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Abstract 

This work presents an intelligent technique based on reversible watermarking for protecting patient 

and medical related information. In the proposed technique ‘IRW-Med’, the concept of companding 

function is exploited for reducing embedding distortion, while Integer Wavelet Transform (IWT) is used 

as an embedding domain for achieving reversibility. Histogram processing is employed to avoid 

underflow/overflow. In addition, the learning capabilities of Genetic Programming (GP) are exploited 

for intelligent wavelet coefficient selection. In this context, GP is used to evolve models that not only 

make an optimal tradeoff between imperceptibility and capacity of the watermark, but also exploit the 

wavelet coefficient hidden dependencies and information related to the type of sub band. The novelty of 

the proposed IRW-Med technique lies in its ability to generate a model that can find optimal wavelet 

coefficients for embedding, and also acts as a companding factor for watermark embedding. The 

proposed IRW-Med is thus able to embed watermark with low distortion, take out the hidden 

information, and also recovers the original image. The proposed IRW-Med technique is effective with 

respect to capacity and imperceptibility and effectiveness is demonstrated through experimental 

comparisons with existing techniques using standard images as well as a publically available medical 

image dataset. 

Keywords: Health care, Integer Wavelet Transform, Genetic Programming, Reversible Watermarking, 

and Medical Images. 

1. Introduction 

The advancement in communication technologies has provided new ways of accessing and 

transferring the medical information. The widespread use of information and communication techniques 
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allows one to manipulate the original contents. Therefore, to protect the patient privacy and to ensure 

diagnostic accuracy, an effective medical image authentication mechanism is required without losing the 

semantics of the original content [33]. In this regard, digital watermarking has been advocated by many 

researchers as one of the most promising techniques to provide security, reliability, and authenticity of 

medical information [5].  

Watermarking is considered as the practice of imperceptibility [16], changing a work to embed 

some information related to the work. Temper detection [22], copyright control [4], owner identification 

[6], broadcast monitoring [11], etc., are some of the interesting examples of watermarking applications. 

Generally, watermarking is categorized as Fragile, Robust, and Semi-fragile watermarking [10][20][7]. 

In fragile watermarking, alteration in image results in the destruction of watermark and robust 

watermarking aims to resist attacks [34][30]. Whereas in semi fragile watermarking, a watermark is 

supposed to resist unintentional attacks but get destroyed in case of intentional attacks. 

The medical image watermarking is quite challenging and some essential constraints must be 

considered during the watermarking process. Embedding information in the host image causes 

distortion, which may be quite detrimental for medicalor military applications. A minute distortion in the 

medical image due to watermark embedding may turn it impracticable for the physicians. Therefore, 

there is a strong need to develop a watermarking technique that is not only able to embed the watermark 

but also able to restore the original content of the image after the watermark extraction. Reversible 

watermarking has the capability to restore the image back to the exact state, and thus fulfills the basic 

requirement [9]. An efficient reversible watermarking should be capable of embedding more 

information with fewer perceptual distortions as well as restoring the original image content. However, 

watermark capacity and imperceptibility are two contradicting properties, and therefore, it becomes a 

challenging task to make an optimal tradeoff between them for a given image and the intended 

application. 

 In medical image watermarking, one conventional way of protecting useful information in medical 

images is by defining a region of interest (ROI). The watermark is only embedded in ROI thus 

protecting the useful information from distortion [32]. However, in most scenarios the whole medical 

image has to be considered as ROI and embedding of information using ROI based approaches may not 

be acceptable. 



This paper presents a block-based watermarking approach, in which the proposed IRW-Med utilizes 

the concept of companding for watermark embedding. Moreover, Genetic programming (GP) based 

intelligent coefficient selection is performed in integer wavelet domain, to exploit the inter-dependencies 

of wavelet coefficients.  

The main leverage of this paper is in developing an intelligent embedding model for the given image, 

which has the following capabilities:  

a) To make a suitable trade-off between capacity and imperceptibility of the watermark. 

Moreover to exploit the dependencies of wavelet coefficients and information regarding the 

type of sub bands. 

b) To develop a model that not only helps in the selection of suitable coefficient for watermark 

embedding but also acts as the companding factor during embedding of the watermark. 

In the proposed IRW-Med, block-based embedding helps not only in evolving mathematical expressions 

that select coefficients for companding through GP, but also acts as a threshold for companding. It is 

shown that for a given image (depending upon its frequency content), the learning ability of the GP 

makes it possible to find a suitable tradeoff  between the watermark payload and imperceptibility. The 

optimal tradeoff between watermark imperceptibility and capacity is required in medical image 

watermarking for avoiding any misdiagnosis. The remaining portion of the paper is classified in the 

following way. Details regarding the proposed IRW-Med are described in Section 2. Results and 

performance analysis are discussed in Section 3. GP based implementation details are explained in 

section 4 and at the end the discussion related to conclusion is explained in Section 5. 

2. Related Work 

For decades researchers have put great efforts in the domain of reversible watermarking. Fridrich 

[13] proposed a lossless bit plane compression where extra space that is retrieved is used for the 

embedding of both the watermark and bookkeeping data. On the other hand, Alattar [1] proposed 

difference expansion to quads as a data hiding approach and achieved high capacity. Xuan et al. [26] 

proposed lossless approach related to data hiding based on Interger Wavelet Transform (IWT) and 

threshold based watermark embedding scheme. Xuan et al. [35], have also proposed a reversible and 

histogram shifting based watermarking technique, in which the information is embedded in the peak and 

neighborhood point by shifting the peak points towards zero point. Another work regarding reversible 

data hiding technique based on IWT is also proposed by Xuan [37]. Li et al. [19] proposed an adaptive 



prediction error expansion based reversible watermarking technique. Another reversible watermarking 

technique based on prediction error is proposed by Coltuc et al. [8], in which the basic idea is to reduce 

the embedding distortion due to embedding of the prediction error. Lee et al. [18] proposed a genetic 

algorithm and particle swarm optimization based watermarking technique. Similarly, reversible 

watermarking is proposed by Arsalan [3], in which Genetic Algorithm evolves optimal/near optimal 

thresholds for companding. An interesting and effective watermarking technique is proposed by 

Sachenev et al. [25] using sorting and prediction. In their approach, only prediction error is used to 

embed watermark, whereas location map is rarely used. Dragoi et al. [12] proposed local prediction 

based on difference expansion. For copyright protection Gao et al. [14] reported histogram based 

technique, in order to add robustness,while An et al. [2] proposed histogram shifting and clustering 

based watermarking technique that is not only robust but also reversible. Siddiqa et al. [27] also 

proposed a watermarking technique which is reversible and dependent on the prediction error based 

expansion. In their approach, bits are embedded based on the scale of variation in the neighboring eight 

pixel values; however, there is no need for the location map or histogram shifting.  

The challenging problem of making an optimal trade-off is still on-going  and efforts for developing 

a model that can provide efficient trade-off for a given image are still being researched. In this context, 

the proposed IRW-Med addresses the shortcomings related to some of the recent existing methods; (a) 

To ensure reversibility, besides making an efficient tradeoff (for applications such as medical, military, 

and legal image based applications), (b) Recent intelligent approaches (especially, based on 

companding) concentrates on making a tradeoff or selecting suitable threshold, however, the 

companding function is not automatically handled. The proposed IRW-Med is able to automatically 

handle the companding function. 

3. Proposed GP-IRW-Med approach 

Like conventional watermarking, the proposed IRW-Med technique has two key phases; 

Embedding phase and Extraction phase. Proposed IRW-Med employs GP to evolve a mathematical 

function that selects the coefficients for companding. The general structural design of our proposed 

approach is based on the training phase (development of selection model of wavelet coefficients) and 

testing phase as shown in Fig. 1. 



3.1 Developing GP based Selection Models for Medical Image Watermarking (Training Phase) 

During GP simulation, the candidate expression is used to embed the watermark both with and 

without applying companding on the input image x. A fitness function evaluates the performance of 

each candidate expression and decides whether to keep the current expression for the next generation or 

discard it. Watermark payload and imperceptibility measures effect the fitness function. This procedure 

is repeated for all the individuals in a GP generation. After each generation, the fit individuals are 

elected as parents. New offsprings (candidate expressions) are produced from the parents by applying 

the genetic operators probabilistically. The procedure continues till a stopping criterion is reached, 

whereby the best GP expression, denoted by α, is saved. This comprises the training phase. In the 

testing phase, α is then used for watermark embedding. The following function is used for evaluating 

the fitness of a candidate expression, 

         {        (       )                                                                                                                                                                                               (1) 

Where   and   are the desired effective-payload and the total payload respectively. MSE is the mean 

squared error between the original image   and the watermarked image,   which is mathematically 

given as, 

         ∑ ∑ [ (   )    (   )]             . 
(2) 

 

3.1.1 Parameter setting of GP 

GP is domain independent probability based algorithm, inspired by the biological evolution, mostly used 

for solving the optimization problems. Traditionally, GP represents a candidate solution in the form of a 

tree [17]. In order to represent the candidate solution, GP terminal and functional sets are defined. GP 

terminal set setting is shown in Table1 . 
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Figure 1: General Architecture of Proposed IRW-Med (a) training phase (b) testing phase 

The aforementioned parameters of the terminal set assists GP in generating the suitable expressions by 

selecting appropriate coefficients and exploiting the neighborhood dependency on each other. 

Arithmetic operators (+, –, ×, and protected division), LOG, EXP, SIN, COS, MAX, and MIN form the 

GP function set. 

Table 1 : Gp terminal set setting 

Terminal Set 

Variable Discription 

SubLabel The mathematical value assigned to the different wavelet sub-bands used for embedding of watermark. 

We have assigned their value as LH=3, HL=4, HH=5. 

Submean The average value of the coefficients in a specific sub-band. 

Blcnumber Block position within a sub-band. 

Blcmean The average value of coefficients in a block. 

Blcmax The maximum coefficient value in a block. 

Blcmin The minimum coefficient value in a block. 

m,n Stands for the row and column indices of the coefficient in block. 

 

3.2 Medical Image Watermark Embedding and Extraction using the Best Evolved Model 

(Testing Phase) 

In this phase, embedding and extraction are two main processes. The   (computed during the training 

phase) is used for the embedding of watermark in the testing phase. After the embedding of the 

watermark, next step is to make this embedding process reversible by extracting the watermark ensuring 

the full recovery of image to its original form along with the embedded watermark. 



3.2.1 Embedding phase  

During this phase, the watermark is generated first and then embedded into the original image. The 

watermark carries the patient information (EPR) along with the payload. Fig. 2 shows the steps involved 

in the embedding process.  
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Figure 2: Block diagram of watermark embedding phase of the proposed IRW-Med technique 

3.2.2 Pre-Processing and histogram modification 

In most of the reversible watermarking approaches, some pre-processing is performed before 

embedding the watermark to overcome the potential problem of overflow and underflow. In proposed 

IRW-Med, histogram modification is applied before embedding the watermark to compress the 

histogram from both sides [36]. The Histogram modification process is explained with the help of a 

simple example as shown in Fig. 3. This figure shows the original and modified image obtained after the 

histogram modification. The range of the gray scale of original image is 0-255. Following the histogram 

modification, the range becomes 1-254. This is because after the modification the gray scale value 0 is 



replaced by gray scale value 1 and gray scale 1 is replaced by gray scale value 2. Similarly, grayscale 

255 is replaced by gray scale 254 and gray scale 254 is replaced by 253 respectively. 

During the recovery phase, scan sequences are generated for obtaining the original image from 

histogram modified image. In histogram modified image all values of gray scale 1 and 254 are due to 0’s 

and 255’s in the original image. 2’s in the modified histogram are because of 2’s in the original image 

and 2’s that are appeared by transforming 1’s.  In the same way, after modification all 253’s are because 

of 253’s in original image and 253’s that are appeared by transforming 254’s. That is why only for 

values of 2 and 253 scan sequences are created. For the generation of scan sequences, modified and 

original images are scanned simultaneously and if in both images the value at location (   ) is 2, 1 is 

stored as a scan sequence otherwise, scan sequence is stored as 0.  In a similar way, a scan sequence for 

gray scale 253 is generated. After generation of scan sequence Book keeping data store (BDS) is 

calculated as follows; BDS=BK+GC+LGS+L1+SC1+RGS+L2+SC2 

Whereas; 

BK=Total length of Book keeping data  

GC= number of gray scales that are compressed  

LGS=left hand side gray scales of first histogram  

L1= record length  

SC1= scan sequence  

RGS= right hand side gray scale of first histogram  

L2= record length 

SC2=scan sequence 
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Figure 3: Histogram modification 

The total length of bookkeeping data is the amount of bits required to store BDS.  As grayscale 0 

and 255 are compressed i.e., the number of gray scales that are compressed is two, so 4 or 8 bits are 



needed for their storage. From the left hand side gray scale of first histogram is 1 which can be stored in 

4 or 8 bits. The record length is the number of modified 2’s in histogram and can be stored in 16 or 32 

bits. This scan sequence of ‘2’ is then appended. From the right-hand side the first histogram is gray 

scale 254 and this is stored in 8 bits. The record length of 253 is appended next followed by the scan 

sequence 253. All these pieces of information are combined together to form the BDS. The BDS 

information is stored as overhead and used in the histogram post-processing for recovering the original 

image after the extraction of the watermark. 

3.2.3 Integer Wavelet Transform (IWT) of histogram-modified image  

The second generation Cohen-Daubechies-Fauraue (CDF) IWT is employed for transforming the 

histogram-modified image into the frequency domain. CDF is employed because of greater capacity of 

embedding and improved visual appearance of watermark images. Moreover, CDF is integer to integer 

mapping; therefore, the round-off error remains zero, while applying the inverse transform. 

After applying IWT on the image having size M x N, four sub-bands each having size        , are 

formed. These sub-bands represent frequency content within the image. It comprises of approximation 

(LL), horizontal (HL), vertical (LH), and diagonal detailed (HH) sub-bands [15]. The watermark is 

embedded in all sub-bands except LL sub-band to avoid the perceptual distortion, since the LL band 

offers high sensitivity to human visual systems. 

3.2.4 GP based intelligent coefficient selection and companding 

GP belongs to a class of biologically inspired optimization techniques. In GP, individual candidate 

solutions are produced and scored according to a fitness function. On the basis of fitness score, best 

individuals from the present generation are elected as parents for the next generation. The rest of the 

population is generated using the offspring produced, after randomly applying genetic operators on the 

parents. This process continues till a termination point is reached [26].  

After IWT, the LH, HL, and HH bands are first divided into blocks of small dimension     and after 

that, an optimal/near-optimal GP expression is generated for the entire image. For every block, the 

value of the GP expression (when evaluated) varies because of its dependency on the characteristics of 

the block in question. This expression not only makes an efficient selection of the coefficient for 

companding but also decides how much companding of the coefficient has to be performed. 

3.2.5 Intelligent companding based watermark embedding 

Companding refers to a technique for compressing and then decompressing (or expanding) a 

signal. This process is generally used in reducing the data rate of audio signals for achieving high ratio 



of signal to noise [36]. Companding applies compression to maps the signal from large to a narrow 

range, and then expansion restores the signal. The restored signal is very similar or same to the original 

one. Let   and   be the compression and expansion function respectively, and then companding is 

defined as; 

  ( ( ))   . ( 3 ) 

Eq. 3 is the sufficient and necessary condition to be satisfied for effectively applying the reversible 

watermarking technique. 

Compression is applied for two purposes; firstly to reduce the scale of the resulting distortion 

(embedding the watermark in the signal avoid the overflow/underflow of the signal) and secondly, for 

achieving higher ratio for signal-to-noise [23]. 

The high frequency-coefficients of IWT in majority of the images follow distribution similar to 

Laplacian.  According to Xuan et al.[36], distribution is related to two features: 

 IWT coefficients having low magnitude don’t require any compression, since embedding 

information in such coefficients will not cause them to underflow or overflow. A linear 

compression function having form  ( )    can be used for these coefficients. 

 After embedding high magnitude coefficients have a high chance of overflow/underflow. 

So, it is more effective to use a function having steeper slope like the linear compression 

function.  

Based on the aforementioned features, a piecewise linear function is used as shown in Eq. 4, 

where  (   ) denotes the value after applying   on a block     (   ), i.e.,  (   )   (     (   )). 
Since   contains information regarding the suitable choice, therefore, the value of  (   ) decides which 

coefficient should be selected. 

  ( )  {                                                                | |   (   )    ( ) ((| |  (   ) )   (   ))         | |   (   )                          (4) 

 

 

 

where   is the original wavelet coefficient and   ( ) is the compressed wavelet coefficient. The 

coefficients obtained after applying Eq. 4 may have values that lie in a continuous range. That is why 

quantization of compandding function is applied: 



 ( )    ( )  {                                                                | |   (   )    ( ) (⌊| |  (   ) ⌋   (   ))         | |   (   )                                       (5)     

 ( )    (  ( ))  {  ( )                                                               |  ( )|   (   )    (  ( ))  ( |  ( )|   (   ))         |  ( )|   (   )                                 (6) 

 

In case of some signals,   (  ( ))   , producing an error     (  ( ))     , which must be 

recorded for the recovery of IWT coefficients. Thus error   is embedded along with watermark into the 

host signal  . On the extraction side, the original coefficients are then recovered as follows: 

x=Q( )+r.                                                                                     (7) 

3.2.6 Data embedding 

 In the proposed IRW-Med technique, the watermark contains original message along with the 

bookkeeping data that is generated during histogram modification and the companding process. First, 

the compressed coefficients are represented in binary sequence and then least significant bits (LSBs) is 

used for watermark embedding. Suppose, the binary expression of the compressed coefficient is given 

by            , where    {   }. The watermark bit,    is appended after LSB of  , and we 

get              . This can be written as        . 

In the proposed IRW-Med technique,  (   ) is a critical value. It has a direct impact on the 

payload and watermarked image quality. Smaller value of  (   ) causes small alteration in the 

coefficients and consequently, good quality of marked images are attained, however, corresponding 

compression error will be large, resulting in reduction of the payload. When  (   ) is large, larger 

payload is achieved. However, the visual quality of the watermarked image will suffer due to large 

alteration in coefficients. 

3.3 Extraction phase of the proposed IRW-Med technique  

On the receiving side, the same procedure is applied to extract the watermark and original image 

but in a reverse direction. The extraction process is illustrated with a block diagram in Fig. 4. 
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Figure 4: Block diagram showing extraction phase of the proposed IRW-Med 

3.3.1 IWT of the received Image 

For the extraction of watermarked image IWT is first applied to transfer the watermarked image to the 

wavelet domain. As a result, four wavelet sub-bands are obtained on which further processing is 

performed. 

3.3.2 Wavelet coefficients recovery 

The LSBs of the coefficients   are extracted using      ( ). To extract least significant bit 

from coefficients, modulus obtained after the division of coefficient by 2 returns the LSB which is either 

1 or 0. For example, let 5 is the value of coefficient, in binary form we can express it as 0101. LSB in 

case of 5 is 1, so division of 5 by 2 returns 1 as modulus (Which is LSB). The extracted LSBs include 

the expression  , original watermark, the overhead caused by the error in companding process, and the 

bookkeeping data created during histogram modification. The compressed coefficients are recovered 



using   and the overhead. Then, during expansion the error as well as overhead is used in the recovery 

of coefficients in the original form    ( ), while the bookkeeping data restores the histogram. 

3.3.3 Image restoration  

After extracting the data and recovering the original coefficients, inverse IWT restores the image 

to the spatial domain. Then, with the help of BDS, the histogram is restored. Scan sequences generated 

during histogram modification are used for the recovery of the histogram. Finally, the image is 

transformed into its original state.  

4. Results and Discussion 

The proposed IRW-Med approach is tested on various gray scale standard images such as Lena, Baboon, 

Barbara, and Gold hill as well as on standard medical images; the size of each image is of size 512×512. 

Matlab based GPLab toolbox has been utilized in order to develop a suitable GP expression. For Lena 

image best expression is presented in prefix notation as follows.  

plus(multiply(subtract(subtract(log(log(0.27033)),mylog(protected-

division(blk_index,0.31993))),sin(log(blk_index))),subtract(sin(protected-

division(multiply(0.52962,blk_max),blk_max)),sin(blk_index))),blk_mean) 

The corresponding GPLAB tree with the respective node labels for this expression is shown in Fig. 5. 

Fig. 6 shows the effect of embedding and extracting processes on the standard images. It illustrates the 

potential of our GP approach in embedding a high payload with small perceptual distortion. Column (a) 

in Fig. 6 presents the input images. They are subjected to watermark, using the best mathematical 

expression evolved through GP, and the outcomes are shown in column (b). Column (c)  shows the 

dissimilarity between watermarked and the original image, indicating indiscernible embedding of the 

watermark by using the best evolved expression using GP simulations The naked eye is unable to 

differentiate this difference, so some amplification is done to enhance the difference as shown in column 

(d). After the extraction of the watermark, the contents of the image are recovered. The re-established 

images are revealed in column (e). The structural similarity index (SSIM) is used to show the 

performance of our proposed IRW-Med system in restoring the images. It is observed that for all the 

restored images in Fig. 6, the value of SSIM index is 1, when compared with their original images thus 

showing 100% restoration. 



  

Figure 5: Tree of the evolved GP expression 

4.1 Comparison with Existing techniques 

Fig.7. compares the existing reversible watermarking techniques 

[36],[37],[28],[31],[18],[3],[35],[27],[25],[19],[8],[12] with the proposed IWT-Med. Tian’s technique is 

quite interesting but its disadvantage is that for locating the expanded differences, extra information of 

location map is inserted besides the watermark in the image. This considerably degrades the image, in 

case there is no sufficient space for embedding the location map. Therefore, a suitable compromise 

between capacity and imperceptibility is needed to generate more gap for the overhead. Xuan [36] apply 

companding on coefficients using a fixed threshold. This companding is also applied on coefficients 

which do not need companding, or require companding but less or greater than the threshold producing 

unnecessary degradation in an image. Another disadvantage of the Xuan’s approach is that the 

thresholding is performed using hit and trial method. Existing reversible watermarking techniques 

provide a useful tradeoff between capacity and imperceptibility of watermarked image 

[36],[37],[35],[28],[13]. However, there is still a margin of improvement that mainly depends on the 

selection of the threshold. Therefore, we exploit the learning capabilities of GP for automatically 

generating a mathematical expression that not only acts as a threshold but also as a companding factor in 

the companding process for a given image.  
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Figure 6: Embedding and extraction performance of the proposed IRW-Med on various images. Column (a) shows input images, (b) shows 

the watermarked images, (c) shows the difference of ((a) and (b)), (d) shows the amplified difference of (a) and (b), (e) shows the recovered 

image on the extraction side 

In Fig. 7 for Lena image the compromise between payload and imperceptibility is shown. It is 

observed that the proposed IRW-Med yields better imperceptibility at higher payloads (0.4-0.7 bpp) 

compared to the existing schemes as shown in Fig. 7. This is accomplished by letting GP develop an 

optimal expression based on the coefficient magnitude, its location in the block, its neighborhood in the 

blocks, and the type of sub-band it belongs to. However, at lower payload (0.1-0.3bpp), the proposed 

IWT-Med shows comparable results to the existing reversible watermarking techniques, except Sachnev 

et al.’s technique [20] and GA-RevWM [3]. This is because in GA-RevWM, whereby GA is employed, 

the threshold selection is block-based, and therefore when the numbers of blocks are few, then GA 

performs better. Whereas in the proposed IWT-Med, the GP has to produce a generic expression 

applicable to all the blocks in the image, therefore, when the number of blocks (and correspondingly 

payload) is small, GP may not produce as good results as that of GA-RevWM [3].  



 

                           Figure 7:  performance comparisons of Lena image in terms of Capacity vs. imperceptibility 

4.2 Peak Signal-to-Noise Ratio (PSNR) vs. payload based performance comparison 

Tables 2 and 3 present the performance comparison of the proposed IRW-Med at various capacity 

values with the threshold based reversible watermarking technique of Xuan et.al [36]. This comparison 

is performed on different standard images and different medical images, where PSNR and SSIM 

measures are used for the imperceptibility based performance assessment. To demonstrate further the 

effectiveness of the proposed method it is evaluated over a set of 300 gray scale images of size 256x256 

shown in suplementray Table 1. It is noticed that the proposed IRW-Med attains better performance than 

the Xuan’s scheme in terms of PSNR and SSIM. For an image of size 512×512, a payload of 1bpp 

shows that a total of 262,144 bits are to be inserted in the image. Our proposed scheme uses three out of 

four sub-bands for watermarking embedding, therefore the 0.75 bpp (total of 196608 information bits) is 

maximum payload that could be achieved. The results for medical images have been achieved by 

reserving the effective payload greater than 0.6bpp. The time complexity of the proposed method against 

Xaun approach is given in Table 4. The table show’s the average time taken for both approaches against 

different payloads. The size of the image is kept at 256 x 256. These results are obtained on Matlab 

2015(b) on Intel(R) Core(TM) i7-33770 CPU@3.4 GHZ  with random access memory (RAM) of 16 

GB. Moreover, the comparison of average of PSNR and standard deviation of 300 images of the 

proposed method with Xuan’s approach [36] is shown in Table 5. The proposed approach out perform 

the Xuan’s approach  [36].  Since our proposed IRW-Med approach is capable of restoring the original 

image, therefore, we can make use of the entire image for information embedding without avoiding ROI. 

Fig. 8 shows the comparison of imperceptibility and payload of proposed IRW-Med with Xuan's 
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approach [36]. It is evident from the figure that the proposed IRW-Med yields better performance as 

compared to Xuan’s [36] approach in the range of (0.0 - 0.7) bpp. 

Table 2: PSNR (dB) vs. payload (bpp) based comparison of proposed IRW-Med with that of the Xuan’s approach.[36] 

Image Payload (bpp) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Lena  

Effective payload (bpp) 0.58 

PSNR (dp) 

Xuan et al. [36] 
49.8 46.2 43.4 42.2 41.2 40.3 39.0 

PSNR (dB)  

Proposed (IRW-Med) 
50.86 46.71 45.2 44.3 43.6 42.6 41.87 

Barbara 

Effective payload (bpp) 0.48 

PSNR (dp) 

Xuan et al. [36] 
48.6 45.6 43.3 41.2 40.6 39.7 38.6 

PSNR (dB)  

Proposed (IRW-Med) 
50.24 47.3 45.68 44.81 44.11 43.10 42.43 

Goldhill 

Effective payload (bpp) 0.4 

PSNR (dp) 

Xuan et al. [36] 
50.0 46.6 44.4 42.9 41.8 40.9 40.2 

PSNR (dB)  

(Proposed (IRW-Med)) 
52.59 49.26 47.92 46.67 46.22 44.83 44.11 

X-ray 

Effective payload (bpp) >0.6 

PSNR (dp) 

Xuan et al. [36] 
53.8 50.0 48.1 46.0 45.6 44.8 44.1 

PSNR (dB)  

 Proposed (IRW-Med) 
54.43 50.70 49.03 48.11 47.28 46.29 45.53 

Breast 

Effective payload (bpp) >0.6 

PSNR (dp) 

Xuan et al. [36] 
56.0 51.7 49.1 47.3 45.9 44.9 44.2 

PSNR (dB)  

Proposed (IRW-Med) 
56.2 51.6 49.9 48.8 47.7 47.0 46.2 

Belly 

Effective payload (bpp) >0.6 

PSNR (dp) 

Xuan et al. [36] 
51.29 47.97 45.96 44.32 43.17 42.38 41.70 

PSNR (dB)  

Proposed( IRW-Med)) 
52.12 48.94 47.37 46.55 45.83 44.93 44.20 

Hand 

Effective payload (bpp) >0.6 

PSNR (dp) 

Xuan et al. [36] 
56.28 51.98 49.76 48.28 47.22 46.37 45.69 

PSNR (dB)  

Proposed (IRW-Med) 
56.79 52.28 50.38 49.20 48.10 47.27 46.67 

Knee  

Effective payload (bpp) 0.58 

PSNR (dp) 

Xuan et al. [36] 
54.73 51.56 49.35 47.86 46.80 45.96 45.25 

PSNR (dB)  

Proposed( IRW-Med) 
56.41 52.97 50.53 49.49 48.58 47.6 46.59 



 

Table 3: Comparisons of SSIM of proposed IRW-Med technique against Xuan et al. approach [36], at different payload. 

Image Payload 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

 Effective payload (bpp) 0.58 

Lena 
SSIM Xuan et al. [36] 0.9940 0.9881 0.9826 0.9776  0.9729 0.9682 0.9633 

SSIM (Proposed IRW-Med) 0.9939 0.9886 0.9836 0.9794 0.9783 0.9707 0.9707 

 Effective payload (bpp) 0.48 

Barbara 
SSIM Xuan et al. [36] 0.9966 0.9933 0.9896 0.9860 0.9830 0.9793 0.9744 

SSIM (Proposed IRW-Med) 0.9968 0.9943 0.9910 0.9890 0.9869 0.9832 0.9811 

 Effective payload (bpp) 0.4 

Goldhill 
SSIMXuan et al. [36] 0.9956 0.9918 0.9886 0.9851 0.9815 0.9786 0.9746 

SSIM (Proposed IRW-Med) 0.9976 0.9957 0.9937 0.9924 0.9915 0.9885 0.9869 

 Effective payload(bpp) >0.6 

X-ray 
SSIM Xuan et al. [36] 0.9971 0.9928 0.9886 0.9843 0.9801 0.9760 0.9719 

SSIM (Proposed IRW-Med) 0.9971 0.9932 0.9903 0.9878 0.9853 0.9817 0.9783 

 Effective payload (bpp) >0.6 

Breast 
SSIMXuan et al. [36] 0.9986 0.9960 0.9929 0.9895 0.9861 0.9831 0.9799 

SSIM (Proposed IRW-Med) 0.9983 0.9958 0.9936 0.9917 0.9896 0.9872 0.9854 

 Effective payload (bpp) >0.6 

Belly 
SSIM Xuan et al. [36] 0.9955 0.9907 0.9863 0.9823 0.9781 0.9735 0.9683 

SSIM (Proposed IRW-Med) 0.9961 0.9927 0.9891 0.9872 0.9848 0.9813 0.9785 

 Effective payload (bpp) >0.6 

Hand 
SSIM Xuan et al. [36] 0.9982 0.9953 0.9925 0.9896 0.9867 0.9837 0.9806 

SSIM (Proposed IRW-Med) 0.9984 0.9955 0.9927 0.9905 0.9876 0.9853 0.9836 

 Effective payload (bpp) 0.58 

Knee 
SSIM Xuan et al. [36] 0.9973 0.9943 0.9905 0.9867 0.9832 0.9794 0.9756 

SSIM(Proposed IRW-Med) 0.9981 0.9957 0.9925 0.9906 0.9879 0.9851 0.9819 

 

 

 

                          Figure 8: Comparison between proposed IRW-Med and Xuan's Approach for payload (0.1–0.7) 
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Table 4: Time complexity comparison of proposed method with Xuan et al. approach [36] 

Payload Average time in seconds 

Xuan’s approach 

Average time in seconds 

Of Proposed IWT-Med 

0.1 0.6068 208.0176 

0.2 0.6485 219.4836 

0.3 0.6472 229.8939 

0.4 0.7149 244.2717 

0.5 0.7884 255.2785 

0.6 0.8367 252.5790 

0.7 0.8688 262.3846 

0.75 0.9085 261.4694 

 

Table 5: Average and standard deviation compasrion of 300 images of proposed method with Xuan et al. approach [36] 

 

Payload 

Xuan’s Approach Proposed IWT-Med 

Average Value 

of PSNR 

Standard Deviation 

of Error 

Average Value 

of PSNR 

Standard Deviation 

of Error 

0.1 54.81 1.10 56.25 0.33 

0.2 51.53 0.90 53.05 0.29 

0.3 49.48 0.68 51.38 0.34 

0.4 47.97 0.51 50.31 0.38 

0.5 46.79 0.42 49.35 0.43 

0.6 45.86 0.37 48.21 0.38 

0.7 45.10 0.35 47.33 0.31 

0.75 44.74 0.35 46.95 0.25 

 

4.3 Embedding and Extraction of Electronic patient record (EPR)  

This section explains the embedding of EPR data along with the watermark. The EPR data may include 

Patient ID (P_ID), Age of the patient, Gender (G), ID of the doctor (D_ID), Blood pressure (BP), level 

of Sugar (Sugar), and proposed Treatment (Recommended Treatment). Data is embedded in EPR in two 

different ways; one in the form of a binary picture as shown in Fig. 9 (a) and second; in the form of a 

string as shown in Fig. 10(a) [24]. The recovery of EPR in both of the forms on the extraction side is 

evident in the Figs 9(b) and 10(b), respectively [29][21]. 

 

 

 

 
                 Figure 9: (a) Embedded EPR on embedding side, (b) Recovered EPR on the extraction side 

Recovered EPREmbedded EPR

(a) (b) 



 

 

 

Figure 10: (a) EPR embedded in string form on embedding side, (b) EPR restored on the extraction side 

4.4 Analysis of the evolved GP expression for Watermark Embedding 

Fig. 11 shows the learning ability of the GP for generating a suitable expression for Lena image. The 

graph shows the variation in PSNR against the number of generations (up to 50 generations). It can be 

seen that in the start, PSNR values are zeros because the optimal expression produced during these 

generations are discouraged due to the following reasons. 

1) The expression doesn’t produce optimal value for companding in every block, rather increases 
the companding error as a result of effective payload becoming low. 

2) The expression produces values out of threshold range. 

3) The expression produced doesn’t embed the whole watermark. 
It can be observed from the Fig. 11 that after a few generations, learning ability of GP improves and 

produces a suitable expression for given PSNR value. This value of PSNR gets improved generation by 

generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
                                           Figure 11: Learning ability of GP with generation 
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4.5   Implementation details and GP parameter setting 

MATLAB is used to carry out simulations on different test images during the training phase. 

Initialization of population is carried out by Ramped-half and half method. Implementation details of all 

parameters used during simulations are summarized in Table 6. 

Table 6: GP parameter setting 

PARAMETER TYPE 

Function set Rand, blk_indx, mean_blk, max_blk 

Terminal set Plus, minus, koza divide, exp, sin, cos, mylog 

Expected number of offspring Rank 89 

Survival mechanism Keep best 

Type of mutation Swap mutation 

Sampling Roulette 

Operators probability type Variable 

Population in each generation 25 

Number of generations 50 

 

5. Conclusions 

In this paper, reversible watermarking technique GP IRW-Med based on GP for protecting both the 

patient related information and associated medical image is proposed. Embedded watermark is based on 

the medical related information e.g., we have embedded EPR (Electronic patient record) as watermark, 

however embedding procedure is generic in nature.The capability of GP to learn is used to find suitable 

tradeoff between the imperceptibility and payload. GP exploits the hidden characteristics of wavelet 

coefficients to generate a mathematical expression that acts as a threshold in the companding process. 

The proposed IRW-Med technique is reversible so it lies in fragile Watermarking category.  This means 

any alteration in the watermarked image will distort the watermark. Since the proposed technique is 

fragile, the extraction processing will be no longer reversible if any filter is applied. Our proposed IRW-

Med technique shows better results as compared to GA-ReWM approach because GP intelligently 

evolves expression, which produces different values according to each of the different blocks. On the 

other hand, in case of GA-ReWM, global threshold matrix is used for embedding the watermark in the 

image. It has been observed that at given effective payload proposed IRW-Med provides improved 

imperceptibility for an image in comparison to existing reversible watermarking approaches.  
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