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Abstract: Methotrexate (MTX) is one of the most commonly used chemotherapies for various types
of cancer, including leukemia, breast cancer, hepatocarcinoma, and gastric cancers. However, the
efficacy of MTX is frequently limited by serious side effects. Several studies have reported that the
cytotoxic effect of MTX is not limited to cancer cells but can also affect normal tissues, leading to
prospective damage to many organs. In the present study, we extensively investigated the molecular
and microscopic basis of MTX-induced toxicity in different organs (liver, kidney, and heart) and
explored the possible protective effect of pycnogenol, a polyphenolic component extracted from
the bark of P. pinaster, to attenuate these effects. Biochemical analysis revealed that administra-
tion of MTX significantly reduced the function of the liver, kidney, and heart. Histological and
immunohistochemical analysis indicated that MTX treatment caused damage to tissues of different
organs. Interestingly, administration of pycnogenol (10, 20, and 30 mg/kg) significantly attenuated
the deterioration effects of MTX on different organs in a dose-dependent manner, as demonstrated by
biochemical and histological analysis. Our results reveal that pycnogenol successfully ameliorated
oxidative damage and reduced toxicity, inflammatory response, and histological markers induced by
methotrexate treatment. Taken together, this study provides solid evidence for the pharmacological
application of pycnogenol to attenuate damage to different organs induced by MTX treatment.

Keywords: cancer; methotrexate; toxicity; natural herbs; polyphenol; pycnogenol; MAPK; JNK;
apoptosis; inflammation; molecular docking

1. Introduction

With more than 18.1 million new cases and 9.6 million deaths in 2018, cancer is
considered one of the most common diseases that cause high mortality worldwide [1,2].
Several studies have been conducted to control cancer development with chemotherapeutic
drugs with various modes of action. Most of the currently available chemotherapeutic
drugs target the division of cancer cells, preventing tumor growth. Because they are more
mitotically active than normal cells, cancer cells are more susceptible to destruction [3].
Nevertheless, chemotherapeutic drugs can also cause damage to some normal cells. Ac-
cordingly, researchers have made substantial efforts to enhance the anticancer effect of
chemotherapeutic agents while also protecting normal cells against their toxicities [4].

Among chemotherapeutic drugs, methotrexate (MTX, 2,4-diamino-N10-methyl propyl
glutamic acid) is one of the most valuable and widely used for different types of cancer, such
as leukemia, lymphoma, breast cancer, hepatocarcinoma, osteosarcoma, and gastric cancers
(Figure 1) [3,5–7]. Several studies reported that MTX has a considerable potency as an
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antifolate, anticancer, immunosuppressive, anti-inflammatory, and common antirheumatic
drug [5,8]. MTX is also used, along with other medications, to improve rheumatoid arthritis
treatment [9–11]. The anticarcinogenic effects of MTX have been attributed to its ability to
induce apoptosis by targeting caspase-dependent and caspase-independent cascades to
trigger a significant stimulation of Fas and Fas-L expression to cause DNA fragmentation
in carcinogenesis cells [12–14]. Furthermore, MTX activates nuclear factor-κB (NF-κB) and
p38 pathways, which regulate cell apoptosis [15].
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However, the efficacy of MTX is frequently limited by serious side effects. The cytotoxic
effect of MTX is not limited to cancer cells; it can also affect normal tissues, leading to a
high proliferation rate [3,16,17]. MTX treatment enhances the production of free radicals
and causes oxidative stress, accelerating cellular damage, which can lead to inflammation,
necrosis, and fibrosis in different tissues [18]. In addition, MTX has prospective side effects
on many organs, such as the liver, kidney, and heart [8]. In the liver, MTX is converted to
7-hydroxymethotrexate (7-OH-MTX), the main extracellular metabolite that accumulates in
a polyglutamate form in the cell [19–21]. When the level of polyglutamate rises, the amount
of folic acid reduces, leading to hepatocyte necrosis, the main reason for MTX-induced
hepatotoxicity [22,23]. MTX can also inhibit dihydrofolate reductase enzyme, which leads
to impairment of liver cell membrane integrity and increases the activities of serum liver
enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline
phosphatase (ALP)) [18,24].

In the kidney, MTX is precipitated in the renal tubules, which causes a reduction
in the rate of glomerular filtration, as well as increased serum urea, creatinine, and uric
acid levels, leading to renal failure and nephrotoxicity [8,23,24]. In the heart, MTX stimu-
lates noticeable impairment in cardiac tissue and increases the activities of serum cardiac
enzymes (creatinine kinase (CK) and CK-MB) [15]. Furthermore, MTX generates free oxy-
gen radicals (ROS), which initiates lipid peroxidation and increases the malondialdehyde
(MDA) level, leading to damage to the cell membrane [8,17,23]. It has also been reported
that MTX induces tissue damage and impairment of mitochondrial function, which are
associated with oxidative stress, leading to a reduction in the enzymatic antioxidant system
(catalase (CAT) and superoxide dismutase (SOD) enzymes, as well as the non-enzymatic
antioxidant system (reduced glutathione (GSH) level)) [8,19,20,25,26]. Furthermore, MTX
shows the ability to induce nitrative stress by increasing reactive nitrogen species that
initiate lipid peroxidation, damage of DNA, increase in transcription factors (nuclear fac-
tor kappa B (NF-κB)), and stimulation of inflammatory response (e.g., IL-1, IL-6, TNF-α,
TGF-β, etc.) [15]. Taken together, these findings suggest the synergistic application of other
medications in combination with MTX that could decrease the undesirable toxicity and
side effects of MTX [27,28].

Natural herbs have been widely used as traditional medicine for many decades due to
their high potency against various diseases and few side effects [29]. Natural phenolic com-
pounds, which are prevalent in almost all meals, are natural phytochemical antioxidants
with various protective benefits against several diseases, such as cancer and diabetes, as
well as cardiovascular and neurological disorders [30]. Pycnogenol, a phenolic compound,
represents a nutritive complement that is used as bioactive phytochemical medication all
over the world. Pycnogenol was firstly used as a scientific term for this polyphenols class;
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however, it currently describes the particular mixture of procyanidins extracted from pine
tree bark in France (Pinus pinaster) [31]. The obtained extract product is a fine, reddish-
brown powder that is water-soluble. The consistent extract of pycnogenol is composed
of phenolic components from monomers (taxifolin, epicatechin, and catechin), condensed
flavonoids (grouped as procyanidins and proanthocyanidins), and phenolic acids (cinnamic
acids and some glycosides). It has a protective effect against inflammatory diseases, hy-
pertension, diabetes, and obesity, among others [32]. Furthermore, it has a beneficial effect
on lung fibrosis and improves cognitive ability and cardiovascular health [33–35]. Pyc-
nogenol has been recognized as a safe extracted bioactive compound according to scientific
safety and preclinical toxicology records [36]. After ingestion of pycnogenol, the phenolic
constituents are metabolized by the action of microbial enzymes to afford small bioactive
byproducts that can be absorbed into the blood and transferred to tissues and organs [34].
These byproducts are catechin, caffeic acid, ferulic acid, taxifolin, M1 (δ-(3,4-dihydroxy-
phenyl)-γ-valerolactone), and M2 (δ-(3-Methoxy-4-hydroxy-phenyl)-γ-valerolactone) [37].
M1 is considered the most active metabolite that causes anti-inflammatory impacts by
inhibiting the synthesis of inducible nitric oxide synthase (iNOS) [38]. These facts indicate
that pycnogenol could be synergistically used as a natural supplement to reduce the toxicity
associated with MTO treatment.

Encouraged by the aforementioned facts, in our present report, we aimed to investigat-
ing the biomolecular and microscopic bases of methotrexate-induced toxicities in different
organs. Furthermore, we explored the possible protective effects of pycnogenol against
methotrexate-induced toxicity through biochemical, immunohistochemical, histopathologi-
cal, and molecular docking studies.

2. Results
2.1. Biochemical Analysis

(a) Effect of MTX and pycnogenol on serum biomarkers:
i—Assessment of liver function:
First, we investigated the effect of MTX on liver function by evaluating the activity of

ALT and AST enzymes (U/L) in the serum. As shown in Table 1, MTX treatment caused a
significant increase at p < 0.05 in the activity of both ALT and AST enzymes (U/L) compared
with the normal group. These results reveal that MTX caused damage to the hepatic cells,
which led to the upregulation of these enzymes and enhanced their activities in serum.
Next, we explored the protective effect of pycnogenol with different concentrations (10, 20,
and 30 mg/kg) on serum liver function before MTX treatment. Interestingly, administration
of pycnogenol led to a significant and dose-dependent decrease at p < 0.05 in the activity of
ALT and AST enzymes (U/L), with 30 mg/kg as the most effective dose compared with
the MTX group. These results indicate that pycnogenol has a protective effect against the
hepatotoxicity of MTX and could maintain the integrity of the liver cells by mediating the
activity ALT and AST enzymes (Figure S1).

ii—Assessment of kidney function:
Toward the evaluation of MTX effect on kidney function, we assessed the levels of urea

and creatinine (mg/dL) in the serum. As shown in Table 1, MTX treatment demonstrated
a significant increase at p < 0.05 in serum urea and creatinine compared with the normal
group. These results imply that treatment of MTX caused renal failure, which led to
an increase in the level of both serum urea and creatinine (mg/dL). On the other hand,
administration of pycnogenol at different concentrations (10, 20, and 30 mg/kg) before MTX
treatment significantly improved serum kidney function. As shown in Table 1, pycnogenol
treatment showed a significant (p < 0.05) dose-dependent decrease in the serum urea and
creatinine levels (mg/dL), with 30 mg/kg dose as the most effective. These results indicate
that pycnogenol treatment has a protective effect against MTX-induced toxicity in the
kidney (Figure S1).
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iii—Assessment of heart function:
Concerning the effect of MTX on heart tissues, we evaluated the activity of heart

enzymes (CK and CK-MB) (U/L) and the troponin levels (ng/mL). The MTX-treated group
showed a significant increase at p < 0.05 in the activity of both CK and CK-MB enzymes
(U/L), as well as troponin level (ng/mL) compared with the normal group (Table 1). These
results indicate that MTX treatment caused toxicity in heart tissues. We then examined
the protective effect of pycnogenol administration on serum heart function before MTX
treatment. As indicated in Table 1, treatment of pycnogenol at different concentrations
caused a significant and dose-dependent decrease at p < 0.05 on the serum troponin
level (ng/mL) and the activity of CK and CK-MB enzymes (U/L) compared with the MTX-
treated group. These results affirm the protective effect of pycnogenol toward MTX-induced
toxicity on heart tissues (Figure S1).

Table 1. Effect of MTX and pycnogenol treatment on serum biomarkers.

Parameter Normal Group MTX Group
MTX +

Pycnogenol
(10 mg/kg) Group

MTX +
Pycnogenol

(20 mg/kg) Group

MTX +
Pycnogenol

(30 mg/kg) Group

ALT (U/L) 35.33 ± 2.5 E 104.00 ± 4.0 A 84.00 ± 2.0 B 61.00 ± 1.0 C 46.00 ± 1.0 D

AST (U/L) 41.03 ± 0.2 E 136.93 ± 3.6 A 101.00 ± 3.0 B 78.00 ± 2.0 C 55.67 ± 2.5 D

Urea (mg/dL) 36.00 ± 2.0 E 64.00 ± 1.0 A 51.00 ± 1.0 B 43.00 ± 1.0 C 39.00 ± 1.0 D

Creatinine (mg/dL) 0.50 ± 0.1 B 1.87 ± 0.4 A 0.90 ± 0.1 B 0.70 ± 0.1 B 0.60 ± 0.1 B

Troponin (ng/mL) 0.94 ± 0.1 D 4.57 ± 0.4 A 2.08 ± 0.1 B 1.72 ± 0.1 C 1.07 ± 0.1 D

CK (U/L) 12.27 ± 0.3 E 56.10 ± 0.1 A 35.00 ± 0.1 B 23.07 ± 0.1 C 16.47 ± 0.5 D

Ck-MB (U/L) 10.50 ± 0.1 E 36.50 ± 0.1 A 23.70 ± 0.6 B 16.23 ± 1.1 C 12.07 ± 0.2 D

Data are presented as mean ± SD (n = 6). ALT: alanine aminotransferase; AST: aspartate aminotransferase; CK:
creatine kinase; CK-MB: creatine kinase-MB isoenzyme. p < 0.05. Data with different letters are significantly
different according to DMRTs at p = 0.05.

(b) Effect of MTX and pycnogenol on tissue biomarkers:
i—Assessment of tissue inflammatory biomarkers:
In order to examine the levels of proinflammatory cytokines, the content of NF-κB and

TNF-α in liver, kidney, and heart tissue homogenate was assessed. As shown in Figure 2,
the MTX-treated group demonstrated a significant increase at p < 0.05 in the levels of NF-κB
and TNF-α (pg/g tissue) in the different investigated tissues compared with the normal
group. These results indicate that MTX treatment caused inflammatory responses in the
different tissues (liver, kidney, and heart). To investigate the possible anti-inflammatory
effect of pycnogenol, we evaluated the level of these proinflammatory cytokines (NF-κB and
TNF-α) (pg/g tissue) in the liver, kidney, and heart tissues after administration of different
concentrations of pycnogenol (10, 20, and 30 mg/kg). The pycnogenol-treated groups
showed a significant and dose-dependent decrease at p < 0.05 in the level of NF-κB and
TNF-α in liver, kidney, and heart tissues compared with the MTX group (Figure 2). Notably,
administration of 30 mg/kg was sufficient to reduce the level of proinflammatory cytokines
to the normal level (MTX-untreated group). These results reveal the anti-inflammatory
effect of pycnogenol and affirm its protective effect against MTX-induced toxicity in the
different organ tissues (Figures S2–S4).

ii—Assessment of tissue oxidative stress biomarkers:
To further investigate MTX effect, we evaluated the oxidative stress biomarkers in

the liver, kidney, and heart tissues. Toward this aim, we examined the activity of CAT
and SOD enzymes (U/g tissue), as well as the levels of GSH (pg/g tissue) and ATP (ng/g
tissue) in the different tissues at p < 0.05. The results demonstrated that the MTX treatment
significantly decreased the activity of CAT and SOD enzymes (U/g tissue) and attenuated
the level of GSH (pg/g tissue) and ATP (ng/g tissue) in the tissues compared with the
normal group (Figure 3). These findings indicate that MTX treatment induced oxidative



Pharmaceuticals 2022, 15, 674 5 of 27

stress in the different tissues, which influenced the mitochondria and led to a decrease in
the ATP level (ng/g tissue). Furthermore, the observed reduced activity of CAT and SOD
enzymes (U/g tissue) and GSH level (pg/g tissue) affirm the effect of MTX on the enzymatic
and non-enzymatic antioxidant defense system of the different tissues. In contrast, the
pycnogenol-treated group at different concentrations demonstrated a dose-dependent
increase at p < 0.05 in the activity of CAT and SOD enzymes (U/g tissue) and enhanced the
levels of ATP (ng/g tissue) and GSH (pg/g tissue) in the different tissues compared with
the MTX group (Figure 3). Again, administration of 30 mg/kg dose was sufficient to return
the oxidative stress biomarkers in the different tissues to the normal (untreated) levels.
These results confirm the protective effect of pycnogenol on the MTX-induced oxidative
stress in different tissues (Figures S2–S4).
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NF-κB: nuclear factor-κB; TNF-α: tumor necrosis factor-α, p < 0.05. Bars represent the mean value
and the standard error for means. Bars with different letters are significantly different according to
DMRTs at p = 0.05.

To affirm our findings of the effect of pycnogenol on the MTX-induced oxidative
stress, we assessed the lipid peroxidation marker, MDA level (ng/g tissue), in the liver,
kidney, and heart tissues. As illustrated in Figure 4, MTX treatment significantly increased
(p < 0.05) the level of MDA (ng/g tissue) compared with the normal group. These results,
in agreement with previous reports, confirm the effect of MTX on the antioxidant system,
which led to an increase in the lipid peroxidation of different tissues. To further explore the
antioxidant activity of pycnogenol, we evaluated the MDA biomarker in the liver, kidney,
and heart tissues of the pycnogenol-treated groups. Consistent with our previous findings,
administration of pycnogenol significantly (p < 0.05) and dose-dependently reduced the
MDA level in the different tissues compared with the MTX group, with 30 mg/kg as the
most effective dose. Taken together, the presented findings support the protective effect of
pycnogenol against MTX-induced oxidative stress and lipid peroxidation in the different
tissues (Figures S2–S4).



Pharmaceuticals 2022, 15, 674 6 of 27

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 6 of 27 
 

 

. 

 
Figure 3. Effect of pycnogenol and/or MTX treatment on (A) CAT, (B) SOD, (C) ATP, and (D) GSH 
oxidative stress biomarkers (mean ± SD) in different organs. Data are mean ± SD of six rats/group. 
CAT: catalase, SOD: superoxide dismutase, ATP: adenosine triphosphate, GSH: reduced glutathi-
one. p-value < 0.05 is significant. Bars represent the mean value and the standard error for means. 
Bars with different letters are significantly different according to DMRTs at p = 0.05. 

To affirm our findings of the effect of pycnogenol on the MTX-induced oxidative 
stress, we assessed the lipid peroxidation marker, MDA level (ng/g tissue), in the liver, 
kidney, and heart tissues. As illustrated in Figure 4, MTX treatment significantly increased 
(p < 0.05) the level of MDA (ng/g tissue) compared with the normal group. These results, 

Figure 3. Effect of pycnogenol and/or MTX treatment on (A) CAT, (B) SOD, (C) ATP, and (D) GSH
oxidative stress biomarkers (mean ± SD) in different organs. Data are mean ± SD of six rats/group.
CAT: catalase, SOD: superoxide dismutase, ATP: adenosine triphosphate, GSH: reduced glutathione.
p-value < 0.05 is significant. Bars represent the mean value and the standard error for means. Bars
with different letters are significantly different according to DMRTs at p = 0.05.
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the different tissues. Data are mean ± SD of six rats/group. MDA: malondialdehyde. p value < 0.05
is significant. Bars represent the mean value and the standard error for means. Bars with different
letters are significantly different according to DMRTs at p = 0.05.

2.2. Histological Analysis

In order to confirm our biochemical findings, the effect of MTX treatment on the liver,
kidney, and heart tissues, as well as the possible protective effect of pycnogenol adminis-
tration, was determined using light microscopic examination of the histopathological and
immunohistochemical changes.

2.2.1. Histopathologic Analysis: Examination of H&E-Stained Sections for Liver, Kidney,
and Heart to Examine the Architecture of the Cells

i—Examination of H&E-stained sections of the liver:
Stained H&E liver sections of the normal group showed normal hepatic cell architec-

ture, each with a well-defined cytoplasm, prominent nucleus, nucleolus, and a well-defined
central vein; the hepatocyte stands radiated from it separated by sinusoids with unremark-
able pathological changes (Figure 5a,b). Stained H&E liver sections of the group treated
with MTX showed obvious histological damage, and the architecture of the tissues was
impaired, as there were multiple areas of confluent necrosis with occasional porto-central
bridging necrosis in the stained sections. Moreover, hepatocytes showed evidence of injury
as fatty changes, hydropic degenerations, and foci of lytic necrosis (Figure 5c,d). In groups
treated with pycnogenol prior to MTX treatment with gradient concentrations of pyc-
nogenol, the stained H&E liver sections revealed the hepatoprotective effect of pycnogenol,
as there was an improvement in liver architecture, with no sign of hepatocyte injury, a
decrease in fatty changes, hydropic degeneration in the hepatocytes, and no evidence of
necrosis in a dose-dependent manner (Figure 5e–j).
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lines were disturbed, the brush borders were lost, the linings of cells was detached from 
the lumen, and cytoplasmic vacuolization and blebbing of the cell’s membrane occurred. 
Moreover, there was a mesangial expansion with mild thickening of the capillary wall, 
leading to enlargement of glomeruli (Figure 6c,d). Stained H&E kidney sections in groups 
treated with pycnogenol before MTX treatment with gradient concentrations of pycno-
genol proved the renal protective effect of pycnogenol. The multiple foci percentage of 

Figure 5. Photomicrograph of H&E-stained liver sections. (a) Normal liver architecture, with central
vein (black arrow) radiating from plates of hepatocytes; separated by sinusoids (Red arrows) (H&E,
10x). (b) Higher magnification of hepatocytes with unremarkable pathological changes (H&E, 40x),
(c) Multiple areas of confluent necrosis with occasional porto-central bridging necrosis (black arrows)
(H&E, 10x). (d) Higher magnification of hepatocytes showing evidence of hepatocyte injury: fatty
change (black arrows), hydropic degeneration (red arrows), and foci of lytic necrosis (arrowhead)
(H&E, 40x). (e) Large area of confluent necrosis (black arrows) around congested central vein
(arrowhead) (H&E, 10x). (f) Higher magnification of hepatocytes showing evidence of hepatocyte
injury: fatty change (black arrows), hydropic degeneration (Red arrows), and foci of lytic necrosis
(arrowhead) (H&E, 40x). (g) Normal liver architecture with mildly congested central (arrowhead)
vein with no evidence of necrosis (H&E, 10x). (h) Higher magnification of hepatocytes shows the
presence of mild fatty changes (black arrows) and hydropic degeneration (red arrows) (H&E, 40x),
(i) normal liver architecture (H&E, 10x). (j) No evidence of hepatocyte injury. Central vein (black
arrow) is shown, as well as a portal tract (red arrow) (H&E, 40x).

ii—Examination of H&E-stained sections of the kidney:
Stained H&E kidney sections of the normal group showed renal corpuscles with

regular glomeruli and an intact Bowman’s capsule with proximal and distal convoluted
tubules with normal wall thickness and patent capillary lumens; surrounding tubules reveal
no signs of injury (Figure 6a,b). Stained H&E kidney sections of the group treated with
MTX showed obvious histological damage, the architecture of the tissues was impaired,
and tubular injuries appeared as multiple foci in the tubules. In addition, the tubular
outlines were disturbed, the brush borders were lost, the linings of cells was detached
from the lumen, and cytoplasmic vacuolization and blebbing of the cell’s membrane
occurred. Moreover, there was a mesangial expansion with mild thickening of the capillary
wall, leading to enlargement of glomeruli (Figure 6c,d). Stained H&E kidney sections in
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groups treated with pycnogenol before MTX treatment with gradient concentrations of
pycnogenol proved the renal protective effect of pycnogenol. The multiple foci percentage
of pycnogenol decreased in a dose-dependent manner, indicating the decrease in the
tubular injury. The tubules were tightly packed, with uniform epithelial lining and uniform
cytoplasm; glomeruli appeared enlarged and showed mesangial expansion with mild
thickening of the capillary wall (Figure 6e–j).
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a normal myocardium architecture with uniform muscle bundles; cells had central nuclei 
(Figure 7a,b). Administration of MTX caused impairment in the architecture of cardiac 
tissues, with the appearance of a small percentage of hemorrhagic myocyte necrosis, my-
ocyte vacuolization, and disappearance of nuclei in some myocytes. Moreover, lympho-
cytes were infiltrated in some areas of cardiac tissues (Figure 7c,d). Administration of pyc-

Figure 6. Photomicrograph of H&E-stained kidney sections. (a) Uniform kidney tissue, with reg-
ular glomeruli (black arrows), tubules (Red arrow), and densely packed interstitium with blood
vessels (Arrow heads) (H&E, 10x). (b) Higher magnification of the previous figure showing uniform
glomerular tuft, with normal wall thickness and patent capillary lumens (black arrow). Surrounding
tubules reveal no signs of injury. (H&E, 40x). (c) Multiple foci representing more than 50% of tubules
show evidence of tubular injury (black arrows) (H&E, 10x). (d) Tubules demonstrate evidence of
acute tubular injury: disturbed tubular outline, loss of brush border, detached lining cells into lumen,
cytoplasmic vacuolization, and membrane blebbing (black arrows). Glomeruli appear large due to
mesangial expansion with mild thickening of the capillary wall (red arrows) (H&E, 40x). (e) Multiple
foci representing less than 50% of tubules show evidence of tubular injury (black arrows) (H&E,
10x). (f) Some tubules demonstrate evidence of acute tubular injury (black arrows). Glomeruli show
mesangial expansion with mild thickening of the capillary wall (red arrows) (H&E, 40x). (g) No
evidence of tubular injury. Glomeruli appear enlarged (H&E, 10x). (h) Glomeruli (black arrows)
showing mesangial hypercellularity. The tubules (red arrows) are tightly packed, with uniform
epithelial lining and uniform cytoplasm (H&E, 40x). (i) No evidence of tubular injury. Glomeruli
appear enlarged (H&E, 10x). (j) Glomeruli show mesangial expansion (arrow heads) with mild
thickening of the capillary wall (red arrows). The tubules are tightly packed, with uniform epithelial
lining and uniform cytoplasm (H&E, 40x).

iii—Examination of H&E-stained sections of the heart:
Stained H&E heart sections of the normal group showed regular cell distribution and

a normal myocardium architecture with uniform muscle bundles; cells had central nuclei
(Figure 7a,b). Administration of MTX caused impairment in the architecture of cardiac tis-
sues, with the appearance of a small percentage of hemorrhagic myocyte necrosis, myocyte
vacuolization, and disappearance of nuclei in some myocytes. Moreover, lymphocytes were
infiltrated in some areas of cardiac tissues (Figure 7c,d). Administration of pycnogenol in
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different concentrations affirmed the cardioprotective effect in a dose-dependent manner.
Treatment with pycnogenol caused a decrease in the necrotic areas with no signs of myocyte
injury and restoration of normal cardiac appearance (Figure 7e–j).
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histological changes in the liver, kidney, and heart tissues. In the liver tissues treated with 
MTX, there was obvious confluent necrosis and multiple portal-central bridging, with one 
focus or less per 10X objective lytic necrosis in the hepatocytes, which also caused fatty 
changes and the appearance of hydropic degeneration for kidney tissues treated with 
MTX; there was Acute tubular injury in more than 50% of tubules injury, 25–50% mesan-
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nuclear cells compared to the normal group. All these data affirm the toxicity of MTX in 

Figure 7. Photomicrograph of H&E-stained heart sections. (a) Normal heart muscle tissue (H&E, 10x).
(b) Higher magnification of the previous figure showing uniform muscle bundles and cells (H&E,
40x). (c) An area of hemorrhagic myocyte necrosis representing about 20% (black arrow) muscle
tissue (H&E, 10x). (d) Higher magnification of the previous figure showing area of hemorrhagic
necrosis (black arrow), myocyte vacuolization (red arrows), and disappearance of nuclei in some
myocytes (arrow heads). There is mild lymphocytic infiltrate (blue arrows) (H&E, 40x). (e) An
area of hemorrhagic myocyte necrosis (black arrow) representing about 20% of muscle tissue (H&E,
10x). (f) Higher magnification of the previous figure showing an area of hemorrhagic necrosis (black
arrows), myocyte vacuolization (red arrows), and disappearance of nuclei in some myocytes. There
is mild lymphocytic infiltrate (blue arrows) (H&E, 40x). (g) Marked reduction in necrotic area, where
scattered foci were evident (black arrows), representing less than 10% of muscle tissue (H&E, 10x).
(h) Higher magnification of the previous figure showing the small area of hemorrhagic necrosis (black
arrow), with no other signs of myocyte injury (H&E, 40x). (i) Restoration of normal heart muscle
appearance (H&E, 10x). (j) Higher magnification of heart tissues showing no evidence of tissue injury
(H&E, 40x).

To further evaluate our histological analysis, we estimated the histological score for
the tissue injuries by different scoring indices, as shown in Table 2. No injuries were found
in the tissues of the normal group; on the other hand, administration of MTX resulted
in histological changes in the liver, kidney, and heart tissues. In the liver tissues treated
with MTX, there was obvious confluent necrosis and multiple portal-central bridging, with
one focus or less per 10X objective lytic necrosis in the hepatocytes, which also caused
fatty changes and the appearance of hydropic degeneration for kidney tissues treated
with MTX; there was Acute tubular injury in more than 50% of tubules injury, 25–50%
mesangial expansion, and sclerotizing glomerulus. MTX treatment also affected the heart
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tissues, as it caused mild myocyte vacuolization, myocyte necrosis, and infiltration for the
mononuclear cells compared to the normal group. All these data affirm the toxicity of MTX
in liver, kidney, and heart cells. Groups protected by the administration of pycnogenol with
different doses (10, 20, and 30 mg/kg) showed improvement in these scores and injuries in
a dose-dependent manner in the hepatocytes, kidney, and myocytes, with the high dose
(30 mg/kg) being the most effective dose compared with the MTX group.

Table 2. Effect of MTX and pycnogenol treatment on histopathological evaluation of liver, kidney,
and heart tissue sections.

Organs and Scoring Index Normal MTX
MTX +

Pycnogenol
(10 mg/kg)

MTX +
Pycnogenol
(20 mg/kg)

MTX +
Pycnogenol
(30 mg/kg)

Liver

Hepatic activity
index Grading: 0 6 6 0 0

-Confluent necrosis Absent
(0)

Necrosis and
multiple

portal-central
bridging

(5)

Necrosis and
multiple

portal-central
bridging

(5)

Absent
(0)

Absent
(0)

-Lytic necrosis,
apoptosis, and

focal inflammation

Absent
(0)

One focus or
less per 10X

objective
(1)

One focus or
less per 10X

objective
(1)

Absent
(0)

Absent
(0)

-Piecemeal necrosis Absent
(0)

Absent
(0)

Absent
(0)

Absent
(0)

Absent
(0)

-Portal
inflammation

Absent
(0)

Absent
(0)

Absent
(0)

Absent
(0)

Absent
(0)

Other changes No changes

Fatty change
and

hydropic
degeneration

Fatty change
and

hydropic
degeneration

Mild fatty
change and

hydropic
degeneration

No evidence of
hepatocyte

injury

Kidney

Tubular injury Absent
(0)

Acute tubular
injury in more

than 50% of
tubules

(3)

Acute tubular
injury in

10–50% of
tubules

(2)

Absent
(0)

Absent
(0)

Glomerular injury Absent
(0)

25–50%
mesangial

expansion and
sclerotizing
glomerulus

(2)

25–50%
mesangial

expansion and
sclerotizing
glomerulus

(2)

25–50%
mesangial

expansion and
sclerotizing
glomerulus

(2)

25–50%
mesangial

expansion and
sclerotizing
glomerulus

(2)

Total score 0 5 4 2 2

Heart

Myocyte
vacuolization

Absent
(0)

Mild
(2)

Moderate
(3)

Absent
(0)

Absent
(0)

Myocyte necrosis Absent
(0)

Mild
(2)

Mild
(2)

Minimal
(1)

Absent
(0)

Mononuclear cells
infiltration

Absent
(0)

Mild
(2)

Mild
(2)

Absent
(0)

Absent
(0)

Fibrosis Absent
(0)

Absent
(0)

Absent
(0)

Absent
(0)

Absent
(0)
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2.2.2. Immunohistochemical Analysis

In the current study, we tested pycnogenol against MTX-treated animal tissues to
detect the pycnogenol protective effects. A positive reaction to IHC-caspase 3 was detected
in the heart, liver tissues, and renal tubules. Adding pycnogenol to MTX-treated tissues
resulted in a decrease in the expression of caspase 3 in the heart, liver, and kidney tissues
in a dose-dependent manner compared to the MTX-treated group (Figures 8 and 9). The
current study shows that the normal group has mild (heart, liver, and kidney) IHC-P53
expression. The control group demonstrated moderate IHC-p53 expression in the heart,
liver, and kidney tissues. Pycnogenol-treated groups with different pycnogenol doses (10,
20, and 30 mg/kg) showed a significant decrease in IHC-P53 expression level in heart, liver,
and renal tissues in comparison with the MTX-treated group; results obtained from the
higher dose (30 mg/kg) were the best (Figures 9 and 10).

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 15 of 27 
 

 

tissues in a dose-dependent manner compared to the MTX-treated group (Figures 8 and 
9). The current study shows that the normal group has mild (heart, liver, and kidney) IHC-
P53 expression. The control group demonstrated moderate IHC-p53 expression in the 
heart, liver, and kidney tissues. Pycnogenol-treated groups with different pycnogenol 
doses (10, 20, and 30 mg/kg) showed a significant decrease in IHC-P53 expression level in 
heart, liver, and renal tissues in comparison with the MTX-treated group; results obtained 
from the higher dose (30 mg/kg) were the best (Figures 9 and 10). 

 
Figure 8. Immunohistochemical staining with IHC-caspase 3 of liver (A–E), kidney (F–J), and heart 
(K–O) tissue. Differences assessed by Kruskal–Wallis test at p = 0.05. 

 IHC-Caspase-3 IHC-P53 

H
ea

rt
 

 

 

liv
er

 

 

 

a
b

ab

bc

0.00

10.00

20.00

30.00

40.00

50.00

Av
er

ag
e 

nu
m

be
r o

f c
el

ls

a

a b bc

0.00

1.00

2.00

3.00

4.00

Av
er

ag
e 

nu
m

be
r o

f c
el

ls

a a
a

bc

0

10

20

30

40

50

Av
er

ag
e 

nu
m

be
r o

f c
el

ls a

ab b bc

0.00

1.00

2.00

3.00

4.00

Av
er

ag
e 

nu
m

be
r o

f c
el

ls

Figure 8. Immunohistochemical staining with IHC-caspase 3 of liver (A–E), kidney (F–J), and heart
(K–O) tissue. Differences assessed by Kruskal–Wallis test at p = 0.05.
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Figure 9. Immunohistochemical staining with IHC-caspase 3 and IHC-P53 of heart, liver, and kidney
tissue. Differences assessed by Kruskal–Wallis test at p = 0.05. a Significantly different from normal
group. b Significantly different from MTX group. c Significantly different from MTX + pycnogenol
(10 mg/kg).
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Figure 10. Immunohistochemical staining with IHC-P53 of heart (A–E), liver (F–J), and kidney
(K–O) tissue. Differences assessed by Kruskal–Wallis test at p = 0.05.

3. Discussion

The application of anticancer chemotherapy drugs has remained the mainstay treat-
ment of malignant disease. Among different anticancer drugs, MTX is a folate antagonist
that is extensively used to treat rheumatoid arthritis and cancer [39]. MTX is commonly
used as an antimetabolite in cancer chemotherapy and causes an indirect decrease in DNA
synthesis [40]. MTX predominantly suppresses cancer cell proliferation by inhibiting dihy-
drofolate reductase, a key enzyme in cell survival and proliferation [41]. The cytotoxicity of
MTX was correlated with ROS production, resulting in oxidative stress and apoptosis [40].
Continuous MTX administration showed cytotoxic effects that were not limited to cancer
cells but extended to affect vital organs, including the heart [42]. MTX therapy induces
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oxidative stress and inflammatory pathways in non-target cells and subsequent tissue
damage [43,44].

Based on these findings, we intended to examine the molecular and cellular effects of
MTX on the cellular dysfunction of the liver, kidney, and heart tissues. Toward this aim,
rats were treated with MTX and then subjected to a variety of biochemical, histological,
and immunohistochemical examinations. Treatment with MTX resulted in an increase in
the serum ALT and AST enzyme activities (vital biomarkers of liver diseases) [45]. The
observed effect of MTX on ALT and AST enzymes could be attributed to MTX-induced
oxidative stress and lipid peroxidation, which led to damage to the liver and disruption
of the hepatocyte bilipid layer [40,46]. The liver and kidney the most severely affected
organs by MTX-induced cell damage [47]. Our results also showed an increase in the serum
urea and creatinine levels in the MTX-treated group. These results may be due to the
renal dysfunction caused by the precipitation of MTX and its metabolites inside the renal
tubules. In addition, the tissue damage caused by ROS production and oxidative stress can
lead to changes in cellular function and tissue damage [48,49]. MTX-induced cytotoxicity
influenced the heart cells and resulted in the release of cardiac biomarkers such as troponin,
CK, and CK-MB into the serum [15]. Consistent with previous reports, our results show
that MTX treatment significantly increased the release of troponin, CK, and CK-MB into
the serum, which led to cytotoxicity in the heart cells [15]. Furthermore, we examined
the cytotoxic effects of MTX on inflammatory biomarkers in the liver, kidney, and heart
tissue homogenates. The results indicate that hepatic, renal, and cardiac NF-κB and TNF-α
levels were significantly increased in the MTX-treated group. These results suggest that
the MTX-mediated inflammatory pathway is mostly dependent on NF-κB transcription
and TNF-α elevation [50]. Next, we investigated the oxidative stress indicators in liver,
kidney, and heart tissue homogenates. In our investigations, we observed a significant
drop in the activity of the CAT and SOD enzymes, as well as a decrease in the levels of
GSH and ATP in the MTX-treated groups. These results are in agreement with previous
studies that reported that MTX treatment led to reduced GSH, SOD, and CAT activity, as
well as elevated MDA [50–52]. Notably, the magnitude of GSH detected (pg/g tissue) in
our experiments is lower than previously reported studies values. This could be attributed
to several conditions, including age of experimental animals, environmental conditions,
duration of experiments, and the amount of enzymes produced.

Several stimuli, including hormones, cytokines, growth factors, and immunological
responses, can influence the apoptosis process. The presence of cells expressing active
caspase 3 is regarded as a marker of apoptotic activation [53,54]. Furthermore, it has been
demonstrated that the p53 proteins play a critical regulatory role in apoptosis [40,53]. In our
investigations, the immunohistochemical analysis indicated that the MTX-treated group
exhibited a significant upregulation of p53 and caspase 3. The anticancer mechanism of
MTX is mainly based on the initiation of p53-dependent apoptosis [55]. Accumulation of
p53 protein is probably a predictor of response to MTX-induced inflammation and oxidative
stress in provoking apoptosis. Furthermore, histological analysis affirmed the cytotoxic
effect of MTX on hepatic, renal, and cardiac tissues. The architecture of the cells was
disturbed, and necrotic markers appeared in the histological analysis of the MTX-treated
group. MTX induces oxidative stress and lipid peroxidation, which cause damage to the
cell membrane and membrane integrity [46].

Several studies have reported the extensive use of natural compounds or their deriva-
tives as sources for the development of anticancer drugs [56]. Plant polyphenols serve
as natural antioxidants through a variety of processes, including free-radical scavenging,
metal chelation, and protein binding [30]. Among natural polyphenols, pycnogenol is an ex-
tract of a generic French pine bark (Pinus pinaster Aiton) that contains polymeric flavonoids
(70%) and monomeric flavonoids (30%) [31]. The high concentration of flavonoids in pyc-
nogenol is could be attributed to the wide range of antioxidant effects against both ROS and
nitrogen species [43]. Moreover, pycnogenol exhibits anti-inflammatory [57] and anticancer
activity [58,59]. Given the promising activity of pycnogenol, with the current study, we
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aimed to investigate the possible protective effect of pycnogenol against MTX-induced
toxicity. Toward this aim, pycnogenol was applied at different doses (10, 20, and 30 mg/kg)
before MTX was administrated, and the effect of pycnogenol was examined by biochemical,
histopathological, and immunochemical analyses (Figures 2–10).

Pre-treatment with pycnogenol resulted in significant protection of liver cells against
different injurious agents, as indicated by the ability of pycnogenol to restore the serum
biomarkers levels of AST and ALT toward the normal range, suggesting the protective role
of pycnogenol in liver cells [30]. The protective effect of pycnogenol on the kidney was also
revealed in blood urea and creatinine as biomarkers of renal salvage [60]. The protective
effect of pycnogenol on the heart, CK, and CK-MB biomarkers, has been discussed in
several studies, which reported the improvement of physiological and electrical heart
functions with pycnogenol treatment [48,61,62]. Troponin levels were also reduced upon
synergetic pycnogenol treatment with cisplatin [63]. In agreement with these results, in our
study, administration of pycnogenol to the control group (MTX-treated) led to a decrease
in heart biomarkers, CK and CK-MB, and reduced troponin levels toward normal levels in
the healthy group.

Pycnogenol also acts as an antioxidant and protective agent for several disor-
ders [43,64,65]. In our investigations, treatment with pycnogenol significantly increased
the level of GSH, SOD, and CAT enzymes, with a significant decrease in MDA levels in the
MTX-treated group. Ozoner et al. reported that the oxidative stress and the oxidative-stress-
associated damage in cardiac tissues could be attributed to the GSH depletion and that
pycnogenol treatment proved to reverse the effect of GSH depletion on cardiac tissue [66].
Moreover, the oxidative-stress-related enzymes, including SOD, GSH, and CAT, in kidney
tissue suffering from oxidative stress were found to enhance upon pycnogenol treatment,
whereas MDA decreased simultaneously [67]. Our results suggest a protective effect of
pycnogenol against the MTX-induced oxidative effect on the non-target heart, liver, and
kidney tissue by restoring the level of the oxidative stress markers in the serum and tissues
to almost normal levels.

Pycnogenol showed a wide range of anti-inflammatory effects, thus protecting against
proinflammatory disorders [68]. The mode of action of pycnogenol was proposed to be
mediated by the downregulation of the activated inflammatory pathway, including NF-κB
and TNF-α, as well as the elevation of ATP [58,69]. Consistent with this anti-inflammatory
mechanism, our study showed that pycnogenol treatment significantly decreased the level
of NF-κB and TNF-α and increased ATP levels in the MTX-treated group. In previous
studies, the effective dose of pycnogenol used as an antioxidant and anti-inflammatory
agent ranged from 50 mg/kg [43,67] to 200 mg/kg [60]. The current study showed similar
results, although at a lower effective dose of 30 mg/kg. Pycnogenol reduced NF-κB and
other proinflammatory cytokines in brain [70], lung [71], joint [68], and kidney tissues [72].
In the current study, we extended previous studies by examining NF-κB, TNF-α, and ATP
levels in liver, kidney, and heart tissues. Our results are in line with those reported in
previous studies in that pycnogenol treatment reduced the proinflammatory mediators,
including NF-κB and TNF-α, and elevated protective ATP, thus reversing the adverse effect
of MTX [67]. Accordingly, these results indicate that pycnogenol treatment has a protective
role in vital organs by reducing the inflammatory pathway induced by MTX therapy.

To further confirm our biochemical analysis, we investigated the protective effect of
pycnogenol on different organs by performing detailed histopathological and immuno-
chemical analyses. Our immunohistochemical analysis revealed that pycnogenol treatment
had an ameliorative effect on the expression of p53 and caspase 3 proteins. These results
could be attributed to the protective and antioxidant effect of pycnogenol, which decreases
ROS and enhances the antioxidant defense system, suppressing the apoptotic pathway.
Moreover, our histological studies revealed that the architecture of the hepatic, renal, and
cardiac tissues was improved with pycnogenol treatment, suggesting the potent antioxidant
and anti-inflammatory effects of pycnogenol Figure 11.
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4. Materials and Methods
4.1. Animals and Grouping:

All animal experiments were approved by the Institutional Animal Ethics Committee
of Suez Canal University, Faculty of Pharmacy. Thirty male Wistar rats with a mean weight
of 150 g were housed in an animal house with temperature (22 ◦C) and lighting control (12 h
light–12 h dark cycle). An adaptation period of 1 week was allowed before the initiation of
the experimental protocol. The rats were randomly distributed equally into four groups
(n = 6):

Group I rats were injected daily with a saline vehicle [1:9 DMSO/saline mixture,
0.2 mL/rat, i.p.] and were considered as a vehicle (control/normal) group.

Group II rats were injected with 0.2 mL of the vehicle (1:9 DMSO/saline mixture) for
14 days; then, the rats were given a single dose of MTX (10 mg/kg, i.p.). This group served
as the MTX control group.

Group III, IV, and V rats were orally treated for 14 successive days with pycnogenol (10,
20, and 30 mg/kg, 1:9 mixture of DMSO and saline, 0.2 mL/rat, P.O., oral gavage) [69,73].
Then, the rats were administered a single dose of MTX (10 mg/kg, i.p.) [74].

4.2. Chemicals and Reagents

Pycnogenol extract was purchased from Clearsynth Ltd. (Clearsynth Ltd., Mississauga,
Toronto, Canada). DMSO, saline, and MTX were purchased from Sigma-Aldrich (Germany).

4.3. Induction of Toxicity by MTX

After adaptation for 6–7 days, animals were treated with vehicle or pycnogenol for
14 days (10, 20, and 30 mg/kg, P.O, oral gavage). Then, they were intraperitoneally injected
with a single dose of MTX (10 mg/kg, i.p.). All rats had access to regular standard rat chow
during the treatment period.

4.4. Collection of Blood and Tissue Samples

Rats were sacrificed 72 h after MTX injections under ketamine anesthesia. Then, blood
samples were collected in a dry Eppendorf tube and centrifuged for 10 min at 1200 g after
clotting at ambient temperature to afford the sera. Serum samples were then split into



Pharmaceuticals 2022, 15, 674 20 of 27

different tubes and preserved at −20 ◦C for later evaluation of liver enzyme activities
(AST & ALT), creatinine, urea, and troponin levels, as well as activities of CK and CK-MB.
After performing a laparotomy, the left ventricle of the heart, right lobe of the liver, and
right kidney were kept in paraformaldehyde solution (10%) and used for histological
investigations. Then, the previously selected tissues were removed and thoroughly cleaned
with ice-cold normal saline before being kept at −80 ◦C. Homogenization of frozen tissues
samples in phosphate-buffered saline (PBS) (10% w/v, 50 mmol/L, pH = 7.4) was performed
utilizing a Teflon homogenizer (Glas Col homogenizer system, Vernon Hills, IL, USA).
Later, this homogenate was utilized to assay for ATP tissue level; oxidative stress indicators,
such as malonaldehyde (MDA) level, enzymatic antioxidant activities (CAT & SOD), and
non-enzymatic antioxidant (GSH) levels; as well as inflammatory markers, such as TNF-α
and NF-κB.

4.5. Biochemical Analysis

(a) Serum biomarkers:
i—Assessment of liver function:
To evaluate the functions of the liver, we estimated liver enzyme activities in the

serum, and the activities of liver enzymes AST and ALT were calculated using marketed
kits (Biocon Diagnostic, Vöhl, Germany, CA 92807 1-800-222-9880). The manufacturer’s
protocol was used as a guide to use these kits.

ii—Assessment of kidney function:
Serum creatinine and urea levels assist in the evaluation of renal function. Crea-

tinine levels were determined utilizing a diagnostic kit’s alkaline picric acid technique
(Diamond Diagnostics Ltd., Cairo, Egypt, CA 94545). Serum urea was determined using a
diagnostic kit reaction with salicylate-hypochlorite reagent in the presence of the catalyst
nitroprusside to produce a green indophenol (Diamond Diagnostics Ltd., Cairo, Egypt). A
spectrophotometer was used to determine the optical densities of the reactions (UV1601-PC,
Shimadzu, Japan).

iii—Assessment of heart function:
To estimate the damage caused by hepatic tissue injury, serum creatine phosphokinase

(CK), creatine kinase-MB isoenzyme (CK-MB), and troponin levels were measured using
enzymatic methods with an ultraviolet-visible spectrophotometer (UV-1601PC, Shimadzu,
Japan) and commercial kits purchased from Stanbio (MBS727624, TX, USA).

(b) Tissue biomarkers:
i—Assessment of tissue inflammatory biomarkers:
To evaluate the expression of proinflammatory cytokines, the content of NF-κ and

TNF-α in cardiac, hepatic, and renal homogenate was assessed using enzyme-linked im-
munosorbent assay (ELISA) kits. TNF-α was obtained from RayBiotech Inc. (3607 Parkway
Lane, Suite 200 Norcross, Peachtree Corners, GA, USA), and NF-κB was obtained from
EIAab™ (East Lake Hi-Tech Development Zone, Wuhan, China); both were used according
to the recommendations of the manufacturer.

ii—Assessment of tissue oxidative stress biomarkers:
To explore the oxidative stress level, a part of cardiac, hepatic, and renal homogenate

was used for determination of MDA levels using a colorimetric method depending on
the reaction with thiobarbituric acid, as described previously [75,76], whereas GSH level
was measured using a colorimetric method depending on the reduction of 5,5 dithiobis (2-
nitrobenzoic acid) (DTNB) with GSH, as described previously [77]. The methods were a
using UV dithiobis assay kits for ATP, SOD, and CAT in accordance with the instructions of
the manufacturer (MBS036924, Biodiagnostic, Egypt).
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4.6. Histological Analysis:

(a) Histopathologic analysis:
Histopathologic examinations were performed on the heart, liver, and kidneys. Af-

ter fixation overnight in 10% neutral buffered formalin, the tissues were dehydrated in
a series of increasing alcohol concentrations and embedded in paraffin. Subsequently,
four-millimeter-thick slices were cut and administered for normal hematoxylin and eosin
staining (H&E staining). The stained sections were then examined under a light micro-
scope [78].

i—Histopathological study of liver tissue sections:
Hepatic lesions were identified according to the following tables (Tables 3–5) [79].

Table 3. Scoring features for lobular architectural changes and hepatic activity index (HAI) grading:
necro-inflammatory.

Lobular Architecture Score

Normal (absence of fibrosis) 0

Fibrous expansion of some portal areas 1

Fibrous expansion of most portal areas, with portal–portal septa 2

Fibrous extension of portal spaces with portal–portal and portal–central septa, with
possible nodule formation 3

Cirrhosis with predominant nodular areas in relation to the remaining lobules 4

A. Periportal or periseptal interface hepatitis (piecemeal necrosis) Degree

Absent
Mild (focal, few portal areas)

Mild/moderate (focal, most portal areas)
Moderate (continuous, around 60% of tracts or septa)

Severe (continuous, >50% of tracts or septa)

0
1
2
3
4

B. Confluent necrosis Degree

Absent 0
Focal confluent necrosis 1

Zone 3 necrosis in some areas
Zone 3 necrosis in most areas

Zone 3 necrosis + occasional portal–central (P-C) bridging
Zone 3 necrosis + multiple P-C bridging

Panacinar or multiacinar necrosis

0
1
2
3
4
5
6

C. Focal (spotty) lytic necrosis, apoptosis, and focal inflammation Degree

Absent
One focus or less per 10x objective
Two to four foci per 10x objective
Five to ten foci per 10x objective

More than ten foci per 10x objective

0
1
2
3
4

D. Portal inflammation Degree

Absence of portal lymphocytes
Mild number of portal lymphocytes

Moderate number of portal lymphocytes
Marked number of portal lymphocytes

Strongly marked number of portal lymphocytes

0
1
2
3
4

ii—Histopathological study of kidney tissue sections:
Renal glomerular and tubular damage were scored by a semi-quantitative method

according to [80], wherein acute tubular injury changes were used to score the degree of
renal tubular damage, including disturbed tubular outline, loss of brush border, detached
lining cells into lumen, cytoplasmic vacuolization, and membrane blebbing [81].
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Table 4. Scoring features for renal tubular and glomerular damage.

Lesion Grade

No lesion 0

Acute tubular injury in 10% of tubules 1

Acute tubular injury in 10–50% of tubules 2

Acute tubular injury in more than 50% of tubules 3

Complete atrophy and thyroidization of the tubules 4

Lesion Grade

No sclerosis 0

1–25% mesangial expansion and sclerosing glomerulus 1

25–50% mesangial expansion and sclerotizing glomerulus 2

50–75% mesangial expansion and sclerosing glomerulus 3

75–100% mesangial expansion and sclerotizing glomerulus 4

iii—Histopathological study of heart tissue sections
Heart sections were microscopically evaluated for degenerative myocardial changes of.

The severity of observed microscopic lesions was graded based on the degree and extent of
tissue damage using a four-point scale [82]. The cardiac tissue was assessed according to the
presence of the following lesions: myocyte vacuolization, myocyte necrosis, mononuclear
cell infiltration, and fibrosis.

Table 5. Scoring features for degenerative myocardial changes.

Lesion Grade

No lesion 0

Lesions involved less than 10% of the heart section 1

Lesions involved 11–40% of the heart section 2

Lesions involved 41–80% of the heart section 3

Lesions involved more than 81% of the heart section 4

(b) Immunohistochemical analysis
Immunohistochemical staining was carried out for P53 and caspase-3 in cardiac,

hepatic, and renal tissues using a commercially available labelled streptavidin–biotin–
peroxidase complex method. To evaluate immunohistochemistry for P53 and caspase-3,
slides were scanned at x40 magnification, and ten cellular zones were identified (referred
to as hot spots) and photographed at x400 magnification for additional assessment. The
slides were examined using an Olympus CX31 light microscope, and pictures were taken
using a computer-driven digital camera (Olympus E-620) [83,84].

4.7. Statistical Analysis

The sample size was identified using G power program (n = 6). Data were analyzed
with ANOVA analysis utilizing SPSS.21 software (IBM Inc. Chicago, IL, USA). Data were
gathered and revised, and then statistical analysis was applied using one-way ANOVA.
Data were described as mean ± standard deviation (SD). The data significance was defined
by p-value (p > 0.05, non-significant; p < 0.05, significant). Statistical significance between
different groups was defined by applying one-way ANOVA, followed by Duncan’s multiple
range (DMRTs) post hoc test. Furthermore, the discrete data were analyzed using the
Kruskal-Wallis test, followed by the Mann-Whitney U test.
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5. Conclusions

Although MTX is a potent anticancer and anti-inflammatory medication, its untoward
effects on non-target cells may limit the use of MTX and increase the rate of MTX discontin-
uation. Therefore, several studies were conducted to identify a suitable adjunctive agent to
counteract the untoward effects of MTX. Pycnogenol has been proven to induce antioxidant
and anti-inflammatory effects, as well as antitumor influence. Pycnogenol was concluded to
act as an antioxidant agent in different situations, including heat stress. The improvement
of the cardiac biomarkers is evidence of the protective effect of pycnogenol on the integrity
of heart cells, and the reversal of the deleterious effect of MTX on heart tissue. To the best
of our knowledge, this is the first study to investigate the potential protective features
of pycnogenol in order to alleviate untoward MTX-mediated effects on non-target cells.
Pycnogenol plays a salient role in preserving cell architecture and physiological functions,
in addition to preventing adverse reactions related to MTX treatment. The antitumor effect
is an additive feature. Pycnogenol was proven to have significant protective value and may
decrease MTX withdrawal to a considerable extent.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15060674/s1, Figure S1: Regression trendline showing the relationship between increasing
pycnogenol levels (10, 20, and 30 mg Kg−1) and various serum biomarkers. Figure S2: Regression
trendline showing the relationship between increasing pycnogenol levels (10, 20, and 30 mg Kg−1)
and various heart biomarkers. Figure S3: Regression trendline showing the relationship between
increasing pycnogenol levels (10, 20, and 30 mg Kg−1) and various liver biomarkers. Figure S4:
Regression trendline showing the relationship between increasing pycnogenol levels (10, 20, and
30 mg Kg−1) and various kidney biomarkers.
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