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N
eurolysis of peripheral nerves is an effective and 
frequently performed surgical procedure for en-
trapment neuropathy. However, postoperative peri-

neural scarring and adhesion often cause secondary neu-
ropathy.44,52 Once peripheral nerves are injured by trauma 

or neurolysis, scar tissue with infiltration of fibroblasts and 
myofibroblasts develops and peripheral nerve adhesion 
is completed. If the peripheral nerves are compressed or 
tethered by the scar tissue and adhesion, they become dys-
functional.1,7,32,35,36 Extraneural scarring also suppresses 
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OBJECTIVE Peripheral nerve adhesion caused by extraneural and intraneural scar formation after neurolysis leads 
to nerve dysfunction. The authors previously developed a novel very flexible biodegradable nerve conduit composed of 
poly(L-lactide) and poly(e-caprolactone) for use in peripheral nerve regeneration. In the present study, they investigated 
the effect of protective nerve wrapping on preventing adhesion in a rat sciatic nerve adhesion model.

METHODS Rat sciatic nerves were randomly assigned to one of the following four groups: a no-adhesion group, which 
involved neurolysis alone without an adhesion procedure; an adhesion group, in which the adhesion procedure was 
performed after neurolysis, but no treatment was subsequently administered; a nerve wrap group, in which the adhesion 
procedure was performed after neurolysis and protective nerve wrapping was then performed with the nerve conduit; 
and a hyaluronic acid (HA) group, in which the adhesion procedure was performed after neurolysis and nerve wrapping 
was then performed with a 1% sodium HA viscous solution. Six weeks postoperatively, the authors evaluated the extent 
of scar formation using adhesion scores and biomechanical and histological examinations and assessed nerve function 
with electrophysiological examination and gastrocnemius muscle weight measurement.

RESULTS In the adhesion group, prominent scar tissue surrounded the nerve and strongly adhered to the nerve biome-
chanically and histologically. The motor nerve conduction velocity and gastrocnemius muscle weight were the lowest in 
this group. Conversely, the adhesion scores were significantly lower, motor nerve conduction velocity was significantly 
higher, and gastrocnemius muscle weight was significantly higher in the nerve wrap group than in the adhesion group. 
Additionally, the biomechanical breaking strength was significantly lower in the nerve wrap group than in the adhesion 
group and HA group. The morphological properties of axons in the nerve wrap group were preserved. Intraneural macro-
phage invasion, as assessed by the number of CD68- and CCR7-positive cells, was less severe in the nerve wrap group 
than in the adhesion group.

CONCLUSIONS The nerve conduit prevented post-neurolysis peripheral nerves from developing adhesion and allowed 
them to maintain their nerve function because it effectively blocked scarring and prevented adhesion-related damage in 
the peripheral nerves.

https://thejns.org/doi/abs/10.3171/2017.4.JNS162522
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blood flow affecting the peripheral nerves and thickens 
the epineurium and perineurium, leading to intraneural 
scarring that further suppresses the blood flow.1,7,35,44,65

For neurolysis-treated peripheral nerves, various proce-
dures that involve wrapping veins or free or pedicled flaps 
with muscle or adipose tissue have been reported to pre-
vent adhesion.12,14,16,34,38,45,47,50,58,62 However, because these 
methods involve the use of autologous normal tissues, they 
have major drawbacks, including donor-site morbidity and 
a high risk of surgical complications. Many nerve protec-
tive materials including silicone sheets, collagen tubes, 
gels, and fluids have been developed in recent years to over-
come these drawbacks.2,3,6,9,13,15,19–21,23–26,29,31,39–41,45,46,60,64

We previously developed a novel biodegradable nerve 
conduit composed of poly(L-lactide) (PLA) and poly(e-
caprolactone) (PCL) to treat peripheral nerve injury and 
confirmed that axonal regeneration was induced within the 
conduit.22,30,40,56,57 This nerve conduit comprises 2 layers: 
an outer layer composed of PLA multifilament fiber mesh 
and an inner layer composed of a PLA- and PCL-contain-
ing porous sponge with pores of 10 to 50 mm. It is soft and 
flexible enough to cover the peripheral nerve with minimal 
damage, and it is degraded and absorbed very slowly in 
vivo (> 1 year) (Fig. 1).55

We hypothesized that this biodegradable nerve conduit 
is useful for both nerve regeneration and protective wrap-
ping of the nerve to prevent scar and adhesion formation. 
In the present study, we used a rat nerve adhesion model 
to compare protective nerve wrapping with this nerve con-
duit versus hyaluronic acid (HA), which has been shown 
to protect nerves from adhesion formation, by examining 
the efficacy of each materials to prevent nerve adhesion.

Methods
Nerve Conduit

We used the same biodegradable polymer tube for the 
treatment of peripheral nerve defects as previously re-
ported.22,30,55–57 The conduit (outer diameter 3 mm; inner 
diameter 2 mm; length 15 mm) was sized so that it was 1 
to 2 mm larger than the diameter of the rat sciatic nerves, 
which were less than 1 mm, to ensure that no nerve con-
striction was induced.25,29 The nerve conduit comprises an 
outer layer composed of a PLA multifilament fiber mesh 
and an inner layer composed of a 50% PLA and 50% PCL 
porous sponge with pores of 10 to 50 mm (Fig. 1). This 
nerve conduit can maintain its tubular structure while 
staying very flexible. In particular, the PLA and PCL co-
polymer sponge of the inner layer has a honeycomb struc-
ture that is minimally damaging to the nerve.22,30,55–57

Animal Model

All experimental protocols and animal maintenance 
procedures were approved by the Animal Ethics Research 
Committee of Osaka City University Graduate School of 
Medicine. Lewis rats (body weight approximately 250 g 
at the time of the operation [SLC, Inc.]) were anesthetized 
by subcutaneous injection of 1 ml of ketamine (50 mg/
ml) and 0.3 ml of 2% xylazine into the dorsal back. The 
adhesion procedures were performed in accordance with a 
previously described sciatic nerve adhesion model.1,11,21 In 

short, the left sciatic nerve was carefully exposed and re-
leased from the surrounding tissues, including the neural 
bed, without injury to the nerves or vessels. Scarring and 
adhesion around the surgically released nerve was pro-
duced by repeatedly burning the biceps femoris muscle 
that composed the neural bed over a 10-mm length using 
a bipolar coagulator (ConMed Excalibur Plus PC; Aspen 
Surgical) to stimulate a local fibrotic response around the 
sciatic nerve.

The nerves were randomly assigned to one of the fol-
lowing four groups: a no-adhesion group (n = 8), which 
involved neurolysis alone without the adhesion procedure; 
an adhesion group (n = 12), which involved performing the 
adhesion procedure after neurolysis but with no treatment; 
a nerve wrap group (n = 12), which involved performing 
the adhesion procedure after neurolysis and subsequent 
wrapping with the nerve conduit; and an HA group (n = 
8), which involved performing the adhesion procedure af-
ter neurolysis and wrapping with 1% sodium HA viscous 
solution (Artz; Kaken). Approximately 0.5 to 1.0 ml of 
HA was applied around the surgically released nerve after 
the adhesion procedure (Fig. 2).13,21 Six weeks after each 
operation, the extent of scar adhesion and the peripheral 
nerve function were evaluated.

Gross Evaluation: Wound Healing and Adhesion Scores

The quality of wound healing of the skin and fascia was 
assessed using previously described wound healing scores.41 
The scores ranged from 1 to 3 (1, skin or muscle fascia en-
tirely closed; 2, skin or muscle fascia partially open; and 3, 
skin or muscle completely open). The quality of nerve adhe-
sion was also assessed using previously described adhesion 
scores.41 The scores ranged from 1 to 3 (1, no dissection 
or mild blunt dissection; 2, some vigorous blunt dissection 
required; and 3, sharp dissection required during neurolysis 
to the area of adhesion). Both the wound healing score and 
adhesion score were calculated in each rat.

FIG. 1. The biodegradable nerve conduit. A and B: Gross appearance 
of the flexible nerve conduit. C: Scanning electron microscope image of 
a transverse section of the nerve conduit. The outer layer is composed 
of PLA and 50% PCA. The inner layer is a honeycomb structure contain-
ing pores.
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Biomechanical Examination

To evaluate the extent of adhesion, the ultimate break-
ing strength of the nerve that adhered to the neural bed 
was assessed, as previously described.39 With the oper-
ated limb fixed on the table, the nerve was ligated with 1-0 
silk thread 5 mm proximal to the adhesion area and dis-
sected at the proximal end. The proximal stump was then 
mounted on a digital force gauge (FGP-0.2; Shimpo) and 
subjected to traction at a rate of 2 cm/min until the nerve 
was completely detached from the neural bed.

Electrophysiological Examination

To evaluate the electrophysiological function of the ad-
herent nerve, the sciatic nerve was exposed and a bipolar 
stimulator was placed proximal to the adhesion area (su-
pramaximal electrical pulses; duration 0.1 msec; frequen-
cy 1 Hz; square wave) (VikingQuest; Natus Neurology). 
The compound muscle action potential of the gastroc-
nemius muscle was recorded by inserting the recording 
electrode into the central portion of the muscle. A bipolar 
stimulator was also placed distal to the adhesion area, 15 
mm distal to the level of proximal stimulation, to calculate 
the nerve conduction velocity.

Wet Weight and Histological Evaluation of Gastrocnemius 
Muscle

To evaluate the functional recovery of the adherent 
nerve, the gastrocnemius muscles on both the affected and 
unaffected sides were resected and their wet weight was 
measured (no-adhesion group, n = 6; adhesion group, n = 
8; nerve wrap group, n = 8; and HA group, n = 6). The 
specimens were immersed in 4% paraformaldehyde over-

night and embedded in paraffin. Five-micrometer-thick 
transverse sections at the level of the largest area of the 
muscle were stained with H & E to evaluate the muscle 
atrophy.

Histological Evaluation of Nerve Adhesions

The sciatic nerve with its surrounding soft tissue, in-
cluding the neural bed, was harvested. The specimens were 
immersed in 4% paraformaldehyde overnight and embed-
ded in paraffin. Five-micrometer-thick central transverse 
sections were stained with Masson’s trichrome to evaluate 
areas of scarring surrounding the nerve. They were also 
immunohistochemically stained using anti-neurofilament 
antibody (1:100, mouse; DAKO) to evaluate the axons. The 
neurofilament antibody-positive axons were morphometri-
cally analyzed using computer-assisted imaging. An im-
age of the transverse section of each adherent nerve was 
photographed at a magnification of ×400 with an Olympus 
DP70 camera, and the number and area of the neurofila-
ment antibody-positive axons were counted automatically 
using ImageJ software (National Institutes of Health) (each 
group, n = 4). To examine the inflammatory process in the 
areas of intraneural scar formation, the transverse sections 
of the nerve adhesions were also immunohistochemi-
cally stained using anti-CD68 antibody (1:500, rabbit im-
munoglobulin G; Abcam) for total activated macrophage 
markers and anti-CCR7 antibody (1:100, rabbit immuno-
globulin G; Abcam) for proinflammatory M1 macrophage 
markers. The rats’ spleen tissue was used as a positive con-
trol.4,7,18,22,63

Statistical Analysis

All data are expressed as the mean ± standard devia-
tion. The Mann-Whitney U-test with Bonferroni correc-
tion was used as a post hoc test after statistically signifi-

FIG. 2. Intraoperative gross findings in the experimental model. A: No-
adhesion group, which involved neurolysis alone without the adhesion 
procedure (burning of the neural bed using a bipolar coagulator). B: Ad-
hesion group, which involved performing the adhesion procedure after 
neurolysis but no subsequent treatment. C: Nerve wrap group, which 
involved performing the adhesion procedure after neurolysis and wrap-
ping with the nerve conduit. D: HA group, which involved performing 
the adhesion procedure after neurolysis and wrapping with a 1% sodium 
HA viscous solution.

FIG. 3. Gross findings 6 weeks postoperatively. A: No-adhesion group: 
little scar tissue was present around the sciatic nerve. B: Adhesion 
group: a large amount of scar tissue covered the sciatic nerve. C: Nerve 
wrap group: scar tissue was present around the nerve conduit; however, 
the sciatic nerve was protected from scar tissue by the nerve con-
duit. D: HA group: adherent scar tissue was present between the sciatic 
nerve itself and the neural bed.
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cant differences were detected with the Kruskal-Wallis 
H-test, using Excel for statistical analysis. All differences 
were considered significant at p < 0.05.

Results
Gross Evaluation (wound healing and adhesion scores)

The gross appearance of the adherent nerves 6 weeks 
postoperatively is shown in Fig. 3. There were no signifi-
cant differences in the wound healing scores among the 4 
groups, indicating that both the superficial layer and fascia 
had healed without damage in all groups (Fig. 4). In con-
trast, the adhesion scores in the no-adhesion group and 
nerve wrap group were significantly lower than those in 
the adhesion group (p < 0.05). The adhesion scores in the 
nerve wrap group were the same as those in the no-adhe-
sion group. Although the adhesion scores in the HA group 
tended to be lower than those in the adhesion group, no 
significant differences were found between these 2 groups 
(p = 0.41).

Biomechanical Examination

The ultimate breaking strength of the adherent nerves 
in the no-adhesion group was the lowest among the 4 

groups, with statistical significance (adhesion group, p = 
0.009; nerve wrap group, p = 0.015; and HA group, p = 
0.024) (Fig. 5). That in the nerve wrap group was the next 
lowest and was significantly lower than those in the adhe-
sion and HA groups. While the ultimate breaking strength 
of the adhered nerves in the HA group tended to be lower 
than that in the adhesion group, no significant difference 
was seen between these 2 groups (p = 0.41).

Electrophysiological Examination

The amplitude of the compound muscle action po-
tential of the gastrocnemius muscles in the no-adhesion 
group was the highest among all 4 groups, with statistical 
significance (adhesion group, p = 0.009; nerve wrap group, 
p = 0.025; and HA group, p = 0.024) (Fig. 6). Although 
that in the nerve wrap group tended to be higher than that 
in the adhesion and HA groups, there were no significant 
differences among them. The motor nerve conduction ve-
locity in the nerve wrap group was significantly higher 
than that in the adhesion group and the same as that in the 
no-adhesion group. These results indicate that nerve wrap-
ping with the nerve conduit preserved the nerve function 
electrophysiologically.

Wet Weight and Histological Evaluation of Gastrocnemius 
Muscle

Representative images of gross appearance and histo-
logical appearance of the gastrocnemius muscle are shown 
in Fig. 7. The gastrocnemius muscles on the affected side 
atrophied in the order of the adhesion, HA, nerve wrap, 
and no-adhesion groups. The wet weights of the gastroc-
nemius muscles in the nerve wrap group were significant-
ly greater than those in the adhesion group and HA group 
and the same as those in the no-adhesion group.

Histological Evaluation of Adhered Nerve

Scar tissue stained with Masson’s trichrome was found 
around the nerve, especially between the nerve and neu-

FIG. 4. Wound healing and adhesion scores 6 weeks postoperative-
ly. A: There were no significant differences in the wound healing scores 
among the 4 groups. B: The adhesion scores were significantly higher 
in the adhesion group than in the no-adhesion and nerve wrap groups. 
*p < 0.05.

FIG. 5. The ultimate breaking strength of the adherent nerves 6 weeks 
postoperatively was significantly higher in the order of the adhesion, HA, 
nerve wrap, and no-adhesion groups. *p < 0.05.
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ral bed, in each group (Fig. 8). In the adhesion group, the 
most notable scar tissue surrounding the nerve had ad-
hered strongly to the nerve. In contrast, a tiny amount of 
the scar tissue had loosely adhered to the neural bed in the 
no-adhesion group. In the nerve wrap group, although scar 
tissue was seen between the nerve conduit and neural bed, 
little perineural scar formation was present around the 
nerve because the nerve conduit had blocked it. Fibrous 
bridging was present between the nerve and the neural bed 
in the HA group, but adhesion of the nerve was looser than 
that in the adhesion group.

Axons in adherent nerves, which were positive for neu-
rofilament protein, are shown in Fig. 9. The axons in the 
adhesion and HA groups were sparse, whereas they were 
packed extremely closely together and exhibited preserva-
tion of their morphological properties in the no-adhesion 
and nerve wrap groups. Morphometric analysis showed 
that the number and areas of axons that were positive for 
anti-neurofilament protein antibodies tended to be greater 
in the no-adhesion and nerve wrap groups than in the ad-
hesion and HA groups (Fig. 9).

The highest number of CD68-positive activated mac-
rophages was found in the intraneural scar tissue in the 
adhesion group, and the lowest number was found in the 

no-adhesion group. There were fewer CD68-positive ac-
tivated macrophages in the intraneural scar tissue in the 
nerve wrap group than in the adhesion and HA groups. 
The number of CCR7-positive proinflammatory M1 mac-
rophages was higher in the adhesion and HA groups and 
lower in the no-adhesion and nerve wrap groups. These 
findings indicate that the nerve conduits protected against 
macrophage invasion, especially M1 macrophage invasion 
(Fig. 10).

Discussion
The effect of the nerve conduit on protecting neuroly-

sis-treated nerves from scarring and adhesion was evident 
in the gross appearance and in the biomechanical, elec-
trophysiological, and histological finding of the adherent 
nerves in the present rat sciatic nerve adhesion model.

Once inflammation occurs in the soft tissue surround-
ing peripheral nerves injured by neurolysis, extraneural 
and intraneural scarring is established during the wound 
healing process, leading to adhesion of the nerve.48,54 
Generally, local inflammation causes hyperpermeability 
of capillary vessels, migration of leukocytes including 
macrophages, and fibrin deposition. The activated macro-
phages produce transforming growth factor–beta, insulin-
like growth factor, macrophage-derived growth factor, and 
fibroblast growth factor, allowing fibroblasts and vascular 
endothelial cells to migrate to the site of injury.3,28,33,43, 49, 

59,61 Adhesion of the soft tissues occurs secondary to gran-
ular and scar formation by fibroblasts and collagen fibers, 
wound contraction,17,37 and the replacement of connective 
tissues by fibrin.42 In this proliferation phase, which lasts 
for several weeks, it is important for nerves to be guarded 
from scar tissue invasion to prevent nerve adhesion.

Many methods by which to protect peripheral nerves 
and prevent scar tissue formation have been devised. In 
the clinical setting, nerves that have undergone neurolysis 
may be covered by autologous vein wraps and adipose tis-
sue or muscle flaps; however, these are associated with do-
nor-site morbidity and a risk of surgical complications.12,14, 

16,34,38,45,47,50,58,62 Various nonbiodegradable or biodegrad-
able materials such as silicone sheets, collagen, porcine 
extracellular matrix, biodegradable glass fiber wrap, 
PLA film, gel, and fluid have recently been used to cover 
neurolysis-treated nerves.2,3,6,9,13,15,19–21,23–26,29,31,39–41,45,46, 60,64 
Neura Gen (Integra LifeSciences Corporation), which is 
a nerve conduit for peripheral nerve injuries, is used as 
a biodegradable wrapping material for peripheral nerves 
and effectively induces axonal growth and protects pe-
ripheral nerves.2,9,31

The PLA-PCL material used in the present study has 
also been used for nerve conduits and has suitable flexibil-
ity and gentleness for nerves.22,30,55–57 As mentioned above, 
it is important to protect peripheral nerves from scar for-
mation during the initial healing stage, which continues for 
several weeks after neurolysis. The present study proved 
that the morphological properties of axons in the nerves 
wrapped with the nerve conduits were preserved because 
the PLA-PCL conduit prevented scarring and adhesion of 
the nerve beyond the initial healing stage without being 
completely absorbed and while maintaining its flexibility. 

FIG. 6. Electrophysiological results. A: Amplitude of compound motor 
action potential of gastrocnemius muscle 6 weeks postoperatively in the 
adhesion group was lowest and that in the no-adhesion group was high-
est among all 4 groups. B: Motor nerve conduction velocity 6 weeks 
postoperatively in the adhesion group was lowest among all 4 groups 
and that in the nerve wrap group was significantly higher than that in the 
adhesion group. *p < 0.05.
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While HA was less effective for protection of the nerve 
from adhesion in the present study, we speculated that it 
would be absorbed earlier. PLA material for prevention of 
adhesions has also been recently described.15,46,60 PLA ma-
terial is hydrophobic and less adhesive to biological tissue. 
We previously reported that PLA material was slowly ab-
sorbed for several years without side effects.55 We believe 
that PLA material effectively preserves the peripheral 
nerves until end of scar formation.

The herein-described PLA-PCL nerve conduit can also 
be used as a scaffold for supportive cells and growth fac-
tors. Some growth factors, such as fibroblast growth factor, 
which has been shown to be effective in the prevention of 
scar formation, can be added to the conduit as a drug de-

livery system.10,27,51,53,66 Such conduits with growth factors 
may provide a more effective barrier to adhesion and have 
greater potential for healing from the damage induced by 
scarring and adhesion. No reports have yet described these 
hybrid protective materials that contain added factors for 
peripheral nerve adhesion.

The mechanism of adhesion-induced peripheral nerve 
dysfunction remains unclear. Masear and Colgin34 have 
suggested that mechanical constriction of scar tissue, loss 
of nerve gliding and traction, and nerve ischemia cause 
nerve dysfunction. Murakami et al.38 have suggested that 
establishment of a barrier that protects nerves, inhibition 
of adhesion, improvement in nerve gliding function, and 
the presence of several neurotrophic factors that promote 

FIG. 7. Representative gross appearance of hind limbs (A, D, G, and J) and gastrocnemius muscles (B, E, H, and K) and photo-
micrographs (C, F, I, and L) of gastrocnemius muscle stained with H & E (scale bar 1 mm). Wet weight of gastrocnemius muscle 
(M) on the affected side atrophied in the order of the adhesion, hyaluronic acid, nerve wrap, and no-adhesion groups. *p < 0.05.
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axonal growth are important for prevention of adhesion-
induced nerve dysfunction. Moreover, in recent years, 
various studies have evaluated the roles of leukocytes, 
mast cells, T lymphocytes, and macrophages in scar tis-
sue formation.5,8,18,63 In the present study, nerve wrapping 
with the nerve conduit prevented intraneural macrophage 
invasion, especially inflammatory M1 macrophage inva-
sion, and scar formation, leading to better nerve function 
electrophysiologically. We believe that it is important to 
prevent both extraneural and intraneural scar formation to 
maintain peripheral nerve function after neurolysis.

The main limitation in the present study is that the only 
evaluation time point was 6 weeks after the operation. We 
believe that this time point seems reasonable based on the 
findings of several well-supported reports. For instance, 
Crosio et al.11 reported that significant scar tissue–induced 
adhesion between the nerve and muscles had already 
formed 3 weeks after the same adhesion procedure as the 
one performed in the present study. Petersen et al.41 also 
evaluated a sciatic nerve adhesion model and reported 
that a substantial degree of scar formation had been es-
tablished earlier than 6 weeks postoperatively. Ohsumi et 
al.39 showed that the blood-nerve barrier had recovered by 
6 weeks after neurolysis and provided only a single time 
point (6 weeks postoperatively) for evaluation of sciatic 
nerve adhesion. Further studies are needed to evaluate the 
long-term effects of the nerve conduit because this PLA-
PCL material is not only biodegradable but also artificial, 
and there is a possibility of side effects that interfere with 
the biological tissues.

FIG. 8. Representative photomicrographs of the sciatic nerve and neural 
bed stained with Masson’s trichrome 6 weeks postoperatively (scale 
bar 500 µm). A: Little scar tissue was present between the nerve and 
neural bed in the no-adhesion group. B: Notable scar tissue was sur-
rounding the nerve and strongly adhering to the nerve in the adhesion 
group. C: Perineural scar formation was present in the nerve conduit 
in the nerve wrap group, although little scar tissue was seen between 
the conduit and neural bed. D: Fibrous bridging scar tissue was found 
between the nerve and neural bed in the HA group.

FIG. 9. Representative photomicrographs of axons stained using anti-neurofilament antibody 6 weeks postoperatively (scale 
bar 20 µm). A: The morphological properties of the axons were preserved in the no-adhesion group. B: Numerous but sparse 
smaller-diameter axons were seen in the adhesion group. C: The morphological properties of the axons were relatively well pre-
served in the nerve wrap group, although the diameter of the axons was smaller than that it was in the no-adhesion group. D: Nu-
merous but sparse smaller-diameter axons were seen in the HA group, as in the adhesion group. E and F: The axon numbers and 
areas of neurofilament protein–positive axons were higher in the no-adhesion and nerve wrap groups than in the adhesion and HA 
groups 6 weeks postoperatively. *p < 0.05.
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Conclusions
This PLA-PCL nerve conduit protected peripheral 

nerves that underwent neurolysis from the development of 
adhesion and preserved the nerve function in a rat nerve 
adhesion model. The nerve conduit effectively blocked 
scarring and prevented adhesion-related damage in the pe-
ripheral nerves.
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