying of segments (for reliabil-
ity) and bulk input and output to printers, etc.
are carried out by operator-controlled processes
which are subject to access control just as are
ordinary users. Thus a user can insure that print-
ed copies of a segment are not accidentally made,
by failing to provide an access control list entry
which permits the printer process to read the
segment**, Access control list entries permitting
backup and bulk I/O are usually part of the default
initial access control list. Bulk input of cards
is accomplished by an operator process which reads
them into a system directory, and leaves a note for
the user in question to move them to his own
directory. This strategy guarantees that there is
no way in which one user can overwrite another
user's segment by submitting a spurious card input
request. These mechanisms are examples of the
fourth design principle: every access to every
object is checked for authority.

An administrative consequence of the access
control list organization is that personal and pro-
ject names, once assigned, cannot easily be reused,
since the names may appear in access control lists.
In principle, a system administrator could, when a
user departs, unregister him and then examine every
access control list of the storage system for in-
stances of that name, and delete them. The system
has been deliberately designed to discourage such
a strategy, on the basis that a system administrator
should not routinely paw through all the directories
of all system users. Thus, the alternative scheme
was adopted, requiring all user names, once regis-
tered, to be permanent.

Finally, the one most apparent limitation of
the scheme as presently implemented is its "one-
way" control of access. With the described access
control list organization, the owner of a segment
has complete control over who may access it. There
are some cases in which users other than the owner
may wish to see access restricted to an object
which the owner has declared public. For example,
an instructor of a class may for pedagogical pur-
poses wish to require his students to write a

* Or, in traditional file systems, at the time the
file is "opened".

** Of course, another user who has permission to
read the segment could make a copy and then have
the copy printed. Methods of constraining even
users who have permission are the subject of con-
tinuing research[20].



particular program rather than make use of an equiva-
lent one already publicly available in the system.
Alternatively, a project administrator concerned
about security may wish to insure that his project
members cannot copy sensitive information into stor-
age areas belonging to other users and which are

not under his control. He may also want to prevent
his project members from setting access control
lists to permit access by users outside the project.
This kind of control can be expressed in Multics
currently only by going to the trouble of construc-
ting a protected subsystem which examines all super-
visor calls, thereby permitting complete control
over which objects are mapped into the address space
and what terms are added to access control lists.
Fortunately, there have so far appeared only a few
examples in which such control is required, and the
escape suggested has proven adequate for those cases.
A more general, yet quite simple, solution would be
to associate with the user's process two constrain-
ing lists: a list of pathnames of directories

whose contents he may access, and a list of access
control list terms which he is permitted to place on
access control lists. These two constraining lists
would be set only by the project administrator or
security officer. The constraining lists would be
especially useful in the military security environ-
ment, since they would help in the construction of

a list of items a defector might have had access to.

As is evident, the Multics access control list
mechanism represents an engineering tradeoff among
three conflicting goals: flexibility of expression,
ease of understanding and use, and economy of
implementation. Additional flexibility of expres-
sion was tried (e.g., the common access control
list mechanism previously footnoted) with the con-
clusion that the additional confusion which results
from accidental misuse of the generality can out-
weigh the benefits; apparently the correct direction
is the opposite, toward simpler, less general, and
more easily understandable protection structures.

Hierarchical Control of Access Specifications

Since in Multics every object, including a
directory, must be catalogued in some directory, all
objects are arranged into a single hierarchical tree
of directories. This naming hierarchy also provides
a hierarchy of control of access, through the
ability to modify the contents of a directory.

Since a directory entry consists of the name of some
object and its access control list, having access to
modify directory entries is interpreted to include
the ability to modify the access control lists of
all the objects catalogued in that directory. No
further hierarchical control is provided; for
example, there is no ability to say "Allow read ac-
cess to Jones for all segments below this node in
the naming tree". Such specifications are similar
in nature to the "common access control list" men-
tioned before; they make it difficult for a user to
be sure of all the consequences of a change to the
access specification. For example, removing a
specification such as that quoted above, which per-
mits only reading, might render effective a forgotten
access control term lower in the naming hierarchy
which permits both reading and writing*.

* Early versions of Multics provided a limited
form of higher-level specification in the form of
ability to deny all use of a directory, and

Although it would appear that the hierarchical
scheme provides an inordinate amount of power to a
project administrator and, above him, to a system
administrator, in practice it forces a careful
consideration of the lines of authority over pro-
tected information, and explicit recognition of an
authority hierarchy which already existed. In some
environments, it would probably be appropriate to
publicly log all modifications of directory access
above some level, so as to provide a measure of
control of the use of hierarchical authority. More
elaborate controls might include requiring coopera-
tive consent of some quasi-judicial committee of
users for modification of high-level directory
access. Such controls are relatively easy for an
installation or a project to implement, using pro-
tected subsystems.

It is possible, by choosing access modes
correctly, to use the hierarchical access control
scheme in combination with the initial access con-
trol list to accomplish a totally centralized con-
trol of all access decisions. If, for example, a
project administrator creates a directory for a
user, places an initial access control list in that
directory, and then grants to the new user per-
mission only to add new entries to the directory,
all such new entries would automatically receive a
copy of the initial access control list determined
by the administrator -- the user would have no con-
trol over who may use the objects he creates. By
policy, a system administrator could run an entire
installation under this tight control, and retain
for himself complete authority to determine what
access control list is placed on every object, as
in IBM'S Resource Security System[14]. Alterna-
tively, any smaller portion of the naming hier-
archy can be kept under absolute control by the
person having authority to modify access control
lists at the top node of the portion.

The other obvious alternative to a hierarchi-
cal control of modification of access control lists
would be some form of self-control. That is, the
ability to modify an access control list would be
one of the modes of access controlled by the list
itself. A very general version of this alternative
has been explored by Rotenberg[20]. This alterna-
tive has not been tried out in the Multics context,
partly because the implications of the hierarchical
method were easier to understand in the first imple-
mentation. Probably the chief advantage of self-
control of access modification would be that one
could provide an individual a fully private work
area in which no one -- manager, security officer,
or system administrator -- could intrude. On the
other hand, the implementation of a "locksmith"
while easy to do may require introducing hidden
access paths which are then subject to misuse*.

therefore of the objects contained within it. For
the reasons suggested, this feature has been
disabled.

* A locksmith would be an administrator who can
provide accountable intervention when mistakes are
made. For example, if an organization's key data
base is under the exclusive control of a manager
who has been disabled in an automobile accident,
the locksmith could then provide another manager
with access to the file. It seems appropriate to
formalize the concept of a locksmith so that appro-
priate audit trails and authority to be a locksmith



Also, one wonders how a self-control scheme would
fit smoothly into an organization which does not
usually give an individual the privilege of choos-
ing his own office door lock. Clearly, the social
and organizational consequences of the choice be-
tween these two design alternatives deserve fur-
ther study.

Authentication of users

All of the machinery of access control lists,
access modes, protected subsystems, and hierarchi-
cal control depend on an accurate principal iden-
tifier being associated with every process.
Accuracy of identification depends on authentica-
tion of the user's claimed identity. A variety of
mechanisms are used to help insure the security of
this authentication. The general strategy chosen
by Multics is to maintain individual accountability
on a personal basis. Every user uf a given instal-
lation (with one class of exception, noted later)
is registered at the installation, which means that
a unique name, usually his last name plus one or
two initials, is permanently entered in a system
registry. Associated with his name at the time he
is registered is a password of up to eight ASCII
characters. Whenever any person proposes to use
the system, he supplies his unique name, at which
point the system demands also that he provide his
password.

Thus far, the authentication mechanism of
Multics is essentially the same as for most other
remote-accessed systems. However, Multics uses
several extra measures related to user authentica-
tion, which are not often found in other systems.
For one. all use of the system, whether interactive
or absentee (batch) is authenticated interactively.
That is, initiation of a batch job is not done on
the basis of information found in a card reader.
Arriving card decks are read in and held in on-line
storage by a system process, for which an operator
is responsible. All absentee jobs, whether they
are to be controlled by files created from cards
or files constructed interactively or files con-
structed by another program, must be initiated by
some Jjob already on the system, and whose legiti-
macy has been previously authenticated. Although
a chain of absentee job requests can be developed,
the chain must have begun with an interactive job,
which requires interactive authentication. 1In
the simplest case, the individual responsible goes
to an interactive console, identifies and authen-
ticates himself, and requests execution of the job
represented by the incoming card deck. If neces-
sary, the request will automatically wait until
the card deck arrives, so that the user need not
wait for the operator or for a card reader queue*.
Thus, no job is every run without prior positive
identification of the responsible party. Note
that for installations in which responsibility for
card controlled jobs is considered unimportant, it
is rather trivial to construct a Multics program,
run under the responsibility of the card reader

can be well-defined. The alternative of sending

a system programmer into the computer room with
instructions to directly patch the system or its
data may leave no audit trail and almost certainly
encourages sloppy practice.

* The automatic wait is not yet implemented.

operator, which accepts and runs as a job anything
found in the card reader. All such jobs would be
run in processes bearing the principal identifier of
the card reader operator, and are thus constrained
in the range of on-line information which they can
access. The inviolate principle of access control
remains that on-line authentication of identity, by
presenting a password, is required in order to start
a process labeled with a particular desired principal
identifier. Note also that the fact that a job
happens to be operated without an interactive ter-
minal has no bearing on its privileges, except as
explicitly controlled by its principal identifier.
Finally, to handle the situation where a busy
researcher asks a friend to submit the batch job,

a proxy login scheme permits the friend to identify
himself, under his own password, and then request
that the job be run under the principal identifier
of the original researcher. The system will permit
proxy logins only if the person responsible for the
principal identifier to be used has previously
authorized such logins by giving a list of proxies*.

As to protection of passwords, several facili-
ties are provided. The user may, after authenti-
cating himself, change his password at any time he
feels that the old one may have been compromised.

A program is available which will generate a new
random eight-character password with English digraph
statistics, thereby making it pronounceable and easy
to memorize, and minimizing the need for written
copies of the password. Users are encouraged to
obtain their passwords from this program, rather
than choosing passwords themselves, since human-
chosen passwords are often surprisingly easy to
guess. Passwords are stored in the file system in
mildly encrypted form, using a one-way encryption
scheme along the lines suggested by Wilkes[29],

As a result, passwords are not routinely known by
any system administrator or project administrators,
and there is never any occasion for which it is even
appropriate to print out lists of passwords. If,
through some accident, a stored password is exposed,
its usefulness is reduced by its encrypted form.

When the user is requested to give his password,
at login time, the printer on his terminal is turned
off, if possible, or else a background of garbling
characters is first printed in the area where he is
to type his password. Although the user could be
indoctrinated to tear off and destroy the piece of
paper containing his password, by routinely protec-
ting it for him the system encourages a concern for
security on the part of the user. In addition, if
the user's boss (or someone from four levels of
management higher) happens to be looking over his
shoulder as he logs in, the user is not faced with
the awkward social problem of scrambling to conceal
his password from a superior who could potentially
take offense at an implication that he is not to be
trusted with the information.

A time-out is provided to help protect the
user who leaves his terminal, is distracted, and
forgets to log out. If no activity occurs for a
period, a logout is automatically generated. The
length of the time-out period can be adjusted to
suit the needs of a particular installation.
Similarly, whenever service is interrupted by a
system failure for more than a moment, a new login

* The proxy login it not yet implemented.



is required of all interact ive users, since some
users may have given up and Left their terminals.

Finally, several logging and penetration
detection techniques help prevent attacks via the
password routine. If a user provides an incorrect
password, the event of an incorrect login attempt
is noted in a threat-monitoring log, and the user is
permitted to try again, up to a limit of ten times
at which point the telephone (or network) connec-
tion is forcibly broken by the system, introducing
delay to frustrate systematic penetration attempts*.
Whenever a user logs in, the time and physical lo-
cation (terminal identification) of his previous
login are printed out in his greeting message,
thus giving him an opportunity to notice if his
password has been used by someone else in his
absence. Similarly, monthly accounting reports
break down usage by shift and services used, and
may be reviewed on-line at any time, thereby pro-
viding an opportunity for the individual to compare
his pattern of use with that observed by the
system, and perhaps to thereby detect unauthorized
use. If either of these mechanisms suggests un-
authorized use, the individual involved may ask
the system administrator to check the system log,
which contains an entry for every login and logout
giving date and time, terminal type used, and ter-
minal identification, if any.

For a project which maintains especially sen-
sitive information, the project administrator may
designate the initial procedure to be executed by
some or all processes created using the name of
that project as part of its principal identifier.
This initial procedure, supplied by the project
administrator, has complete control of the process,
and can demand further authentication (e.g., a
one-time password or a challenge-response scheme,)
perform project logging of the result, constrain
the user to a subset of the available facilities,
or initiate a logout sequence, thereby refusing
access to the user. 1In the other direction, some
projects may wish to allow unlimited public access
to their files. TIf so, the project administrator
may indicate that his project will accept login of
unauthenticated users. In such a case, the system

* With ASCII passwords chosen to match English
digraph frequency, a little less than four bits of
information are represented by each character
(despite the eight or nine bits required to store
the characters.) An eight character password thus
carries about 30 bits of information, which would
require about 10° guesses using an information
theoretic optimum guessing strategy. If one mount-
ed a simultaneous attack from 100 computer-driven
terminals, and the system-imposed delays average
only 10 milliseconds per attempt, about 10> seconds,
or one full day of systematic attack would be re-
quired to guess a password. Although use of a
uniformly random password generator would increase
this work factor by several orders of magnitude,
resistance to use of hard-to-remember passwords and
the need to make written copies might act to wipe
out the gain. Of course, this work factor calcula-
tion presumes that the attacker has no further
basis on which to narrow the range of password
possibilities, for example, by knowing that the
user in question may have chosen his own password
or by wiretapping a previous login.

does not demand a password, instead assigning the
personal name "anonymous" to the principal identi-
fier of the process involved, using the name of the
responsible project for the second part of the
principal identifier. The principal identifier
"anonymous" is the one exception to the registration
scheme mentioned earlier. Allowing anonymous users
does not compromise the security of the storage
system, since the principal identifier is constrain-
ed, and all storage system access is based on the
principal identifier. The primary use of anonymous
users has been for educational purposes, in which
all students in a class are to perform some assign-
ment. Sometimes, this feature is coupled with the
project-designated initial procedure, so that the
project may implement its own password scheme, or
control what facilities are made available, so as

to limit its financial liability. Some statistical
analysis and data-base development projects also
permit anonymous use of data-retrieval programs.

The objective of many of these mechanisms, such
as simple registration of every user, the proxy
login, the anonymous user, concealment of printed
passwords, and user changeable passwords, together
with a storage system which permits all authorized
sharing of information, is to provide an environ-
ment in which there is never any need for anyone
to know a password other than his own. Experience
with the earlier CTSS system demonstrated that by
omitting any of these features, the system itself
may encourage borrowing of passwords, with an
attendent reduction in overall security.

Primary Memory Protection

We may consider the access control list to be
the first level of mechanism providing protection
for stored information. Most of the burden of
keeping users' programs from interfering with one
another, with protected subsystems, and with the
supervisor is actually carried by a second level of
mechanism, which is descriptor-based. This second
level is introduced essentially for speed, so that
arbitration of access may occur on every reference
to memory. As a result, the second level is imple-
mented mostly in hardware in the central processing
unit of the Honeywell 6180. Of course, this
strategy requires that the second level of mechanism
be operated in such a way as to carry out the intent
expressed in the first level access control lists.

As described by Bensoussan et al.[4] the
Multics virtual memory is segmented to permit shar-
ing of objects in the virtual memory, and to simpli-
fy address space management for the programmer.

The implementation of segmentation uses addressing
descriptors, a technique used, for example, in the
Burroughs B5000 computer systems[9]. The Burroughs
implementation of a descriptor is exclusively as an
addressing and type-labeling mechanism, with protec-
tion provided on the basis that a process may access
only those objects for which it has names. 1In
Multics, the function of the descriptor* is extended
to include modes of access (read, write, and exe-
cute) and to provide for protected subsystems which
share object names with their users. Evans and
LeClerc[1l0] were among the first to describe the
usefulness of such an extension.

* With the exception of type identification,
which is not provided in Multics.



As shown in figure one, there are three
classes of descriptor extensions for protection
purposes: mode control, protected subsystem entry
control, and control on which protected subsystems
may use the descriptor at all. Every reference of
the processor to the segment described by this
descriptor is thus checked for validity.

The virtual address space of a Multics pro-
cess is implemented with an array of descriptors,
called a descriptor segment, as in figure two.
Every reference LO the virtual memory specifies
both a segment number (which is interpreted as an
index into the descriptor segment) and a word num-
ber within the segment.

Figure two also helps illustrate why the pro-
tection information is associated with the address-
ing descriptor rather than with the data itself=*.
Each computation is carried out in its own address
space, so each computation has its own private
descriptor segment. Using this mechanism, a single
physical segment may appear in different address
spaces with different access privileges for differ-
ent users, even though they are referring to the
same physical data. Since in a multiprocessor
system such as Multics two such processes may be
executing simultaneously, a single protection
specification associated with the data is not

* The alternate option is chosen, for example, in
the IBM 360/67 and the IBM 370 "Advanced Function”
virtual memory systems([24].
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sufficient. Having the protection specification
associated with the descriptor allows for such
controlled sharing to be handled easily.

An unusual feature of the descriptors used in
Multics is embodied in the second and third exten-
sions of figure one. Together, they allow hard-
ware enforcement of protected subsystems. A pro-
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as gates. If this intention is hardware enforced,
it is possible to construct proprietary programs
which cannot be read, data base managers which
return only statistics rather than raw data to some
callers, and debugging tools which cannot be acci-
dentally disabled. The descriptor extensions are
used to authenticate subroutine calls to protected
subsystems. Two important advantages flow from
using a hardware checked call:

1. Calls to protected subsystems use the same
structural mechanisms as do calls to unpro-
tected subroutines, with the same cost in
execution time. Thus a programmer does not
need to take the fact that he is calling a
protected subsystem into account when he tries
to estimate the performance of a new program
design.

2. It is quite easy to extend to the user the
ability to write protected subsystems of his
own. Without any special privileges, any user
may develop his own proprietary program, data-
screening system, or extra authentication
system, and be assured that even though he per-
mits others to use his protected subsystem.
the information he is protecting receives the
same kind of security as does the supervisor
itself.

In support of call protection, hardware is also
provided to automatically check the addresses of
all arguments as they are used, to be sure that
the caller has access to them. Checking the range
of the argument values is left to the protected
subsystem.

Protected subsystems are formed by using the
third field of the descriptor extension of figure
one. To simplify protected subsystem implementa-
tion, Multics imposes a hierarchical constraint
on all subsystems which operate within a single
process: each subsystem is assigned a number, be-
tween 0 and 7, and it is permitted to use all of
those descriptors containing protected subsystem
numbers greater than or equal to its own. Among
the descriptors available to a subsystem may be
some permitting it to call to the entry points of
other protected subsystems. This scheme goes by
the name rings of protection, and is more com-
pletely described by Graham[12] and by Schroeder
and Saltzer[22].* As far as is known, the only
previously existing systems to permit general,
user-constructed protected subsystems are the
M.I.T. PDP-1 time-sharing system[l] and the CAL
operating system[15].

The descriptor-based strategy permits two fur-
ther simplifying steps to be taken:

1. All information in the storage system is read
and written by mapping it into the virtual
memory, and then using load and store instruc-
tions whose validity is checked by the
descriptor mechanism.

2. The supervisor itself is treated as an example
of a protected subsystem, which operates in a
virtual memory arbitrated by descriptors,

* A more general approach, not yet implemented,

exactly the same as do the user programs
which it supports.

The reasons why the first step provides simplifica-
tion for the user have been discussed extensively
in the literature[4,13]. The second step deserves
some more comment. By placing the supervisor it-
self under the control of the descriptors, as in
figure two, a rather substantial benefit is
achieved: the supervisor then operates with the
same addressing and machine language code genera-
tion environment as the user, which means that
supervisor programs may be constructed using the
same compilers and debugging tools available to a
user. The effect on protection is non-trivial:
programs constructed and checked out with more
powerful tools tend to have fewer errors, and
errors in the supervisor which compromise protec-
tion often escape notice.

Perhaps equally important is that the deter-
mination of whether one is in or out of the super-
visor is not based on some processor mode bit which
can be accidentally left in the wrong state when
control is passed to a user program. Instead, the
addressing privileges of the current protected sub-
system are governed by the subsystem identification,
located in the descriptor of the segment which
supplied the most recent instruction. Every trans-
fer of control to a different program is thus
guaranteed to automatically produce addressing
privileges appropriate to the new program. If a
supervisor procedure should accidentally transfer
to a location in a user procedure, that procedure
will find that the protection environment has auto-
matically returned to the state appropriate for
running user procedures.

Finally, the descriptors are adjusted to pro-
vide only the amount of access required by the
supervisor, in consonance with design principle six.
For example, procedures are not writeable, and data
bases are not executable. As a result, programming
errors related to using incorrect addresses tend
to be immediately detected as protection violations,
and do not persist into delivered systems. If one
reviews the operation of Multics starting with the
initial loading of the system on an empty machine,
he will find that only the first hundred or so
instructions do not use descriptors. Once a
descriptor segment has been fashioned, all memory
references by the processor from that point on are
arbitrated by descriptors.

These mechanisms do not prohibit the super-
visor from making full use of the hardware when
appropriate. Rather, they protect against acciden-
tal overuse of supervisor privileges. Clearly, the
supervisor must be able to write into the descrip-
tor segment, in order to initially set it up, and
also to honor requests to map additional objects
of the storage system into segments of the virtual
memory. This adjustment of descriptors is done
with great care, using a single procedure whose
only function is to construct descriptors which
correspond to access control list entries. A call
to the storage system which results in adjustment
of a descriptor is illustrated in figure two. In
this figure, it is worth noting that even the
writing of the descriptor is done with use of a

but which removes the restriction that the protected
subsystem be hierarchical, is described by Schroeder
in his doctoral thesis[21).

descriptor for the descriptor itself. Thus there
is little danger of accidentally modifying a des-
criptor segment belonging to some other user,
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since the only descriptor segment routinely
appearing in the virtual memory of this process
is its own.

Entries to the supervisor which implement
"special privileges" (e.g., the operator may have
the privilege of shutting the system down) are
generally controlled by ordinary access control
lists, either on the gates of supervisor entries,
or in some cases by having the supervisor proce-
dure access some data segment before proceeding
with the privileged operation. If the user
attempting to invoke the privilege does not appear
on the access control list of the data segment, an
access violation fault will occur, rather than an
unauthorized use of the privilege.

The final step of "locking up" the supervisor
lies in management of source-sink input-output.
Recall first that all access to on-line catalogued
information of the storage system is handled by
direct mapping into the virtual memory. Thus, in-
put and output operations in Muitics consist only
of true source-sink operations, that is of streams
of information which enter or leave the system.
Such operations are performed by hardware I/0 chan-
nels, following channel programs constructed by the
I/0 system in response to I/O requests of the call-
ing program. These I/O channel programs are placed
in a part of the virtual memory accessible only to
the supervisor*. Similarly, all input data is read
into a protected buffer area, accessible only to
the supervisor. Only after the input has arrived
and the supervisor has had a chance to check it is
it turned over to the user, either by copying it,
or by modifying a descriptor to make it accessible
to the user. A similar, inverse pattern is used
on output. Since during I/O neither the data nor
the channel program is accessible to the user,
there is no hesitation about permitting him to con-
tinue his computation in parallel with the I/O
operation. Thus, fully asynchronous operations are
possible.

The system is initialized from a magnetic tape
which contains copies of every program residing in
the most protected area. In this way, the integrity
of the protection mechanisms depends on protecting
only one magnetic tape, and is independent of the
contents of the secondary storage system (disk and
drums) which are more exposed to compromise by
maintenance staff. On the other hand, since the
system is designed for continuous operation, there

* And to the I/O channels, which use absolute
addresses. If separate I/O channels were available
to each physical device and the I/O channels used
the addressing descriptors, protected supervisor
procedures would not be required for I/0 operations
after device assignment (which requires a descrip-
tor to be constructed.)

Here is an example of a place where building a new
system, rather than modifying an old one, has sim-
plified matters. On some computer systems, the
user constructs his own channel programs, and may
even expect to modify them dynamically during
channel operation. It is quite hard to invent a
satisfactory scheme for protecting other users
against such I/O operations without placing re-
strictions on their scope, or inhibiting parallel
operation of the user with his I/O channel programs.

appears to be no need for a separate package con-
sisting of passwords and clearance information as
suggested by Weissman[28].

To round out the discussion of primary and
virtual memory protection, we should consider stor-
age residues. A storage residue is the data copy
left in a physical storage device after the previous
user has finished with it. Storage residues must
be carefully controlled to avoid accidental release
of information. In a virtual memory system, the
only way a storage residue could be examined would
be to read from a previously unused part of the
virtual memory. By convention, in Multics, the
supervisor provides pages of zeros in response to
such attempts. Since all access to on-line storage
is via the virtual memory, no additional mechanism
is required to insure that a user never sees a
residue from the storage system.

Weaknesses of the Multics protection Mechanisms

One is always hesitant to list the weaknesses
in his system, for a variety of reasons. Often,
they represent mistakes or errors of judgement,
which are embarrassing to admit. Such a list pro-
vides an easy target for detractors of a design,
and in the protection area provides an invitation
for potential attackers at production installations
which happen to be using the system. In the case
of a system still evolving, such as Multics, known
weaknesses are being corrected as rapidly as
feasible, so any list of weaknesses is rapidly
obsolete. And finally, any list of weaknesses is
almost certainly incomplete, being subject to all
of the built-in blindnesses of its authors. Never-
theless, such a list is quite useful, both to look
for specific interesting unsolved problems, and
also to establish what level of considerations are
still considered relevant by the designers of the
system. The weaknesses described here begin with
two major areas, followed by several smaller
problems.

Probably the most important weakness in the
current Multics design lies in the large number of
different program modules which have the ability,
in principle, to compromise the protection system.
Of the 2000 program modules which comprise Multics,
some 400, or 20%, are in the "most protected area',
consisting of system initialization, the storage
system, miscellaneous supervisor functions, and
system shutdown. Although all of these 400 modules
operate using the descriptor-based virtual memory
described earlier, the descriptors serve for them
only as protection against accidentally generated
illegal address references; these modules are not
constrained by the inability to construct suitable
descriptors in the same way as the remaining 1600
modules and user programs. Thus any of these 400
modules (averaging perhaps 200 lines of source
code each) might contain an error which compromises
the security mechanisms, or even a security viola-
tion intentionally inserted by a system programmer.
The large number of programs and the very high
internal intricacy level frustrates line by line
auditing for errors, misimplementation, or inten-
tially planted trapdoors. This weakness is not
surprising for the first implementation of a sophis-
ticated system, and upon review it is now apparent
that with mild software restructuring plus help from
specialized hardware the number of lines of code in
the most protected area can be greatly reduced --



perhaps by as much as an order of magnitude. 1In
examining many specific examples, there seem to have
been three common, interrelated reasons for the
extra bulk currently found in the protected area:

e economics: at the time of design, a function
could be implemented more cheaply in the most
protected region. Since the protection ring
mechanism was originally simulated by software,
there were design decisions based on the
assumption that calls across ring boundaries
were expensive.

e rush to get on the air: in the hurry to get
an initial version of the system going, a
shortcut was found, which required unnecessar-
ily placing a module in the most protected
region.

e lack of understanding: a complex subsystem
was not carefully enough analyzed to separate
the parts requiring protection; the entire
subsystem was therefore protected.

With hardware-supported protection rings,
hindsight, and the experience of a complete working
implementation, it is apparent that a smaller "most
protected area" can be constructed. It now appears
possible to make complete auditing a feasible task.
A project is now underway to test this hypothesis
by attempting to develop an auditable version of
the most protected region of Multics.

The second serious weakness in the current
Multics design is in the complexity of the user
interface. 1In creating a new segment, a user should
specify permitted lists of users and projects,
specify allowed modes of access for each, decide
whether or not backup copies should be allowed and
whether or not bulk I/O should be permitted for the
segment, and whether or not the segment should be
part of a protected subsystem. He should check
that permissions he has given to modify higher-
level directories interact in the desired way with
his current intent. A variety of defaults have
been devised to reduce the number of explicit
choices which need be made in common cases: as
already mentioned, a per-directory "initial access
control list" is by default assigned to any new
segment created in that directory. The defaults
merely hide the complex underlying structure, how-
ever, and do not help the user with an unusual
protection requirement, who must figure out for
himself how to accomplish his intentions amid a
myriad of possiblities, not all of which he under-
stands. The situation for a project administrator,
who can control the initial program his users get,
and may perhaps force all of his users to interact
via a limited, protected subsystem is similar, but
with fewer defaults and more possibilities
available.

The solution to this problem lies in better
understanding the nature of the typical user's
mental description of protection intent, and then
devising interfaces which permit more direct speci-
fication of that protection intent. As an example,
a graduate student devised a simple Multics program
which prints a list of all users which may force
access to a segment (by virtue of having modify
access to some higher level directory.) This list
does not correspond to any single access control
list found anywhere in the system, yet it is clearly
relevant to one's image of how the segment is
protected. Setting up the mechanisms of access

control lists, accessibility modes, and rings of
protection perhaps should be viewed as a problem of
programming in which, as usual, the structures
available in initial designs do not correspond
directly with the user's way of thinking, even
though there may be some way of programming the
structure to accomplish any intent. In the area of
protection, the problem has a special edge, since
if a user, through confusion, devises an overly per-
missive protection specification, he may not dis-
cover his mistake until too late.

At a level of significance well below the two
major points of system size and user interface com-
plexity are several other kinds of problems. These
problems are felt to be less significant not because
they cannot be exploited as easily, but rather be-
cause the changes required to strengthen these areas
are straightforward and relatively easy to implement.
These problems include:

1. Communication links are weak. Of course, any
use of switched telephone lines leads to vul-
nerability, but provision for integration of
a Lucifer-like system[23] for end-to-end
encryption of messages sent over public lines
or through a communication network would pro-
bably be a desirable (and simple) addition.

As an example of a typical problem in this
area, the Bell System 202C6 DATAPHONE dataset,
which is used for 1200 bps terminals, does not
include provision for reporting telephone line
disconnection to the computer system during
data output transmission. If a user acciden-
tally hangs up his telephone line during out-
put, another user dialing to the same port on
the computer may receive the output, and cap-
ture control of the process. Although remedial
measures such as requiring reauthentication
every few minutes could be used, automatic
detection of the line disconnection would be
far more reassuring. (Note that for the more
commonly used 103A DATAPHONE dataset, which
does report telephone line disconnections,
this problem does not exist; upon observing
the dropping of the carrier detect line from
the dataset, Multics immediately logs the user
out.)

2. The operator interface is weak. The primary
interface of the operator is as a logged-in
user, where his interactions can be logged,
verified, and suitably restricted. However,
he has a secondary interface: the switches
and lights of the hardware itself. It would
appear that the potential for error or sabo-
tage via this route is far higher than
necessary. I1f every hardware switch in the
system were both readable and settable by
(protected supervisor) programs, then all such
switches could be declared off limits to the
operator, and perhaps placed behind locked
panels. Since all operator interaction would
then be forced to take place via his terminal,
his requests can be checked for plausibility
by a program. What has really gone wrong here
is a failure to completely reconsider the role
of the operator in a computer system operating
as a utility. Functions such as operation of
card readers and printers do not require access
to switches on the side of the processor -- or
even physical presence in the same room as the
computer, for that matter. The decision that
a system failure has occurred and the



appropriate level of recovery action to Cake
are probably the operator functions which are
hardest to automate or decouple from the phy-
sical machine room, but certainly much move-
ment in this direction would be easy to
accomplish.

Users are permitted to specify their own
passwords, leading to easy-to-guess passwords.
The resulting loss of security has already
been well documented in the literature[25],
and this method has been used at least once to
improperly obtain access to Multics at M.I.T.,
when a programmer chose as his Multics pass-
word the same password he used on another, un-
secured time-sharing system. A better strategy
here would be to force the use of system-gen-
erated randomly chosen passwords, and also to
place an expiration date on them, to force
periodic password changes. For sensitive
applications, or situations where the password
must be exposed to unknown observers (as in
using a system via the ARPA network), the
system should provide lists of one-time
passwords.

The supervisor interface is vulnerable to mis-
implementation. Although this difficulty
could be described as a specific example of a
supervisor too large and complex to audit, it
is worth identifying in its own right. The
problem has to do with checking the range of
arguments passed to the supervisor. The hard-
ware automatically checks that argument
addresses are legitimately accessible to the
caller, and completely checks all use of
pointer variables as indirect addresses.
ever, it provides no help in determining
whether the ultimate argument values are
"reasonable" for the supervisor entry in
question. Each entry must be prepared to
operate correctly (or at least safely) no mat-

ter what combination of argument values is

supplied by the caller. Certain kinds of

interfaces make for difficulty in auditing a

program to see if it properly checks range of
arguments. For example, if the allowed range

of one argument depends on the result of com-

putation which is based in part on another

argument, then it may be hard to enforce a

programming standard which requires that all

supervisor entries check the range of all their
arguments before performing any other computa-

tion. The current Multics interface has

examples of situations in which, to verify that

a supervisor entry is correctly programmed so

that it does not blow up when presented with

an illegal argument, one must trace hundreds

of lines of code and many subroutine calls.

Such interfaces discourage routine auditing

of the supervisor interface, and probably re- 7.
sult in some undetected implementation errors.

It would be interesting to explore the design

of argument range-checking hardware, which

would force the system programmer to declare

the allowed range of arguments for his entries,

and thereby force out into the open the exist-

ence of arguments whose range is not trivially
testable, for interface design revision.

How-

storage area are destroyed, and the area is
marked as reusable. No further descriptors
for the storage area will ever be constructed
without first clearing the storage area, but
meanwhile the residue remains intact. 1In
principle, there is no way to exploit these
residues using the system itself, but auto-
matic overwriting of the residues at the time
of deletion would provide an additional safe-
guard against accidents, and guarantee that a
segment, once deleted, is not accessible even
to a hardware maintenance engineer. A similar
problem exists for the magnetic tapes contain-
ing backup copies of segments. In at least
one case on another time-sharing system, the
persistence of backup copies has proved
embarrassing: a government agency requested
that a file containing a list of special tele-
phone access codes be completely deleted; the
installation administrator found himself with
no convenient way to purge the residues on the
backup tapes. These tapes should probably be
encrypted, using per-segment keys known only
by the operating system. It is an interesting
problem to construct a strategy for safely en-
crypting backup copy tapes, while ensuring
that encrypting keys do not get destroyed upon
system failure, making the backup copies
worthless.

Over-privileged system administrator. Some
system functions have been organized in such a
way that the administrators of the system re-
quire more privilege than really necessary.
For example, measures of secondary storage
usage are stored in the using directory rather
than in an account file. As a result, the
administrative accounting programs which pre-
pare bills for secondary storage use must have
access to read every directory in the storage
system. For another example, the "locksmith"
function, mentioned earlier, is currently
implemented by giving the locksmith permission
to modify the root directory of the storage
system directory hierarchy. Thus the lock-
smith has the unaudited ability to grant him-
self access to every file in the storage
system. Such a design means that one of the
easiest ways to attack is to attempt to in-
fluence the system administrator, possibly by
surreptitiously inserting traps in some pro-
gram he is likely to use* while running a
process whose principal identifier needlessly
permits extensive privileges. The counter
measure, currently partially implemented, is
to provide administrators with protected sub-
systems from which they cannot escape, which
are certified to exercise a minimum of privi-
lege, and which maintain audit trails.

Ponderous backup copy and retrieval scheme.
It has been noticed that the general method
currently used for indexing the contents of
storage system backup copy tapes is weak, so
that the only effective way to identify a de-
sired copy of a damaged segment is to permit
the user to manually scan printed journals of
the names of the segments copied onto each
tape. These journals contain the names of

Secondary storage residues are not cleared un-
til they are reassigned. When a segment is *
deleted, all descriptors for the physical
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This technique has been described as the "Trojan
Horse" attack[5].



other users' segments and directories, and
were intended for use only for emergency sit-
uations and with proper clearance. Unfortu-
nately, the number of retrieval requests which
can be handled on other than an emergency basis
is a sensitive function of the quality of the
tools available for searching the journals
automatically while maintaining privacy. A
simple scheme based on a protected subsystem
for searching journals has recently been pro-
posed, but is not yet implemented.

8. Counter-intelligence techniques have not been
exploited. Although logs of suspicious events
(such as incorrectly supplied passwords) are
maintained no true counter-intelligence strate-
gies are employed. For example Turn, et al.
[26] have suggested inserting carefully moni-
tored apparent flaws in the system. These
flaws would be intended to attract a would-be
attacker, any attempt to exploit them would
result in an early warning of attack and an
opportunity to apprehend the attacker.

9. Some areas of potentially vulnerability have
not been examined. These include vulnerability
to undetected failures of the hardware protec-
tion apparatus[l7],* electromagnetic radiation
from the physical hardware machine[3], and
traffic analysis possibilities, using perfor-
mance measurement tools available to any user.

It is interesting to note that none of these
nine specific weaknesses represent intrinsic diffi-
culties of full-scale computer utility systems --
relatively straightforward modification can easily
strengthen any of these areas. In fact, neither
the two major weaknesses nor the nine specific ones
represent "holes" in the sense of being immediately
exploitable by an attacker. Rather, they are areas
in which an attacker is more likely to discover a
method of entry caused by misimplementation, mis-
understanding, or mismanagement of an otherwise
securable system. Thus we might describe the pro-
tection system as usable, though with known areas
of weakness.

Conclusions

This paper has surveyed the complete range of
information protection techniques which have been
applied to a specific example of a system designed
for production use as a computer utility. Over
three years of experience in a production environ-
ment at M.I.T. has demonstrated that the mechanisms
are generally useful. A commonly asked question
(especially in the light of recent experiences
with attempts to add security to other commercially
available computer systems) is "how much perfor-
mance is lost?" This question is difficult to
answer since, as is evident, the protection struc-
ture is deeply integrated into the system and

* Although the 6180 hardware is less vulnerable
than some. An asynchronous processor-memory inter-
face tends to stop when an error occurs rather than
proceeding with wrong data; complete instruction
decoding explicitly traps all but legal operation
codes and addressing modifiers; and the multipro-
cessor organization helps obviate the need for
pipelines and other accident-prone highly-tuned
logic tricks.

cannot by simply "turned off" for an experiment.*
However, one significant observation may be made.

in general, the protection mechanisms are closely
related to naming mechanisms, and can be implemented
with a minimum of extra fuss in a system which pro-
vides a highly structured naming environment. Thus,
the users of Multics apparently have found that the
overall package of a structured virtual memory with
protection comes at an acceptable price.

The Multics protection mechanisms were designed
to be basic and extendable, rather than a complete
implementation of some specialized security model,
Thus there are mechanisms which may be used to pro-
vide the multilevel security classification (top
secret, secret, confidential, unclassified) and the
access compartments of the U.S. governmental secur-
ity system[27]. If one wished to precisely imitate
the government security system, he could do so with-
out altering the operating system. In this sense,
Multics differs with, say, SDC's ADEPT[28] and
IBM'S Resource Security System[14], both of which
specifically implement models of the government
security system, but which do not permit, for
example, user-written program-protected data bases.

We should also note that the Multics system
was designed to be securable, which is different
than stating that any particular site is actually
operated in a completely secured fashion. Such
matters as machine room security, certification of
of hardware maintenance engineers and system opera-
tors, and telephone wire tapping are largely out-
side of the scope of operating system design. In
addition, correct administration can be encouraged
by the design of an operating system, but not
enforced. Further we have reported the design of
the system, realizing that its implementation has
not yet been completely audited and therefore may
contain trivial programming errors which affect
protection.
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