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Abstract—Location-based services (LBS) have become an im-
mensely valuable source of real-time information and guidance.
Nonetheless, the potential abuse of users’ sensitive personal data
by an LBS server is evolving into a serious concern. Privacy
concerns in LBS exist on two fronts: location privacy and query
privacy. In this paper we investigate issues related to query
privacy. In particular, we aim to prevent the LBS server from
correlating the service attribute, e.g., bar/tavern, in the query
to the user’s real-world identity. Location obfuscation using
spatial generalization aided by anonymization of LBS queries
is a conventional means to this end. However, effectiveness of
this technique would abate in continuous LBS scenarios, i.e.,
where users are moving and recurrently requesting for LBS. In
this paper, we present a novel query-perturbation-based scheme
that protects query privacy in continuous LBS even when user-
identities are revealed. Unlike most exiting works, our scheme
does not require the presence of a trusted third party.

I. INTRODUCTION

In this paper, we develop novel techniques to protect the pri-

vacy of service attributes (e.g., bar, hospital, church) in contin-

uous location-based-service (LBS) queries issued by a moving

user. Our techniques are computationally and communication-

wise efficient, require minimum storage footprint, and do not

affect the accuracy of LBS query answers. Most importantly,

we achieve a privacy guarantee while requiring neither a

trusted third party nor a pre-known trajectory of the user’s

future movements - a feature which none of the existing

techniques can achieve.

A. Motivation

Enabled by positioning infrastructures such as GPS,

location-based services (LBS) are becoming an increasingly

important component of not only leisure travel but also critical

applications such as emergency response, public safety, etc. A

typical example of LBS is a search engine for the nearest

Points-of-Interest (POIs) - e.g., Google Maps. In this case,

a user submits its current location and the service attribute

(i.e., POI type such as museum) of interest to an LBS server,

which returns a small number of POIs that match the user-

specified service attribute value and are geographically close

to the user’s current location. LBS is enabled by techniques

developed on multiple fronts - e.g., networking, database, and

information retrieval - and is being actively studied in these

research communities.

Despite the benefits provided by LBS, potential abuse of

users’ sensitive information by the LBS server may inhibit a

user from availing these services. Henceforth, we refer to a

malicious LBS server as the adversary. Privacy concerns in

LBS exist on two fronts: location privacy and query privacy.

Location privacy is related to the disclosure and misuse of

user’s location information. An example of its implication is

that if a user issues an LBS query from a location within

hospital premises then the adversary can associate a medical

condition with the user. Query privacy, on the other hand,

is related to disclosure of the service attribute. For example,

frequent queries for a bar/tavern may lead the adversary to

infer that the user is alcoholic.

Although distinct, location privacy and query privacy are

closely related. In particular, disclosure of location may in

turn reveal the service attribute to the adversary. Consider

the case where a user anonymously, e.g., using Anonymizer

(www.anonymizer.com) or Tor (www.torproject.org), issues

an LBS query from his/her home. Ideally, the usage of

anonymizer should dissociate the user from the service at-

tribute, i.e., provide query privacy even if the location is

disclosed. However, this is not true in practice - the adversary

can usually find publicly available “external information” (e.g.,

white pages) to link the user’s identity with his/her (home)

location, and thereby compromise the user’s query privacy.

Such inference is called “restricted space identification” [11].

Location k-anonymity is a traditional technique to provide

both location and query privacy simultaneously [1], [7], [11],

[16], [23]. With this technique, a LBS query is issued to the

LBS server via a trusted third party. The third party augments

a user’s location to a cloaking region, which geographically

covers not only the user who issues the query but also k − 1
other users, and then transmits the query to the LBS server.

Since all the k users report the same cloaking region in

their queries, the adversary cannot distinguish the location or

service attribute of any user from the received queries.

A major challenge to location k-anonymity arises from the

continuous nature of LBS queries - i.e., a user may repeatedly

issue queries with the same service attribute (e.g., an alcoholic

may query for a bar/tavern from different locations several

times a week). Chow et al. [4] found that, to handle a

continuous LBS query, the set of k users in a cloaking

region must remain grouped together over all snapshots of the

query, because otherwise the adversary may intersect users in

different snapshots to infer the commonly present user as the

query issuer. Unfortunately, it is highly unlikely for different

users in a cloaking region to travel in the same direction. Thus,

to cover the k users for a prolonged period of time (note that
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many real-world continuous LBS queries - e.g., the alcoholic

example discussed above - may last for months), the cloaking

region often becomes extremely large and therefore fails to

provide accurate answers to LBS queries.

A location obfuscation technique proposed by Xu et al. [32]

may be used to protect location privacy for continuous LBS

queries, as it utilizes a log of historical user locations rather

than the real-time location information to generate cloaking

regions. Nonetheless, this techniques offers no protection for

the service attribute - i.e., query privacy. In this paper, we

consider query privacy protection techniques that can hide the

service attribute of continuous LBS queries even when the

user’s identity has been compromised by the adversary.

B. Outline of Technical Results

Fig. 1: Privacy-Preserving LBS with DUMMY-Q

We develop DUMMY-Q, a user-centric technique for query

privacy protection which operates solely on the user side and

does not require any trusted third party. The key idea is to

confuse the adversary by issuing multiple counterfeit queries

with varying service attributes but the same (real) location,

henceforth referred to as dummy queries, along with each

real query issued by the user. Figure 1 illustrates the usage

of DUMMY-Q in LBS. While the notion of dummy queries

appears simplistic, the challenges are plenty and intricate,

especially in the scenario of continuous LBS queries:

• A critical requirement for dummy generation is that the

dummy service attribute values must be generated in a

judicious manner so as to remain consistent with the query
context - i.e., the location where query is issued. For example,

while users on a coastal location may often query for beaches,

the same service attribute value may be quite rare around

a desert area. If such adherence to the trend of queries is

shunned, then the adversary may be able to exclude certain

service attributes according to common sense and thereby

identify the real query.

• In addition, one must insert the same (dummy) service

attribute values over different snapshots of a continuous LBS

query, in order to prevent the adversary from inferring the

most frequent value as the real one (note that the real value

has to be included at all snapshots). This, combined with

the first challenge, requires the dummy insertion process to

take into consideration the user’s possible future locations, as

otherwise the dummy values inserted in the beginning may

later be excluded by the adversary according to the context

of future queries.

• One must minimize the number of inserted dummy queries

because each consumes additional overhead for issuing the

query and waiting for the answer. Note that (1) the (real

and dummy) queries have to be issued sequentially, because

many LBS servers (e.g., Yahoo!) deny queries issued with

time interval shorter than a threshold; and (2) the real query

cannot always be issued before the dummies as otherwise the

adversary may identify the real query based on timing.

• Finally, a resource challenge facing our approach is the

limited storage and computational capacity of mobile devices,

from which many LBS queries are issued and therefore

privacy protection must be enforced. In particular, the first

challenge requires the dummy insertion process to be aware

of the query context, which has to be stored locally on a

mobile device because of our design choice of a user-centric

approach. To this end, a major challenge is to store and

retrieve the query context information in an efficient manner,

i.e., with minimal storage and computational overhead.

The main technical result in the paper is Pool-Builder, a

dummy query generation algorithm which takes into account

two inputs for generating the dummy service attribute values:

the query context, i.e., the set of service attribute values which

may be issued from a given location, and the user’s motion

model, i.e., the set of locations the user may travel to in future

snapshots of the continuous LBS query. Based on the inputs,

Pool-Builder randomly selects a set of dummy service attribute

values such that, even after the exclusion of “unreasonable”

dummy values according to all future snapshots of the query,

the adversary still cannot compromise the real service attribute

value with probability exceeding a pre-determined threshold.

Hence, query privacy is guaranteed. Note that Pool-Builder can

be readily integrated with any motion model. For example, we

consider in the experiments a worst-case model which allows

the user to travel to anywhere within a certain distance.

To address the resource limitation of mobile devices, we

use a quad-tree based scheme to transform and store the

query context information as a bit stream which achieves a

high compression ratio and supports efficient retrieval. While

the quad-tree scheme was used in our recent work [24],

the difference between query context compression and the

previous work is subtle and shall be discussed in Section V-B.

C. Contribution and Scope of the Paper

The contributions of this paper are summarized as follows:

• We consider a novel problem of query privacy protection

for continuous LBS queries.

• We develop DUMMY-Q, a novel solution which protects

query privacy by generating dummy queries that take into

account query context and user motion models. Our scheme

is transparent to the service provider, i.e., multiple LBS

queries1 are answered individually and independently.

1Users with limited data plans and/or paid LBS may have to bear extra
cost(s) due to extraneous data of dummy queries. Unfortunately, a user must
make this tradeoff to use DUMMY-Q.
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• We also devise a quad-tree based scheme to significantly

reduce the storage and computational capacity requirements

of DUMMY-Q.

• Our contribution also includes a comprehensive set of

experiments which demonstrate the effectiveness of our

approach on query privacy protection.

The rest of the paper is organized as follows. We introduce

preliminaries in Section II. In Section III, we overview the

architecture of DUMMY-Q and define the privacy and utility

measures. Sections IV and V are devoted to the Pool-Builder

algorithm and the quad-tree based storage scheme, respec-

tively. Section VI presents experimental results, followed by

the related work in Section VII and conclusion in Section VIII.

II. PRELIMINARIES

We start by defining continuous LBS queries and describing

the problems of existing query privacy protection techniques

on addressing such queries. Then, we discuss preliminaries

of two inputs taken by DUMMY-Q: user motion models and

historical query trends. Finally, we define the adversary model

considered in the paper.

A. Continuous LBS Query

An LBS system involves two types of communicating

parties - the LBS users and the LBS server, which may also

be the adversary. A typical LBS user carries a GPS-enabled

mobile device and issues to the LBS server queries of the form

SELECT TOP(k) FROM POI WHERE type = Upoi ORDER

BY DISTANCE(POI .location, loc) ASC;

after obtaining its location loc. Here POI is the remote

database of POIs, k is a pre-determined parameter (e.g., 5
or 10), and Upoi is the service attribute value. Let the set of

all possible values for Upoi be Pall. Since k is fixed, we can

represent the query as a 2-tuple 〈loc, Upoi〉. The query answer

returned by the LBS server includes (at most) k POIs in the

database which match Upoi and are closest to loc.
Continuous LBS queries are recurrent over a period of time

and contain the same service attribute value. For example,

a user may continuously query for Italian restaurants while

driving from office to home, leading to a sequence of LBS

queries with the same service attribute value. We therefore

define a continuous LBS query as a sequence of its snapshots:

Definition II.1. (Continuous LBS Query) A continuous LBS
query Q consists of a sequence of 2-tuples q1 : 〈loc1, Upoi〉,
q2 : 〈loc2, Upoi〉, ... qn : 〈locn, Upoi〉, such that ∀i ∈ [1, n−1],
〈loci, Upoi〉 is issued before 〈loci+1, Upoi〉.
B. Motion Models

An important input to DUMMY-Q is the user’s motion

model - i.e., a prediction of locations from which the user

may issue future snapshots of the continuous query. Formally,

we partition the geographical region under consideration into

a grid R with M cells C1, . . . , CM ∈ R. We shall ex-

plain details of the partitioning process in Section III-A.

For a continuous LBS query, the motion model predicts

C = {Ct1 , . . . , Ctn}, where Cti is the cell which loci is

predicted to be in. We consider three types of motion models:

1) Precise Trajectory: A user’s trajectory C is known in

advance before the first snapshot of a continuous LBS query is

issued. This model applies when the user enters its destination

to the mobile device (and issues LBS queries along the route).

2) Worst-Case Model: No information about the user’s

trajectory is available - i.e., random-world assumption applies

so ∀i ∈ [1, n], Cti is uniformly distributed over all cells in R.

The alcoholic example discussed in Section I is a typical sce-

nario where this model applies. Since there can be numerous

locations from which an alcoholic queries for bar/tavern over

a period of months, one can make no assumption but that the

locations are within the boundary of an area (e.g., city).

3) Predictive Trajectory Model: The model generates a

probability distribution of C based on many factors, e.g.,

user’s current location, speed, time-of-day, weather, traffic, etc.

Please refer to Section VII for a brief discussion of the existing

work for this model.

C. Query Context

A natural method to determine whether a query may be

issued from a given location is to check the historical query

logs - i.e., queries issued in the past. Specifically, we consider

the log as a set of 2-tuples 〈location, service attribute value〉.
One can compute from the log the frequency of a service

attribute value Upoi for a given cell Ci ∈ R, i.e., the number

of historical queries issued from the cell which feature Upoi.

We denote the frequency by λ(Upoi, Ci). In practice, if no

such historical log is available, a simple way to approximate

λ(Upoi, Ci) is to count the number of POIs with type Upoi

within Ci, as a user is likely to query for POIs that reside

around its location.

D. Privacy Concerns: The Adversary Model

The adversary we consider in the paper is a malicious

LBS server which aims to associate a user’s identity with

the service attribute value Upoi specified by the user. Note

that when the LBS server receives a user-issued query, it

learns not only the payload information, i.e., loci and Upoi,

but also control information such as the user’s IP address

or account information (if login is required for using the

LBS). As discussed in Section I, for the purpose of this

paper, we consider the worst-case scenario where the user’s

identity is exposed to the adversary through such control

information. Another worst-case assumption we make is that

loci is transmitted to the LBS server without revision - so

as to guarantee that the accuracy of query answer is not

affected. Note that this worst-case scenario represents the state

of practice of existing LBSes.

One can see that the adversary can identify all n snapshots

of the continuous LBS query issued by the user, and link

each of them with its exact issuing location. The adversary

successfully intrudes privacy if it can infer the real value of

Upoi from the n snapshot queries. In addition to the queries,

the adversary also has pre-knowledge of the query context
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information - i.e., λ(Upoi, Ci) for all possible values of Upoi

and Ci ∈ R.

III. OVERVIEW OF DUMMY-Q

A. Requirements of Dummy Insertion

DUMMY-Q issues queries with dummy service attributes

along with the real query. For each real query 〈loci, Upoi〉
issued by the user, we denote the corresponding set of dummy

queries by 〈loci,Dpool〉 where Dpool ⊆ Pall is the set of

dummy service attribute values chosen by DUMMY-Q. Recall

from Section I that the dummy values must be consistent

across different snapshots of the continuous LBS query. Thus,

Dpool does not change over different values of i - i.e., each

value in Dpool is issued as a separate (dummy) LBS query

during every snapshot of the continuous query.

Recall from Section I that Dpool must satisfy two require-

ments:

• Utility Requirement: it must be small enough so as not to

incur excessive overhead for LBS query processing, and

• Privacy Requirement: the inserted dummy service at-

tribute values should not be identified and removed by

the adversary according to the query context information.

To properly address the privacy requirement, it is critical to

understand how the adversary may distinguish a dummy query

from the real one. Intuitively, the adversary considers a query

〈loci, U〉 as dummy if the number of historical queries which

feature U and are issued from the cell Cti (which contains

loci) is below a pre-determined threshold. Nonetheless, a key

factor here that one must rigidly analyze is how large an area

should Cti cover - e.g., whether it is uniform across the area

R or has a varying size depending upon its location.

Our key observation here is that the size of a cell Ci ∈ R
should vary according to the density of historical queries

issued from the cell - e.g., the cell size should be smaller

at a downtown area than a rural area. Intuitively, the historical

query distribution may change significantly over a short dis-

tance in a downtown area. For example, the frequency for “art

gallery” to be queried from Greenwich Village, Manhattan,

NYC may be much higher than that from Wall Street 2 miles

away. To accurately capture the query context information in

this case, one needs to define the cell to be smaller than 2×2
miles. On the other hand, such a cell may be too small for a

rural area as it might not include any historical query at all.

More generally, the cell size assignment should make each

cell contain a roughly equal number of historical queries,

such that the query frequency λ(Upoi, Ci) is approximately

proportional to the probability for Upoi to be specified in an

LBS query issued from Ci. We shall describe the detailed

construction of Ci in Section V-A.

Given a design of C1, . . . , CM , we are now ready to

formally define how an adversary can distinguish a dummy

service attribute value from a real one. In particular, the adver-

sary concludes U to be a dummy iff there exists i ∈ [1, n] such

that λ(U,Cti) < σ, where σ is a pre-determined parameter

which we refer to as the popularity threshold. The objective

of DUMMY-Q is to ensure that no dummy value in Dpool can

be identified by the adversary as a dummy.

B. System Architecture of DUMMY-Q

Figure 2 depicts the architecture of DUMMY-Q. It consists

of four components, trajectory prediction, POOL-BUILDER,

grid/context retrieval, and query generation.

Fig. 2: System Architecture of DUMMY-Q

The trajectory prediction component receives as input the

user’s current location and, optionally, its previous trajectory

from the mobile device’s positioning infrastructure. The ob-

jective is to generate a set of cells C̃ ⊆ R which the user

is predicted to travel to and issue future snapshots of the

continuous LBS query from. The key technical part of this

component is the motion model. Again, while we shall test

all three types of motion models discussed in Section II-B

in the experiments, the design of these motion models is not

the focus of this paper. Note that to transform the predicted

trajectory to a set of cells, the trajectory prediction component

needs to learn the cell design (i.e., how R is partitioned into

C1, . . . , CM ) from the grid/context retrieval component.

The POOL-BUILDER component receives the set of pos-

sible cells from the trajectory prediction component, and

produces Dpool as its output. To do so, it has to take into

account the query context information by learning λ(U,Ci)
from the grid/context retrieval component.

As such, the responsibility of the grid/context retrieval

component includes the storage and retrieval of grid partition

as well as query context information. Due to the resource

constraint of mobile devices, it must minimize the required

storage capacity and the retrieval overhead.

Finally, the query generation component takes Dpool as

input from the POOL-BUILDER component, and generates

the corresponding dummy queries which are then issued to

the LBS server along with the real query (in a random order).

The query generation component receives from the LBS server

answers to all issued queries, and then selects the answer to

the real query and returns it to the user. Note that the user

can be oblivious to the underlying query privacy protection

process, and the query accuracy is not affected.

One can see that POOL-BUILDER and grid/context re-

trieval are the two main components of DUMMY-Q. We shall

describe their design in the next two sections, respectively.

IV. POOL-BUILDER COMPONENT

In this section, we develop POOL-BUILDER, our algorithm

for generating dummy service attribute values Dpool. We first

1713



define the utility and privacy guarantees POOL-BUILDER

aims to achieve, and then describe its detailed design.

A. Utility and Privacy Guarantees

Utility Guarantee: Since the query processing overhead is

vital to the usability of DUMMY-Q, we maintain a Φ-query
utility guarantee that the number of dummy values |Dpool| ≤
Φ− 1, i.e., the number of (real and dummy) queries issued to

the LBS server at each snapshot is at most Φ. Note that Φ is

a pre-determined parameter.

Privacy Guarantee: Ideally, we would like to ensure that the

adversary cannot distinguish between any of the Φ received

values - i.e., for POOL-BUILDER to achieve the following

Φ-diversity privacy guarantee.

Definition IV.1. For a given set of predicted cells C̃, Φ-
diversity is achieved iff at least Φ values in Dpool exceed the
popularity threshold σ over all cells in C̃ - i.e.,

|{U |U ∈ Dpool and ∀Ci ∈ C̃, λ(U,Ci) ≥ σ}| ≥ Φ. (1)

A tacit assumption made in the definition is that the real ser-

vice attribute value, i.e., Upoi, exceeds the popularity threshold

over all predicted cells in C̃. This is a reasonable assumption

because otherwise the cell should not be predicted as a possible

location from which a future snapshot is issued.

Note that Definition IV.1 is quite stringent when combined

with the Φ-query utility guarantee, because all values in Dpool

must then exceed the popularity threshold over all cells in C̃.

This may not be achievable for certain real-world scenarios -

e.g., although rare, there might exist a cell which has 95% of

its historical queries dominated by a single service attribute

value. To address such cases, we consider a relaxation of

Φ-diversity privacy guarantee by introducing an additional

parameter δ ∈ [0, 1], the factor of commonality. The following

(δ,Φ)-diversity guarantee requires the existence of at least

δ · |C̃| predicted cells, where |C̃| is the number of cells in C̃,

over which Φ values in Dpool exceed the popularity threshold.

Definition IV.2. Dpool achieves (δ,Φ)-diversity iff ∃C̃0 ⊆ C̃
such that |C̃0| ≥ δ · |C̃| and

|{U |U ∈ Dpool and ∀Ci ∈ C̃0, λ(U,Ci) ≥ σ}| ≥ Φ. (2)

Note that (δ,Φ)-diversity guarantee is reduced to Φ-

diversity when δ = 1.

B. Algorithm POOL-BUILDER

The input to POOL-BUILDER includes |Pall| sets of cells

K1, . . . ,K|Pall| which satisfy ∀i ∈ [1, |Pall|],
Ki = {Cj |Cj ∈ R, λ(Ui, Cj) ≥ σ}. (3)

For given parameters Φ and δ, the objective is to find a subset

of {K1, . . . ,K|Pall|} with size Φ, denoted by Kg1 , . . . ,KgΦ ,

such that
∣∣∣∣∣

Φ⋂

i=1

Kgi

∣∣∣∣∣ ≥ δ · |C̃|. (4)

If such a subset cannot be found, then the dummy inser-

tion process fails, and DUMMY-Q has to block the real

query from being issued. We first prove that this SUBSET-

INTERSECTION problem is NP-complete through reduction

from the BALANCED BICLIQUE problem [15].

Theorem IV.1. SUBSET-INTERSECTION is NP-complete.

Proof: It is easy to see that SUBSET-INTERSECTION

is in NP. To prove NP-completeness, we consider reduction

from BALANCED BICLIQUE which, for a given bipartite

graph 〈V,E〉, decides if it contains a biclique subgraph with

k vertices on each side - i.e., whether there exists two disjoints

sets of k vertices A,B ⊆ V , such that ∀a ∈ A and

b ∈ B, (a, b) ∈ E. For a given bipartite graph 〈V,E〉,
let the two independent subsets of vertices be V1 and V2.

Construct |V1| service attribute values and |V2| cells to form

Pall and R, respectively. If the two vertices corresponding to

U and C are connected in the graph, then set λ(U,C) = σ.

Otherwise λ(U,C) = 0. To decide whether a k-balanced-

biclique subgraph exists, set Φ = k and δ = k/|V2|. One can

see that a k-balanced-biclique exists iff there exists a subset

of {K1, . . . ,K|Pall|} with size Φ such that (4) holds. Since

BALANCED BICLIQUE is NP-complete [15], SUBSET-

INTERSECTION is NP-complete.
To address this problem, we devise POOL-BUILDER on

heuristic. In particular, we consider a greedy algorithm which

chooses Kg1 , . . . ,KgΦ in order, and selects the value of Kgi

which maximizes | ∩i−1
j=1 Kgj |. We shall demonstrate in the

experiments section the effectiveness of POOL-BUILDER.

C. Limitations
We now discuss two known limitations of POOL-

BUILDER. Consider a scenario where the server found match-

ing results only for the dummy service attribute values but not

the real value Upoi. The user might choose to issue another

query (e.g., by broadening the service attribute from “Chinese

restaurant” to “Asian restaurant”) until matching results for

Upoi are returned. In this case, the adversary may infer from

the timing of received queries that the real query in the

previous batch must be the one that returns empty - thereby

breaching query privacy. A simple solution is to block the

second user query from being issued at the same location.

Nonetheless, this degrades the utility of LBS.
Another limitation of POOL-BUILDER arises from the

following scenario: a user issues an LBS query from the

location of a POI that was recently returned in the result of

a previous query. In this case, the adversary can infer that

the service attribute of the previous query is highly likely to

be the type of POI on the user’s current location. A possible

solution to this problem is location perturbation - e.g., the

perturbation scheme proposed in our prior work [24] can be

readily integrated with DUMMY-Q as it also does not require

a trusted third-party.

V. GRID/CONTEXT RETRIEVAL COMPONENT

Recall that the responsibility of grid/context retrieval com-

ponent is two-fold: One is to determine the cell Ci ∈ R a
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given location loc falls into. The other is to compute query

context - i.e., retrieve λ(U,Ci) which is the frequency of a

service attribute value U over cell Ci. We consider these two

tasks respectively in the following two subsections.

A. Storage and Retrieval of Grid Partition Information

Recall from Section III-A that the objective of grid par-

titioning is to ensure that each cell has a roughly constant

number of historic queries. To achieve this objective, we

consider a recursive partitioning technique as follows: We

start with the entire region R being a cell. We recursively

partition a cell into four equal-sized cells iff the number of

historical queries issued from within the original cell is greater

than a pre-determined threshold. One can see that each cell

contains roughly σ or fewer historic queries. Figure 3 depicts

an example of such a partition.

As demonstrated in Figure 3, the partitioning scheme can

be readily represented as a quad-tree. In particular, each node

in the tree has only two possibilities: either it is a leaf node,

or it contains 4 children. Thus, to efficiently store the tree,

we conduct a breath-first traversal of the tree, storing 1 bit for

each node indicating whether it is a leaf node or not. To make

this storage scheme scalable to a very large tree, we consider

a divide-and-conquer approach with which each file stores a

subtree with depth of at most h. Figure 3 shows an example

of three divided files when h = 3. One can see that with the

divide-and-conquer approach, the size of each file is at most

(4h−4)/3 bits. The total storage overhead is O(M+h·M/4h),
where M is the total number of cells in the grid. Note that

the second item is due to the requirement of storing the size

for each file, a cost of the divide-and-conquer approach.

File1

File2 File3

File1: 011001111011
File2: 1111
File3: 01111111

: U is not frequent : U is frequent

U File1: 11011101
U File2: 1111
U File3: 1111011

Fig. 3: Example of Grid/Context Storage

In order to retrieve the partition information - i.e., to identify

the cell id corresponding to a given location - one needs to

conduct a drill-down over the quad-tree. In particular, we

start from the root node, and find its child that covers the

given location. We repeat this process until reaching a leaf

node which indicates the cell id corresponding to the location.

During this process, we access the files storing all nodes

on the path from the root to the cell and reconstruct their

corresponding subtrees. One can see that the retrieval process

requires access to at most d/(h−1) files, where d is the depth

of the tree, leading to time complexity of O(4h · d/h).
B. Storage and Retrieval of Query Context Information

The storage of query context information can be done along-

side the grid partitions. In particular, for each service attribute

value U , we only need to store 1-bit information for each leaf

node in the quad-tree, indicating whether more than σ historic

queries of type U have been issued from the cell. This can

also be integrated with the divide-and-conquer approach, so

that for each file storing the partitioning information, there is

a corresponding file for each service attribute value U . An

example is shown in Figure 3, with black (resp. white) nodes

representing λ(U,Ci) < σ (resp. ≥ σ). One can see that the

storage overhead for query context information is O(M) for

each service attribute value, where M is the total number of

cells in R. The quad-tree scheme was used in our prior work

[24] for storing road density information. A key difference

here is the divide-and-conquer approach.

VI. EXPERIMENTS

A. Experimental Setup

Datasets: We evaluated the performance of DUMMY-Q over

the state of Connecticut (5,543 sq. miles), USA. Recall from

Section V-A that to partition R we ideally need historical

query logs to compute the total number of queries issued from

a cell. To simulate such information, we consider the number

of historic queries in a cell to be proportional to its road

density - i.e., the total length of roads in the cell. Intuitively,

similar to the number of historic queries, road density is

higher in downtown areas than rural (or suburban) ones. The

road density information for Connecticut was retrieved from

the second edition of the Topological Integrated Geographic

Encoding and Referencing (TIGER)2 system published by the

US Census Bureau in 2006.

To simulate a continuous LBS query, one needs to gener-

ate both the service attribute value and the location for all

snapshots. We randomly generated the service attribute value

from 60 possible values according to Uniform and/or Zipf

(exponent values 1.0 and 1.5) distributions. We chose these

two distributions because they are often used to model real-

world phenomena. To generate the location snapshots, we used

Brinkhoff’s Generator [2] to produce 3 million user trajectories

for training (i.e., for computing the historic frequencies of

each service attribute value) and 200,000 ones for testing the

performance of DUMMY-Q.

With our quad-tree based storage scheme, the grid partition

and query context information is encoded into a file of 659KB.

Performance Metrics: Since DUMMY-Q does not affect

the accuracy of query answers, we considered two perfor-

mance metrics, both for privacy protection: Query Success
Rate (QSR) depicts the probability for POOL-BUILDER to

successfully generate Dpool which achieves a given (δ,Φ)-
diversity guarantee. The Average size of Candidate Set (ACS),

on the other hand, captures the average number of service

attribute values from which Φ − 1 values can be chosen

into Dpool to achieve (δ,Φ)-diversity guarantee. Intuitively,

ACS+1 indicates an upper bound on Φ for a given factor of

commonality δ.

Parameters: We varied four parameters in our experiments:

i) Factor of Commonality, i.e., δ, with a default value of 0.9,

2http://www2.census.gov/geo/tiger/tiger2006se/CT/
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Fig. 4: Comparative study of Motion Models

ii) Size of Dpool, i.e., Φ, with a default value of 7, iii) Length

of user’s trajectory (in miles), with a default value of 5 miles,

and iv) Popularity threshold, i,e. σ, with a default value of 20.

In addition, we make our evaluation thorough by varying total

number of service attributes values, i.e, |Pall|.
B. Experimental Evaluation

Most of our experiments were performed with the precise-

trajectory motion model (Refer Section II-B1). Nonetheless,

we start by presenting a comparative evaluation of three

different types of motion models where predictive trajectories

are generated using historical precise trajectories.

1) Comparing Motion Models: In this section we perform

comparative study of our motion models. Intuitively, due to the

random-world assumption in the worst-case model, attaining

(δ,Φ)-diversity guarantee becomes much more challenging

as compared to case where precise-trajectory is known. This

intuition clearly resounds in Figures 4(a), 4(b) and 4(c). In

addition, it is evident from the aforementioned figures that

the predictive-trajectory model performs (much) better as

compared to the worst-case model.

An interesting observation can be made from Figure 4(c)

where varying number of service attribute values does not

induce any significant change/degradation in the the QSR for

any of the motion models. Thus, it can be concluded that

DUMMY-Q is readily adaptable if new service attribute values

are introduced or gain popularity in the LBS market.

Figure 4(d) demonstrates the degradation of QSR for

predictive-trajectory model when larger number of precise-

trajectories are involved. It can be understood that if the

predictive-trajectory model involves a very large number of

precise-trajectories in its construction, then the achieved QSR

would witness near-equal degradation as in the worst-case

model.

2) Effect of Factor of Commonality (δ): Recall from Sec-

tion IV-A that δ was introduced to relax the stringent require-

ment posed by the Φ-diversity guarantee. In a nutshell, the

higher the δ the greater the challenge to guarantee (δ,Φ)-
diversity. It can be clearly observed from Figure 5(a) that

even for zipf(1.5) query distribution with the most stringent

privacy requirement (i.e., δ = 1) (δ,Φ)-diversity guarantee, a

(1.0, 5+1)-diversity guarantee is attainable, which perhaps is

“reasonable” in practice.

Figure 5(b) depicts the relationship between δ and ACS

for different values of |Pall|. Even in this figure (1.0, 5 + 1)-
diversity guarantee is attained for all the values of total number

of service attributes. Figure 5(c) reaffirms the usability of

DUMMY-Q. In particular, when δ = 0.8 and query distribution

is zipf(1.5), for at least 75% (i.e., for 150k) trajectories,

dummy queries could be successfully issued. Here Φ was set

to 7.

We elaborately demonstrate the effect of δ on QSR for

various values of Φ in Figure 5(d). It can be observed that

the degradation of QSR is more pronounced only when δ =

1.0 for both uniform and zipf distribution of queries. From

the study in this section it can be concluded that DUMMY-Q

provides “reasonable” usability even for higher values of δ.
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Fig. 5: Effect of Factor of Commonality

3) Effect of Size of Dummy Pool (Φ): As previously ob-

served in Figure 5(d), increase in value of Φ causes degra-

dation of QSR. Nonetheless, Figure 6(a) demonstrates that

such degradation is more-or-less similar for different values

of |Pall|. As stated previously in Section VI-B1, this behavior

depicts our system’s adaptability to change/increase in |Pall|.
We also tested for effect of Φ on QSR for varying length of

user’s trajectory (in miles). We will discuss in detail the effect

of length of user’s trajectory on ACS and QSR in the following

section. Nonetheless, it can be clearly observed from Figure

6(b) that decreasing trend (for zipf(1.5)) in QSR with larger

Φ is consistent over trajectories of various lengths.

4) Effect of Trajectory Length: Intuitively, it should be

more challenging to attain (δ,Φ)-diversity guarantee for a

longer trajectory. The reason in simple - a longer trajectory

comprises more cells, i.e., larger |C̃|. This intuition is con-

firmed from all the figures in this section. In Figure 7(a),
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it can be clearly observed that ACS drops, marginally for

uniform distribution, and highly for zipf distribution, as length

of trajectory increases. Here Φ was set to 7. Figure 7(b) depicts

the consistency of drop in ACS with increasing length of

trajectory for different values of |Pall|.
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Figure 7(c) depicts the previously observed behavior of

degradation of QSR is more-or-less the same for different

values of |Pall|. In addition, we tested for varying values of δ.

Figure 7(d) depicts this experiment. It can be clearly observed

in Figure 7(d) that setting δ to 1.0 causes rapid degradation

of QSR.
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Fig. 8: Effect of Popularity Threshold

5) Effect of Popularity Threshold (σ): By intuition, increas-

ing the popularity threshold σ should make it more difficult to

achieve higher values of ASC and QSR. In an extreme case,

setting σ = 0 should enable all service attributes in Pall to

be included in Dpool. Contrarily, a very high value σ might

prohibit the generation of Dpool even if δ and Φ are set very

low. Figures 8(a) and 8(a) demonstrate the degradation in ACS

and QSR respectively for increasing value of σ.

VII. RELATED WORK

Location obfuscation aided by query anonymization has

been the traditional approach ( [1], [4], [5], [8]–[11], [14], [16],

[22], [23], [25]–[27], [30]–[32], [35]) to preserving location

and/or query privacy. While most works in this realm utilize

a trusted middleware, many other works exist otherwise ( [5],

[8]–[10], [24], [33]). While works in [5], [9], [10] employ

spatial cloaking using P2P infrastructure, technique presented

in [24] employs user-centric protection using location pertur-

bation, and the work in [8] employs cryptographic techniques

using private information retrieval (PIR) protocol.

Albeit most of the techniques mentioned above are limited

to snapshot queries, many works investigate privacy issues in

continuous LBS. Pioneering work [12] presented by Gruteser

et al., propose to identify sensitive and non-sensitive areas

to protect location privacy in continuous location tracking

applications. Xu et al. in [31] argued that spatial intersection

of different cloaking regions and the distribution of users in

them indicates user’s true location. They proposed entropy-

based measure to calculate the level of anonymity achieved.

Chow et al. in [4] proposed the property of memorization
for query privacy is continuous LBS. Here, they suggest that

successive cloaking regions must also include locations of all

users cloaked previously. This property may however result

in very large cloaking regions thus inducing high processing

overhead for the server. Since the requirements of continuous

location k-anonymity are very stringent, use of historical user-

locations was proposed in [32] and [22], in order to generate

relatively smaller cloaking regions.

However, it was argued in [29] that if all queries in the

user’s anonymity set have the same service attribute value,

then query privacy will be breached. To this end, the authors

proposed to apply the well-known principle of �-diversity

[21] in data privacy. In specific, it was proposed that the

cloaking region to be sent in the LBS request must comprise

of multiple queries that have diverse service attribute values,

which are categorized as sensitive and non-sensitve. Liu et al.

in [19] however argued over the subjectiveness of the service

attributes being sensitive and non-sensitive. To this end, they

categorize service attribute values (e.g., burger and pizza can

be categorized as fast food) and generate anonymity sets with

queries belonging to diverse categories. However, both these

techniques focus only on snapshot queries.

Query privacy issues in continuous LBS are similar to

challenges in incremental datasets [3] or re-publication of data

[28]. Specifically, besides the required consistency over recur-

rent user anonymity sets, maintaining the same set of (diverse)

service attributes must be enforced. Recent work by Dewri et

al. [6] utilizes the principle of m-invariance [28] to generate

spatial cloaking regions to realize the aforesaid enforcement.

To generate the cloaking regions, they adopted and modified

HilbertCloak algorithm introduced in [16]. Although effec-

tive, their technique requires a trusted middleware/anonymizer.
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Moreover, the aforesaid enforcement results in larger cloaking

regions and higher anonymization times.

Even though the use of dummies is not popular in LBS

privacy literature, few works ( [17], [20], [34]) do utilize

them. However, differently from our scheme, these works send

dummy locations to the LBS server. It was argued by You et

al. in [34] that long term tracking of user’s trajectory can lead

to privacy breach even when dummy locations are utilized. To

this end, it was proposed that dummy trajectories cross path

with original trajectory, which results in increase in number of

possible routes taken by the user. Similar work was presented

by Hoh et al. in [13], where path perturbation is performed

by crossing paths of users when they are nearby each other.

Destination prediction of a moving user will be a valuable

augmentation to our current work since precise-trajectories

(refer Section II-B1) may not necessarily always be used.

Some works to this end exist [18], [36]. Krumm et al. in [18]

presented methodology that considers the likelihood of users

visiting previously unobserved locations based on trends in

the survey data, e.g., driving efficiency, trip times etc., and
background properties of locations, e.g., ground and water

cover. Ziebart et al. in [36] presented a system title PROCAB

that predicts destination(s) based on a given user’s partially

traveled route and data collected from 25 taxi cab drivers.

VIII. CONCLUSION

In this paper we have initiated an investigation of the protec-

tion of query privacy for continuous LBS queries. We proposed

DUMMY-Q, a dummy query generation scheme which takes

into account the user’s motion model and the query context

information as identified from the historical query logs. We

proved that the problem of achieving both utility and privacy

guarantee for dummy insertion is NP-complete, and devised

POOL-BUILDER on heuristic to generate the dummy queries.

We also developed a quad-tree based storage/retrieval scheme

for query context information to significantly reduce the stor-

age and computational overhead of DUMMY-Q. Finally, we

described a comprehensive set of experiments that demonstrate

the effectiveness of our approach over a real-world map and

various motion models, including a synthetic traffic generator.
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