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Many operating systems allow user programs to specify the

protection level (inaccessible, read-only, read-write) of pages

in their virtual memory address space, and to handle any

protection violations that may occur. Such page-protection

techniques have been exploited by several user-level algo-

rithms for applications including generational garbage col-

lection and persistent stores. Unfortunately, modern hard-

ware has made efficient handling of page protection faults

more difficult. Moreover, page-sized granularity may not

match the natural granularity of a given application. In light

of these problems, we reevaluate the usefulness of page-

protection primitives in such applications, by comparing the

performance of implementations that make use of the prim-

itives with others that do not. Our results show that for

certain applications software solutions outperform solutions

that rely on page-protection or other related virtual memory

primitives.

1 Introduction

Paged virtual memory mechanisms perform admirably when

put to their intended purpose, which is to extend the ad-

dress space of user programs beyond the physical memory

of the machine, and for protection from other processes in

multiprogrammed systems. Hardware and operating system

software have been refined to achieve this sleight of hand

with performance broadly acceptable to most applications.
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Many operating systems now allow user-level programs to

exploit virtual memory mechanisms for their own purposes

by providing primitives to manipulate page protections (in-

accessible, read-only, read-write). User programs can also

provide “handlers” to to be invoked in the event of an access

violation. Using these primitives, user-level applications are

able to monitor accessto any of the pages in their virtual ad-

dress space without explicit checks, by exploiting the paging

hardware’s ability to trap on access violations. As a result,

application programmers have exercised their ingenuity in

devising implementation solutions that make use of these

virtual memory primitives. A number of these applications

are enumerated by Appel and Li [3], where they argue that in

light of programmers demands, designers of operating sys-

tems and hardware architectures must pay more attention to

support for virtual memory primitives to make their imple-

mentations more efficient and robust.

Meanwhile, there is evidence [1] to indicate that the evo-

lution of architectures towards pipelined RISC microproces-

sors, and operating systems towards micro-kernels, is making

efficient implementation of these operating system primitives

more difficult. As a result of this tension between the sup-

posed demand from application programmers and the evo-

lutionary trends of architectures and operating systems, we

examine two applications cited by Appel and Li as benefiting

from the availability of virtual memory primitives.

The contributions of this paper include a comprehensive

performance evaluation of page-protection primitives for

garbage collection and persistence, and direct comparison

with corresponding software implementations. The nature

of our experimental setup allows meaningful direct compar-

ison. In addition, we project the optimal performance of

applications that exploit page-protection techniques in their

implementation. Our results indicate that alternative soft-

ware implementations can approach, and in some cases out-

perform, the optimal performance of page-protection imple-

mentations.

The rest of the paper is organized as follows. In the next

section we briefly describe the applications we examine, and

how they are able to take advantage of virtual memory prim-

itives. We then present the experimental setup used for gath-

ering performance data, and our alternative implementations
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of each of the applications along with their their relative per-

formance. Finally, we summarize the major points of the

paper and present our conclusions.

2 Applications

Appel and Li [3] describe a number of applications of vir-

tual memory primitives, including concurrent garbage col-

lection, shared virtual memory, concurrent checkpointing,

generational garbage collection, persistent stores, extending

addressability, data-compression paging, and heap overflow

detection. Of these, we directly address generational garbage

collection, and certain aspects of persistent stores, including

object fault handling, database checkpointing, and extend-

ing addressability. Our results also have implications for

the other applications. since they show that well-designed

software solutions are competitive with hardware-assisted

techniques.

2.1 Generational garbage collection

Generational garbage collectors [16, 24, 25] achieve short

collection pause times partly because they separate heap-

allocated objects into two or more generations and do not pro-

cess all generations during each collection. Empirical studies

have shown that in many programs most objects die young,

so separating objects by age and focusing collection effort on

the younger generations is a popular strategy, However, any

collection scheme that processes only a small portion of the

heap must somehow know or discover all pointers outside

the collected area that refer to objects within the collected

area. Since the areas not collected are generally assumed to

be large, most generational collectors employ some sort of

pointer tracking scheme, to avoid scanning the uncollected

areas. Again, empirical studies show that in many programs,

the older-to-younger pointers of interest to generational col-

lection are rare, so avoiding scanning presumably improves

performance. This is intuitively explained by the fact that

newly allocated objects can only be immediately initialized

to point to pre-existing (i.e., older) objects. Pointers from

older generations to younger generations can be created only

through assignment to pre-existing objects. Detecting such

assignments requires special action at every pointer assign-

ment to see whether that pointer must now be considered by

the garbage collector when collecting the younger genera-

tions.

A number of schemes have been suggested for generat-

ing and maintaining the older-to-y oungerpointer information

needed by generational collectors, including special-purpose

hardware support [24, 25] and generation by compilers of the

necessary inline code to perform the checks in software [2]

(adding to the overhead of pointer stores). Ungar [24, 25]

uses remembered sets to maintain the necessary information

on a per-generation basis, recording the locations in older

generations that may contain pointers into the generation.

The garbage collector examines all the locations recorded in

the remembered sets of the younger generations being col-

lected to determine the live (i.e., reachable) objects.

Alternatively, dirty bits can be maintained for older gen-

erations indicating whether the generation contains pointers

to objects in younger generations. The heap is divided into

aligned logical regions of size 2k bytes—the address of the

first byte in the region will have k low bits zero. These regions

are called cards [23, 29]. Each card has a corresponding entry

in a table indicating whether the card might contain a pointer

of interest to the garbage collector. Mapping an address to

an entry in the table involves shifting the address right by k

bits and using the result to index the table.

The card table can be maintained explicitly by generating

code to index and dirty the corresponding table entry at ev-

ery store site in the program. Alternatively, by setting the

card size to correspond to the virtual memory page size, up-

dates to clean cards can be detected using the virtual memory

hardware. All clean pages in the heap are protected from

writes. When a write occurs to a protected page, the trap

handler records the update in the card table and unprotects

the page. Subsequent writes to the now dirty page incur no

further overhead. Note that all writes to a clean page cause a

protection trap, not just those that store pointers.

The time required to determine the relevant older-to-

younger pointers for garbage collection varies with the gran-

ularity of the information recorded [11]. Remembered sets

have the advantage of recording just those locations that can

possibly contain older-to-younger pointers. In contrast, the

time to scan dirty cards is proportional to the size of the

cards. While software-implemented card marking schemes

are free to choose any power of two for the card size, a page

trapping scheme is bound by the size of a virtual memory

page. Since modern operating systems and architectures typ-

ically use a relatively large virtual memory page size (on

the order of thousands of bytes), scanning overheads will be

proportionally higher.

2.1.1 User-level dirty bits

If operating systems were to provide user-level dirty bits (as

suggested by Shaw [21], and Appel and Li [3]), the over-

head to reflect page traps through to the user-level protection

violation handler can be avoided. Presumably, an extra user-

level dirty bit would be added to each page table entry, and a

system call (dirty) provided to return a list of pages dirtied

in a given address range since the last time it was called. The

system call would clear the user-level dirty bits and enable

traps on the specified pages. Traps could then be handled

directly in the operating system. This can have substantial

savings. As reported for a MIPS R2000 [1], the time for a

user program to trap to a null C routine in the kernel and

return to the user program is 15.4vs round trip. In contrast,

Appel and Li report the corresponding overhead to handle

page-fault traps in user-mode to be 210PS on a DECstation

3100 (MIPS R2000) running Ultrix 4.1, We have confirmed
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this with our own measurement of page traps in a tight loop

using the same hardware and operating system configura-

tion, obtaining a round-trip time of w250ps. Note that these

measurements are for a tight loop executing many repeti-

tions, and so may tend to underestimate trap costs. Traps

interspersed throughout a program’s normal execution may

perform less favorably, since the OS trap handling code and

data structures needed to service the trap may no longer be in

the hardware caches. Meanwhile, a call to dirty should be

no more expensive than current primitives for manipulating

page protections, except in copying out the dirty bit informa-

tion, adding little if any extra overhead to applications that

use the new primitive.

2.2 Persistent stores

A persistent store is a dynamic allocation heap that persists

from one program invocation to the next [5, 6]. Persistent

programming languages allow traversal of the data structures

in a persistent store to be programmed transparently, without

the need for complicated I/O or database calls to retrieve the

data. Rather, the objects in the persistent store are faulted

into memory on demand much as non-resident pages are

automatically made resident by the virtual memory system.

Moreover, a persistent program may modify the objects in

the store, and commit these modifications so that their effects

are permanent.

We consider three aspects in the implementation of per-

sistence: detecting and handling object faults, extending ad-

dressability, and checkpointing of modifications.

2.2.1 Detecting and handling object faults

A persistent program may refer to both resident and non-

resident persistent objects. Ideally, a memory-resident per-

sistent object will be referred to by its virtual address, so

that accessing the object can be as fast as accessing a non-

persistent object. If the program traverses a reference to a

non-resident object then it must be made available to the

program in memory: we call this an object fault.

Tagging the references is one way to distinguish between

references to resident and non-resident objects. An untagged

reference is a direct memory pointer to the object in mem-

ory, A tagged reference contains an object identzjier (OID)

sufficient to locate the object on stable storage. By aligning

resident objects on word boundaries, there are sufficient bits

in a word for the tag. Every time a reference is traversed the

tag is checked to make sure it points to a resident object; if it

does not then an object fault is triggered.

An alternative is to use direct pointers for all object ref-

erences, and to have resident proxy objects (we call them

fault blocks) stand in for non-resident objects, as illustrated

in Figure 1(a). A fault block contains the OID of the target

object, and is tagged to distinguish it from an ordinary object.

Whenever a pointer is followed, if it refers to a fault block,

then an object fault is triggered. The target object is made

resident and any pointers it contains are converted to direct

pointers to resident objects or fault blocks. The fault block

is changed to contained a tagged pointer to the now-resident

object (see Figure l(b)). We call the updated fault block an

indirect block. If a traversed pointer refers to an indirect

block then the target object can be located at the cost of an

indirection. Occasional scanning (possibly by a garbage col-

lector) can be used to bypass indirect blocks, as shown in

Figure 1(c).
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Object oriented programming languages can exploit the

indirection implicit in the method invocation mechanism to

fold residency checks into the overhead of method invoca-

tion. Method code can then directly access the fields of the

object on which the method was invoked without performing

further residency checks.

Rather than performing residency checks in software at

each pointer traversal, fault blocks can be allocated in pro-

tected virtual memory pages so that dereferencing a pointer

to a fault block is trapped. A residency check is thus imple-

mented as a single load instruction. The protection violation

handler unprotects the pages containing fault and indirect

blocks, overwrites the offending fault block with an indirect

block, reprotects the page, and arranges for the load instruc-

tion that caused the fault to be restarted with a direct pointer

to the resident object. The fault and indirect block pages are

then reprotected before resuming execution of the program.

Other approaches use page protections in a different way

[15, 20, 22, 28]. When a given persistent object is to be

assigned a virtual address, a page of virtual memory is re-

served (although not necessarily allocated) for the page in

the persistent store that contains the object. The offset of the

object in the persistent page is known, allowing the virtual

address of the object in the reserved virtual memory page to

be calculated. Accessing the page triggers a virtual mem-

ory page trap. The trap handler reads the persistent page

from the store and maps it into the previously reserved vir-

tual page. All of the pointers in the page are then converted

to direct virtual memory pointers, reserving virtual memory

pages for the objects to which they refer if those objects are

not already mapped into virtual memory. The faulted page is

unprotected, and execution resumes. As execution proceeds,

pages are reserved in a “wave-front” just ahead of the most

recently faulted and swizzled pages, guaranteeing that the

program will only ever see virtual memory addresses.

2.2.2 Extending addressability

Persistent stores may grow so large that they contain more

objects than can be addressed directly by the available

hardware.1 Dealing with this problem involves converting

persistent store OIDS into virtual memory addresses, a pro-

cess which has been termed swizzling [19]. This technique

originated in early attempts to extend the address space of

Smalltalk-80 [12, 13]. In any case, it relies on an OID-to-

virtual-address mapping, maintained in our case by the object

store software on behalf of the application.

2.2.3 Database checkpointing

Modifications made to persistent data by a persistent pro-

gram become permanent only when some sort of checkpoint

operation is invoked, perhaps as the result of a database

1The recent arrivat of 64-bit machines addresses this problem, but there

are other good reasons to have different formats in the persistent store and

in virtual memory.

transaction commit. Given an application that modifies only

a small fraction of the resident data, writing all the data back

to the stable database will be hopelessly inefficient. Instead,

checkpoints can log just those parts of the database that have

been changed, allowing programs to continue execution with

minimal delay. The log records can be incorporated into the

database at a later time, possibly by some process running in

the background. Thus, in the face of a system crash all mod-

ifications since the last checkpoint can be recovered, and the

database restored to its state at that checkpoint. Generating

recovery information is an important function of any persis-

tent store, since the reliability and resilience of the database

depend on it.

Detecting modifications to objects can be achieved in much

the same way as for garbage collection, except that all up-

dates, not just pointer stores must be recorded. Note that

objects must be unswizzled to compare them with the object

store’s unmodified originals and generate log records. This

is easy since we prepend OIDS to resident persistent objects.

While unswizzling we may see references to new (not yet

persistent) objects, which are assigned OIDS and made per-

sistent.

3 Experiments

All of our experiments are based on a high-performance

Smalltalk interpreter of our own design, using the abstract

definition of Goldberg and Robson [8]. The implementation

consists of two components: the virtual machine and the

virtual image. The virtual machine implements a bytecode

instruction set to which Smalltalk source code is compiled, as

well as other primitive functionality. While we have retained

the standard bytecode instruction set of Goldberg and Robson

[8], our implementation of the virtual machine differs some-

what from their original definition to allow for more efficient

execution. Our virtual machine running on the DECstation

3100 performs around three times faster than a microcode

implementation on the Xerox Dorado.

The virtual image is derived from an early commercial ver-

sion of Smalltalk with minor modifications. It implements (in

Smalltalk) all the functionality of a Smalltalk development

environment, including editors, browsers, the bytecode com-

piler, and class libraries, all of which are first-class objects

in the Smalltalk sense. Booting a Smalltalk environment in-

volves loading the virtual image into memory for execution

by the virtual machine.

In our persistent implementation of Smalkalk the virtual

image resides in the database, and the Smalltalk environment

is booted by loading that subset of the objects in the image

sufficient to resume execution by the virtual machine. The

bytecode instruction set is the same as in our non-persistent

virtual machine, and changes to the virtual image have been

minor. Rather, all extensions for persistence affected only

the virtual machine, which has been augmented carefully to

fault persistent objects into memory as they are needed by
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the executing image. We have implemented the previously

described schemes for detecting and handling object faults.

All benchmarks are coded directly in Smalltalk, and mea-

sured using a specially instrumented version of the inter-

preter. The instrumentation is kept constant across all imple-

mentation variants being considered, so that direct compar-

isons can be made—any differences in the results can only

be due to the particular implementation variant being used.

3.1 Experimental setup

We ran our experiments on a DECstation 3100 (MIPS

R2000A CPU clocked at 16.67MHz) running ULTRIX 4.1.2

The benchmarks were run with the system in single user

mode and the process’s address space was locked in main

memory to prevent paging. Database checkpoint operations

included a call to f sync to force the log data to the local

disk before completing. For the persistent store experiments

the database was accessed remotely via NFS, with the client

and server connected via a private EtherNet.

We measured elapsed time on the client machine using a

custom timer board3 having a resolution of 100 ns. The fine-

grained accuracy of this timer allows separate measurement

of each phase of a benchmark’s execution.

All benchmarks involving random execution were made

repeatable by presenting the same seed to the random number

generator for each run. Random numbers are also generated

before measurement of the benchmark execution, so that

the elapsed times do not include the numerical computation

overhead of random number generation.

3.2 Garbage collection

We measured three implementations of the schemes for

garbage collection: remembered sets, card marking, and

page traps, In contrast to our earlier performance studies

[11], we have reimplemented the card and page trap schemes

to avoid unnecessary scanning, by combining the precision

of remembered sets with the simplicity of card marking. As

the dirty cards are scanned prior to each scavenge, the older-

to-younger pointers in those cards are summarized to the

appropriate remembered sets, which are then used as the ba-

sis of the scavenge. The cards are thereafter treated as clean.

Subsequent scavenges need only update the remembered sets

by rescanning just those cards that have been dirtied since the

previous scavenge.4

We varied the card size by multiples of four from 16 bytes

up to the virtual memory page size (4K bytes). We also

2DECstation and ULTRIX are registered trademzuks of Digital Eqrrip-

ment Corporation MIPS and R2000 are trademarks of MIPS Computer

Systems This version of the operating system had some officiat patches

installed that fix bugs in the repro t ec t system cdl.

3We th~k Dig]t~ Eqmpment Corporation’s Western Research Labom-

tory, and Jeff Mogul m pamculru, for giving us the high resolution tlmmg

board and the software necessary to support it

4We are indebted to one of the anonymous referees for suggesting this

improvement,

measured the performance of an implementation that assumes

an oracle to discover which pages of the heap are dirty at

each garbage collection. This allows us to determine the

optimal performance that could be expected if a zero-cost

implementation of the dirty operating system primitive

discussed in Section 2.1 were available.

3.2.1 Implementation

To avoid making the remembered sets too large we record

only those stores that create pointers from older objects to

younger objects. This involves extra conditional overhead at

every store site to perform the check, in addition to a sub-

routine call to update the remembered set if the condition is

true. Smalltalk object references are tagged to allow direct

encoding of non-pointer immediate values such as integers.

Since many object references are immediate, the first action

performed by the check is to filter out non-pointer stores.

This is followed by a generation test to filter out “initializ-

ing” stores to objects in the youngest generation (such stores

cannot create older-to-younger pointers). Finally, if the store

creates a pointer from an older object to a younger object the

remembered set is updated with a subroutine call. On the

MIPS R2000 non-pointers are filtered in 2 cycles. Filtering

initializing stores requires another 8 cycles, while filtering the

remaining uninteresting stores consumes a further 8 cycles.

The size of the entire inline sequence for a store typically

comes to 22 instructions, including the store itself, filtering

of uninteresting stores, and the call to update the remem-

bered set; some of these are frequently skipped because of

the filtering.

For the card schemes we implement the card table as a

contiguous byte array, one byte per card, so as to simplify

the store check.5 By interpreting zero bytes as dirty entries

and non-zero bytes as clean, a pointer store can be recorded

using just a shift, index, and byte store of zero. Since the

most attractive feature of card marking is the simplicity of the

store check, we omit the checks used in the pure remembered

set scheme to filter uninteresting stores. On the MIPS R2000

stores are recorded with just 5 instructions: 2 to load the

base of the card table, a shift to determine the index, an add

to index the table, and a byte store of zero. Including the

store, the entire inline sequence comes to 6 instructions. If

we kept the card table base in a register this sequence would

shrink to 4 instructions (registers are at a premium in the

interpreter). We note that the byte store instruction on the

R2000 is implemented in hardware as a read-modify-write

instruction, requiring several cycles for execution.

The page trap scheme requires no inline code at store sites

to detect pointer stores, relying instead on the page protection

hardware to trap updates to protected pages. Thus there is

no longer any advantage in using a byte table to simplify the

store check. Rather, it is more important that the dirty page

table consume the smallest possible space. For this reason we

5We first heard of thk Idea from Paul Wilson
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use a bit table; setting a bit indicates that the corresponding

page is dirty. When a protection trap occurs the bit in the

table corresponding to the modified page is set and the page

unprotected.

3.2.2 Benchmarks

We use two benchmarks to evaluate garbage collection per-

formance. The first is a synthetic benchmark of our own

devising based on tree creation. The second consists of sev-

eral iterations through the standard “macro” benchmark suite

that is used to compare the relative performance of Smalltalk

implementations [17]. Our benchmarks have the following

characteristics:

. Destroy—-trees with destructive updates: A large initial

tree (w2M bytes) is repeatedly mutated by randomly

choosing a subtree to be replaced and fully recreated.

The effect is to generate large amounts of garbage, since

the subtree that is destroyed is no longer reachable, while

retaining the rest of the tree to the next iteration. Re-

building the subtree causes many pointer stores, some

of which create older-to-younger pointers of interest to

the garbage collector. Each run performs 160 garbage

collections.

● Interactive— 10 iterations of the “macro” benchmarks:

These measure a system’s support for the program-

ming activities that constitute typical interaction with

the Smalltalk programming environment, such as key-

board activity, compilation of methods to bytecodes, and

browsing. Each run performs 137 garbage collections.

3.2.3 Results

We report the elapsed time of each phase of execution of the

benchmark, including:

●

●

●

●

running: the time spent in the interpreter executing the

program, as opposed to the garbage collector (note that

running includes the cost of store checks or page traps);

roots: the time spent scanning through remembered

sets or card/page tables and copying the immediate sur-

vivors; 6

promoted the time spent copying any remaining sur-

vivors; and

othe~ the time spent in any remaining GC bookkeeping

activities.

Figure 2 plots the results for the remembered set (rem-

sets), page trap (pages), and card implementations (for card

sizes of 16, 64, 256, 1024, and 4096 bytes) on the Destroy

benchmark. The performance that might be obtained using

a zero-cost implementation of di rt y is estimated by taking

the running, roots, and promoted times for the oracle-based

implementation along with the other overheads for the card

o In SmaUtalk the stack is stored as heap objects so there is no separate

stack processing. In fact, all the process stacks are copied during each

scavenge. Also, Smalltalk has only a few global variables, in the interpreter.
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Figure 2: Destroy
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Figure 3: Interactive

marking scheme. This is plotted alongside the other mea-

surements (dirty). The results for the Interactive benchmark

are similarly shown in Figure 3.

To the extent that garbage collection overheads affect total

execution time, the results are conclusive, with the page-

sized granularity imposing significant overhead in scanning

to determine root objects for collection. In contrast with

our earlier results [11 ], we see that summarizing interesting

pointer information into remembered sets for use in subse-

quent scavenges can reduce this scanning overhead, such that

the card schemes are competitive with the pure remembered

set scheme. Nevertheless, the pure remembered set scheme

has markedly less overhead to determine the roots. Also,

using a bit table versus a byte table has little effect on root

processing time (the roots times are very similar for dirty,

which scans a bit table, and cards, which scans a byte table).

The results are somewhat less conclusive for running-time

overheads. The variation in running time amongst the card

schemes can only be explained by hardware data cache ef-

fects (such as the specific mapping of virtual pages to physical

addresses for this physically addressed cache), since the card

schemes all execute the exact same code (barring differences

in the shift value used to index the card table). Similarly, the

fact that the oracle-based dirty schcmc does not exhibit the

best running time of the different implementations can only

be explained as a result of such data cache effects. Neverthe-
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less, dirty has running time less than pages for both bench-

marks. Since these implementations use exactly the same

virtual machine and garbage collection data structures, any

difference is unlikely to be due to the prevously mentioned

cache effects, Thus we can get some idea of the overhead to

field a trap from the operating system, unprotect the appro-

priate page, and return to normal execution, by subtracting

the running time of the oracle-based dirty scheme from that

of the pages scheme, and dividing by the number of page

traps, This yields a per-trap overhead of915#s for the De-

stroy benchmark (864 traps), and 744fls for the Interactive

benchmark (1656 traps), showing that the traps can be much

more expensive than the lower bound of 250Ls we obtained

by measuring their cost in a tight loop. These results suggest

that the frequency of traps affects their cost. Presumably,

more frequent traps mean that the hardware caches are more

likely to contain the operating system code and data required

to service a trap, making for faster trap handling.

Given the number of store checks executed by the card

schemes and the number of traps incurred by the page trap

scheme for each benchmark, we can determine the trade-

off between using explicit code to maintain dirty bits and a

page trapping approach. Ignoring virtual-to-physical map-

ping cache effects, the break-even point is determined by the

formula:

cx=~

where

c = the number of store checks executed by an explicitly

coded software scheme;

x = cycles per check;

~ = clock frequency (16.67 MHz for DECstation 3100);

t = the number of traps incurred by a page trapping

scheme;

y = fls per trap.

For these benchmarks this yields Table 1, which gives the

maximum page trap overhead such that a page trapping ap-

proach will incur less running time than an alternative explicit

implementation having the given overhead per store check.

Let us assume that our current 5-instruction sequence for

card marking executes in no more than 10 cycles. To be

competitive a page trap implementation would have to in-

cur no more than 4 lps and 237ps per trap, for the Tree and

Interactive benchmarks respectively. These values are sig-

nificantly lower than the estimated trap overheads for these

benchmarks quoted above, and lower even than the 250ps

lower bound obtained for a tight loop.

We summarize the results in Tables 2 and 3, indicating the

elapsed time for each of the phases as a percentage of those

for dirty, and note that the total elapsed time for the 1K byte

card scheme is best overall.

Tree Interactive

Store checks (c) 59646 654245

Page traps (t) 864 1656

Cycles per check (x) us per trap (’y)

1 41 24

2 8 47

4 17 95

5 21 118

10 41 237

15 62 355

20 83 474

50 207 1185

100 414 2370

150 621 3555

200 828 4740

Table 1: Break-even points for GC implementations that use

page trapping vs explicit checks

3.3 Object fault handling

Persistent Smalltalk is obtained by extending the virtual ma-

chine to handle persistence. No modifications have been

made to the bytecode instruction set to support persistence,

and changes to the virtual image have been minor. Rather,

all extensions involve the virtual machine, so that objects are

faulted as they are needed by the executing image.

Permanent storage for the virtual image is provided by an

underlying persistent object storage manager [18]. Since ob-

jects are too small a unit for efficient individual transfer to

and from disk, the storage manager groups objects together

into physical segments for transfer between the permanent

database and its in-memory buffers. Physical segments may

have arbitrary size (up to some large system-defined limit).

Thus a physical segment may contain any number of objects.

Objects within a physical segment are further grouped into

logical segments (of at most 255 objects) for efficient man-

agement of the OID space (objects in a given logical segment

have the same high bits in their OID). Applications can take

advantage of these groupings to cluster related objects for

retrieval.

3.3.1 Implementation

We have implemented two variants of the fault block ap-

proach to detecting non-residency. 7 The first uses explicit

software residency checks in the virtual machine while the

other exploits page-protection.

Computation in Smalltalk proceeds by sending messages

to objects. The effect of sending a message is to invoke a

method on the receiver of the message. Invoking a method

l’we ~~o im~lementeda reference tagging scheme, but It was cle~lY

uncompetitive
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Phase rem sets cards-0016 cards-0064 cards-0256 cards- 1024 cards-4096 pages

Running 101% 98% 99% 103% 98% 98% 102%

Roots 19% 542% 153% 64% 58% 93% 138%

Promoted 97% 107% 102% 100% 99% 100% 101%

Other 94% 107% 104% 96% 96% 100% 360%

Total 98% 115% 101% 101% 97% 98% 105%

Table 2: Phases of execution for Destroy as percentage of dirty

Phase remsets cards-0016 cards-0064 cards-0256 cards- 1024 cards-4096 pages

Running 98% 97% 97% 102% 95% 94% 103%

Roots 22% 605% 173% 71% 56% 95% lol?io

Promoted 100% 110% 103% 101% 99% 100% 10090

Other 96% 106% 104% 98% 97% 100% 255%

Total 95% 111% 99% 102% 94% 94% 105%

Table 3: Phases of execution for Interactive as percentage of dirty

may be thought of as a procedure call. Precisely which

method is invoked depends on the class of the receiver, so

every Smalltalk object contains a pointer to its class, which

is itself a Smalltalk object. Because computation is driven by

the sending of messages, most objects will become resident

only when a message is sent to them. By arranging for fault

and indirect blocks to respond to messages by forwarding the

message to their target object (faulting the object as neces-

sary), message sends to resident objects typically incur no

extra overhead.

Byte-compiled methods (code) and stack frames are also

first-class objects in Smalltalk. By making further constraints

on the residency of certain references contained in these ob-

jects we are able to restrict all residency checking to method

invocation; even there the overhead is typically incurred only

when a method is invoked on a non-resident object.8

The effect of the residency constraints is felt whenever

an object is made resident. Pointer fields that are subject

to a residency constraint must be swizzled to refer directly

to their target. Unconstrained pointer fields are swizzled to

point directly to their target only if the target object is already

resident—the storage manager supports the efficient mapping

of OIDS to resident objects. Otherwise, the pointer field is

swizzled to refer to a fault block.

Since there may be multiple references to a given fault

block dispersed through the registers and memory of the

virtual machine, we arrange for object faults to bypass the in-

direction that would otherwise be created when a fault block

is converted to an indirect block. This is not strictly neces-

s~ for the software fault detection scheme, since traversing

8Pnmitives may need to perform additionat residency checks if they

access objects other than those whose residency is guaranteed by the

constraints

a pointer to an indirect block can be quickly handled at the

cost of an indirection—for a fault block, the full object fault

mechanism must be invoked to translate the OID contained

in the fault block. However, for a page trapping scheme,

the overhead of the traps is high enough to justify expend-

ing some effort to eliminate references to (ex-fault) indirect

blocks, to avoid repeated loading and faulting on those refer-

ences. To support this, each page of allocated fault blocks has

a remembered set associated with it, recording all persistent

objects whose pointer fields have been swizzled to refer to

fault blocks that lies in the page. At each object fault we scan

the objects in the remembered set to update any pointers and

bypass the indirection. For a fair comparison with hardware-

assisted variants we also apply this indirection elimination to

the software scheme.

The architecture leaves open the possibility of making any

number of objects resident at one time. In an earlier study [10]

we considered the granularities inherent in the underlying

object storage manager: individual objects, logical segments,

and physical segments. Swizzling just one object at a time

has the advantage of faulting just those objects needed by

the program for it to continue execution. Swizzling an entire

logical or physical segment at a time allows the program

to take advantage of any clustering present in the physical

layout of objects in the database. Also, since all the objects

in a segment can be mapped before they are swizzled, any

intra-segment references can be converted to direct pointers.

If the static clustering is a good approximation to the dynamic

locality of access by the program, then the speed of program

execution will improve since fewer object faults will occur.

For these experiments we swizzle entire logical segments,

and compare several versions of the virtual machine that

differ only in their implementation of fault detection, and
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Scheme Description

non-persistent Non-persistent, unadorned with residency checks

FB-resident Non-persistent, augmented with software fault block residency checks

PF-resident Non-persistent, augmented with the page trap handling code, plus necessary support to

decode load instructions that might cause a trap

FB Persistent, fault blocks, swizzle 1 logical se~ment at a time
1

PF \ Persistent, fault blocks allocated in protected pages, swizzle 1 logical segment at a time

Table 4: Fault detection schemes measured in experiments

whether they are running against a completely resident virtual

image (non-persistent Smalltalk) or against an image that is

faulted on demand (persistent Smalltalk). Table 4 enumerates

the variants.

3.3.2 Benchmarks

We use the Lookup and Traversal portions of the 001 object

operations benchmarks [7]. The 001 benchmark database

consists of a collection of 20,000 “part” objects, indexed by

part numbers in the range 1 through 20,000, with exactly three

“connections” from each part to other parts. The connections

are randomly selected to produce some locality of reference:

90% of the connections are to the “closest” 1% of parts,

with the remainder being made to any randomly chosen part.

Closeness is defined as parts with the numerically closest

part numbers. The part database and the benchmarks are

implemented entirely in Smalltalk, including the B-tree used

to index the parts.

The benchmarks operate as follows:

●

b

Lookup fetches 1,000 randomly chosen parts from the

database. For each part a null procedure is invoked,

taking as its arguments the x, y, and type fields of the

part.

Traversal fetches all parts connected to a randomly

chosen part, or to any part connected to it, up to seven
hops (for a total of 3,280 parts, with possible duplicates).

Similarly to the Lookup benchmark, a null procedure is
invoked for each part, taking as its arguments the x, y,

and type fields of the part.

Each measure is typically run 10 times, the first when the

system is cold, with none of the database cached (apart from

any schema or system information necessary to initialize the

system). Each successive iteration fetches a different set of

random parts. Before the first run of each series of benchmark

iterations a “chill” program is executed on the client to ensure

that the operating system file buffers of both client and server

have been flushed of all database segments, so that the first

iteration is truly cold.

In addition to the ten cold-warm iterations, we measured

the elapsed time for a hot iteration of the Traversal bench-

mark, by beginning at the same initial part used in the last of

the warm iterations. This hot run is guaranteed to traverse
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Figure 5: Traversal

only resident objects, and so will be free of any overheads

due to swizzling and retrieval of non-resident objects.

3.3.3 Results

The elapsed times for the cold-warm iterations of each bench-

mark are plotted in Figures 4 and 5, expanding the scale to

focus on the warm performance, with the non-persistent per-

formance as a baseline. The FB and PF schemes behave very

similarly, with warm performance close to optimal. How-

ever, the software-mediated FB scheme has better perfor-

mance overall.

We summarize the benchmark results in Table 5, report-

ing the average elapsed time (in seconds) of the 10 itera-

tions for the non-persistent variants (since the database is
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Lookuv Traversal

Scheme Average Average

non-persistent 0.57 0.089

FB-resident 0.57 0.089
11 II

PF-resident 0.57 0,090, ,

Cold Warm Cold Warm Hot

FB 28.11 0.57 14.79 0.154 0.088

PF 29.29 0.59 15,34 0.162 0.089
1 ,, ,

Table 5: Elapsed times for object faulting benchmarks (seconds)

Lookuv Traversal

Scheme a b’ r a b r

FB 0.568 0.000214 0.9015 0.090 0.000181 0.9885

PF 0.585 0.005967 0.9996 0.102 0.004369 0.9805

Table6: Fault overheads (seconds)

always resident and warm), and cold (first iteration), warm

(10th iteration), and hot times for the persistent variants. The

non-persistent variants exhibit little difference in their perfor-

mance, indicating that the overhead of the run-time residency

checks is slight.

To get some sense of the cost of the page traps and

software-mediated object faults we have obtained linear re-

gression fits of the running time (time spent in the interpreter

actually executing bytecodes as opposed to swizzling, by-

passing indirection, or reading from disk) versus the number

of faults occurring for each iteration of the benchmark. The

model used is:

y=a+bx

where

y = running time (excluding swizzling and other fault han-

dling overheads);

a = y-axis (running time) intercept;

b = seconds per fault;

x = number of faults.

The fits obtained are good and the coefficients are given in

Table 6, as well as the linear correlation coefficient r. The

b coefficient is a measure of the number of seconds required

to get in and out of the object fault handler, either through

software checks to detect faults or through a protection trap

handler. The results for PF show that trap handling overhead

is once again much greater than the 250,us value obtained

when measured for a tightly coded loop, but the high per-

trap cost is not unreasonable considering that each fault in-

volves substantial work to eliminate references to the trapped

fault block, which will significantly disturb the state of the

hardware caches. Upon resumption of normal execution the

hardware instruction and data caches must be reloaded before

peak execution speeds can be achieved. The results for FB

reveal just how fast protection traps have to be in order to out-

strip the software implementation—software-mediated fault

detection overheads are less than 250ps for both benchmarks.

To summarize, we have shown that software object faulting

schemes can be made to have performance close to optimal,

On the other hand, page trap schemes can be significantly

slowed by the cost of the traps. While we cannot vouch for

the performance of a direct-mapped scheme in the style of

Texas and ObjectStore, the fact that software object faulting

can give performance close to optimal makes it difficult to

beat.

3.4 Database checkpointing

A checkpoint operation consists of copying and unswizzling

modified and newly-created objects (or modified subranges

of objects) back to the storage manager’s buffers for eventual

return to the stable database, along with generating a log

record describing the range and values of the modified region

of the object. The log record is generated by comparing the

old and new versions of the object as it is unswizzled———

we generate a difference log indicating the changes made to

the object. Unswizzling may encounter pointers to objects

newly-created since the last checkpoint. These objects must

be assigned an OID and unswizzled in turn, perhaps dragging

further newly-created objects into the database.

115



3.4.1 Implementation

We have implemented and measured four schemes for detect-

ing updates to persistent objects. The first uses a remembered

set to record persistent objects that have been modified since

the last checkpoint. To keep the remembered set from be-

coming too large we record only updates to persistent objects.

This requires a check to see that the updated object is located

in the separately managed persistent area of the volatile heap.

If the updated object is persistent then a subroutine is invoked

to enter the object’s pointer in the remembered set. On the

MIPS R2000, non-persistent objects are filtered in 9 cycles.

The entire inline sequence is 12 instructions long.

Rather than noting updated objects in a remembered set,

the second scheme marks objects as they are updated by set-

ting a bit in the header of the object when it is modified. Upon

checkpoint all resident persistent objects must be scanned to

find those that have been updated.

Card marking can also be used to track updates for log

generation. We compare card schemes that use card sizes

of 16, 64, 256, 1024, and 4096 bytes, as well as a fourth

approach which uses page protections to monitor updates.

These schemes are implemented exactly the same as for the

garbage collector store checks. The card schemes use a byte

table and 5 instructions to dirty a card. The page protection

scheme uses a bit table and traps updates to protected pages.

For small objects the remembered set scheme is ideal.

However, updates to large objects may suffer from poor lo-

cality with respect to the object size, resulting in unnecessary

unswizzling upon checkpoint. Thus checkpoint overheads

are bounded solely by the size of the object. The object

marking scheme suffers from the need to examine every res-

ident persistent object to find those that have been modified.

If only a few objects have been modified then it must examine

many more objects than need to be unswizzled. The card and

page protection schemes record updates based on fixed-size

units of the address space. Similarly to garbage collection,

we can expect the size of the cards to influence checkpoint

costs, since large cards imply higher unswizzling overheads.

These benchmarks all use the exact same object faulting

and swizzling scheme, while varying the update detection

mechanism.

3.4.2 Benchmarks

Previous studies have extended the Traversal operation of

the 001 object database benchmarks to also perform some

modification of part objects [27]. Each part accessed during

the traversal may be updated based on some known proba-

bility fixed in advance. For example, if the probability of

update is 0.5 then approximately half of all parts visited will

be modified. The update consists of incrementing the x and y

4-byte integer fields of the part. A checkpoint operation is

performed at the end of each traversal to commit the changes

to the database.

In order to best understand the behavior of the update
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detection mechanisms in the absence of other effects such as

object faults and swizzling, we measured the time to run 10

hot iterations of the update benchmarks, by beginning each

hot iteration at the same initial part used in the last of the

warm iterations. These hot runs are guaranteed to traverse

only resident objects, and so will be free of any overheads

due to swizzling and retrieval of non-resident objects.

3.4.3 Results

Figure 6 summarizes the average elapsed time for the ten

hot iterations at each of the update probabilities. The results

are clearer when we break the total elapsed time down into

separate phases of execution, as plotted in Figures 7–1 O.

Running is the time spent in the virtual machine executing the

bytecodes of the benchmark program, including the overhead

to note modifications. The checkpoint operation itself is

decomposed into:

c old: time to locate and unswizzle old modified objects

and generate log entries for them;

● new: time to unswizzle new persistent objects and gen-

erate log entries for them;

● write; time to flush the log records to disk;

● othe~ time to perform other bookkeeping, such as man-

aging page protections.

For update probability p = O, there are very few old modi-

fied objects to be unswizzled, so the remembered set scheme

shows little overhead for this phase. The card and page

schemes incur overhead to scan the card table. Since the

card table is larger for smaller cards, the overheads are cor-

respondingly higher, while the object marking scheme must

scan all the objects for very little gain. Note that every

checkpoint also generates a small number of new persistent

objects—recall that stack frames are objects and may persist,

so the checkpoint must log any newly-allocated active stack

frames, to allow resumption of execution from the checkpoint

in the case of a crash.
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Scheme ps per byte ps per skip r

obiects 1.17 2.67 0.9998.
remsets 1.27 1.0000

cards 1.01 0.9954, ! I

pages 1.07 I 0.9998

Table7: Checkpoint scanning overheads

For higher update probabilities, the effects of the compet-

ingschemes aremore clearly discerned. Unswizzling of old

objects consumes more of the total checkpoint time, so that

large-granularity schemes face higher unswizzling costs. For

example, the large-granularity card schemes must unswizzle

all objects that lie within a dirty card, including those that

have not actually been modified. In contrast, although object

marking scans all the resident objects, it need only unswizzle

those that have actually been modified. Remembered sets are

even better, except at probability p = 1.0, since they eliminate

the need to scan. Note that all schemes write the same size

log at each checkpoint, since we only write out the part of

an object that has actually been modified. The cost of the

page traps can also be seen at the higher update probabilities.

Still, the recurring theme is that the cost of the page traps is

a small fraction of total costs—granularity issues are much

more important.

We have also managed to obtain a measure of the per-byte

scanning costs associated with each scheme in unswizzling

old modified persistent objects. These results were obtained

by running regression fits for the old times versus the number

of bytes unswizzled and compared, in order to generate the

difference log. For the object marking scheme we actually

had to use a multi-linear fit to account for the additional

overhead of sifting through all the persistent objects to find

those that were modified and hence needed to be unswizzled,

taking as an additional independent variable the number of

objects skipped as unmodified during the scan. The tits were

all excellent and the results are summarized in Table 7.

The per-byte overheads are much the same for all the

schemes. The variation can be accounted for by consid-

ering that there are other effects that may be correlated with

the per-byte scanning costs and cannot be linearly separated

by the regression. There are also slight differences among the

schemes in the way the scanning loops are implemented. The

skip overhead is the cost to decode each unmodified object’s

header and to skip to the next object in the scan, These results

indicate the correlation between the time required to unswiz-

zle objects, and the number of bytes that must be considered

when unswizzling. Clearly, the best schemes are those that

minimize the amount of scanning and the number of bytes

that must be unswizzled.
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4 Interpreters versus Compilers

The experiments and results we have presented are for an in-

terpreted language. An obvious question is how they would

change for a compiled language. The results for garbage

collection and database checkpointing will likely stand since

compilation will tend to shrink the time actually spent in

the program code, but garbage collection and checkpoint-

ing costs will be unaffected since they are part of the lan-

guage run-time system. Thus, collection time and check-

point overheads become more important, strengthening our

arguments for software rather than hardware approaches in

many circumstances. Reducing the incremental costs of not-

ing updates for garbage collection and checkpointing will

not improve the situation. Rather, it is better to invest in

improving the garbage collection and checkpoint overheads,

which are heavily impacted by the granularity of the noted

updates. Nevertheless, inline checks do affect program size

and possibly instruction cache behavior, so we cannot predict

the situation with certainty. The size and frequency of inline

checks will affect overhead with respect to a non-garbage

collected or non-persistent implementation, but in the ab-

sence of contrary evidence, it is reasonable to assume that

the relative ranking of the various schemes will remain the

same.

With respect to object faulting we observe that the nature

of the programming language and programmer’s style maybe

important, In particular, our faulting implementation exploits

Smalltalk’s heavy use of dynamic method dispatch. In ef-

fect, non-resident objects are a hidden subclass, all of whose

methods fault the object in, This means that method dispatch

does not explicitly check residence, substantially reducing

the number of explicit checks. For example, in the Lookup

benchmark 93% of the checks are absorbed by the dispatch

mechanism, while in Traversal virtually all (99– 100%) are.

In languages such as C++ (or Modula-3), the same tech-

nique can be applied by having non-resident objects point

to different, special, virtual function tables (method suites).

Again, there is no performance impact on dispatch for resi-

dent objects. However, the more one uses direct access and

non-virtual function calls, the more one must rely on ex-

plicit checks. In the case of change noting, one can apply

the same sort of trick (one function table for clean objects

and a different one for dirty objects). We further note that

there are certainly circumstances in which an earlier check

subsumes later ones, so that suitable data flow analysis can

further reduce the number of explicit checks required.

Given these observations, we believe that our results are

likely to carry over to compiled languages, at least for the

most part, but certainly admit the necessity of further experi-

mentation. We do note that the somewhat contrary results of

White and DeWitt [27], for the E persistent programming lan-

guage, are for a compiler that does not incorporate any of the

techniques for eliminating explicit checks that we describe

in this section.

5 Conclusions

We compared the performance of application implementa-

tions that exploit virtual memory primitives against imple-

mentations using software techniques. In summary, gen-

erational garbage collection performs best when the roots

of a collection can be accurately located, without having to

scan to find them; remembered sets do this admirably. Pure

card-based schemes, particularly at the size of virtual mem-

ory pages, exhibit poor performance because pages are too

large a granule; this is improved by a hybrid scheme that

marks cards but after scanning them preserves the significant

information in remembered sets. Object fault handling in

persistent programming languages can be implemented effi-

ciently without virtual memory primitives, especially given

an object-oriented execution paradigm, yielding performance

close to optimal. Finally, checkpointing persistent data using

virtual memory primitives suffers in performance because

pages are too large a granule when update locality is small.

Our software solutions require modification of the pro-

gramming language implementation, One nice feature of

hardware-assisted techniques for garbage collection and per-

sistence is that they are transparent and do not need support

from the language implementation. While page trapping

might be indispensable for completely transparent solutions

to these applications, we have shown that software solutions

can be more efficient.

Our results show that for these applications the costs of

the virtual memory primitives themselves are not the pri-

mary problem. Rather, the unduly large granularity of virtual

memory pages in modern operating systems and architec-

tures significantly affects overall performance for some ap-

plications (notably checkpointing). Moreover, as processor

speeds improve and physical memories grow, page sizes are

likely to become much larger, further degrading the perfor-

mance of virtual memory solutions in applications that have

a naturally smaller granularity. It is worthwhile noting that

similar results have been obtained in other very different

application areas, such as efficient implementation of data

breakpoints for debuggers [26]. We speculate that sub-page

protection and dirty bits, along with appropriate operating

systems interfaces, might somewhat overcome the perfor-

mance disadvantages we observed. However, it is clear that

while user level virtual memory primitives are transparent

solutions to various memory management problems, they do

not necessarily offer the best performance.
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