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Abstract: Many elderly individuals frequently experience cataracts that interfere with vision. After
cataract surgery, the left lens epithelial cell (LEC) exhibited fibrosis and posterior capsule opacification
(PCO). Sometimes, there is a need for a second surgery; nevertheless, people try other methods, such
as a good pharmacological agent, to treat PCO to reduce transforming growth factor-β2 (TGF-β2)
amounts to avoid secondary surgery. The aim of the present study was to explore the potential
anti-PCO activity of five 2,4-dihydro-3H-pyrazol-3-one (DHPO) derivatives in a TGF-β2-induced
fibrogenesis SRA01/04 cell model. The 2-phenyl-5-propyl-DHPO (TSE; no. 2: TSE-2) compound
showed the best activity of reduced expression levels of TGF-β2 among five derivatives and therefore
was chosen to evaluate the anti-PCO activity and molecular mechanisms on the Sma and mad protein
(SMAD) signaling pathway (including TGF-β2, SMADs, and the inhibition of nuclear translocation
of SMADs), non-SMAD pathway proteins, including p-extracellular, regulated protein kinases (ERK)
1/2, or p-c-Jun N-terminal kinase (JUN) by Western blotting, PCR, or confocal immunofluorescence
analyses. Following treatment with 10 µg/mL of the five compounds, the cells displayed great viabil-
ity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTT) assay. In this study, the result of lactate dehydrogenase (LDH) activity measurement did not
affect the cytotoxicity of the five compounds. In TGF-β2-induced fibrogenesis in SRA01/04 cells,
treatment with the TSE compound decreased the TGF-β2/SMAD signaling genes, including reduced
mRNA or expression levels of TGF-β2, SMAD3, and SMAD4, leading to inhibition of TGF-β2-induced
fibrogenesis. Our confocal immunofluorescence analyses demonstrated that TSE treatment displays a
suppressive effect on SMAD2/3 or SMAD4 translocation to the nucleus. Furthermore, TSE treatment
exhibits a reduction in the non-SMAD target gene expression levels of p- c-Jun N-terminal kinase
(JUN), p- extracellular, regulated protein kinases (ERK)1/2, p- p38 mitogen-activated protein kinase
(p38), p-phosphatidylinositol 3-kinase (PI3K), p-mammalian target of rapamycin complex (mTORC),
p-Akt (Ser473), and p-Akt (Thr308). The overall effect of TSE is to reduce the expression levels of
collagen I and fibrinogen (FN), thus contributing to antifibrotic effects in cell models mimicking
PCO. Our findings reveal the benefits of TSE by regulating TGF-β/SMAD signaling and non-SMAD
signaling-related gene proteins to display antifibrotic activity in cells for the possibility of preventing
PCO after cataract surgery.

Keywords: cataract; posterior capsule opacification; Sma and mad protein (SMAD)s pathway; non-
SMADs pathway; transforming growth factor type β2 (TGF-β2

Curr. Issues Mol. Biol. 2022, 44, 5048–5066. https://doi.org/10.3390/cimb44100343 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44100343
https://doi.org/10.3390/cimb44100343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0003-4264-2602
https://orcid.org/0000-0002-5719-0488
https://orcid.org/0000-0002-0012-1238
https://doi.org/10.3390/cimb44100343
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44100343?type=check_update&version=2


Curr. Issues Mol. Biol. 2022, 44 5049

1. Introduction

Cataracts frequently occur in elderly individuals. Posterior capsular opacification
(PCO) is an ocular complication disease after cataract surgery, and the principal reasons
are fibrosis [1] of the entire posterior and left anterior capsule with lens epithelial cells
(LECs) adhered [2,3]. These quickly develop and finally interfere with the visual axis for
the next visual deprivation [2–4] after cataract surgery. Finally, once there is worse enough
inhibition of visual quality, another surgery must be performed [2,3].

There are various means in the management and prevention of PCO, including ap-
propriate anti-inflammatory drugs [5], anti-metabolic agents (such as 5-fluorouracil, mito-
mycin) [6,7], improved intraocular lens (IOL) designs (such as different materials, construc-
tion and designs to create a barrier to retard cell growth on the posterior capsule) [8,9], good
surgical advances, drug delivery systems (such as a closed bag drug delivery system), and
biological targets [1]. The design of IOLs and improving surgical skills and materials result
in the amelioration of PCO [2,3] but have not eradicated the problem [10], and trauma
and toxic side effects (such as releasing drugs toward other tissues that are harmful to the
corneal endothelium) exist [11]. Numerous growth factors function in certain signaling
pathways; thus, therapeutic intervention is thought to be via amelioration or regulation of
crucial signaling targets [2,3].

Transforming growth factor-β2 (TGF-β2) signaling has been shown to play an im-
portant role in PCO growth following cataract surgery [1] Accumulating evidence reveals
that TGF-β2 plays a core role in the regulation of LEC behavior during lens repair after
injury [1–3,12] and cataract surgery [3,13]. Therefore, previous evidence has shown that
strategies attenuating TGF-β2 signaling could be efficacious in the inhibition of capsular
fibrosis [10] or PCO after cataract surgery.

Furthermore, TGF-β2 has been identified to activate not only its SMAD signaling
pathway downregulation but also the constitution of PCO [14]. Saika et al. and other
researchers demonstrated that SMADs are targets associated with intracellular signal
transduction from cell exterior TGF-β receptors to nuclear gene promoters [3,13,15], and
once ligands bind with the TGF-β receptor, translocation of a complex of phosphorylated
SMAD2 and 3 occurs to the nuclei in a complex with SMAD4 and sequela [13]. The
TGF-β family is a representative epithelial–mesenchymal transition (EMT) inducer in both
development and disease through SMAD- and non-SMAD-regulated pathways [15,16].
Non-SMAD signaling pathways induce epithelial–mesenchymal transition (EMT) with
translation via the PI3K/AKT/mTOR pathway and promote cytoskeletal remodeling [17].

However, there is a lack of effective pharmacological therapies without toxicity for
the prevention of PCO. Pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone; PFD) has been
demonstrated to be an anti-inflammatory drug with anti-fibrosis activity, and it has been
used in clinical agents for the management of idiopathic pulmonary fibrosis (IPF) [18]. The
structure of 2-phenyl-5-propyl-2,4-dihydro-3H-pyrazol-3-one (TSE) has a core structure
similar to that of pirfenidone. In this study, we assessed whether TSE could have anti-PCO
activity. First, we screened five compounds (no. 1: 2-phenyl-5-(trifluoromethyl)-DHPO,
no. 2: 2-phenyl-5-propyl-DHPO (TSE; TSE-2), no. 3: 5-isopropyl-2-phenyl-DHPO, no. 4:
5-methyl-2-phenyl-DHPO, and no. 5: 5-methyl-2-(pyridin-2-yl)-DHPO) (Figure 1) [19], and
our findings showed that TSE possessed the best activity in SRA01/04 cells. Nevertheless,
the entire potential activities of TSE on PCO remain unknown in TFG-β2-induced PCO
of the human LEC line SRA01/04. Thus, we evaluated whether TSE treatment could be
effective against fibrosis, and it displayed better efficacy than PFD without toxic effects. Fur-
thermore, the anti-PCO activity of TSE was assessed in TGF-β2-treated cells by modulating
numerous targeted genes involved in SMAD or non-SMAD signaling pathways.
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Figure 1. The chemical structure of five compounds of 2,4-dihydro-3H-pyrazol-3-one (DHPO) de-
rivatives [19]. No. 1: TSE-1: 2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one, chemical 
formula: C10H7F3N2O. No. 2: TSE-2 (TSE): 2-phenyl-5-propyl-2,4-dihydro-3H-pyrazol-3-one, chemi-
cal formula: C12H14N2O. No. 3: TSE-3: 5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, chemi-
cal formula: C12H14N2O. No. 4: TSE-4. 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, chemical 
formula: C10H10N2O. No. 5: TSE-5: 5-methyl-2-(pyridin-2-yl)-2,4-dihydro-3H-pyrazol-3-one, chemi-
cal formula: C9H9N3O. 

2. Materials and Methods 
2.1. Chemicals 

Antibodies against TGFβ-2 (no. ab36495), rabbit anti-SMAD3 antibody (no. ab84177), 
rabbit anti-SMAD4 antibody (no. ab236321), rabbit anti-β actin antibody (no. ab8227), anti-
fibronectin antibody (Fn-3) (no. ab18265), and anti-collagen I (no. ab34710) were 

Figure 1. The chemical structure of five compounds of 2,4-dihydro-3H-pyrazol-3-one (DHPO) deriva-
tives [19]. No. 1: TSE-1: 2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one, chemical for-
mula: C10H7F3N2O. No. 2: TSE-2 (TSE): 2-phenyl-5-propyl-2,4-dihydro-3H-pyrazol-3-one, chemical
formula: C12H14N2O. No. 3: TSE-3: 5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, chemical
formula: C12H14N2O. No. 4: TSE-4. 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, chemical for-
mula: C10H10N2O. No. 5: TSE-5: 5-methyl-2-(pyridin-2-yl)-2,4-dihydro-3H-pyrazol-3-one, chemical
formula: C9H9N3O.

2. Materials and Methods
2.1. Chemicals

Antibodies against TGFβ-2 (no. ab36495), rabbit anti-SMAD3 antibody (no. ab84177),
rabbit anti-SMAD4 antibody (no. ab236321), rabbit anti-β actin antibody (no. ab8227), anti-
fibronectin antibody (Fn-3) (no. ab18265), and anti-collagen I (no. ab34710) were purchased
from Abcam, Inc. Antibodies against phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (no.
9101), p44/42 MAPK (ERK1/2) (no. 9102), phospho-SAPK/JNK (Thr183/Tyr185) (no. 9251),
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SAPK/JNK (no. 9252), phospho-p38 MAPK (Thr180/Tyr182) (28B10), mouse mAb (no. 9216),
p38 MAPK (no. 9212), phospho-PI3 kinase p85 (Tyr458)/p55 (Tyr199) (no. 4228), PI3 kinase
p85 (no. 4292), phospho-mTOR (Ser2481) (no. 2974), mTOR (no. 2972), phospho-Akt (Ser473)
(no. 9271), phospho-Akt (Thr308) (no. 9275), and Akt (no. 9272) were purchased from Cell
Signaling Technology, Inc., Danvers MA, USA. The secondary anti-rabbit antibody was
from Jackson Lab., Inc. (West Grove, PA, West Baltimore Pike, USA).

2.2. Cell Lines

SRA01/04 cells (RCB1591), an SV40 T-antigen-transformed human LEC line, SV40
T-antigen-transformed human lens epithelial cell line [20], were purchased from Cell Bank
Riken BioResource Research Center, Japan. The cells were cultured in media specific to the
cell line, and this process was performed as described in a previous study [21].

2.3. MTT Assay

The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTT) measurement was used to evaluate cytotoxicity. SAR01/04 cells were
seeded (1 × 104 cells/mL) in 96-well culture plates and cultured with five compounds of
DHPO derivatives at different concentrations (5, 10, or 20 mg/mL) for 24 h as described in
a previous study [22].

2.4. Lactate Dehydrogenase (LDH) Activity Assay

After treatment with these five compounds, this part was performed as described in a
previous study [23].

2.5. Immunoblotting Analysis

SRA01/04 cell lysates were lysed in radioimmunoprecipitation assay (RIPA) buffer,
and the immunoblotting analysis was performed as described in previous studies [21,24]
with the following specific antibodies: anti-TGFβ2 and anti-SMADs (Cell Signaling, Beverly,
MA, USA).

2.6. Confocal Immunofluorescence Microscopy

Cells were seeded at a density of 2 × 105 cells/well in 6-well plates as described in a
previous study [25].

2.7. Relative Quantification of mRNA

The relative quantification of mRNA was performed as described in a previous
study [24,26]. The primer sequences were as follows: TGFβ-2 primer: forward primer 5′-
TGAAGTTCTAGCCATGAGGT -3′ reverse primer 5′- AGCAATTATCCTGCACATTT -3′;
SMAD3 primers: forward primer 5′- TGAAGTTCTAGCCATGAGGT -3′ reverse primer
5′- AATATTTGGTTCCTGGGTCT -3′; SMAD4 primers: forward primer 5′- TAAGGC-
CATTTG TTTTGTTT-3′ reverse primer 5′- AGCCATTACTTTCAGGTTGA -3′; and β-
actin primers: forward primer 5′- GGCGGACTATGACTTAGTTG -3′ reverse primer 5′-
TGCCAATCTCATCTTGTTT-G-3′. The relative gene expression was assayed with agarose
gel electrophoresis.

2.8. Statistical Analyses

Data are the mean and standard error. All results were analyzed with analysis of
variance with Dunnett’s multiple range test by SPSS software. p < 0.05 was considered
statistically significant.

3. Results
3.1. Effects of Five Compounds on the Expressions of TGF-β2, SMAD3, or SMAD4 in SRA01/04 Cells

There was no significant difference in the protein expression levels of TGF-β2, SMAD3,
and SMAD4 between the DMSO group and the CON group. There was a significant
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decrease in the expression levels of TGF-β2 in the TSE-1-, TSE-2 (TSE)-, TSE-3-, TSE4-, and
TSE-5-treated groups compared to the CON group (p < 0.001, p < 0.001, p < 0.01, p < 0.001,
p < 0.01, respectively) (Figure 2A,B). There was a significant decrease in the expression
levels of SMAD3 in the PFD-, TSE-1-, TSE-2 (TSE)-, TSE-3-, TSE4-, and TSE-5-treated groups
compared to the CON group (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001,
respectively) (Figure 2A,C). There was a significant decrease in the expression levels of
SMAD4 in the PFD-, TSE-1-, TSE-2 (TSE)-, TSE-3-, and TSE-5-treated groups compared to
the CON group (p < 0.001, p < 0.05, p < 0.001, p < 0.001, p < 0.01, respectively) (Figure 2A,D).
We found that TSE-2 (TSE) displayed a significant decrease in TGF-β2 expression compared
with that in the CON group.

3.2. Cell Viability of Five Compounds

In the trypan blue exclusion test, after 24, 48, 72, or 96 h of treatment with five
compounds of DHPO, the percentages of living cells were 108.6 ± 2.7%, 105.3 ± 1.4%,
103.6 ± 2.1%, and 103.2 ± 2.4% for the control and 10 µg/mL TSE groups, respectively
(Figure 3A). No significant difference was found between the groups (p > 0.05).
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Figure 2. Screening tests of five compounds (including 2,4-dihydro-3H-pyrazol-3-one (DHPO) de-
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Representative image; quantification of (B) TGFβ2, (C) SMAD3, or (D) SMAD4 to β-actin. Protein 
was separated by 12% SDS-PAGE detected by Western blot. * p < 0.05, ** p < 0.01 or *** p < 0.001 
compared to CON cells. Data are the means ±SE (n = 3). 
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(A) Representative image; quantification of (B) TGFβ2, (C) SMAD3, or (D) SMAD4 to β-actin. Protein
was separated by 12% SDS-PAGE detected by Western blot. * p < 0.05, ** p < 0.01 or *** p < 0.001
compared to CON cells. Data are the means ±SE (n = 3).

3.3. LDH Assay

Following treatment with five compounds 24 h later, the cell-mediated lysis percent-
ages were 4.47 ± 0.9% for the control and 10 µg/mL TSE groups and 7.36 ± 1.1% for the
control and 10 µg/mL TSE groups 48 h later. TSE did not display significant cytotoxicity
action (Figure 3B).

3.4. Effects of TSE on the mRNA Levels of Targeted Genes in Cells

The mRNA levels of TGF-β2, SMAD3, and SMAD4 were markedly enhanced in
SRA01/04 cells compared to the CON group (p < 0.001, p < 0.001, p < 0.001, respectively).
A reduction in the mRNA levels of TGF-β2 was observed in the 5, 10, and 20 mg/mL
TSE-treated groups compared to the vehicle-treated TGF-β2 group (p < 0.05, p < 0.001,
p < 0.001, respectively) (Figure 4A,B). A reduction in the mRNA levels of SMAD3 was
observed in the 5, 10, and 20 mg/mL TSE-treated groups compared to the vehicle-treated
TGF-β2 group (p < 0.05, p < 0.001, p < 0.001, respectively) (Figure 4A,B). A reduction in
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the mRNA level of SMAD4 was observed in the 5, 10, and 20 mg/mL TSE-treated groups
compared to the vehicle-treated TGF-β2 group (p < 0.01, p < 0.001, p < 0.001, respectively)
(Figure 4A,B).
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Figure 4. Effects of TSE on the mRNA or protein expression levels of TGFβ2, SMAD3, SMAD4, fi-
bronectin, or collagen I in TGFβ2-induced SRA01/04 cells. (A) Representative image and (B) quan-
tification of the ratio of target gene to β-actin mRNA levels. The RT-PCR amplification was per-
formed on PCR Detection System. The relative gene expression is assayed with agarose gel electro-
phoresis. Protein was separated by 12% SDS-PAGE detected by Western blot: (C and E) representa-
tive image, and (D and F) quantification of the target gene to β-actin. ### p < 0.001 in comparison to 
control cells; * p < 0.05, ** p < 0.01 or *** p < 0.001 in comparison to TGF-β2-induced control cells. 
Values are the mean ±SE (n = 3). 
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20 mg/mL TSE-treated groups compared with the vehicle-treated TGF-β2 group (p < 0.05,
p < 0.001, p < 0.001, respectively) (Figure 4C,D). Decreases in the expression levels of
SMAD4 were observed in the 5, 10, and 20 mg/mL TSE-treated groups compared with the
vehicle-treated TGF-β2 group (p < 0.05, p < 0.001, p < 0.001, respectively) (Figure 4C,D).
Decreases in the expression levels of fibronectin were observed in the 10 and 20 mg/mL
TSE-treated groups compared with the vehicle-treated TGF-β2 group (p < 0.001, p < 0.001,
respectively) (Figure 4E,F). Decreases in the expression levels of collagen I were observed
in the 10 and 20 mg/mL TSE-treated groups compared with the vehicle-treated TGF-β2
group (p < 0.001, p < 0.001, respectively) (Figure 4E,F).

3.6. TSE Inhibits the Nuclear Translocation of SMADs

By immunofluorescence assay, the expression levels of SMAD2/3 and SMAD4 protein
in SRA01/04 cells were scanned and examined. SMAD2/3 and SMAD4 may be expressed
within the cells and nearly in the cytoplasm. As shown in Figures 5 and 6, the nuclear
SMAD2/3 or SMAD4 staining in the control group (in the absence of TGF-β2) in SRA01/04
cells was very weak. These results were evaluated under confocal microscopy. Following
treatment with 5, 10, or 20 mg/mL TSE, nuclear SMAD2/3 and nuclear SMAD4 expression
was decreased in the SRA01/04 cell line compared with the control under microscopy at
200×magnification, and the suppressive activity of 20 mg/mL TSE was the most effective
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(Figures 5 and 6). Thus, these findings demonstrated that TSE displayed a suppressive
effect on SMAD2/3 or SMAD4 translocation to the nucleus in SRA01/04 cells.
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7A–D). A decrease in p-JUN/JUN and p-ERK1/2/ ERK1/2 expression was found in the 5, 
10 and 20 mg/mL TSE-treated groups compared to the vehicle-treated TGF-β2 group (Fig-
ure 7A,B). A decrease in p-p38/ p38 expression was found in the 10 and 20 mg/mL TSE-
treated groups compared to the vehicle-treated TGF-β2 group (p < 0.001, p < 0.001, respec-
tively) (Figure 7A,B). A decrease in p-PI3K/ PI3K and p-Akt (Thr308)/ t-Akt expression was 
found in the 5, 10, and 20 mg/mL TSE-treated groups compared to the vehicle-treated 
TGF-β2 group (Figure 7C,D). A decrease in p-mTOR/ mTOR and p-Akt (Ser473)/ t-Akt 

Figure 6. Effects of TSE on epithelial–mesenchymal translocation of SMAD2/3 in cells using confocal
microscopy. The mesenchymal phenotypic marker SMAD2/3 (red) in cells. The nuclei were stained
with DAPI (blue). Magnification, ×200.
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3.7. Effects of TSE on the Protein Expression of p- JUN/JUN, p-ERK1/2/ERK1/2, p-p38/p38, p-Akt
(Ser473)/t-Akt, and p-Akt (Thr308)/t-Akt in SRA01/04 Cells

The expression levels of p- JUN/JUN, p-ERK1/2/ERK1/2, p-p38/ p38, p-Akt (Ser473)/t-
Akt, and p-Akt (Thr308)/t-Akt were significantly increased in TGF-β2-induced cells com-
pared with the CON cells (p < 0.05, p < 0.05, p < 0.05, p < 0.05, p < 0.01, respectively)
(Figure 8A–D). A decrease in p-JUN/JUN and p-ERK1/2/ ERK1/2 expression was found
in the 5, 10 and 20 mg/mL TSE-treated groups compared to the vehicle-treated TGF-
β2 group (Figure 8A,B). A decrease in p-p38/ p38 expression was found in the 10 and
20 mg/mL TSE-treated groups compared to the vehicle-treated TGF-β2 group (p < 0.001,
p < 0.001, respectively) (Figure 8A,B). A decrease in p-PI3K/ PI3K and p-Akt (Thr308)/
t-Akt expression was found in the 5, 10, and 20 mg/mL TSE-treated groups compared
to the vehicle-treated TGF-β2 group (Figure 8C,D). A decrease in p-mTOR/ mTOR and
p-Akt (Ser473)/ t-Akt expression was found in the 10 and 20 mg/mL TSE-treated groups
compared to the vehicle-treated TGF-β2 group (Figure 8C,D).
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Figure 7. Effects of TSE on expression levels of p- JUN/ JUN, p-ERK1/2/ ERK1/2, p-p38/ p38, p-PI3K/ 
PI3K, p-mTOR/ mTOR, p-Akt (Ser473)/ t-Akt, and p-Akt (Thr308)/ t-Akt in SRA01/04 cells by Western 
blot. (A) representative image, and (B) quantification of the p- JUN/ JUN, p-ERK1/2/ ERK1/2, and p-
p38/ p38 to β-actin. Protein was separated by 12% SDS-PAGE. (C) representative image, and (D) 
quantification of p-PI3K/ PI3K, p-mTOR/ mTOR, p-Akt (Ser473)/ t-Akt, and p-Akt (Thr308)/ t-Akt to β-
actin. Protein was separated by 12% SDS-PAGE. (C) representative image, and (D) quantification of 
p-PI3K, p-mTOR, p-Akt (Ser473), and p-Akt (Thr308) to β-actin. # p < 0.05 or ## p < 0.01 in comparison to 
control cells. * p < 0.05 or *** p < 0.001 in comparison to TGF-β2-induced control cells. Data are the 
means ±SE (n = 3). 
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anti-metabolic agents, and biological targets. Targeting TGF-β signaling is a modern 
method for developing a novel therapeutic agent [27]. Therefore, we hypothesized that 
there are therapeutic interventions with no toxic side effects and low cost that block the 
TGFβ-2 and SMAD pathways, leading to antifibrotic effects and contributing to the pre-
vention of PCO. Consistently, we found that TSE decreased the mRNA and protein ex-
pression levels of TGF-β2, SMAD3, and SMAD4; moreover, TSE inhibited the nuclear 
translocation of SMAD2/3 and SMAD4 in TGF-β2-induced fibrotic cells, and this vital cell 
was associated with the management of PCO. Therefore, it is possible that TSE might be 
a novel and prospective agent against PCO. 

Pirfenidone (PFD) is an anti-inflammatory, antioxidant, and antifibrotic agent used 
in animal studies [9,18,28]. Pirfenidone has been demonstrated to inhibit the growth of 
orbital fibroblasts at concentrations of 1.9 mg/mL in patients with thyroid-associated oph-
thalmopathy [10,29]. 

These five compounds (2,4-dihydro-3H-pyrazol-3-one (DHPO) derivatives) were 
synthesized by our team with a core structure similar to that of PFD. Our findings show 
that the activity of these five compounds displays almost similar activities at concentra-
tions of 10 μg/mL but more efficacy than PFD (at concentrations of 0.25 mg/mL) on the 
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p-PI3K/ PI3K, p-mTOR/ mTOR, p-Akt (Ser473)/ t-Akt, and p-Akt (Thr308)/ t-Akt in SRA01/04 cells
by Western blot. (A) representative image, and (B) quantification of the p- JUN/ JUN, p-ERK1/2/
ERK1/2, and p-p38/ p38 to β-actin. Protein was separated by 12% SDS-PAGE. (C) representative
image, and (D) quantification of p-PI3K/ PI3K, p-mTOR/ mTOR, p-Akt (Ser473)/ t-Akt, and p-Akt
(Thr308)/ t-Akt to β-actin. Protein was separated by 12% SDS-PAGE. (C) representative image, and
(D) quantification of p-PI3K, p-mTOR, p-Akt (Ser473), and p-Akt (Thr308) to β-actin. # p < 0.05 or
## p < 0.01 in comparison to control cells. * p < 0.05 or *** p < 0.001 in comparison to TGF-β2-induced
control cells. Data are the means ±SE (n = 3).

4. Discussion

Cataract is one of the major elderly topics worldwide. Posterior capsular opacification
(PCO) is a familiar complicative issue following cataract surgery. Currently, there are
various means of management and prevention of PCO, including surgical advances, IOL,
anti-metabolic agents, and biological targets. Targeting TGF-β signaling is a modern
method for developing a novel therapeutic agent [27]. Therefore, we hypothesized that
there are therapeutic interventions with no toxic side effects and low cost that block
the TGFβ-2 and SMAD pathways, leading to antifibrotic effects and contributing to the
prevention of PCO. Consistently, we found that TSE decreased the mRNA and protein
expression levels of TGF-β2, SMAD3, and SMAD4; moreover, TSE inhibited the nuclear
translocation of SMAD2/3 and SMAD4 in TGF-β2-induced fibrotic cells, and this vital cell
was associated with the management of PCO. Therefore, it is possible that TSE might be a
novel and prospective agent against PCO.

Pirfenidone (PFD) is an anti-inflammatory, antioxidant, and antifibrotic agent used
in animal studies [9,18,28]. Pirfenidone has been demonstrated to inhibit the growth of
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orbital fibroblasts at concentrations of 1.9 mg/mL in patients with thyroid-associated
ophthalmopathy [10,29].

These five compounds (2,4-dihydro-3H-pyrazol-3-one (DHPO) derivatives) were syn-
thesized by our team with a core structure similar to that of PFD. Our findings show that
the activity of these five compounds displays almost similar activities at concentrations of
10 µg/mL but more efficacy than PFD (at concentrations of 0.25 mg/mL) on the expression
levels of TGF-β2, SMAD3, or SMAD4, implying that these five compounds display antifi-
brotic activity approximately 25 times that of PFD in SRA01/04 cells. Based on the results
of protein expression of TGF-β2, we selected the most efficient compound and examined
the protective activity and its underlying molecular mechanism of TSE.

In this study, we investigated whether TSE displayed targeting TGFβ signaling to
provide new insights for developing a novel therapeutic intervention. Our data showed
that in the MTT test, 10 µg/mL TSE exhibited no toxic effect in SRA01/04 cells (Figure 3A).
Moreover, TSE displayed no LDH activity discharging from the injured cells without
harming these cells (Figure 3B). However, this study demonstrates for the first time the ben-
eficial effects of anti-PCO in TGF-β2-induced SRA01/04 cells, thereby producing evidence
of the role of TSE’s anti-fibrotic effects by inhibition of TGF-β2-SMAD and non-SMAD
signaling pathways.

Previous works from laboratories showed that the SRA01/04 model has been widely
used [10,30] and is a key measure of the possible reasons for cataract development. There-
fore, for further analysis, we used this cell line to investigate the potential anti-PCO activity
of TSE.

Pirfenidone exerted its antifibrotic effect in the following cases. A recent study reported
that pirfenidone decreases the levels of mRNA and TGF-β expression in animal models
of lung fibrosis [30]. In addition, pirfenidone was found to downregulate the mRNA
levels of TGF-β1 in a rodent hepatic fibrosis study [31]. Increasing evidence shows that
pirfenidone not only inhibits collagen but also decreases TGF-β expression in a renal fibrosis
model [32–34].

A recent publication confirmed many of our findings with a reduction in the nuclear
accumulation and/or translocation of SMAD2/3 and SMAD4 following treatment with
pirfenidone [10]. A recent study found that pirfenidone inhibits TGF-β signaling with
suppression of active SMAD2/3 complexes in the nuclei accumulation but does not com-
plete SMAD2/3 phosphorylation [35]. Therefore, there is a possibility that TSE acts as PFD
and reduces the nuclear accumulation and/or translocation of SMAD2/3 and SMAD4.
In addition to the abovementioned findings, all of these findings point to at least one
pathway that results in TSE inhibiting TGF-β2-induced fibrogenic LECs with a decrease in
the expression levels of collagen I and fibronectin and reducing the mRNA and expression
levels of TGF-β2, SMAD3, or SMAD4, as well as a decrease in the expression levels of
p-ERK p42/44 and p-JUN, resulting in the prevention of PCO occurrence.

In addition to SMAD2/3/4 nuclear translocation, there are many signaling pathways
involved in the TGF-β receptor-induced response. TGF-β can induce EMT by direct
phosphorylation of SMAD2/3 or activation of non-SMAD pathways, such as mitogen-
activated protein kinase (MAP) kinase (MAPK; p-38, ERK1/2, JUN), mTOR, or PI3K/Akt,
thus contributing to the inhibition of epithelial target genes and mesenchymal marker
activation [36–38]. The additional exact molecular mechanisms involved in the suppression
of the TGF-β2-SMAD signaling pathway by TSE remain to be elucidated. Further study
will be needed to investigate other potential mechanisms, including activation of the non-
SMAD signaling pathway (such as Hippo/YAP, β-catenin/Wnt, proKin, or Rho GTPase)
of TSE for suppressive activity in TGF-β2-induced fibrogenic effects in LECs. Because
SRA01/04 cells were used in this study, we speculate that TSE might be another candidate
for protection against PCO.
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5. Conclusions

In summary (Figure 9), the present study demonstrated that TSE has therapeutic
potential in treating PCO associated with its antifibrotic activity in a TGF-β2-induced
fibrogenesis SRA01/04 cell model. The major target of TSE is the decrease in the expression
levels of numerous target genes involved in the TGF-β2/SMAD and non-SMAD signaling
pathways and the inhibition of nuclear translocation of SMADs. TSE treatment decreased
the mRNA or expression levels of TGF-β2, SMAD3, or SMAD4, with consequent reduced
accumulation of SMADs in the nuclei and translocation, as well as decreased non-SMAD
pathway gene expression levels of p-JUN/ JUN, p-ERK1/2/ ERK1/2, p-p38/ p38, p-PI3K/
PI3K, p-mTOR/ mTOR, p-Akt (Ser473)/ t-Akt, and p-Akt (Thr308)/ t-Akt in TGF-β2-induced
fibrogenic cells. Furthermore, TSE decreased the expression levels of collagen I and fi-
bronectin. The overall effect of TSE is to decrease TGF-β2-induced fibrogenesis in cells,
thus resulting in antifibrotic activity with the potential to prevent PCO occurrence.
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