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Previous analysis of the action to control cardiovascular risk in diabetes showed an increased risk of 
mortality among patients receiving intensive glucose lowering therapy using conventional regression 
method with intention to treat approach. This method is biased when time‑varying confounder is 
affected by the previous treatment. We used 15 follow‑up visits of ACCORD trial to compare the effect 
of time‑varying intensive vs. standard treatment of glucose lowering drugs on cardiovascular and 
mortality outcomes in diabetic patients. The treatment effect was estimated using G‑estimation and 
compared with accelerated failure time model using two modeling strategies. The first model adjusted 
for baseline confounders and the second adjusted for both baseline and time‑varying confounders. 
While the hazard ratio of all‑cause mortality for intensive compared to standard therapy in AFT model 
adjusted for baseline confounders was 1.17 (95% CI 1.01–1.36), the result of time‑dependent AFT 
model  was compatible with both protective and risk effects. However, the hazard ratio estimated 
by G‑estimation was 0.64 (95% CI 0.39–0.92). The results of this study revealed a protective effect of 
intensive therapy on all‑cause mortality compared with standard therapy in ACCORD trial.

Cardiovascular disease (CVD) and premature death are among the main unfavorable outcomes among patients 
with type 2 diabetes. The glycated hemoglobin level, as an indicator of the mean blood glucose level, in the past 2 
or 3 months has been shown to be associated with these  outcomes1,2. In the action to control cardiovascular risk 
in diabetes (ACCORD) study, it was shown an increased risk of all-cause mortality in patients receiving intensive 
therapy of hyperglycemia compared to the standard  therapy3. The authors used Cox proportional hazard model 
adjusting for baseline confounders according to the intention-to-treat (ITT) principle. However, individuals 
may deviate from the randomly assigned treatment at any visit by switching to other arms as a result of study 
protocol for threshold level of HbA1c defined per group. The dose was intensified or a new drug combination 
was added if HbA1c levels were ≥ 6% in the intensive group or > 8% in the standard glycemic control group, and 
also it was reduced if HbA1c persistently decreased to < 7% in case of  hypoglycemia4. In such a setting in the 
presence of noncompliance with the assigned treatment, subsequent to switching to other treatments, the ITT 
approach may underestimate the treatment  effect5. Moreover, adjusting for the noncompliance reasons at any 
time, influenced by prior treatment, using standard adjustment methods such as regression analysis may result 
in biased estimates of treatment effect due to over-adjustment and selection  biases5–14. This condition holds in 
ACCORD trial, as the treatment received at visit K was determined according to the level of HbA1c in that visit 
which itself was affected by the previous antiglycaemic  treatment15. Adjusting for noncompliance using causal 
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methods such as G-estimation, inverse probability weighting (IPW), and G-formula does not introduce  bias16–28. 
So, the aim of this study was to estimate the effect of intensive treatment by glucose lowering drugs on all-cause 
mortality using G-estimation of structural nested accelerated failure time model (SNAFTM) in ACCORD study.

Methods
Our study was a secondary analysis of the ACCORD trial, the protocol of which has been described  elsewhere29. 
Briefly, the ACCORD trial was a multicenter randomized clinical trial with a 2 × 2 factorial design in type 2 
diabetic patients to investigate whether intensively targeting hyperglycemia, dyslipidemia, and elevated blood 
pressure can reduce the risk of CVD compared to the standard control. An informed consent was obtained 
from all subjects and/or their legal guardian(s). All methods were performed in accordance with the relevant 
guidelines and regulations. The current analysis was performed to the subset of glucose lowering therapy that 
was performed on all patients at baseline. A total of 10,251 patients with mean age of 62.2 (SD = 6.64) years and 
median HbA1c levels of 8.1% (IQR = 1.3%) were randomly assigned to the intensive or standard glucose lower-
ing therapy. Participants in the intensive glycemic control group were treated with at least two glucose lowering 
medications to target a glycosylated hemoglobin (HbA1c) level < 6%, and participants in the standard glycemic 
control group were targeted for HbA1c levels of 7.0–7.9%. In both groups, the treatment was adjusted in case of 
hypoglycemia, side effects or contraindications. In the standard group, therapy was intensified in case of HbA1c 
≥ 8% or reduced if persistently decreased to < 7%. The primary outcome was cardiovascular events as a composite 
of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes. Secondary outcomes 
were death from any cause. Participants were followed monthly for the first 4 months and then bimonthly in 
the intensive and standard group until loss to follow-up, competing risks (death from other reasons), primary 
outcome event, or the end date of the study (July 2003), whichever came first. Physical examination and labora-
tory data were collected at various visits but at least at baseline and every 2 years.

Treatment and confounders. This study was confined to 15 visits out of 90 follow-up visits which 
included most of the observations. The time-varying treatment was either intensive or standard therapy at 
each visit. As clearly has been stated in ACCORD trial, the study compared two different treatment strategy 
(i.e. intensive vs standard therapy) rather than two medications. The intensive glycemic control group started 
on > or = 2 classes of antiglysemic agents and the doses were monthly intensified if HbA1c levels were > or = 6% 
or if > 50% of premeal or postmeal capillary glucose readings were > 5.6 mmol/L (100 mg/dL) or > 7.8 mmol/L 
(140 mg/dL), respectively. In the standard glysemic control, HbA1c level was targeted at 7–7.9% and therapy 
was intensified whenever HbA1c was > or = 8%, or reduced if HbA1c persistently decreased to < 7% in the setting 
of hypoglycemia. In this study, the intensive therapy was operationally defined as receiving at least two glucose 
lowering treatments, and standard therapy was defined as receiving one or no  treatment4. Age, sex, education 
level, race, cigarette smoking, alcohol consumption, diabetes duration (years from diagnosis), and CVD his-
tory were considered as baseline (time-fixed) confounders. Fasting plasma glucose (FPG), HbA1c, systolic and 
diastolic blood pressure, and lipid profile including cholesterol, HDL, LDL, and triglyceride were considered as 
time-varying confounders.

Causal diagram and Statistical analysis. Figure 1 depicts the dilemma behind estimating causal effect 
of treatment at baseline on outcome in presence of time-dependent confounders that is affected by the previous 
treatment. For simplicity, only two visits and one measured confounder are shown. Subscript values imply the 
visit number. HBA1c is a time-varying confounder in the relationship between treatment at time 1 and cardio-
vascular outcome. The arrows from  treatment0 to  HBA1c1 suggest that HBA1c as a time-varying confounder at 
visit 1 is affected by previous treatment status. Adjustment for  HbA1c1 that is also a common effect (collider) 
for treatment0 and unmeasured risk factor using regression models preclude unbiased causal effect estimation 
of treatment at  baseline6,9. G-estimation of the SNAFTM with a two-step procedure was used to estimate the 
causal effect of intensive vs standard treatment by appropriately adjusting of HbA1c and other time-varying 
confounders affected by previous treatment values. The first step, which contained the causal variable of interest 
(ϕ∗) , using following formula the counterfactual failure time under no-treatment during the study denoted as T0 
linked to the weighted sum of time spent with a given treatment status Ak.

Figure 1.  Causal diagram for the effect of time-varying treatment on cardiovascular or mortality outcome.
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where  Ak = 1 if the subject were on intensive therapy at visit K or 0 if the subject is on standard therapy. At the 
second step, a pooled logistic regression for receiving intensive treatment at each visit was modeled as a function 
of time-fixed confounders  (C0), past values of time-varying treatment  (Ak−1) and confounders  (Ck−1), current 
value of confounders  (Ck), and counterfactual outcome (ϕ∗).

This step generally stimulates randomized assignment of treatment at each visit within each stratum of previ-
ous covariate values. The two steps iteratively search for different coefficient values of causal variable (ϕ∗) which 
make the treatment at each visit independent of counterfactual failure time given past treatment and confounders 
history. In this case it is happen when β6 = 0 . In fact, at each visit, given the fundamental assumption of no-
unmeasured confounding, we stimulate randomized assignment of treatment that is independent of counterfac-
tual failure time. Moreover, the process of assigning treatment is conditional only on current and past values of 
confounder and treatment status, so eliminate the bias resulting from over adjustment of intermediate variables.

Figure 2 represent the adjustment scenario in G-estimation. In Fig. 2A, the treatment at baseline is stimulated 
conditional on past (not shown) and current values of confounders. In Fig. 2B, the treatment at visit 1 is gener-
ated based on current and all past values of treatment and confounders’ histories.

The analysis also adjusted for loss to follow-up using inverse probability weighting of uncensored subjects. 
We also fitted conventional Weibull accelerated failure time (AFT) model using two modeling strategies: the 
first model adjusted for baseline confounders and the second model adjusted for both baseline and time-varying 
confounders. The results of AFT models were reported as hazard ratios with 95% confidence intervals (CIs) and 
the result of G-estimation was reported as hazard ratio with bootstrap-based 95%  CI30,31. A pooled logistic regres-
sion model was used with noncompliance as a response variable, and time-fixed and time-varying confounders 
as well as visit as predictors. Treatment noncompliance was defined at each visit as the alteration of the treatment 
arm from the randomly assigned treatment at baseline based on the number of glucose lowering drugs. The 
conventional models were performed in Stata version 13 (StataCorp, College Station, Texas). G-estimation was 
conducted by SNFATM  macro24,26 in SAS version 9.2 (SAS Institute Inc., Cary, North Carolina).

Results
Among 9896 participants with at least one follow-up visit during a median follow-up of 4.2 years (min: 0.05, 
max: 4.5 years, 35,583.9 total person-years), 847 primary outcomes including 524 MI or stroke and 323 CVD 
mortality occurred. The incidence rate of fatal or non-fatal cardiovascular outcomes was 285 in the standard and 
221 in the intensive therapy per 10,000 person years, respectively. The rate of all-cause death was 301 per 10,000 
person-years in the standard therapy as compared with 134 per 10,000 person-years in the intensive therapy. 
The rate of CVD mortality was 13 per 10,000 person-year (22.3 per 10,000 in the standard vs 10.4 per 10,000 in 
the intensive therapy).

Overall, 6543 participants (64.1%) had at least one noncompliance of assigned treatment during their visits 
(82.4% in the standard vs 45.9% in the intensive group). Table 1 compare demographic characteristics and treat-
ment assignment status according to compliance to the assigned treatment. The compliers and non-compliers 

T0 =

n∑

k=1

exp(ϕ∗
Ak)�tk ,

Logit(Pr (Ak = 1)) = β0k + β1A0 + β2Ak−1 + β3C0 + β4Ck−1 + β5Ck + β6T(ϕ∗).

Figure 2.  The process of adjustment in G-estimation. (A) Treatment at visit is generated based on current value 
of confounders. (B) Treatment at visit is generated conditional on current and past values of confounder and 
treatment trajectories.
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had similar age, race, and education distribution. But there were differences in terms of sex, history of CVD, 
and Treatment assignment at baseline. The percentage of female, having previous CVD, and being assigned to 
standard group in the non-compliers was higher than compliers.

The noncompliance of treatment protocol per visit was also different between the two groups. The rate of 
noncompliance was 66.4% (41,239 person-visits) in standard therapy group as compared with 16.7% (10,341 
person-visits) in the intensive-therapy group (P-value < 0.001), while there was no substantial difference in the 
loss to follow-up between the two groups (7.4% and 7.5% in the standard and intensive therapy, respectively).

Table 2 shows important predictors of noncompliance in the two groups. Baseline HbA1c (OR = 1.18, 95% 
CI 1.09–1.28) and lagged values of HbA1c (OR = 1.46, 1.32–1.60) increased the odds of noncompliance in the 
standard therapy, while female sex and CVD history was associated with increased odds of noncompliance in 
the intensive therapy.

Table 1.  Distribution of baseline demographic and treatment assignment status among complier and non-
complier participants. Values are percent unless otherwise indicated.

Compliance Non-compliance

Total number 6546 3662

Age (years), mean (SD) 62.6 (6.6) 62.8 (6.6)

Female sex 37.0 39.5

Race

 Black 18.5 19.5

 Hispanic 7.1 7.2

 Other 12.1 11.0

 White 62.2 62.3

Education level

 < High school 15.6 14.3

 High-school graduate 25.0 27.1

 Some college 33.0 32.7

 College degree or higher 26.4 25.9

CVD history at baseline 33.7 35.9

Treatment assignment at baseline

 Standard 24.5 64.0

 Intensive 75.5 35.9

Table 2.  Adjusted odds ratios (95% confidence intervals) of treatment noncompliance by treatment arm.

Standard therapy Intensive therapy

Age (years) 0.98 (0.97–0.99) 1.03 (1.10–1.61)

Female sex 0.80 (0.74–0.87) 1.29 (0.92–1.82)

Race

 Black Reference

 Hispanic 1.23 (1.02–1.48) 0.35 (0.15–0.77)

 Other 0.98 (0.85–1.14) 0.53 (0.28–1.02)

 White 1.22 (1.09–1.36) 0.97 (0.43–1.29)

Education level

 < High school Reference

 High-school graduate 1.01 (0.88–1.16) 1.25 (0.74–2.12)

 Some college 0.91 (0.80–1.04) 0.68 (0.39–1.16)

 College degree or higher 1.18 (1.02–1.35) 0.75 (0.43–1.29)

CVD history at baseline 0.82 (0.75–0.89) 2.03 (1.46–2.83)

Years lived with diabetes 0.99 (0.98–0.99) 1.04 (1.02–1.06)

Fasting plasma glucose at baseline 1.00 (1.00–1.003) 0.99 (0.99–1.00)

Fasting plasma glucose at current visit 1.00 (0.99–1.00) 1.00 (1.00–1.004)

HbA1c at baseline 1.10 (1.05–1.16) 0.94 (0.77–1.15)

HbA1c at current visit 1.04 (0.97–1.10) 1.12 (0.86–1.45)

HbA1c at previous visit 1.37 (1.29–1.44) 0.89 (0.69–1.15)
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Table 3 shows the results of conventional regression analysis using two modeling strategies and G-estimation 
and compared them with the result of the primary ACCORD  trial32. The first conventional regression model 
adjusting for only baseline confounders showed a 17% (95% CI 1–36%) increased risk of mortality in the inten-
sive therapy compared to the standard therapy. The results of the second model adjusting for both baseline and 
time-varying confounders were compatible with both protective and risk effects for CVD as well as all-cause 
and CVD  mortality33,34. G-estimation showed that continuously treatment by intensive therapy decreased the 
hazard of mortality by 36% (HR = 0.64, 95% CI 0.39–0.92).

Discussion
In this study, we estimated the effect of time-varying intensive glucose lowering therapy vs. standard therapy 
among type 2 diabetic patients on cardiovascular and all-cause mortality outcomes using the G-estimation and 
compared it with conventional regression model. We used this method because conventional methods may result 
in biased effect estimates when there are time-varying confounders affected by prior treatment. In ACCORD trial, 
non-compliance was high especially in the standard therapy group, and treatment at each visit (after baseline) 
was influenced by previous values of HbA1c. Specifically, the patients with higher baseline and lagged values 
of HbA1c in standard therapy were more likely to give up their assigned treatment. In such situations, conven-
tional methods may result in biased effect estimates because of over-adjustment and selection  biases35–40 when 
the reasons for noncompliance at any time are affected by unmeasured risk factors of the outcome and prior 
treatment  received6,19. The G-estimation results revealed a significant effect of intensive therapy on reducing the 
risk of all-cause mortality that was in contrast with the result of ITT approach using conventional regression 
analysis adjusted for baseline variables in current study and previous result of ACCORD  trial32. Both baseline 
adjusted model either as AFT approach in the current study or Cox proportional hazard model in the primary 
study of  ACCORD32 gave almost similar results for both outcomes. These results cannot estimate the causal effect 
of treatment because the treatment received at each visit after baseline is a variable varying over time based on 
the patients’ profile including HbA1c. In randomized trials, the effect estimate of treatment using ITT approach 
would be unbiased if all subjects in each arm take their treatment at all times and are under complete follow-up 
throughout the study. In the ACCORD trial, the percent of loss to follow-up was trivial but the noncompliance 
percent was high with a substantial difference between the two treatment groups. On the other hand, the main 
drawback of conventional ITT regression approach is that it estimates the effect of randomly assigned treatment, 
but not the received treatment at each visit, which is not of  interest19.

The estimates obtained from time-dependent model are also subject to selection and over-adjustment biases 
because of inappropriate adjustment of time-varying confounders. G-estimation overcomes this deficiency by 
estimating the effect of received treatment under the assumption of sequential randomization (conditional 
exchangeability) at each visit, given the measured confounders. The effect of interest is the effect that would have 
been observed if all patients in the trial had compliance to the study  protocol14. The selection bias induced by 
censoring was also adjusted by IPW of uncensored subjects.

The G-estimate in the current study indicated protective effect of treatment on mortality, but failed to show 
the same effect on CVD. This might be explained in part by the association of HbA1c with all-cause mortality that 
has been reported by several recent meta-analyses and large-scale observational  studies41–44. In a meta-analysis 
of observational studies, both higher and lower levels of HbA1c had significant association with all-cause and 
cardiovascular mortality in diabetic patients but no association was found with cardiovascular  events42. Similarly, 
another meta-analysis of observational studies showed a significant J shape relationship between HbA1c and 
all-cause  mortality41. In a nationwide, community-based cohort study, the highest risk of all-cause mortality 
was found for HbA1c level < 5.6% or > 7.4% compared to 6.5%43. In this study, HbA1c was a strong time-varying 
confounder and significant predictor of noncompliance in the standard treatment group indicating that the 
patients in the standard group were more likely to withdraw their assigned treatment and switch to intensive 
treatment. On the other hand, switching to standard treatment was less likely to occur in the intensive group. 
These conditions remind the importance of appropriate adjustment for time-varying confounders which cannot 
be estimated using conventional regression analysis.

G-estimation has been applied in a number of observational  studies45–50, but a few randomized trials used this 
methodology to estimate treatment effect in the presence of non-compliance51,52. RCTs are frequently analyzed 
according to the assigned treatment at baseline as either ITT or per protocol (PP) analysis. The former approach 
aims to preserve the original randomization and the latter excludes those patients that are not fully  compliant53. 
But, post-randomization events affected by treatment invalidates PP  analysis54–56. In RCTs, in the absence of 
loss to follow-up and noncompliance, the ITT approach unbiasedly estimates the causal effect of  interest19,52. 
Given the inevitable occurrence of noncompliance in every RCT, the ITT approach with conventional regression 

Table 3.  Hazard ratios of CVD outcome, all-cause, and CVD mortality for intensive compared to standard 
therapy in the ACCORD trial.

Cardiovascular outcome All-cause mortality CVD mortality

The ACCORD trial result (baseline adjusted Cox model) 0.90 (0.78–1.04) 1.22 (1.01–1.46) 1.35 (1.04–1.76)

Baseline adjusted Weibull model 0.89 (0.79–1.02) 1.17 (1.01–1.36) 1.26 (1.01–1.58)

Time-varying adjusted Weibull model 0.49 (0.22–1.06) 0.34 (0.10–1.10) 0.33 (0.06–1.87)

G-estimation 0.89 (0.43–2.26) 0.64 (0.39–0.92) 0.71 (0.29–1.24)
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method that is often the only primary analysis is recommended to be replaced by modern methods accounting 
for noncompliance and time-varying confounding such as G-estimation52.

Conclusion
Adjustment for treatment switching using the method of G-estimation revealed a protective effect of intensive 
therapy an all-cause mortality compared with standard therapy in ACCORD trial that was in contrast with the 
result of conventional regression analyses and ITT approaches published before.

Data availability
The data that support the findings of this study are available from [The National Heart, Lung and Blood Institute 
(NHLBI) Biologic Specimen and Data Repository] but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. Data are however available from 
the first author (Maryam Shakiba) upon reasonable request and with permission of [The National Heart, Lung 
and Blood Institute (NHLBI) Biologic Specimen and Data Repository].
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