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Abstract--The modular multilevel converter (MMC) is 

attractive for medium- or high-power applications because 

of the advantages of its high modularity, availability, and 

high power quality. Reliability is one of the most important 

challenges for the MMC consisting of a large number of 

power electronic devices. The diode open-circuit fault in 

the submodule (SM) is an important issue for the MMC, 

which would affect the performance of the MMC and 

disrupt the operation of the MMC. This paper analyzes the 

impact of diode open-circuit failures in the SMs on the 

performance of the MMC and proposes a protection 

scheme for the MMC under diode open-circuit faults. The 

proposed protection scheme not only can effectively 

eliminate the possible caused high voltage due to the diode 

open-circuit fault but also can quickly detect the faulty 

SMs, which effectively avoids the destruction and protects 

the MMC. The proposed protection scheme is verified with 

a downscale MMC prototype in the laboratory. The results 

confirm the effectiveness of the proposed protection 

scheme for the MMC under diode open-circuit faults. 

 
Index Terms— Diode faults, modular multilevel 

converters (MMCs), open-circuit fault, protection. 

I.  INTRODUCTION 

Modular multilevel converters (MMCs) have become 
increasingly attractive for high-voltage and high-power 
applications with the advantages such as the excellent output 
voltage waveforms, very high efficiency [1-3], etc. A 
multilevel voltage can be produced with the flexible operation 
of the MMC while reducing the average switching frequency 
without compromising the power quality [4]. Recently, due to 
the easy construction, assembling, and flexibility in converter 
design, the MMC becomes promising for various applications 
such as high-voltage direct current transmission [5-7], high 
power motor drives [8], [9], and electric railway supplies [10]. 

Reliability is one of the most important challenges for the 
MMC, where it is desired that MMC can continue operating 
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without any interruption, even though some of the submodules 
(SMs) malfunction [11], [12]. The MMC consists of a large 
number of power electronic devices such as insulated gate 
bipolar transistor (IGBT), diode, etc., and each device could 
be a potential failure point [13], [14]. These power electronic 
device faults may distort the voltage and current, even destroy 
the MMC and disrupt its operation [14-18]. Therefore, an 
effective protection scheme is essential for the MMC after the 
fault occurrences. 

To date, a number of studies have been reported for 
improving reliability of power converters under power 
electronic device faults such as short-circuit fault and open-
circuit fault. The hardware-based methods with the additional 
sensors are mainly used for short-circuit protection of the 
switch [19], [20], where the switch is shut down within a short 
period of time to protect the power converter in case of any 
short-circuit detection. The software-based methods such as 
signal processing-based approaches and model-based 
approaches are widely used for power electronics devices 
open-circuit fault based on the converter fault characteristics 
such as distorted voltage and current [19-23]. As to the MMC, 
a sliding mode observer is presented and investigated to detect 
the faulty SMs in the MMC under switch open-circuit faults 
[15]. A Kalman filter is used to detect the faulty phase and a 
method relying on the SM capacitor voltage is presented to 
locate the faulty SMs within the faulty phase due to switch 
open-circuit fault in the MMC [16]. A fault detection method 
that detects the fault by means of state observers without using 
any additional sensors is proposed in [12]. A resilient 
framework is presented for fast SM fault diagnosis and 
effective restoration in MMCs [17]. A clustering algorithm 
based method and a calculated capacitance based method are 
presented for the faulty SMs with open-switch failures in the 
MMC [18]. The supervisory sensor is presented for the fault 
detection of the semiconductor switching devices [23]. The 
above studies are mainly focused on the switch faults in the 
MMC. 

The diode open-circuit fault may occur owing to various 
reasons, e.g. overcurrent, high temperature fatigue, and 
mismatch of coefficients of thermal expansion between silicon 
and aluminum [24-26] would result in bond wire lift-off failure 
and cause diode open-circuit fault, which is one of the 
important fault issues for MMCs [14] and may seriously affect 
the performance of the MMC. In this paper, the fault 
characteristics of the MMC under diode open-circuit fault are 
analyzed and an effective protection scheme is proposed. The 
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proposed scheme not only can avoid the possible caused high 
voltage due to the open-circuit diode but also can quickly 
detect the faulty SMs, which avoids the destruction and 
protects the MMC. The effectiveness of the proposed 
protection scheme is verified based on the experimental test in 
the laboratory. 

This paper is organized as follows. Section II presents the 
basics of the MMC. Section III and IV analyzes the fault 
characteristics and proposed the protection scheme for the 
MMC under diode open-circuit faults, respectively. The 
system experimental tests are presented in Sections V to show 
the effectiveness of the proposed protection scheme. Finally, 
the conclusions are presented in Section VI. 

II.  DESCRIPTION OF MMCS 

Fig. 1(a) shows a three-phase MMC, which is composed of 
six arms. Each arm consists of n identical SMs and an arm 
inductor Ls. The upper arm and the lower arm in the same 
phase comprise a phase unit. Fig. 1(b) shows a SM, which 
contains a half bridge, a capacitor Csm, and a bypass switch Sw. 
Each half bridge is composed of a top IGBT/Diode (Tt/dt) and 
a bottom IGBT/Diode (Tb/db) [27-30]. The Sw is used to 
bypass the SM in case of a failure [31]. 
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Fig. 1.  (a) Block diagram of a three-phase MMC. (b) SM unit. 

In normal operation, each SM shown in Fig. 1(b) is 
controlled with a switching function S, which is defined as 

                   







1 & 0     ,0

0 & 1     ,1

bt

bt

gg

gg
S                             (1) 

where gt and gb are gate signals for Tt and Tb, respectively. The 
gate-source voltage of the Tt (Tb) is below the threshold 
voltage when gt=0 (gb=0) and above the threshold voltage 
when gt=1 (gb=1) [32]. Normally, each SM is operated with 
four modes depending on the arm current direction and S, as 
shown in Table I. Suppose that the arm current iuj and ilj (j=a, 
b, and c) flow direction in Fig. 1 is defined as the positive 
direction, the SM works in mode 1 when iuj (ilj) is positive and 
S=1, where the output voltage usm equals uc and the capacitor 
Csm is charged and uc is increased. The SM works in mode 3 
when iuj (ilj) is negative and S=1, where usm equals uc and Csm 
is discharged and uc is decreased. In mode 2 and 4 with S=0, 
usm equals 0 and Csm is bypassed and uc is unchanged, 
irrespective of the arm current flow direction [33]. 

TABLE I 
OPERATION MODES OF THE SM 

Mode 
current 
iuj or ilj 

S gt gb usm 
Capacitor 
Csm state 

Capacitor 
voltage uc 

1 ≥ 0 
1 1 0 uc Charge Increased 

2 0 0 1 0 Bypass Unchanged 

3 
< 0 

1 1 0 uc Discharge Decreased 

4 0 0 1 0 Bypass Unchanged 

In Fig. 1, the arm current iuj and ilj can be described as 
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where ij is the AC current of phase j. idiff_j is the inner 
difference current of phase j, which contains the dc component 
idc/3 and the circulating current i2f_j in phase j, as (3) [27]. 
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According to [34], the voltage relationship in the MMC is 
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with 
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                                   (5) 

where Vdc is the dc bus voltage. usmuj_i and usmlj_i are the i-th SM 
output voltage in the upper and lower arms of phase j, 
respectively, as shown in Fig. 1. uulj and ullj are the upper and 
lower arm inductor voltage of phase j, respectively. 

III.  ANALYSIS OF MMCS UNDER DIODE FAULTS 

Fig. 2 shows two types of possible diode open-circuit faults 
in the k-th SM of upper arm of phase A. 
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                                (a)                                                         (b) 
Fig. 2.  Diode faults in the k-th SM. (a) Type I fault. (b) Type II fault. 

A.  Type I Fault Situation 

Fig. 2(a) shows the Type I fault, where open-circuit fault 
occurs in the top diode dt. Tables II and III show the four 
modes of the SM under Type I fault. The SM works as normal 
in modes 2~4. In mode 2 (iua≥0 and S=0), iua circulates 
through Tb with ut=uc, ub=0; in mode 3 (iua<0 and S=1), iua 
circulates through Csm and Tt with ut=0, ub= uc; in mode 4 
(iua<0 and S=0), iua flows through db with ut=uc, ub=0. 
However, in mode 1, iua can not flow through the faulty dt 
when S is changed to 1 (gt=1and gb=0) under iua≥0. 

TABLE II 
SM CHARACTERISTICS UNDER FAULT SITUATIONS 

Mode iua S 

iua flows through 

Normal 
operation 

Type I fault Type II fault 

1 ≥ 0 
1 dt & Csm 

High -ut and ub  
(ub >|ut|) 

dt &Csm 

2 0 Tb Tb Tb 

3 

< 0 

1 Csm &Tt Csm &Tt Csm &Tt 

4 0 db db 
High ut and -ub  

(ut >|ub|) 

TABLE III 
SM VOLTAGES UNDER FAULT SITUATIONS 

Mode iua S 

Normal 
operation 

Type I fault Type II fault 

ut ub ut ub ut ub 

1 ≥ 0 
1 0 uc <0 >uc 0 uc 

2 0 uc 0 uc 0 uc 0 

3 
< 0 

1 0 uc 0 uc 0 uc 

4 0 uc 0 uc 0 >uc <0 

According to (4), in mode 1, the voltage in phase A can be 
described as (6) at the initial time t01 when S is changed to 1. 

)()()()( 010101
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(6) 

Suppose that the iua can be blocked by switching off Tb in 
the k-th SM when S is changed to 1 into mode 1, and normally 
the turn-off time Δt of the IGBT is around 1 μs [32], a high 
voltage uula would be caused on the upper arm inductor of 
phase A, as 

                       t

ti
Ltu ua

stula 


)(
)( 01

1                              (7) 

where iua(t01) is the upper arm current at the time t01. 
According to KVL [35], the voltage usmua_k imposed on the k-
th SM in phase A can be obtained as: 
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(8) 

Except for the k-th SM output voltage usmua_k, assuming that 
the other SM output voltages and the lower arm inductor 
voltage ulla in phase A are not changed during the very short 
time Δt, substituting (6) and (7) into (8), there is 
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       (9) 

Normally, the arm inductance Ls is selected around the 
order of mH [4-8], [27-30]. According to (9) and neglecting 
usmua_k(t01) and uula(t01), a high voltage usmua_k would be caused 
under various Ls and iua(t01), as shown in Fig. 3. It can be 
observed that usmua_k may reach a very high voltage if the arm 
current can be blocked by the IGBT under faults. Actually, the 
voltage usmua_k could not reach a very high value under faults 
because the faulty SM is already destroyed before usmua_k 
increases to such a high value. Consequently, in mode 1, the 
high voltage ut and ub, shown in Fig. 2(a), may be quickly 
caused in faulty SMs with the relationship of 

                             










ksmuab

ksmuact

uu

uuu

_

_
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where ub >|ut| and ut<0, as listed in Table III. From (9) and 
(10), it can be seen that a high reverse voltage -ut and a high 
voltage ub would be quickly caused in the faulty SM in mode 1 
and may destroy the MMC. 
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Ls=5mH

Ls=10mH

Ls=15mH

Ls=20mH

Ls=25mH

Fig. 3.  Voltage usmua_k under various Ls and iua(t01). 

B.  Type II Fault Situation 

Fig. 2(b) shows the Type II fault situation, where the open-
circuit fault occurs in the bottom diode db. Tables II and III 
shows the four modes of the SM under the Type II fault. The 
SM works as normal in modes 1~3. In mode 1 (iua≥0 and S=1), 
iua circulates through dt and Csm with ut=0, ub= uc; in mode 2 
(iua≥0 and S=0), iua circulates through Tb with ut=uc, ub=0; in 
mode 3 (iua<0 and S=1), iua circulates through Csm and Tt with 
ut=0, ub= uc. However, in mode 4, iua can not flow through the 
faulty db when S is changed to 0 under iua<0. 

In mode 4, the voltage in phase A can be described as (11) 
at the initial time t02 when S is changed to 0. 

)()()()( 020202
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(11) 

Suppose that iua can be blocked by switching off Tt in the k-
th SM when S is changed to 0 into mode 4, a high voltage uula 
would be caused on the upper arm inductor of phase A after 
the IGBT turn-off time Δt, as 
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where iua(t02) is the upper arm current at the time t02. 
According to KVL [35], the voltage usmua_k imposed on the k-
th SM is 
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Except for the k-th SM output voltage usmua_k, assuming that 
the other SM output voltages and the lower arm inductor 
voltage ulla in phase A are not changed during the very short 
time Δt, substituting (11) and (12) into (13), there is 
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According to (14) and neglecting usmua_k(t02) and uula(t02), 
Fig. 4 shows the caused high voltage usmua_k under various Ls 
and iua(t02). It can be observed that usmua_k may reach a very 
high reverse voltage if the arm current can be blocked by the 
IGBT under faults. Actually, the voltage usmua_k could not 
reach a very high value under faults because the faulty SM is 
already destroyed before usmua_k increases to such a high value. 
Consequently, in mode 4, the high voltage ut and ub may be 
caused in the faulty SM with the voltage relationship shown in 
(10), where ut>|ub| and ub<0, as listed in Table III. From (10) 
and (14), it can be seen that a high voltage ut and a high 
reverse voltage -ub would be caused in the faulty SM in mode 
4 and may destroy the MMC. 
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Fig. 4.  Voltage usmua_k under various Ls and iua(t02). 

IV.  PROPOSED PROTECTION SCHEME FOR MMCS UNDER 

DIODE OPEN-CIRCUIT FAULTS 

In order to protect the MMC under diode open-circuit 
faults, two identical varistors (VRt and VRb) are used to be 
equipped in parallel with Tt and Tb in each SM, respectively, as 
shown in Fig. 5. At low voltage the varistor has a very high 
resistance; at high voltage the varistor has a very low 
resistance [36]. The threshold voltage of the varistor is decided 
based on the parameters of the devices (e.g. switches, diodes, 
and capacitors) and the required tolerance level, which can be 
selected based on the rated capacitor voltage in the SM with a 
proper margin. If the SM works at normal situation, where the 
voltage ut or ub shown in Fig. 5 is not over the threshold 
voltage of the varistor, the varistor will be highly resistant. If ut 
or ub is above the threshold value of the varistor under faults, 
the varistor would be highly conductive to limit the voltage 

and protect the MMC. 
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                                    (a)                                                         (b) 
Fig. 5.  Proposed protection. (a) Type I fault situation. (b) Type II fault 
situation. 

A.  Protection Scheme for Type I Fault Situation 

Fig. 5(a) shows the Type I fault situation, where the Type I 
fault mainly affects the mode 1. A protection scheme, as 
shown in Fig. 6(a), is proposed for the Type I fault as follows. 

1) Step 1 shown in Fig. 7(a): In mode 1 (iua≥0 and S=1), the 
arm current iua can not flow through the open-circuit dt and Csm, 
which would cause the high voltage ub (ub >|ut|) and the reverse 
voltage ut (ut<0). However, with the help of the varistor, when 
ub is over the threshold voltage of the VRb, VRb would be 
conducted to limit ub, which makes iua flow through VRb. 
Normally, the threshold voltage of the VRb is selected higher 
than the capacitor voltage uc, which results in negative ut as 

                                   






cb

t

uu

u 0
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Combining (15) and Table III, the fault can be detected 
when ut is less than 0, where the ut is monitored [37] and 
compared with the reference value 0. 

2) Step 2 shown in Fig. 7(b): After the fault is detected, Tt 
and Tb start to be switched off and on, respectively. When Tb is 
switched on, iua flows through Tb and the SM voltage is 

                                   






0b

ct

u

uu
                                      (16) 

Here, the VRb will stop working because ub=0 is less than its 
threshold voltage. 

The varistor’s capacity is determined by its action time and 
conduction current, as listed in Table IV. As shown in Fig. 7, 
the VRb only works during the fault detection time of Step 1 
and the Tb switching on time of Step 2, which is normally very 
short and around the order of μs. The maximum conduction 
current of the VRb is the peak value of the arm current iua. The 
selection of the varistor VRb is discussed in the Appendix. 

TABLE IV 
PARAMETERS FOR SELECTION OF VARISTOR’S CAPACITY 

Fault 
Action 
varistor 

Action time of the varistor Maximum 
conduction 

current 
Step 1 Step 2 

Type I VRb 
Fault detecting 

time 
Switching on 

time of Tb 
Peak value 
of the arm 

current Type II VRt 
Fault detecting 

time 
Switching on 

time of Tt 

3) Step 3 shown in Fig. 7(c): After Tb is switched on, the Sw 
starts to be closed to bypass the faulty SM. 

4) Step 4 shown in Fig. 7(d): After the Sw is closed, Tb starts 
to be switched off. 

In the proposed protection scheme, if the varistor is 
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neglected, ut may be increased to a very high value in less than 
1 μs in Step 1. However, the Tb is not fast enough to be 
switched on in such a short time to limit the ut in Step 2. 
Therefore, the varistor is used here, which can limit the 
voltage with the fast response time around the order of ns [36] 
in Step 1. In addition, the varistor is very cheap, as shown in 
the Appendix. 
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Fig. 6.  Proposed protection scheme for (a) Type I fault situation. (b) Type II 
fault situation. 
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                                  (c)                                                         (d) 
Fig. 7.  Protection protection scheme for Type I fault. (a) Step 1. (b) Step 2. (c) 
Step 3. (d) Step 4. 

B.  Protection Scheme for Type II Fault Situation 

Fig. 5(b) shows the Type II fault situation, where the Type 
II fault mainly affects the mode 4. A protection scheme, as 
shown in Fig. 6(b), is proposed for the Type II fault as follows. 

1) Step 1 shown in Fig. 8(a): In mode 4 (iua<0 and S=0), iua 
can not flow through the open-circuit db, which would cause 
the high voltage ut (ut>|ub|) and the reverse voltage ub (ub<0). 
However, with the help of the VRt, when ut is over the 
threshold voltage of the VRt, VRt would be conducted to limit 
ut, which makes iua flow through Csm and VRt. Normally, the 
threshold voltage of the VRt is selected higher than the 
capacitor voltage uc, which results in negative ub as 

                                   






0b

ct

u

uu
                                      (17) 

Combining (17) and Table III, the fault can be detected 
when ub is less than 0. 

2) Step 2 shown in Fig. 8(b): After the faulty SM is 
detected, Tt and Tb start to be switched on and off, respectively. 
When Tt is switched on, iua flows through Csm and Tt and the 
SM voltage is 

                                   






cb

t
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u 0
                                      (18) 

Here, the VRt will stop working because ut=0 is less than its 
threshold voltage. As shown in Fig. 8, the VRt only works 
during the fault detection time of Step 1 and the Tt switching 
on time of Step 2, as shown in Table IV, which is very short 
around the order of μs. The selection of the varistor VRt can 
refer to that of VRb, which is not repeated here. 

3) Step 3 shown in Fig. 8(c): After Tt is switched on, the 
bypass switch Sw can not be closed immediately. Otherwise, it 
would result in short circuit, where Csm discharges through Tt 
and Sw. Therefore, Tt would be switched off until iua becomes 
positive. In this situation, iua will flow through dt and Csm. 

4) Step 4 shown in Fig. 8(d): After Tt is switched off, the Sw 
starts to be closed to bypass the faulty SM. 
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                                  (c)                                                         (d) 
Fig. 8.  Protection protection scheme for Type II fault. (a) Step 1. (b) Step 2. 
(c) Step 3. (d) Step 4. 

V.  EXPERIMENTAL STUDIES 

A three-phase MMC prototype with four SMs per arm, as 
shown in Fig. 1, connected with three-phase RL load is built in 
the laboratory to confirm the proposed scheme. Fig. 9 shows 
the photo of the experimental setup. A DC power supply (SM 
600-10) is used to support the DC-link voltage. Except for 
Cell21, the IXFK48N60P with intrinsic diode is used as the 
switch/diode in each cell. In order to produce the diode open-
circuit fault, the IGBT IGW50N60H3 without intrinsic diode 
and the fast recovery Diode STTH3006 are used to construct 
the switch/diode in the Cell21, where the diode open-circuit 
fault is produced by the disconnection of the diode with the 
circuit. In addition, two IXFK48N60Ps are connected in series 
with opposite direction to simulate a controllable bypass 
switch. The system control algorithm is implemented in 
dSPACE and the pulse signals from the dSPACE are 
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transferred to the driving panel of each SM by optical fiber. 
The system parameters are shown in the Table V. The 
capacitor voltage-balancing method [27] and the circulating 
current elimination method [30] are used. 

TABLE V 
EXPERIMENTAL SYSTEM PARAMETERS 

Parameters Value 
DC-link voltage Vdc in the case without protective varistor (V) 80 
DC-link voltage Vdc in the case with protective varistor (V) 280 
Rated frequency (Hz) 50 
Inductance Ls (mH) 3 
DC capacitor Csm (mF) 2.2 
Load inductance L (mH) 3.6 
Load resistance R in the case without protection (Ω) 5.3 
Load resistance R in the case with protection (Ω) 10 
Switching frequency (kHz) 4 
Varistor S14K35 

DC 

Source

Resistor 

load

Phase A

Phase B

Phase C

Protection 

circuit

Inductor

dSPACE

 
Fig. 9. Photo of the experimental setup. 

A.  Without Proposed Protection Scheme 

1) Type I fault in Cell21 
Fig. 10(a) shows the performance of the MMC without the 

proposed protection scheme, where the Type I fault occurred 
in Cell21. Fig. 10(a) shows the lower arm current ila, capacitor 
voltage ucal_1, top IGBT voltage ut1, and bottom IGBT voltage 
ub1 in Cell21. Owing to the Type I fault, a high reverse voltage 
ut1 is caused when ila≥0, whose maximum value is about 10.5 
times higher than the nominal capacitor voltage ucal_1; a high 
voltage ub1 is also caused when ila≥0, whose maximum value is 
about 11.5 times higher than the nominal capacitor voltage 
ucal_1. The caused high voltage would be harmful to the MMC. 

Fig. 10(b) shows the dotted line area in Fig. 10(a). Owing 
to the Type I fault, a high reverse voltage ut1 is caused and 
imposed on the top IGBT, which is the same to the theoretical 
analysis. Once the caused reverse voltage ut1 is high enough 
and beyond the reverse blocking capability of the IGBT, it will 
result in reverse conduction of the top IGBT [32]. 
Consequently, the arm current ila is not interrupted under faults. 

2) Type II fault in Cell21 
Fig. 11(a) shows the performance of the MMC without the 

proposed protection scheme, where the Type II fault occurred 
in Cell21. Fig. 11(a) shows the arm current ila, capacitor  
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Fig. 10.  Experiment waveforms including arm current ila (2 A/div), top IGBT 
voltage ut1 (100 V/div), bottom IGBT voltage ub1 (100 V/div), and capacitor 
voltage ucal_1 (100 V/div). (a) Type I fault. Time base is 10 ms/div. (b) Type I 
fault in small time scale. Time base is 40 μs/div. 
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Fig. 11.  Experiment waveforms including arm current ila (2 A/div), top IGBT 
voltage ut1 (100 V/div), bottom IGBT voltage ub1 (100 V/div), and capacitor 
voltage ucal_1 (100 V/div). (a) Type II fault. Time base is 10 ms/div. (b) Type 
II fault in small time scale. Time base is 40 μs/div. 

voltage ucal_1, top IGBT voltage ut1, and bottom IGBT voltage 
ub1 in Cell21. Owing to the Type II fault, a high reverse 
voltage ub1 is caused when ila<0, whose maximum value is 
about 6.9 times higher than the nominal capacitor voltage ucal_1; 
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a high voltage ut1 is also caused when ila≥0, whose maximum 
value is about 7.9 times higher than the nominal capacitor 
voltage ucal_1. The caused high voltage is harmful to the MMC. 

Fig. 11(b) shows the dotted line area in Fig. 11(a). Owing 
to the Type II fault, a high reverse voltage ub1 is caused and 
imposed on the bottom IGBT. Once the caused reverse voltage 
ub1 is high enough and beyond the reverse blocking capability 
of the IGBT, it will result in reverse conduction of the bottom 
IGBT [32]. Consequently, the arm current ila is not interrupted 
under faults. 

B.  Without Varistors 

1) Type I fault in Cell21 
Fig. 12 shows the performance of the MMC with the 

proposed protection scheme shown in Fig. 6(a), where the 
Type I fault occurred in Cell21. However, the protective 
varistors are not used in Fig. 12. Fig. 12(a) shows the lower 
arm current ila, capacitor voltage ucal_1, top IGBT voltage ut1, 
and bottom IGBT voltage ub1 in Cell21. Fig. 12(b) shows the 
dotted line area in Fig. 12(a). Although the bottom IGBT Tb 
starts to be switched on once the fault is detected, the Tb is not 
fast enough to avoid the high voltage, which is the same to the 
theoretical analysis. Consequently, a high reverse voltage ut1 is 
caused when ila≥0, whose maximum value is about 10.5 times 
higher than the nominal capacitor voltage ucal_1; a high voltage 
ub1 is also caused when ila≥0, whose maximum value is about 
11.5 times higher than the nominal capacitor voltage ucal_1. 
The caused high voltage is harmful to the MMC. 
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Fig. 12.  Experiment waveforms including arm current ila (2 A/div), top IGBT 
voltage ut1 (100 V/div), bottom IGBT voltage ub1 (100 V/div), and capacitor 
voltage ucal_1 (100 V/div). (a) Type I fault. Time base is 10 ms/div. (b) Type I 
fault in small time scale. Time base is 20 μs/div. 

2) Type II fault in Cell21 
Fig. 13 shows the performance of the MMC with the 

proposed protection scheme shown in Fig. 6(b), where the 
Type II fault occurred in Cell21. However, the protective 
varistors are not used in Fig. 13. Fig. 13(a) shows the lower 
arm current ila, capacitor voltage ucal_1, top IGBT voltage ut1, 
and bottom IGBT voltage ub1 in Cell21. Fig. 13(b) shows the 
dotted line area in Fig. 13(a). Although the top IGBT Tt starts 
to be switched on once the fault is detected, the Tt is not fast 
enough to avoid the high voltage, which is the same to the 
theoretical analysis. Consequently, a high reverse voltage ub1 is 
caused when ila<0, whose maximum value is about 7.7 times 
higher than the nominal capacitor voltage ucal_1; a high voltage 
ut1 is also caused when ila<0, whose maximum value is about 
8.7 times higher than the nominal capacitor voltage ucal_1. The 
caused high voltage is harmful to the MMC. 
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Fig. 13.  Experiment waveforms including arm current ila (2 A/div), top IGBT 
voltage ut1 (100 V/div), bottom IGBT voltage ub1 (100 V/div), and capacitor 
voltage ucal_1 (100 V/div). (a) Type II fault. Time base is 10 ms/div. (b) Type 
II fault in small time scale. Time base is 20 μs/div. 

C.  With Proposed Protection Scheme 

1) Type I fault in Cell21 
Fig. 14 shows the performance of the MMC with the 

proposed protection scheme, where the Type I fault occurred 
in Cell21. Fig. 14(a) shows the arm current ila, capacitor 
voltage ucal_1, top IGBT voltage ut1 and bottom IGBT voltage 
ub1 in Cell21. Fig. 14(b) shows the dotted line area in Fig. 
14(a). The fault can be detected when the top IGBT voltage ut1 
drops below zero. With the help of the varistor, the ub1 is 
effectively limited and only increased a little by 20%. After the 
fault is detected, the top IGBT Tt and bottom IGBT Tb starts to 
be switched off and on, respectively. And then, the bypass 
switch is switched on to bypass the faulty SM. Consequently, 
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the ut1 is the capacitor voltage ucal_1 and ub1 is 0 after faults. 
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Fig. 14.  Experiment waveforms including arm current ila (10 A/div), top 
IGBT voltage ut1 (50 V/div), bottom IGBT voltage ub1 (50 V/div), and 
capacitor voltage ucal_1 (50 V/div). (a) Type I fault. Time base is 10 ms/div. (b) 
Type I fault in small time scale. Time base is 200 μs/div. 

Fig. 15 shows the Cell21 performance with the proposed 
scheme including the top IGBT voltage ut1, bottom IGBT 
voltage ub1, top varistor VRt current ivt1, and bottom varistor 
VRb current ivb1. After the Type I fault occurrence, the bottom 
IGBT voltage ub1 is effectively limited by the bottom varistor, 
when ub1 is over the threshold value of the varistor. The 
varistor only works with a very short time about 39 μs. 

ivb1
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ut1

Fault Occurence

Threshold voltage

39 μs

 
Fig. 15.  Experiment waveforms including top IGBT voltage ut1 (50 V/div), 
bottom IGBT voltage ub1 (50 V/div), top varistor current ivt1 (5 A/div) and 
bottom varistor current ivb1 (5 A/div). Time base is 200μs /div. 

Fig. 16 shows the Cell21 performance with the proposed 
scheme including the top IGBT drive signal gt1, bottom IGBT 
drive signal gb1, bottom varistor VRb current ivb1, and the action 
of the bypass switch Sw. After the Type I fault occurrence, the 
VRb works in a short time to limit the voltage; gt1 and gb1 start 
to turn off and on the top and bottom IGBTs, respectively. 
Afterwards, the bypass switch Sw starts to bypass the faulty SM 
and the bottom IGBT is blocked with gb1 off. 

gt1

gb1

Sw

ivb1

Fault Occurence

Open
Close

 
Fig. 16.  Experiment waveforms including top IGBT drive signal gt1 (10 
V/div), bottom IGBT drive signal gb1 (10 V/div), bottom varistor current ivb1 
(5 A/div), and bypass switch action. Time base is 200 μs/div. 

2) Type II fault in Cell21 
Fig. 17 shows the performance of the MMC with the 

proposed protection scheme, where the Type II fault occurred 
in Cell21. Fig. 17(a) shows the arm current ila, capacitor 
voltage ucal_1, top IGBT voltage ut1 and bottom IGBT voltage 
ub1 in Cell21. Fig. 17(b) shows the dotted line area in Fig. 
17(a). The fault can be detected when the bottom IGBT 
voltage ub1 drops below zero. The ut1 is effectively limited by 
the varistor and only increased a little by 20%. After the fault 
is detected, the top IGBT Tt and bottom IGBT Tb starts to be 
switched on and off, respectively, which results in that ut1 is 0 
and ub1 is the capacitor voltage ucal_1. Afterwards, the top 
IGBT Tt starts to be opened when ila becomes positive; the 
bypass switch is switched on to bypass the faulty SM, which 
results in that ut1 equals the capacitor voltage ucal_1 and ub1 

equals 0. 

ila
Fault Occurence

ucal1

ub1

ut1

 
(a) 

ila

ucal1

ut1

ub1

Fault Occurence

Detect the fault 
(ub1<0)

ut1=120%

 
(b) 

Fig. 17.  Experiment waveforms including arm current ila (10 A/div), top 
IGBT voltage ut1 (50 V/div), bottom IGBT voltage ub1 (50 V/div), and 
capacitor voltage ucal_1 (50 V/div). (a) Type I fault. Time base is 10 ms/div. (b) 
Type I fault in small time scale. Time base is 200 μs/div. 
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Fig. 18 shows the Cell21 performance with the proposed 
scheme including the top IGBT voltage ut1, bottom IGBT 
voltage ub1, top varistor current ivt1, and bottom varistor current 
ivb1. After the Type II fault occurrence, the top IGBT voltage 
ut1 is effectively limited by the varistor, when ut1 is over the 
threshold value of the varistor. The varistor only works with a 
very short time about 37 μs. 

Fault Occurence
ivt1

ivb1

ut1

ub1

Threshold voltage

37 μs

 
Fig. 18.  Experiment waveforms including top IGBT voltage ut1 (50 V/div), 
bottom IGBT voltage ub1 (50 V/div), top varistor current ivt1 (5 A/div), and 
bottom varistor current ivb1 (5 A/div). Time base is 200 μs/div. 

Fig. 19 shows the Cell21 performance with the proposed 
scheme including the top IGBT drive signal gt1, bottom IGBT 
drive signal gb1, arm current ila, and the action of the bypass 
switch Sw. After the Type II fault occurrence, gt1 and gb1 start to 
turn on and off the top and bottom IGBT, respectively. 
Afterwards, gt1 start to turn off the top IGBT when ila becomes 
positive. And then, Sw is switched on to bypass the faulty SM. 
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Sw Open
Close

ila
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Fig. 19.  Experiment waveforms including top IGBT drive signal gt1 (10 
V/div), bottom IGBT drive signal gb1 (10 V/div), bottom varistor current ivb1 
(5 A/div), and bypass switch action. Time base is 4 ms/div. 

VI.  CONCLUSIONS 

Reliability is one of the primary concerns for the modular 
multilevel converter. This paper proposed a protection scheme 
for the MMC under diode open-circuit faults. The impact of 
diode open-circuit failures of the SMs on the operation of the 
MMC is analyzed to reveal that the diode open-circuit fault 
would cause the high voltage in the faulty SM, which would 
destroy the MMC and disrupt the operation of the MMC. A 
protection scheme based on the varistor is proposed for the 
MMC under diode open-circuit faults, which can effectively 
limit the voltage, detect the fault, and protect the MMC. A 
downscale prototype is tested in the laboratory to validate the 
proposed protection scheme, and the results show the 
effectiveness of the proposed protection scheme. 

VII.  APPENDIX 

The MMC system [38], as shown in Table VI, is considered 
as an example for the selection of the protective varistor. The 
varistor VDRS14T510 [39] can be selected for the MMC 
system, whose threshold voltage is 820 V, which is 1.24 times 
of the peak value of capacitor voltage in the SM. The 
maximum conduction current of the varistor is the peak value 
of the arm current, as 192 A. According to the pulse rating 
curve of the varistor VDRS14T510, as shown in Fig. 20, the 
VDRS14T510 is able to withstand the conduction current 192 
A for more than 400 μs, which fully meets the capacity’s 
requirement of the varistor, because the varistor only works for 
a very short time and around the order of tens of μs, as shown 
in Figs. 15 and 18 in Section V. As to the MMC system, the 
Infineon IGBT FF300R12KT4 can be used, whose price is 
113.49 € [40], while the price of the varistor VDRS14T510 is 
0.971 € and less than 0.9% of the IGBT [41]. The cost 
increase because of the varistor is therefore negligible in this 
application, while the varistor can effectively avoid the 
destruction and protect the MMC under the diode open-circuit 
fault. 

TABLE VI 
MMC SYSTEM PARAMETERS [38] 

Parameters Value 
Active power P (MW) 1 
Reactive power Q (MVar) 0.16 
DC bus voltage Vdc (kV) 6 
Output line-to-line voltage (kV) 3 
Number of SMs per arm n 10 
Rated capacitor voltage uc (V) 600 
Peak value of capacitor voltage (V) 660 
Peak value of arm current (A) 192 
DC capacitor Csm (mF) 3.75 
Inductance Ls (mH) 10 
IGBT FF300R12KT4 
Price of per FF300R12KT4 (€) 113.49 
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Fig. 20. Pulse rating curve of the varistor. 
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